Supporting Information File

Synthesis of a-Aryl Sulfides by Deaminative Coupling of a-

Amino compounds with Thiophenols

Xuejing Yang,^a Qiang Teng,^a Feifei Cao,^a Jianfeng Hu,^{a,b} Hao Zhang^{*a,b} and

Yong Yang*c,d

^a College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.

^b Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China. E-mail address: haozhang@imu.edu.cn.

^c State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China. E-mail: yyong@sxicc.ac.cn

^d National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P. R. China.

Table of Contents

1.	General experimental methods.	S2
2.	General procedure of deaminative coupling of α-aminoester salts	S3
3.	General procedure of deaminative coupling of α -aminoacetonitrile salts.	S8
4.	Analytical data for all products.	S15
5.	References	S111

1. General experimental methods.

All reagents were used as received from commercial sources unless specified otherwise, or prepared as described in the literature. All Solvents were purified following standard literature procedures. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. All NMR experiments were carried out on a Bruker Avance 500 spectrometer using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard. Chemical shift values (δ) are given in parts per million.

2. General procedure of deaminative coupling of α-aminoester salts.

General procedure A: The thiol 1 (0.5 mmol), α -aminoester hydrochloride 2a (1.0 mmol), NaNO₂ (1.25 mmol) and NH₄Cl (2.0 mmol) were added into a reaction tube. Toluene (1.14 ml) and water (114 µl) were added respectively. The mixture was stirred at 100 °C for 24 h. When the reaction was completed, the mixture was crude after the solvent was removed by the vacuum pump. The crude mixture was purified by column chromatography on silica gel to obtain product 3.

General procedure B: The thiol 1 (0.5 mmol), α -aminoacetonitriles hydrochloride 2b-e (1.25 mmol), NaNO₂ (1.5 mmol) and NH₄Cl (1.0 mmol) were added into a reaction tube. Toluene (1.14 ml) and water (114 µl) were added respectively. The mixture was stirred at 100 °C for 24 h. When the reaction was completed, the mixture was crude after the solvent was removed by the vacuum pump. The crude mixture was purified by column chromatography on silica gel to obtain product 4.

$CI \longrightarrow SH + CIH_3N \longrightarrow COOEt \xrightarrow{solvent, additive, NaNO_2} CI \longrightarrow S \longrightarrow COOEt$						COOEt
1a		2a			3a	
entry	1a:2a	solvent	NaNO ₂	additive	t	yield
		(toluene/H ₂ O)	(equiv)	(equiv)	(°C)	(%)
1	1.0:1.5	20:1	1.8	$NH_4Cl(4)$	100	70
2	1.0:1.5	20:1ª	1.8	$NH_4Cl(4)$	100	68
3	1.0:1.5	20:1 ^b	1.8	$NH_4Cl(4)$	100	0
4	1.0:1.5	20:1°	1.8	$NH_4Cl(4)$	100	0
5	1.0:1.5	20:1	1.8	NH ₄ F (4)	100	55
6	1.0:1.5	20:1	1.8	$HCOONH_4(4)$	100	53
7	1.0:1.5	20:1	1.8	HCOONa(4)	100	30
8	1.0:1.5	20:1	1.8	-	100	15
9	1.0:1.5	20:1	2.5	$NH_4Cl(4)$	100	75
10	1.0:2.0	20:1	2.5	$NH_4Cl(4)$	100	83
11	1.0:2.0	20:1	2.5	$NH_4Cl(4)$	80	76
12	1.0:2.0	10:1	2.5	$NH_4Cl(4)$	100	90
13	1.0:2.0	10:1	2.5	NH ₄ Cl (2.5)	100	83

Table S1. Optimization of reaction conditions of α-aminoethlyester salts.

^a Solvent was DCE/H₂O. ^b Solvent was dioxane/H₂O. ^c Solvent was CH₃CN/H₂O.

Scheme S1. Deaminative coupling of α-aminoethylester salts.

$CI \longrightarrow SH + CIH_3N COOCH_3 \xrightarrow{solvent, additive, NaNO_2} CI \longrightarrow S \xrightarrow{COOCH_3}$							
1a		2b	temperatur	0, 24 11	4a		
		solvent	NaNO ₂	additive	t	yield	
entry	1a:2b	(toluene/H ₂ O)	(equiv)	(equiv)	(°C)	(%)	
1	1.0:2.0	10:1	2.5	$NH_4Cl(4)$	100	53	
2	1.0:2.0	10:1	2.5	HCOOK (4)	100	15	
3	1.0:2.0	10:1	3.0	$NH_4Cl(4)$	100	56	
4	1.0:2.5	10:1	3.0	$NH_4Cl(4)$	100	61	
5	1.0:2.5	20:1	3.0	$NH_4Cl(4)$	100	57	
6	1.0:2.5	20:1	3.0	$NH_4Cl(4)$	80	60	
7	1.0:2.5	20:1	3.0	NH ₄ Cl (2)	100	71	
8	1.0:2.5	20:1	3.0	$NH_4Cl(1)$	100	63	

Table S2. Optimization of reaction conditions of α -aminomethylester salts.

Scheme S2. Deaminative coupling of α-aminomethylester salts.

3. General procedure of deaminative coupling of α-aminoacetonitrile salts.

General procedure C: The thiol 1 (0.5 mmol), α -aminoacetonitriles hydrochloride 5a (1.25 mmol), and NaNO₂ (1.75 mmol) were added into a reaction tube. Toluene (1.14 ml) and water (114 µl) were added respectively. The mixture was stirred at 50 °C for 24 h. When the reaction was completed, the mixture was crude after the solvent was removed by the vacuum pump. The crude mixture was purified by column chromatography on silica gel to obtain product 6.

General procedure D: The thiol 1a,c,d,e,f (0.5 mmol), α -aminoacetonitriles hydrochloride **5b-e** (1.25 mmol), and NaNO₂ (1.75 mmol) were added into a reaction tube. Toluene (2.27 ml) and water (227 µl) were added respectively. The mixture was stirred at 25 °C for 24 h. When the reaction was completed, the mixture was crude after the solvent was removed by the vacuum pump. The crude mixture was purified by column chromatography on silica gel to obtain product 7.

Scheme S3. Synthesis of α-aminoacetonitrile hydrochloride derivatives (5b-e).

The synthesis of 5a and 5b¹: Added ZnI_2 (1.0 mmol) to a mixture of propionaldehyde or butyraldehyde (10 mmol) and TMSCN (12 mmol). Stirring for 20

minutes, then a saturated solution of ammonia of methanol was added and warmed the mixture to 40 °C. After stirring for 3h, the solvent was removed and the residue was extracted with ether, dried by Mg_2SO_4 and filtered, concentrated. Last the concentrate was acidized with MeOH·HCl then collected the powder (yield 40-60%).

The synthesis of 5d and 5e²**:** Added the alkyl halide (11 mmol), saturated sodium hydroxide (100 mmol) and benzyl triethylammonium chloride (1.0 mmol) to a solution of 2-[(diphenyl methylene)amino]acetonitrile (10 mmol) in DCE. The mixture was stirred until the reaction was completed. The diluted mixture with water and extracted with DCM. Combined the organic phase and concentrated it to leave a crude product. Dissolved the crude product with THE, added 1.0 M HCl aqueous (15 ml) and stirred for 3 h. Then poured the reaction mixture into water and washed with ether three times to remove the benzophenone. The aqueous layer was neutralized by 10 M NaOH and extracted with DCM. Combined the organic phase dried with Ma₂SO₄, filtered and concentrated. The residue was dissolved with ether and then acidized with MeOH·HCl. Collected the powder (yield 40-50%).

CI-	–ѕн + с⊪	HH ₂ N CN solver	nt,NaNO₂ ∽ rature,24h	CI-S-CN		
1a		5a		6a		
		solvent	NaNO ₂	t	yield	
entry	1a:5a	(toluene/H ₂ O)	(equiv)	(°C)	(%)	
1	1.0:2.0	20:1	2.5	50	35	
2	1.0:2.0	20:1ª	2.5	50	30	
3	1.0:2.0	20:1 ^b	2.5	50	0	
4	1.0:2.0	20:1°	2.5	50	10	
5	1.0:2.0	20:1	3.0	50	44	
6	1.0:2.0	20:1	3.5	50	52	
7	1.0:2.5	20:1	3.5	50	62	
8	1.0:2.5	10:1	3.5	50	72	
9	1.0:2.5	5:1	3.5	50	61	
10	1.0:2.5	10:1	3.5	25	63	
11	1.0:2.5	10:1	3.5	75	57	

Table S3. Optimization of reaction conditions of α -aminoacetonitriles salts.

^a Solvent was DCE/H₂O. ^b Solvent was dioxane/H₂O. ^c Solvent was CH₃CN/H₂O.

Scheme S4. Deaminative coupling of α-aminoacetonitrile salts.

CI-	SH +	CN solve	nt,NaNO ₂	S S	CN
1a		5e		7g	
	10.50	solvent	NaNO ₂	t	yield
enuy	14.56	(toluene/H ₂ O)	(equiv)	(°C)	(%)
1	1.0:2.5	10:1 (0.4 M)	3.5	50	35
2	1.0:2.5	10:1 (0.4 M)	3.5	25	41
3	1.0:2.5	10:1 (0.2 M)	3.5	25	48
4	1.0:2.5	10:1 (0.1 M)	3.5	25	39

Table S4. Optimization of reaction conditions of α -benzylaminoacetonitriles salts.

Scheme S5. Deaminative coupling of α-substituted aminoacetonitrile salts.

Scheme S6. Extension: deaminative coupling of benzylamines.^{a,b,c}

^a The substrates **8a-8e** were benzylamines. ^b The substrates **8f-8j** were benzylamine

hydrochlorides. ^c Determined by TLC and GC-MS.

4. Analytical data for all products.

Ethyl 2-[(4-chlorophenyl)thio]acetate (3a): colorless liquid, 103.8 mg (90% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J= 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 133.5, 133.1, 131.4, 129.1, 61.6, 36.7, 14.1. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₀H₁₁ClO₂S 260.0168; Found: 260.0168.

Ethyl 2-[(4-fluorophenyl)thio]acetate (3b)³: colorless liquid, 75.0 mg (70% yield); *R_f* (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.57 –
7.32 (m, 2H), 7.00 (m, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.56 (s, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 163.4, 161.4, 133.5, 133.4, 129.8, 129.8, 116.2, 116.1, 61.5, 37.8, 14.1.

Ethyl 2-[(4-fluorophenyl)thio]acetate (3c)³: colorless liquid, 114.2mg (83% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 134.2, 132.0, 131.4, 120.9, 61.6, 36.5, 14.1.

Ethyl 2-[(4-fluorophenyl)thio]acetate (3d)³: colorless liquid, 91.1 mg (79% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (s, 1H), 7.29 – 7.24 (m, 1H), 7.19 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.64 (s, 2H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 137.2, 134.7, 130.0, 129.1, 127.5, 126.9, 61.7, 36.2, 14.11.

Ethyl 2-[(2-chlorophenyl)thio]acetate (3e)⁴: colorless liquid, 93.4 mg (81% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (m, 2H), 7.22 (m, 1H), 7.16 (m, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.67 (s, 2H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 134.2, 134.1, 129.8, 129.7, 127.6, 127.2, 61.6, 35.1, 14.0.

Ethyl 2-[(4-methylphenyl)thio]acetate (3f)⁴: colorless liquid, 84.1 mg (80% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.57 (s, 2H), 2.31 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 137.2, 131.2, 130.9, 129.7, 61.4, 37.4, 21.0, 14.1.

Ethyl 2-[(4-nitrophenyl)thio]acetate $(3g)^4$: yellow oil, 47.0 mg (39% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.5. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.77 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 145.7, 145.6, 126.9, 124.1, 62.2, 34.7, 14.2.

Ethyl 2-[(4-methoxyphenyl)thio]acetate (3h)⁴: colorless liquid, 78.0 mg (69% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J= 8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.50 (s, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 159.6, 134.1, 124.9, 114.6, 61.3, 55.2, 38.6, 14.1.

Ethyl 2-(naphthalen-2-ylthio)acetate (3i)⁵: colorless liquid, 103.5 mg (84% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 1H), 7.79 – 7.66 (m, 3H), 7.52 – 7.35 (m, 3H), 4.13 (q, J = 7.1 Hz, 2H), 3.70 (s, 2H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 133.6, 132.4, 132.0, 128.5, 128.0, 127.6, 127.4, 127.2, 126.6, 126.0, 61.5, 36.5, 14.0.

Ethyl 2-(benzylthio)acetate (3j)⁶: colorless liquid, 21.0 mg (25% yield); R_f (petroleum ether/ethyl acetate 20:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.28 – 7.23 (m, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.83 (s, 2H), 3.06 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 137.3, 129.2, 128.6, 127.3, 61.4, 36.4, 32.3, 14.3.

Ethyl 2-(ethylthio)acetate (3k)⁷: colorless liquid, 15.6 mg (21% yield); R_f (petroleum ether/ethyl acetate 20:1) =0.4.¹H NMR (500 MHz, CDCl₃) δ 4.19 (q, J = 7.1 Hz, 2H), 3.23 (s, 2H), 2.67 (q, J = 7.4 Hz, 2H), 1.28 (td, J = 7.3, 5.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 174.60, 170.61, 61.22, 33.27, 33.01, 26.59, 26.53, 14.12, 14.09, 14.03.

Methyl 2-((4-chlorophenyl)thio)acetate (4a)⁸: colorless liquid, 76.9 mg (71% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J

= 8.7 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 3.71 (s, 3H), 3.62 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 133.4, 133.2, 131.4, 129.2, 52.6, 36.6.

Methyl 2-(4-bromophenylthio)acetate (4b)⁸: colorless liquid, 86.1 mg (66% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J= 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 3.71 (s, 3H), 3.62 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 134.1, 132.1, 131.4, 121.0, 52.6, 36.3.

Methyl 2-(2-chlorophenylthio)acetate (4c)⁸: colorless liquid, 69.3 mg (64% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (m, 2H), 7.23 (m, 1H), 7.16 (m, 1H), 3.71 (s, 3H), 3.69 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 134.1, 134.1, 129.8, 129.7, 127.7, 127.4, 52.7, 34.9.

Methyl 2-(*p***-tolylthio)acetate (4d)**⁸: colorless liquid, 44.1 mg (45% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 3.70 (s, 3H), 3.60 (s, 2H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.3, 137.4, 131.1, 130.9, 129.9, 52.5, 37.3, 21.1.

Methyl 2-(4-chlorophenylthio)-4-(methylthio)butanoate (4e): colorless liquid, 84.3 mg (58% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 3.83 (t, J = 7.4 Hz, 1H), 3.69 (s, 3H), 2.61 (m, 2H), 2.16 m, 1H), 2.07 (s, 3H), 2.00 m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 134.5, 131.2, 129.2, 52.4, 49.2, 31.3, 30.4, 15.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₂H₁₅ClO₂S₂ 290.0202; Found: 290.0204.

Methyl 2-(4-bromophenylthio)-4-(methylthio)butanoate (4f): colorless liquid, 77.1 mg (46% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 3.83 (t, J = 7.4 Hz, 1H), 3.69 (s, 3H), 2.67 – 2.57 (m, 2H), 2.21 – 2.13 (m, 1H), 2.07 (s, 3H), 2.03 – 1.96 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 134.6, 132.1, 132.0, 122.6, 52.4, 49.1, 31.3, 30.4, 15.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₂H₁₅BrO₂S₂ 333.9697; Found: 333.9696.

Methyl 2-(2-chlorophenylthio)-4-(methylthio)butanoate (4g): colorless liquid, 64.0 mg (44% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz,

CDCl₃) δ 7.57 – 7.50 (m, 1H), 7.44 – 7.39 (m, 1H), 7.26 – 7.20 (m, 2H), 3.98 (t, J = 7.3 Hz, 1H), 3.67 (s, 3H), 2.69 – 2.61 (m, 2H), 2.24 (m, 1H), 2.14 – 2.10 (m, 1H), 2.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 136.7, 133.8, 132.5, 130.0, 129.1, 127.3, 52.4, 48.0, 31.4, 30.5, 15.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₂H₁₅ClO₂S₂ 290.0202; Found: 290.0205.

Methyl 4-(methylthio)-2-(*p*-tolylthio)butanoate (4h): colorless liquid, 51.4 mg (38% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 3.77 (t, J = 7.2 Hz, 1H), 3.68 (s, 3H), 2.67 – 2.59 (m, 2H), 2.34 (s, 3H), 2.17 – 2.11 (m, 1H), 2.06 (s, 3H), 2.04 – 1.96 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 138.7, 134.0, 129.8, 128.8, 52.3, 49.5, 31.4, 30.5, 21.2, 15.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₃H₁₈O₂S₂ 270.0748; Found: 270.0749.

Dimethyl 2-(4-chlorophenylthio)succinate (4i)⁹: colorless liquid, 40.4 mg (28% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 3.98 (dd, J = 9.4, 5.9 Hz, 1H), 3.71 (s, 3H), 3.69 (s, 3H), 2.94 (dd, J = 17.0, 9.4 Hz, 1H), 2.73 (dd, J = 17.0, 5.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 171.4, 170.9, 135.6, 135.3, 130.1, 129.4, 52.6, 52.2,
45.7, 36.3.

Methyl 2-(4-chlorophenylthio)-3-methylbutanoate (4j): colorless liquid, 32.4 mg (25% yield); R_f (petroleum ether/ethyl acetate 10:1) =0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 3.65 (s, 3H), 3.39 (d, J = 8.8 Hz, 1H), 2.17 – 2.06 (m, 1H), 1.14 (d, J = 6.7 Hz, 3H), 1.02 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 134.0, 133.8, 132.8, 129.2, 59.2, 52.1, 30.6, 20.7, 20.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₂H₁₅ClO₂S 258.0481; Found: 258.0482.

2-[(4-chlorophenyl)thio]acetonitrile (6a)¹⁰: colourless solid, 66.0 mg (72% yield); mp 82-83 °C; R_f (petroleum ether/ethyl acetate 10:1) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 3.55 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 135.6, 134.1, 130.3, 129.9, 116.3, 77.4, 77.1, 76.8, 21.7.

2-[(4-fluorophenyl)thio]acetonitrile (6b)¹⁰: colourless liquid, 41.0 mg (49% yield); R_f (petroleum ether/ethyl acetate5:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 8.8, 5.2 Hz, 2H), 7.10 (t, J = 8.6 Hz, 2H), 3.51 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 162.6, 135.9 (d, J = 8.6 Hz), 127.0, 117.0, 116.9, 116.4, 77.4, 77.1, 76.9, 22.4.

2-[(4-bromophenyl)thio]acetonitrile (6c)¹⁰: white solid, 72.5 mg (64% yield); mp 87-88 °C; R_f (petroleum ether/ethyl acetate 10:1) =0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 3.55 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 134.0, 132.8, 131.1, 123.5, 116.24, 77.4, 77.1, 76.9, 21.3.

2-[(3-chlorophenyl)thio]acetonitrile (6d)¹¹: colourless liquid, 56.7 mg (62% yield); *R_f* (petroleum ether/ethyl acetate 10:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, J = 2.0, 1.6 Hz, 1H), 7.42 (dd, J = 5.3, 3.2 Hz, 1H), 7.33 (dd, J = 5.1, 2.9 Hz, 2H),
3.59 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 135.1, 133.93, 131.6, 130.7, 130.0, 129.00, 116.10, 77.4, 77.1, 76.9, 21.0.

2-[(2-chlorophenyl)thio]acetonitrile (6e)¹²: colourless liquid, 65.6 mg (71% yield); R_f (petroleum ether/ethyl acetate 10:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 5.8, 3.6 Hz, 1H), 7.46 (dd, *J* = 5.1, 4.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 3.66 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 133.2, 130.8, 130.3, 130.0, 127.9, 115.9, 77.4, 77.1, 76.9, 19.3.

2-[(4-methylphenyl)thio]acetonitrile (6f)¹⁰: colourless liquid, 45.2 mg (55% yield); *R_f*(petroleum ether/ethyl acetate 10:1) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 3.51 (s, 2H), 3.51 (s, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.5, 133.2, 130.4, 128.4, 116.7, 77.4, 77.1, 76.9, 22.0, 21.2.

2-[(4-methoxyphenyl)thio]acetonitrile (6g)¹⁰: colourless liquid, 44.8 mg (50% yield); R_f (petroleum ether/ethyl acetate 10:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.45 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 136.0, 122.18, 116. 8, 115.2, 77.4, 77.1, 76.9, 55.4, 22. 9.

2-(naphthalen-2-ylthio)acetonitrile (6h)¹³: colourless solid, 62.8 mg (63%); mp 90-91 °C; R_f (petroleum ether/ethyl acetate 10:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 0.6 Hz, 1H), 7.84 (dd, *J* = 10.0, 7.0 Hz, 3H), 7.60 – 7.49 (m, 3H), 3.63 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 133.6, 132.9, 131.7, 129.3 (d, *J* = 11.8 Hz), 128.7, 127.74 (d, *J* = 7.7 Hz), 127.0 (d, *J* = 11.3 Hz), 116.6, 77.36, 77.1, 76.9, 21.2.

2-(benzylthio)acetonitrile (6i)¹⁴: colourless liquid, 26.1 mg (32%); *R_f* (petroleum ether/ethyl acetate 10:1) =0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.33 (m, 4H), 7.33 – 7.28 (m, 1H), 3.92 (s, 2H), 3.07 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 135.7, 129.1, 128.9, 127.85 (s), 116.3, 77.4, 77.1, 76.9, 36.0, 15.9.

2-[(4-chlorophenyl)thio]butanenitrile (7a)¹⁵: colourless liquid, 61.0 mg (55% yield); *R_f* (petroleum ether/ethyl acetate 20:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 3.62 (t, J = 7.3 Hz, 1H), 1.87 (dd, J = 14.7, 7.3 Hz, 2H), 1.17 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.1 (d, J = 12.7 Hz), 129.8, 129.1, 119.0, 77.36, 77.1, 76.9, 38.9, 26.13, 11.7.

2-[(2-chlorophenyl)thio]butanenitrile (7b)¹⁵: colourless liquid, 58.1 mg (53% yield); *R_f* (petroleum ether/ethyl acetate 10:1) = 0.4. ¹H NMR (500 MHz, CDCl₃) δ 7.70 –
7.66 (m, 1H), 7.50 – 7.46 (m, 1H), 7.36 – 7.28 (m, 2H), 3.88 (dd, *J* = 7.7, 6.3 Hz, 1H),
2.02 – 1.94 (m, 2H), 1.23 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.9,
135.6, 130.68, 130.3, 127.8, 118.8, 77.4, 77.1, 76.9, 37.3, 26.0, 11.7.

2-[(4-chlorophenyl)thio]pentanenitrile (7c): colourless liquid, 59.1 mg (52% yield); *R_f* (petroleum ether/ethyl acetate10:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 3.67 (dd, J = 7.9, 7.1 Hz, 1H), 1.85 – 1.77 (m, 2H), 1.64 – 1.56 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.1 (d, J = 12.5 Hz), 129.8, 129.2, 119.1, 77.4, 77.1, 76.9, 37.0, 34.4, 20.4, 13.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₁H₁₂CINS 221.0379; Found: 221.0374.

2-[(3-chlorophenyl)thio]pentanenitrile (7d): colourless liquid, 53.3 mg (47% yield); *R_f* (petroleum ether/ethyl acetate 20:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (t, J = 1.8 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.37 (ddd, J = 8.1, 1.9, 1.3 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 3.73 (dd, J = 8.1, 6.8 Hz, 1H), 1.87 – 1.78 (m, 2H), 1.66 – 1.57 (m, 2H),
0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.0, 133.8, 132.9, 132.2,

130.6, 129.6), 119.0, 77.4, 77.1), 76.9, 36.8, 34.4, 20.4, 13.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₁H₁₂CINS 225.0379; Found: 225.0382.

2-[(4-chlorophenyl)thio]pent-4-ynenitrile (7e): colourless liquid, 63.2 mg (57% yield); R_f (petroleum ether/ethyl acetate 10:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 3.83 (t, J = 7.4 Hz, 1H), 2.70 (qdd, J = 17.0, 7.4, 2.6 Hz, 2H), 2.25 (t, J = 2.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 136.9 (d, J = 8.3 Hz), 130.0, 127.5, 117.7, 77.6, 77.4, 77.1, 76.9, 73.1, 36.3, 23.3. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₁H₈ClNS 221.0066; Found: 221.0067.

2-[(4-methylphenyl)thio]pent-4-ynenitrile (7f): colourless liquid, 52.3 mg (52% yield); R_f (petroleum ether/ethyl acetate 10:1) = 0.5. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 3.79 (dd, J = 7.8, 7.1 Hz, 1H), 2.74 – 2.62 (m, 2H), 2.38 (s, 3H), 2.23 (t, J = 2.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 140.8, 135.8, 130.5, 125.5), 118.00, 78.0, 77.4, 77.1, 76.9, 72.8, 36.4, 23.3, 21.4. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₂H₁₁NS 201.0612; Found: 201.0611.

2-[(4-chlorophenyl)thio]-3-(*p***-tolyl)propanenitrile (7g): c**olourless solid, 68.6 mg (48% yield); mp 102-103 °C; R_f (petroleum ether/ethyl acetate 20:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H), 7.17 – 7.12 (m, 4H), 3.85 (dd, J = 8.9, 6.2 Hz, 1H), 3.07 (qd, J = 13.9, 7.6 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.7, 136.2 (d, J = 18.2 Hz), 132.4, 129.9 (d, J = 10.3 Hz), 129.7, 129.0, 127.4, 118.7, 77.4, 77.1, 76.9, 39.1, 38.5, 21.2. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₆H₁₄CINS 287.0535; Found: 287.0534.

2-[(4-bromophenyl)thio]-3-(p-tolyl)propanenitrile (7h): colourless solid, 70.4 mg (44% yield); mp 108-109 °C; R_f (petroleum ether/ethyl acetate 20:1) = 0.3. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.18 – 7.12 (m, 4H), 3.85 (dd, J = 8.9, 6.3 Hz, 1H), 3.07 (qd, J = 13.9, 7.6 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.7, 136.3, 132.8, 132.4, 129.9, 129.7, 129.0, 127.4, 118.7, 77.4, 77.1, 76.9, 39.0, 38.5, 21.2. HRMS (EI-TOF) m/z: [M]⁺ calcd for C₁₆H₁₄BrNS 331.0031; Found: 331.0033.

HRMS of Compound 4f.

HRMS of Compound 4g.

HRMS of Compound 4h.

HRMS of Compound 4j.

¹H NMR Spectra of Compound **3a**.

¹³C NMR Spectra of Compound **3a**.

¹H NMR Spectra of Compound **3b**.

¹³C NMR Spectra of Compound **3b**.

¹H NMR Spectra of Compound **3c**.

¹³C NMR Spectra of Compound **3c**.

 $^1\mathrm{H}$ NMR Spectra of Compound $\mathbf{3d}.$

¹³C NMR Spectra of Compound **3d**.

¹H NMR Spectra of Compound **3e**.

¹³C NMR Spectra of Compound **3e**.

¹H NMR Spectra of Compound **3f**.

¹³C NMR Spectra of Compound **3f**.

¹H NMR Spectra of Compound **3g**.

¹³C NMR Spectra of Compound **3g**.

¹H NMR Spectra of Compound **3h**.

¹³C NMR Spectra of Compound **3h**.

¹H NMR Spectra of Compound **3i**.

¹³C NMR Spectra of Compound **3i**.

¹H NMR Spectra of Compound **3**j.

¹³C NMR Spectra of Compound **3**j.

¹H NMR Spectra of Compound **3k**.

¹³C NMR Spectra of Compound **3k**.

¹H NMR Spectra of Compound **4a**.

¹³C NMR Spectra of Compound **4a**.

¹H NMR Spectra of Compound **4b**.

¹³C NMR Spectra of Compound **4b**.

¹H NMR Spectra of Compound **4c**.

¹³C NMR Spectra of Compound **4c**.

¹H NMR Spectra of Compound **4d**.

¹H NMR Spectra of Compound **4e**.

¹³C NMR Spectra of Compound 4e.

¹H NMR Spectra of Compound 4f.

¹³C NMR Spectra of Compound 4f.

¹H NMR Spectra of Compound **4g**.

¹³C NMR Spectra of Compound **4g**.

¹H NMR Spectra of Compound **4h**.

¹³C NMR Spectra of Compound **4h**.

¹H NMR Spectra of Compound **4i**.

¹³C NMR Spectra of Compound 4i.

¹H NMR Spectra of Compound **4j**.

¹³C NMR Spectra of Compound 4j.

HRMS of Compound 7c.

HRMS of Compound 7f.

HRMS of Compound 7g.

HRMS of Compound 7h.

¹H NMR Spectra of Compound **6a**.

¹³C NMR Spectra of Compound **6a**.

¹H NMR Spectra of Compound **6b**.

¹³C NMR Spectra of Compound **6b**.

¹H NMR Spectra of Compound **6c**.

¹³C NMR Spectra of Compound **6c**.

¹H NMR Spectra of Compound **6d**.

¹³C NMR Spectra of Compound **6d**.

¹H NMR Spectra of Compound 6e.

¹³C NMR Spectra of Compound **6e**.

¹³C NMR Spectra of Compound **6f**.

¹³C NMR Spectra of Compound 6f.

¹H NMR Spectra of Compound **6g**.

¹³C NMR Spectra of Compound **6g**.

¹H NMR Spectra of Compound **6h**.

¹³C NMR Spectra of Compound **6h**.

¹H NMR Spectra of Compound **6i**.

¹³C NMR Spectra of Compound **6i**.

¹H NMR Spectra of Compound 7a.

¹³C NMR Spectra of Compound **7a**.

¹H NMR Spectra of Compound **7b**.

¹³C NMR Spectra of Compound **7b**.

¹H NMR Spectra of Compound **7c**.

 ^{13}C NMR Spectra of Compound 7c.

¹H NMR Spectra of Compound 7d.

¹³C NMR Spectra of Compound 7d.

¹H NMR Spectra of Compound 7e.

¹³C NMR Spectra of Compound 7e.

¹H NMR Spectra of Compound 7f.

¹³C NMR Spectra of Compound **7f**.

¹H NMR Spectra of Compound **7g**.

¹³C NMR Spectra of Compound **7g**.

¹H NMR Spectra of Compound **7h**.

¹³C NMR Spectra of Compound 7h.

5. References

- 1. J. C. Guillemin, J. M. Denis, *Tetrahedron* 1988, 44, 4431-46.
- G. J. Wu, Y. F. Deng, C. Q. Wu, Y. Zhang, J. B. Wang, Angew. Chem. Int. Ed., 2014, 53, 10510-10514.
- K. Eggers, T. M. Fyles, M. Pelaez, J. Pedro, *Journal of Organic Chemistry* 2001, 66, 2966-2977.
- 4. F. Liu, W. H. Zhang, L. S. Wang, L. P. Wei, *Chemosphere* 1996, **32**, 2505-2509.
- C. J. Liu, D. F. Chen, Y. Y. Fu, F. Wang, J. Y. Luo, S. L. Huang, Organic Letters 2020, 22, 5701-5705.
- 6. K. Nobuhiro, A. Yukihiro, N. Kimitaka, F. Takashi, *Journal of Applied Polymer Science* 1998, 69, 1863-1873.
- 7. G. B. Frederick, X. M. Zhang, J. Am. Chem. Soc. 1994, 116, 973–976.
- H. R. Zhao, M. D. Ruan, X. J. Zhao, X. J. Zhou, *Hecheng Huaxue* 1996, 4, 187-189.
- 9. L. P. Klimenko, S. M. Solodushenkov, G. F. Dvorko, *Dopovidi Akademii Nauk Ukrains'koi RSR, Seriya B: Geologiya, Geofizika, Khimiya ta Biologiya* 1974, **36**, 1111-14.
- 10. L. W. J. Still, L. D. G. Watson, Synthetic Communications 2001, 31, 1355-1359.
- 11. K. Pilgram, D. D. Phillips, Journal of Organic Chemistry 1965, 30, 2388-92.
- 12. M. Barbero, L. Degani, N. Diulgheroff, S. Dufhera, R. Fochi, *Synthesis* 2001, 4, 585-590.
- K. Yamaguchi, K. Sakagami, Y. Miyamoto, N. Mizuno, Organic & Biomolecular Chemistry 2014, 12, 9200-9206.
- F. Richard, D. L. Reid, M. Zaworotko, *Australian Journal of Chemistry* 1996, 49, 243-247.
- 15. K. Laoder, S. Anselmi, J. D. Finnigan, Y. Y. Qi, S. J. Charnork, D. Castagnolo, *Chemistry A European Journal* 2020, **26**, 10422-10426.