Supporting Information

Concise Synthesis of 2,3-Disubstituted Quinoline Derivatives via RutheniumCatalyzed Three-Component Deaminative Coupling Reaction of Anilines, Aldehydes and Amines

Aldiyar Shakenov, Krishna Prasad Gnyawali and Chae S. Yi*
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 United States
*E-mail: chae.yi@marquette.edu

Table of Contents

1. General Information S2
2. Experimental Procedure (Tables S1-S4) S2
3. Reaction Profile Experiment (Figure S1) S5
4. Carbon Kinetic Isotope Effect Study (Table S5) S6
5. Hammett Study (Figure S2) S7
6. Detection of Catalytically Relevant Species (Figure S3) S7
7. X-Ray Crystallographic Data (Figures S4 and S5; Tables S6 and S7) S9
8. Characterization Data of the Products S12
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra of the Products S25
10. References S73
11. General Information. All operations were carried out in a nitrogen-filled glove box or by using standard high vacuum and Schlenk techniques unless otherwise noted. Solvents were freshly distilled over appropriate drying reagents. Benzene, toluene, and hexanes were distilled from purple solutions of sodium and benzophenone, and dichloromethane was dried over calcium hydride prior to use. All organic substrates were received from commercial sources and were used without further purification. Column chromatography was performed on Silicycle ultrapure silica gel P 60 ($40-63 \mu \mathrm{~m}$ particle size), and thin layer chromatography was performed on EMD Millipore glass back TLC plates pre-coated with silica gel $60 \mathrm{GF}_{254}$. The ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Varian 300 or 400 MHz FT-NMR spectrometer, and the data are reported in parts per million (ppm) relative to TMS, with the residual solvent peak as an internal reference. Multiplicities are reported as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad; coupling constant(s$)$ in Hz. Mass spectra were recorded from Shimadzu GCMS-QP2010 SE spectrometer with an SH-Rxi-5sil MS, fused silica (crossbond 1,4-bis(dimethylsiloxy)phenylene dimethyl polysiloxane) column ($30 \mathrm{~m}, 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$). High resolution mass spectra (HRMS) were obtained at the Analytical Instrumentation Center, School of Pharmacy, University of Wisconsin-Madison, Madison, WI.

2. Experimental Procedures: General Procedure for the Coupling Reaction of an Aniline with an

 Aldehyde and an Amine. In a glove box, complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), an aniline (0.3 mmol), an aldehyde (0.3 $\mathrm{mmol})$ and an amine (0.3 mmol) were dissolved in 1,2-dichloroethane (1.5 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought out of the glove box and was stirred in an oil bath set at $120^{\circ} \mathrm{C}$ for 20 h . The reaction tube was taken out of the oil bath and was cooled to room temperature. After the tube was open to air, the solution was filtered through a short silica gel column by eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the filtrate was analyzed by GC-MS. The analytically pure product was isolated by column chromatography on silica gel ($40-63 \mu \mathrm{~m}$ particle size, hexanes/EtOAc $=100: 1$ to $95: 5$). The product was characterized by NMR and GC-MS spectroscopic methods.Catalyst Screening and Optimization Study. In a glove box, catalyst ($5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline (1.5 mmol) and triallylamine (1.5 mmol) were dissolved in 1,2-dichloroethane (1.5 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought out of the glove box and was stirred in an oil bath at $120^{\circ} \mathrm{C}$ for 24 h . The product yield was determined by GC-MS by using hexamethylbenzene as an internal standard. The results are summarized in Table S1.

Table S1. Catalyst Screening and Optimization for the Reaction of 3,5-Dimethoxyaniline, 4Methoxybenzaldehyde and Triallylamine.

entry	catalyst	additive (mol \%)	yield (\%) ${ }^{\text {a,b }}$
1	1	-	78
2	1	$\mathbf{L 1}(10)^{c}$	20
3	1	$\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(10)$	<5
4	1	AgOAc (30)	<5
5	$\left[\left(\mathrm{PCy}_{3}\right)(\mathrm{CO}) \mathrm{RuH}\right]_{4}(\mu-\mathrm{O})(\mu-\mathrm{OH})_{2}$	-	30
6	$\left[\left(\mathrm{PCy}_{3}\right)(\mathrm{CO}) \mathrm{RuH}\right]_{4}(\mu-\mathrm{O})(\mu-\mathrm{OH})_{2}$	L1 (10) ${ }^{\text {c }}$	29
7	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})\left(\mathrm{PCy}_{3}\right) \mathrm{RuH}^{+} \mathrm{BF}_{4}{ }^{-}\right.$	-	30
8	[(p-cymene) $\left.\mathrm{RuCl}_{2}\right]_{2}$	-	40
9	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$	-	51
10	$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RuCl}_{2}$	-	44
11	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	-	27
12	$\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO}) \mathrm{RuH}_{2}$	-	0
13	$\left[\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{RuH}\right]^{+} \mathrm{BF}_{4}{ }^{-}$	-	33
14	[(COD) $\left.\mathrm{RuCl}_{2}\right]_{\mathrm{x}}$	-	0
15	AlCl_{3}	-	0
16	PCy_{3}	-	<5

${ }^{a}$ Reaction conditions: catalyst (5 mol \%), 3,5-dimethoxyaniline (0.3 mmol), 4methoxybenzaldehyde (0.3 mmol), triallylamine (0.3 mmol), 1,2-dichloroethane (1.5 mL), 20 h , $120{ }^{\circ} \mathrm{C} .{ }^{b} \mathrm{GC}$ yields using hexamethylbenzene as an internal standard. ${ }^{c} \mathbf{L} 1=3,4,5,6$-tetrachloro-1,2-benzoquinone.

1

2

3

4

L1

Table S2. Solvent Screening Study for the Reaction of 3,5-Dimethoxyaniline, 4-Methoxybenzaldehyde and Triallylamine.

entry	solvent	yield (\%) $\mathbf{m}^{\boldsymbol{a}, \boldsymbol{b}}$
1	1,2-dichloroethane	78
2	1,2-dichloroethane: toluene (1:1)	41
3	1,2-dichloroethane: 1,4-dioxane (1:1)	63
4	1,4-dioxane	45
5	dichloromethane	61
6	toluene	56
7	tetrahydrofuran	60
8	benzene	44
9	chlorobenzene	48

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}$ ($5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline (0.30 mmol), 4-methoxybenzaldehyde (0.30 mmol), triallylamine (0.3 mmol), solvent $(1.5 \mathrm{~mL}), 20 \mathrm{~h}, 120{ }^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \mathrm{GC}$ yields using hexamethylbenzene as an internal standard

Table S3. Catalyst Loading Study for the Reaction of 3,5-Dimethoxyaniline, 4-Methoxybenzaldehyde and Triallylamine

entry	catalyst loading (mol \%)	yield (\%) ${ }^{\text {a,b }}$
1	1	27
2	3	70
3	5	76
4	10	61
6	20	60

[^0]Table S4. Optimal Temperature Survey for the Reaction of 3,5-Dimethoxyaniline, 4-Methoxybenzaldehyde and Triallylamine

entry	Temperature $\left({ }^{\mathbf{}} \mathbf{C}\right)$	yield (\%) ${ }^{\boldsymbol{a}, \boldsymbol{b}}$
1	140	67
2	120	75
3	100	47
4	80	5
5	60	6

${ }^{\text {a }}$ Reaction conditions: $1(5 \mathrm{~mol} \%)$, 3,5-dimethoxyaniline (0.30 mmol), 4-methoxybenzaldehyde $(0.30 \mathrm{mmol})$, triallylamine (0.3 mmol), solvent $(1.5 \mathrm{~mL}), 20 \mathrm{~h}, 120{ }^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \mathrm{GC}$ yields using hexamethylbenzene as an internal standard

Figure S1. The Reaction Profile from the Reaction of 3,5-Dimethoxyaniline and p-OMe- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$ with Triallylamine. p - $\mathrm{OMe}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}(\boldsymbol{O})$, 2a ($\mathbf{\Delta}$), 3,5-Dimethoxy- N-(4-methoxybenzylidene) aniline (4a) (■).
3. Reaction Profile Experiment. In a glove box, complex $1(72 \mathrm{mg}, 0.1 \mathrm{mmol}), 3,5$-dimethoxyaniline ($15 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4-methoxybenzaldehyde ($14 \mathrm{mg}, 0.1 \mathrm{mmol}$) and triallylamine ($14 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ in a J-Young NMR tube equipped with a Teflon screw cap stopcock. The tube was brought out of the glove box and was emersed in an oil bath set at $120^{\circ} \mathrm{C}$. The tube was taken out of the oil bath at 20 min intervals, was immediately cooled in an ice-water bath and was analyzed by ${ }^{1} \mathrm{H}$ NMR. The product
concentration was measured by monitoring the appearance of the product signals on ${ }^{1} \mathrm{H}$ NMR, which was normalized against the internal standard peak (hexamethylbenzene).
4. Carbon Kinetic Isotope Effect Study. In a glove box, complex 1 ($36 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($153 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($174 \mathrm{mg}, 1.0 \mathrm{mmol}$) and triallylamine $(137 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in 1,2-dichloroethane $(1.5 \mathrm{~mL})$ in a 25 mL Schlenk tube equipped with a Teflon screw cap stopcock and a magnetic stirring bar. The resulting mixture was stirred in an oil bath at $120^{\circ} \mathrm{C}$ for 20 h . The procedure was repeated two more times, and the product conversion was determined by GC $(91 \%$, 88% and 87% conversion). For low conversion samples, complex 1 ($36 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline (153 $\mathrm{mg}, 1.0 \mathrm{mmol})$, 4-(trifluoromethyl)benzaldehyde ($174 \mathrm{mg}, 1.0 \mathrm{mmol}$) and triallylamine ($137 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in 1,2-dichloroethane (1.5 mL) in a 25 mL Schlenk tube equipped with a Teflon screw cap stopcock and a magnetic stirring bar, and the resulting mixture was stirred for in an oil bath at $120^{\circ} \mathrm{C}$ for 4 h . The procedure was repeated two more times, and the product conversion was determined by GC ($14 \%, 18 \%$ and 15% conversion $)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the isolated product $\mathbf{2 e}$ was performed by following Singleton's NMR method. ${ }^{\text {S1 }}$ The NMR sample was prepared identically by dissolving $\mathbf{2 e}(200 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ in a 5 mm high precision NMR tube. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with H -decoupling and 45 -degree pulses. A 60 s delay between pulses was imposed to minimize T_{1} variations ($\mathrm{d} 1=120 \mathrm{~s}$, at $=5.0 \mathrm{~s}, \mathrm{np}=245098, \mathrm{nt}=512, \mathrm{dm}=$ ' nny '). The data obtained were summarized in Table S2.

carbon no.	high conv. $\boldsymbol{R}_{\boldsymbol{0}}$	low conv. $\boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{R}_{\mathbf{0}} / \boldsymbol{R}_{\mathbf{1}}$	calculated KIE
1 (ref)	1.000	1.000	1.000	1.000
2	1.080	1.088	0.992	0.993
3	1.267	1.256	1.009	1.009
4	1.057	1.061	0.996	0.996
5	1.189	1.142	1.041	$\mathbf{1 . 0 4 1}$

Table S5. ${ }^{13} \mathrm{C}$ Integration of the Product 2e at High Conversion ($R_{0}, 88 \%$ Conversion), at Low Conversion (R_{1}, 16% Conversion), and the Calculated R_{0} / R_{1}.

5. Hammett Study. In a glove box, complex 1 ($5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline (0.5 mmol) and triallylamine (0.5 mmol) were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ in a 25 mL reaction tube. The solution was divided into five equal portions, transferred into five separate J-Young NMR tubes, and $p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(\mathrm{X}=\mathrm{OMe}, \mathrm{Me}$, $\left.\mathrm{H}, \mathrm{Cl}, \mathrm{CF}_{3}\right)(0.1 \mathrm{mmol})$ was added to each reaction tube. The tubes were brought out of the glove box and were immersed in an oil bath at $120^{\circ} \mathrm{C}$. The tubes were taken out of the bath at 20 min intervals, immediately cooled in ice-water bath and were analyzed by ${ }^{1} \mathrm{H}$ NMR. The rate of reaction was measured by monitoring product peaks and normalized using hexamethylbenzene as an internal standard. The $k_{\text {obs }}$ of each reaction was determined from first-order plot of $-\ln \left[(3,5 \text {-dimethoxyaniline })_{t}(3,5 \text {-dimethoxyaniline })_{0}\right]$ vs time. The Hammett plot of $\log \left(k_{\mathrm{x}} / k_{\mathrm{H}}\right)$ vs σ_{p} is shown in Figure S 2 .

Figure S2. Hammett Plot from the Reaction of 3,5-Dimethoxyaniline with $p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}(\mathrm{X}=\mathrm{OMe}, \mathrm{Me}, \mathrm{H}, \mathrm{Cl}$, CF_{3}) and Triallylamine.
6. Generation and Detection of Catalytically Relevant Species. The imine substrate ((3-(dimethylamino)-1-phenylpropylidene)-3,5-dimethoxyaniline) (6a) was synthesized from the reaction of 3-(dimethylamino)-1-phenylpropan-1-one ($178 \mathrm{mg}, 1.0 \mathrm{mmol}$) with 3,5-dimethoxyaniline ($154 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, which was stirred at room temperature for 24 h . In a glove box, complex $\mathbf{1}(11 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and product $6 \mathbf{6}(0.3 \mathrm{mmol})$ were dissolved in 1,2-dichloroethane $(1.5 \mathrm{~mL})$ in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. The tube was brought out of the glove box and was immersed in an oil bath set at $120^{\circ} \mathrm{C}$. The tube was taken out of the oil bath after 20 h . The product yield was determined by GCMS by using hexamethylbenzene as an internal standard. The resulting quinoline 2k was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5).

Spectroscopic Detection of Catalytically Relevant Species. In glovebox, the complex $\mathbf{1}(73 \mathrm{mg}, 0.10$ mmol) was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in an J -Young NMR tube equipped with resealable stopcock. The imine substrate 2-(((3,5-dimethoxyphenyl)imino)methyl)phenol (4b) ($52 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the mixture. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR after heating for 120 s at $120^{\circ} \mathrm{C}$. After recording the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, a small sample was taken from the reaction tube and was analyzed with LC-MS. The LC-MS spectra are shown in Figure S3.

Figure S3. LC-MS spectra from the Reaction Mixture of 1 and 2-(((3,5-Dimethoxyphenyl)imino)methyl)phenol (4a).
7. X-Ray Crystallographic Analysis of 2n and 2r. For 2n: Single crystals of $2 n$ were grown in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes at room temperature. A suitable crystal was selected and mounted on an Oxford SuperNova diffractometer equipped with dual microfocus $\mathrm{Cu} / \mathrm{Mo}$ X-ray sources, X-ray mirror optics, and Atlas CCD area detector. The crystal was kept at $99.95(10) \mathrm{K}$ during data collection. Using Olex $2^{\text {S2 }}$, the structure was solved with the olex2.solve ${ }^{\text {S3 }}$ structure solution program using Charge Flipping and refined with the SHELXL ${ }^{\text {S4 }}$ refinement package using Least Squares minimization.

For 2r: Single crystals of $\mathbf{2 r}$ were grown in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes at room temperature. A suitable crystal was selected and mounted on an Oxford SuperNova diffractometer equipped with dual microfocus $\mathrm{Cu} / \mathrm{Mo}$ X-ray sources, X-ray mirror optics, and Atlas CCD area detector. The crystal was kept at 99.95(10) K during data collection. Using Olex $2^{\mathrm{S} 2}$, the structure was solved with the olex 2 .solve ${ }^{\mathrm{S} 3}$ structure solution program using Charge Flipping and refined with the SHELXL ${ }^{\text {S4 }}$ refinement package using Least Squares minimization.

Figure S4. Molecular Structure of $\mathbf{2 n}$.

Figure S5. Molecular Structure of 2r.

Table S6. Crystal Data and Structure Refinement for 2n.

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{2}$
Formula weight	283.29
Temperature/K	99.95(10)
Crystal system	monoclinic
Space group	C2/c
a / \AA	26.2945(5)
b/Å	3.86139(6)
c/ \AA	$25.3106(4)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.4637(17)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2562.08(8)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.469
μ / mm^{-1}	0.879
F(000)	1184.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.44 \times 0.199 \times 0.026$
Radiation	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	7.006 to 140.822
Index ranges	$-32 \leq \mathrm{h} \leq 31,-4 \leq \mathrm{k} \leq 4,-30 \leq 1 \leq 30$
Reflections collected	12360
Independent reflections	2437 [$\left.\mathrm{R}_{\text {int }}=0.0235, \mathrm{R}_{\text {sigma }}=0.0149\right]$
Data/restraints/parameters	2437/0/192
Goodness-of-fit on F^{2}	1.036
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0330, \mathrm{wR}_{2}=0.0870$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0367, \mathrm{wR}_{2}=0.0912$
Largest diff. peak/hole / e \AA^{-3}	0.20/-0.24

Table S7. Crystal Data and Structure Refinement for 2r.

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$
Formula weight	281.30
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 $1 / \mathrm{n}$
a / \AA	14.9864(5)
b/ \AA	4.87230(14)
c / \AA	18.6483(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	102.739(3)
γ^{\prime}	90
Volume/ A 3	1328.16(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.407
μ / mm^{-1}	0.097
$\mathrm{F}(000)$	592.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.762 \times 0.198 \times 0.153$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	6.684 to 59.412
Index ranges	$-20 \leq h \leq 20,-6 \leq \mathrm{k} \leq 5,-25 \leq 1 \leq 25$
Reflections collected	15671
Independent reflections	$3460\left[\mathrm{R}_{\text {int }}=0.0278, \mathrm{R}_{\text {sigma }}=0.0275\right]$
Data/restraints/parameters	3460/0/196
Goodness-of-fit on F^{2}	1.033
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0464, \mathrm{wR}_{2}=0.1138$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0615, \mathrm{wR}_{2}=0.1256$
Largest diff. peak/hole / e \AA^{-3}	0.34/-0.28

8. Characterization Data of the Products.

2a

5,7-Dimethoxy-2-(4-methoxyphenyl)-3-methylquinoline (2a). A 1,2dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%), 3,5-$ dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 2a was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: 70 mg (75%). Data for 2a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.27(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7,160.5,159.6,155.5,148.7,133.6,131.8$, $130.4,126.0,115.8,113.7,99.6,97.9,55.8,55.7,55.5,20.7 \mathrm{ppm} ;$ GC-MS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}, m / z=309\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 310.1438$, Found 310.1437.

2b

5,7-Dimethoxy-3-methyl-2-(p-tolyl)quinoline (2b). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3$ mmol), 4-methylbenzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3$ mmol) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 b}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $64 \mathrm{mg}(73 \%)$. Data for 2b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.44(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=19.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 160.9,160.6,155.5,148.6,138.2,137.8,131.7,129.0,128.8,126,115.9,99.7,97.9,55.8,55.6,21.4$, 20.6 ppm ; GC-MS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}, m / z=293\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$294.1489, Found 294.1488.

2c

5,7-Dimethoxy-3-methyl-2-phenylquinoline (2c). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde ($32 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 c}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $65 \mathrm{mg}(78 \%)$. Data for 2c: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dt}, J=23.4,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=26.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,160.7$, $155.5,148.7,141.2,131.8,128.9,128.4,128.1,126.1,116,99.8,98.1,55.9,55.7,20.5 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}, m / z=279\left(\mathrm{M}^{+}\right) ;$HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1326, Found 280.1332.

2d

2-(4-Chlorophenyl)-5,7-dimethoxy-3-methylquinoline (2d). A 1,2dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%)$, 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-chlorobenzaldehyde ($42 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 2d was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: $64 \mathrm{mg}(68 \%)$. Data for 2d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), 7.44 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=24.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 160.9,159.6,155.5,148.7,139.5,134.3,132.1,130.4,128.6,125.7,116.2$, 99.6, 98.3, 55.9, 55.7, 20.4 ppm ; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2}, m / z=313\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 314.0942$, Found 314.0943

2e

5,7-Dimethoxy-3-methyl-2-(4-(trifluoromethyl)phenyl)quinoline (2e). A 1,2dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%), 3,5-$ dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $70 \mathrm{mg}(67 \%)$. Data for $\mathbf{2 e}$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.02(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=24.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0$, $159.3,155.5,148.7,144.7,132.2,129.4,125.7,125.6,125.3\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,3.8 \mathrm{~Hz}\right.$), 123.0, 116.3, $99.5,98.4$, $55.9,55.7,20.2 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.68 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}, m / z=347\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 348.1206$, Found 348.1204.

2-Cyclohexyl-5,7-dimethoxy-3-methylquinoline (2f). A 1,2-dicholoroethane (1.5
 mL) solution of complex $\mathbf{1}$ ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), cyclohexanescarbaldehyde ($34 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 f}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $38 \mathrm{mg}(45 \%)$. Data for 2f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 6 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 7 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 166.4,160.2,155.5,148.9,130.7,125.8,115.1,99.5,97.3,55.8,55.7,42.8,31.9,27.0,26.2$, 19.2 ppm ; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}, m / z=285\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 286.1802$, Found 286.1803.

2g

5,7-Dimethoxy-3-methyl-2-(thiophen-2-yl)quinoline (2g). A 1,2-dicholoroethane $(1.5 \mathrm{~mL})$ solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5 -dimethoxyaniline ($46 \mathrm{mg}, 0.3$ mmol), thiophene-2-carbaldehyde ($34 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3$ mmol) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product 2 g was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $44 \mathrm{mg}(51 \%)$. Data for 2g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 6 \mathrm{H})$, $2.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9,155.4,152.9,148.6,145.5,132.7,128,127.7,127.7$, 125, 115.6, 99.3, $98.1,55.8,55.7,21.8 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}, m / z=285\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$286.0896, Found 286.0895.

7-Isopropyl-2-(4-methoxyphenyl)-3-methylquinoline (2h). A 1,2-dicholoroethane

2h (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3-isopropylaniline ($41 \mathrm{mg}, 0.3$ mmol), 4-methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3$ mmol) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 h}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $27 \mathrm{mg}(30 \%)$. Data for 2h: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.7(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.6(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.4(\mathrm{~m}, 1 \mathrm{H}), 7.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 3.2-3.1(\mathrm{~m}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 1.4(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,159.7,149.8,147.0,136.6,133.7,130.4,128.5$, $126.6,126.5,126.0,125.4,113.8,55.5,34.4,23.9,20.8 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}, m / z=291\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$292.1696, Found 292.1695.

$2 i$

2-(5,7-Dimethoxy-3-methylquinolin-2-yl)phenol (2i). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2hydroxybenzaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 i}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $39 \mathrm{mg}(44 \%)$. Data for $\mathbf{2 i}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.45(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.5,158.5,158.2,155.5,146.1,134.9,130.9,130.0,126.3,121.9,118.4,118.1,115.5,98.5,97.9,55.9,55.8$, 22.2 ppm ; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}, m / z=295\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$296.1281, Found 296.1281.

2j

7-Methyl-6-phenyl-[1,3]dioxolo[4,5]quinoline (2j). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), benzo[1,3]dioxol-5-amine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde ($32 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 j}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $30 \mathrm{mg}(38 \%)$. Data for $\mathbf{2 j}$: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\} \mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,150.2,147.9,144.7,141.0,136.1,129.0,128.4,128.1,127.4,124.6,105.9,101.9,101.7$, $20.4 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}, m / z=263\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$264.1019, Found 264.1019.

5,7-Dimethoxy-2-phenylquinoline (2k). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 k}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $31 \mathrm{mg}(40 \%)$. Data for $\mathbf{2 k}:{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{dt}, J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dt}, J=8.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=8.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48$ (m, 2H), 7.48-7.42 (m, 1H), 7.37-7.30(m, 1H), $7.12(\mathrm{dd}, J=2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J$ $\left.=1.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.6, 158.1, 156.0, 131.7, 129.3, 128.9, 127.6, 116.1, 115.7, 100.0, $98.1,92.1,90.4,55.9,55.8 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}, m / z=265\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature values. ${ }^{55}$

21

5,7-Dimethoxy-2-(4-methoxyphenyl)quinoline (2I). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3$ mmol), 4-methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3$ mmol) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 l}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: 51 mg (57\%). Data for 21: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 161.6,160.9,157.6,156.1,150.3,132.2,131.7,129.0,115.6,115.4$, 114.3, $99.9,97.8,55.9,55.8,55.5 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}, m / z=295\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$296.1281, Found 296.1266.

2m

5,7-Dimethoxy-2-(p-tolyl)quinoline (2m). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4 methylbenzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 m}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $35 \mathrm{mg}(42 \%)$.

Data for 2m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=8.7$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,158.1,156.0,150.5,139.3,137.1,131.4,129.6,127.5,115.8,115.5,100.1,97.8,55.8$, 55.7, 21.4 ppm ; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}, m / z=279\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 280.1332, Found 280.1335.

2n

2-(4-Fluorophenyl)-5,7-dimethoxyquinoline (2n). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-flourobenzaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 n}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $44 \mathrm{mg}(52 \%)$. Data for $\mathbf{2 n}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,162.6,161.8,157.0,156.1,150.4,131.9,129.6,129.5,115.9,115.7\left(\mathrm{~d}, J_{\mathrm{CF}}=1.7 \mathrm{~Hz}\right), 99.9$, 98.2, 55.9, $55.8 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.79 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO}_{2}, m / z=283\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TO2oalcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$284.1081, Found 284.1089.

5,7-Dimethoxy-2-(4-(trifluoromethyl)phenyl)quinoline (20). A 1,2-dicholoroethane $(1.5 \mathrm{~mL})$ solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3$ mmol), 4-(triflouromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine (30 mg , 0.3 mmol) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 2 o was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $53 \mathrm{mg}(53 \%)$. Data for 20: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 161.9,156.4,156.0,150.5,143.1,132.0,127.9,126.8,125.8\left(\mathrm{dd}, J_{\mathrm{CF}}=7.6,4.0 \mathrm{~Hz}\right), 123.0,116.1,115.9$, $100.0,98.6,55.9,55.8 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.79 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}, m / z=333$ $\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$334.1049, Found 334.1055.

2-(Benzo[1,3]dioxol-5-yl)-5,7-dimethoxyquinoline (2p). A 1,2-dicholoroethane (1.5 mL) solution of complex $\mathbf{1}(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline (46 mg , 0.3 mmol), benzo[1,3]dioxole-5-carbaldehyde ($45 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 p}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $41 \mathrm{mg}(44 \%)$. Data for 2p: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,157.4,156.1$, $148.9,148.4,131.8,122.0,115.7,115.5,108.6,108.1,101.5,99.8,98.1,55.9,55.8 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$, $m / z=309\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 310.1074$, Found 310.1081.

2q

2-(3,4-Dimethoxyphenyl)-5,7-dimethoxyquinoline (2q). A 1,2-dicholoroethane $(1.5 \mathrm{~mL})$ solution of complex $\mathbf{1}(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3$ mmol), 3,4-dimethoxybenzaldehyde ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine (30 mg , 0.3 mmol) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 q}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $43 \mathrm{mg}(44 \%)$. Data for 2q: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}$, $3 \mathrm{H})$, 3.99-3.94 (m, 9H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,157.4,156.1,150.5,149.4,131.9,120.5$, $115.6,115.4,111.1,110.6,99.7,98.0,56.2,56.1,55.9,55.8 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}, m / z=325\left(\mathrm{M}^{+}\right) ;$HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$326.1387, Found 326.1391.

2-(5,7-Dimethoxyquinolin-2-yl)phenol (2r). A 1,2-dicholoroethane (1.5 mL) solution
 of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), salicylaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 2 r was isolated using column chromatography on silica gel (hexanes/EtOAc = 100:1 to 95:5). Yield: $45 \mathrm{mg}(53 \%)$. Data for 2r: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,160.9,158.2,156.1,146.6,132.5,131.9,127.0,118.9,118.7,118.7$, 114.9, 113.9, 98.3, 97.9, 55.8, 55.8 ppm ; GC-MS for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}, m / z=281\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$282.1125, Found 282.1129.

2s

7-Methoxy-2-phenylquinoline (2s). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3-methoxyaniline ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde (32 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $2 \mathbf{s}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: $26 \mathrm{mg}(37 \%)$. Data for $\mathbf{2 s}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{dd}, J=8.5$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=13.0,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,157.6,137.0,137.0,129.5,129.0,128.6,127.8,122.6,119.9,117.1$, 107.4, 106.4, 55.8 ppm ; GC-MS for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}, m / z=235\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}([\mathrm{M}+$ H] ${ }^{+}$) 236.10699, Found 236.1075.

2t

7-Methoxy-2-(4-methoxyphenyl)quinoline (2t). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3-methoxyaniline ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 2 t was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $25 \mathrm{mg}(31 \%)$. Data for $\mathbf{2 t}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{dd}, J=12.4,8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.68(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{dd}$, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.1,160.9,158.7,157.2,149.8,136.7,129.1,128.6,122.2,119.3,116.6,114.3,107.3,55.7,55.5 \mathrm{ppm} ; \mathrm{GC}-$ MS for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}, m / z=279\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature values. ${ }^{\text {S6 }}$

2u

7-Methoxy-2-(4-(trifluoromethyl)phenyl)quinoline (2u). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3-methoxyaniline ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product 2 u was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $37 \mathrm{mg}(41 \%)$. Data for $\mathbf{2 u}:{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 161.4,156.0,150.0,143.1,139.3,137.0,128.7,128.0,125.8\left(\mathrm{dd}, J_{\mathrm{CF}}=7.9,4.0 \mathrm{~Hz}\right), 122.9,120.4,116.9$, 107.6, 106.2, $55.8 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.69 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F} 3 \mathrm{NO}, m / z=303\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 304.0944$, Found 304.0945.

2v

5,6,7-Trimethoxy-2-phenylquinoline (2v). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,4,5-trimethoxyaniline ($55 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde $(46 \mathrm{mg}, 0.3 \mathrm{mmol})$ and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $2 \mathbf{v}$ was isolated using column chromatography on silica gel (hexanes/EtOAc
$=100: 1$ to $95: 5)$. Yield: $35 \mathrm{mg}(39 \%)$. Data for $\mathbf{2 v}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=23.2,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 156.9,156.4,147.1,145.8,142.7,140.9,131.6,129.4,129.0$, 127.6, 118.3, 116.9, 104.3, 61.8, 61.4, 56.3 ppm ; GC-MS for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}, m / z=295\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$296.1281, Found 296.1294.

2w 5,6,7-Trimethoxy-2-(4-methoxyphenyl)quinoline (2w). A 1,2-dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,4,5-trimethoxyaniline (55 mg , 0.3 mmol), 4-methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine ($30 \mathrm{mg}, 0.3$ mmol) was stirred at $125{ }^{\circ} \mathrm{C}$ for 20 h . The product 2 w was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $49 \mathrm{mg}(50 \%)$.

Data for 2w: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, 1 H), $7.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,154.0,147.1,144.9,140.7,130.5,129.1,128.1,118.0,116.4,114.4$, 114.2, 103.9, 61.8, 61.4, 61.2, 56.4 ppm ; GC-MS for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}, m / z=325\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 326.1386$, Found 326.1402.

5,6,7-Trimethoxy-2-(4-(trifluoromethyl)phenyl)quinoline (2x). A 1,2dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,4,5trimethoxyaniline ($55 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3$ mmol) and triethylamine ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 x}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $47 \mathrm{mg}(43 \%)$. Data for $\mathbf{2 x}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,155.3,147.0,146.2,143.2,141.2,131.6,131.1,130.8,127.8,125.8\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5\right.$, 4.0 Hz), 118.7, 116.7, 104.5, 61.8, 61.4, $56.3 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.62 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}, m / z=363\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$364.1155, Found 364.1156.

3-(5,7-Dimethoxy-3-methylquinolin-2-yl)-9-ethyl-9H-carbazole (2y). A 1,2dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%)$, 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 9-ethyl-9H-carbazole-3-carbaldehyde (67 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h. The product 2 y was isolated using column chromatography on silica gel (hexanes/EtOAc = 100:1 to 95:5). Yield: $53 \mathrm{mg}(44 \%)$. Data for $\mathbf{2 y}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=$ $15.0,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01$
(s, 3H), $3.94(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8,160.7$, $155.6,148.8,140.5,139.9,132.0,131.8,127.0,126.4,125.8,123.3,123.0,121.3,120.8,119.1,115.8,108.7$, 108.3, 99.8, 97.9, 55.9, 55.7, 37.8, 21.0, 14.0 ppm ; GC-MS for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, m / z=396\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$397.1911, Found 397.1908.

2-(6,6-Dimethylbicyclo[3.1.1]hept-2-en-3-yl)-5,7-dimethoxy-3-methylquinoline (2z). A 1,2-dicholoroethane (1.5 mL) solution of complex $\mathbf{1}(11 \mathrm{mg}, 5 \mathrm{~mol} \%), 3,5-$ dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), myrtenal ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triallylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{2 z}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: 37 mg (38\%). Data for 2z: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.2$, $160.3,155.4,149.1,148.7,131.3,125.7,124.9,115.5,99.9,97.6,55.8,55.7,46.2,40.7,38.3,32.3,32.1,26.5$, 21.8, 20.4 ppm ; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}, m / z=323\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 324.1958, Found 324.1955.

3a 1,3-Dimethoxy-6-phenyl-7,8,9,10-tetrahydrophenanthridine (3a). A 1,2dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%)$, 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4 -(cyclohex-1-en-1-yl)morpholine ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 a}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: $32 \mathrm{mg}(33 \%)$. Data for 3a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H})$, $6.50(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.65$ (m, 2H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,159.6,158.6,149.0,145.2,141.4,128.6,128.3,127.9$, $126.1,115.6,101.1,98.9,55.6,55.6,30.2,29.2,23.2,22.3 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}, m / z=319\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$320.1645, Found 320.1660.

1,3-Dimethoxy-6-(4-methoxyphenyl)-7,8,9,10-tetrahydrophenanthridine (3b). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), benzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4 -(cyclohex-1-en-1-yl)morpholine ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 b}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: $58 \mathrm{mg}(55 \%)$. Data for 3b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (s, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 8 \mathrm{H}), 3.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=$ 6.1 Hz, 2H), $1.82(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 160.7,159.5,159.4,158.5$,
149.2, 144.9, 130.0, 128.9, 126.3, 115.4, 113.7, 101.1, 98.7, 55.5, 55.5, 55.4, 30.1, 29.4, 23.2, 22.4 ppm ; GC-MS for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}, m / z=349\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 350.1750$, Found 350.1766.

6-(4-Fluorophenyl)-1,3-dimethoxy-7,8,9,10-tetrahydrophenanthridine (3c). A 1,2dicholoroethane (1.5 mL) solution of complex 1 (11 mg , $5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-fluorobenzaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(cyclohex-1-en-1-yl)morpholine ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 c}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=$ 100:1 to 95:5). Yield: $64 \mathrm{mg}(63 \%)$. Data for 3c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (dd, $J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.13(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,161.4,159.7$, $158.6,149.1,145.3,137.5,130.6\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 126.1,115.6,115.2\left(\mathrm{~d}, J_{\mathrm{CF}}=22.3 \mathrm{~Hz}\right), 101.0,99.0,55.6,55.6$, 30.2, 29.3, 23.1, $22.3 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.68 \mathrm{ppm}$; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FNO}_{2}, m / z=337$ $\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$338.1551, Found 338.1547.

1,3-Dimethoxy-6-(4-(trifluoromethyl)phenyl)-7,8,9,10-tetrahydrophenanthridine (3d). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3$ mmol) and 4-(cyclohex-1-en-1-yl)morpholine ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 3d was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $60 \mathrm{mg}(52 \%)$. Data for $\mathbf{3 d}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$, $3.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{dt}, J=12.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=11.5,6.0 \mathrm{~Hz}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,159.6,158.7,149.3,145.6,145.3,130.3,129.9,129.2,125.8$, $125.4\left(\mathrm{dd}, J_{\mathrm{CF}}=7.4,3.6 \mathrm{~Hz}\right), 115.9,101.1,99.3,55.7,55.6,30.2,29.2,23.2,22.3 \mathrm{ppm}$; ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.64 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2}, m / z=387\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}([\mathrm{M}$ $+\mathrm{H}]^{+}$) 388.1519, Found 388.1516.

1,3-Dimethoxy-8-methyl-6-(p-tolyl)-7,8,9,10-tetrahydrophenanthridine (3e). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-methylbenzaldehyde ($36 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(4-methylcyclohex-1-en-1-yl)morpholine ($54 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 e}$ was isolated using column chromatography on silica gel (hexanes/EtOAc = 100:1 to 95:5). Yield: $50 \mathrm{mg}(48 \%)$. Data for $\mathbf{3 e}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dt}$, $J=18.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=16.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.85$
(m, 1H), $1.68(\mathrm{~s}, 1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.1,159.6,158.6,149.3,144.5,138.7,137.6,129.0,128.6,126.0,115.4,101.2,98.8,55.6,55.6,37.6,31.4$, 30.2, 28.3, 21.9, 21.5 ppm ; GC-MS for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}, m / z=347\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2}$ ([M $+\mathrm{H}]^{+}$) 348.1958, Found 348.1959.

$3 f$

1,3-Dimethoxy-8-methyl-6-(4-(trifluoromethyl)phenyl)-7,8,9,10-tetrahydrophe nanthridine (3f). A 1,2-dicholoroethane (1.5 mL) solution of complex $\mathbf{1}(11 \mathrm{mg}, 5$ $\mathrm{mol} \%$), 3,5-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(4-methylcyclohex-1-en-1-yl)morpholine ($54 \mathrm{mg}, 0.3$ mmol) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 3 f was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $54 \mathrm{mg}(45 \%)$. Data for $\mathbf{3 f}$: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=17.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=16.7,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,159.5,158.7,149.3,145.2,130.3,130.0,129.2,125.5,125.4\left(\mathrm{dd}, J_{\mathrm{CF}}=7.8,3.8 \mathrm{~Hz}\right), 123.0$, $115.8,101.1,99.3,55.7,55.7,37.5,31.3,30.2,28.3,21.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.43 \mathrm{ppm} ; \mathrm{GC}-$ MS for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}, m / z=401\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 402.1675$, Found 402.1671.

2-(1,3-Dimethoxy-7,8,9,10-tetrahydrophenanthridin-6-yl)phenol (3g). A 1,2dicholoroethane (1.5 mL) solution of complex $\mathbf{1}(11 \mathrm{mg}, 5 \mathrm{~mol} \%), 3,5$-dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), salicylaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(cyclohex-1-en-1yl)morpholine ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 g}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to 95:5). Yield: $49 \mathrm{mg}(49 \%)$. Data for $\mathbf{3 g}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.04$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.92$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{p}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.1,158.6,158.0,157.2,147.5,147.1,130.5,130.3,127.3,123.2,118.6,118.1,115.2,99.6,99.2,55.7,55.7$, 30.1, 29.9, 23.1, 22.4 ppm ; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}, m / z=335\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}$ ([M $+\mathrm{H}]^{+}$) 336.1594, Found 336.1597.

2-(8,8-Difluoro-1,3-dimethoxy-7,8,9,10-tetrahydrophenanthridin-6-yl)phenol (3h). A 1,2-dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), salicylaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(4,4-difluorocyclohex-1-en-1-yl)morpholine ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h. The product $\mathbf{3 h}$ was isolated using column chromatography on silica gel
(hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $67 \mathrm{mg}(60 \%)$. Data for $\mathbf{3 h}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.35$ (t, $J=14.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30-2.17 (m, 2H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,158.2,157.9,155.9$, $147.4,144.5,141.6,131.0,129.9,122.4,119.6,118.7,114.2,99.6,99.2,55.8,55.8,36.6\left(\mathrm{t}, J_{\mathrm{CF}}=27.3 \mathrm{~Hz}\right), 30.3$ $\left(\mathrm{t}, J_{\mathrm{CF}}=23.8 \mathrm{~Hz}\right), 27.9\left(\mathrm{t}, J_{\mathrm{CF}}=5.0 \mathrm{~Hz}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-97.24 \mathrm{ppm} ; \mathrm{GC}-\mathrm{MS}$ for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{3}, m / z=371\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$372.1406, Found 372.1407.

$3 i$ 2-(8,8-Dimethyl-1,3-dimethoxy-7,8,9,10-tetrahydrophenanthridin-6-yl)phenol (3i). A 1,2-dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), salicylaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $4-(4,4-$ dimethylcyclohex-1-en-1-yl)morpholine ($58 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h. The product $\mathbf{3 i}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $59 \mathrm{mg}(54 \%)$. Data for $3 \mathrm{i}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,158.7,157.9,157.3,147.4,146.6,130.6,130.4,126.1,122.5,118.6,118.0,115.0,99.4$, 99.1, 55.8, 55.8, 42.9, 35.5, 28.6, 28.1, 27.6 ppm ; GC-MS for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}, m / z=363\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 364.1907$, Found 364.1905.

3j

7,9-Dimethoxy-4-(4-methoxyphenyl)-2,3-dihydro-1H-cyclopentaquinoline (3j). A 1,2-dicholoroethane (1.5 mL) solution of complex $1(11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-methoxybenzaldehyde ($41 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(cyclopent-1-en-1-yl)morpholine ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 j}$ was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $51 \mathrm{mg}(52 \%)$. Data for $\mathbf{3 j}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, 2 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4$, $160.0,157.4,155.7,151.3,150.1,133.2,132.8,130.2,114.1,113.8,100.3,98.0,55.7,55.6,55.5,35.4,32.7,25.4$ ppm; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}, m / z=335\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 336.1594$, Found 336.1593.

7,9-Dimethoxy-4-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1 \boldsymbol{H}-cyclopentaquino line ($\mathbf{3 k}$). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-(trifluoromethyl)benzaldehyde ($52 \mathrm{mg}, 0.3$ mmol) and 4-(cyclopent-1-en-1-yl)morpholine ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product $\mathbf{3 k}$ was isolated using column chromatography on silica gel
(hexanes/EtOAc $=100: 1$ to $95: 5$). Yield: $53 \mathrm{mg}(48 \%)$. Data for $\mathbf{3 k}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.06(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{p}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,160.6,157.3$, $154.5,151.9,150.2,132.8,129.1,125.3\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,3.6 \mathrm{~Hz}\right), 114.6,100.2,98.6,92.1,90.4,55.6,55.6,35.4$, 32.3, 25.3 ppm ; GC-MS for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}, m / z=373\left(\mathrm{M}^{+}\right) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.67 \mathrm{ppm}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 374.1383$, Found 374.1376.

31

2-(1,3-Dimethoxy-8-phenyl-7,8,9,10-tetrahydrophenanthridin-6-yl)phenol (31). A 1,2-dicholoroethane (1.5 mL) solution of complex 1 ($11 \mathrm{mg}, 5 \mathrm{~mol} \%$), 3,5dimethoxyaniline ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$), salicylaldehyde ($37 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)morpholine ($73 \mathrm{mg}, 0.3 \mathrm{mmol}$) was stirred at $125^{\circ} \mathrm{C}$ for 20 h . The product 31 was isolated using column chromatography on silica gel (hexanes/EtOAc $=100: 1$ to $95: 5)$. Yield: $54.3 \mathrm{mg}(44 \%)$. Data for 31: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{q}, J=8.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5,158.7,157.7,157.1,147.5,146.8$, $146.0,130.7,130.2,128.7,127.0,126.9,126.5,122.5,118.9,118.1,115.1,99.5,99.2,55.8,39.8,37.9,31.1,30.1$ ppm; GC-MS for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}, m / z=411\left(\mathrm{M}^{+}\right)$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$412.1907, Found 412.1908.
9. ${ }^{1} \mathbf{H}$ NMR of $\mathbf{2 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}$ of $\mathbf{2 a}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR of 2b $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\mathbf{2 b}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

$\stackrel{150}{2}$
${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{2 c}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\xrightarrow{150}$
${ }^{1} \mathbf{H}$ NMR of $\left.\mathbf{2 d} \mathbf{(4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\mathbf{2 d}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \text { 笑 } \\ & \text { 导 } \end{aligned}$						V\%

${ }^{1} \mathrm{H}$ NMR of 2e $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of 2e (101 MHz, $\mathbf{C D C l}_{3}$)

${ }^{19}$ F NMR of 2e ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}$ of $\mathbf{2 f}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\xrightarrow[150]{100}$
${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 h}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{2 h}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

剳

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{2 i}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of $\left.\mathbf{2 j} \mathbf{(4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$

2j

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\left.\mathbf{2 j} \mathbf{~ (1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $2 \mathrm{k}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

150
${ }^{1} \mathrm{H}$ NMR of $21\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $21\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	E N O I				

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR of $\mathbf{2 m}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{100}{ }$
${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{2 n}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{2 n}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $2 \mathrm{o}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\xrightarrow[150]{10}$
${ }^{19}$ F NMR of $2 \mathrm{o}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 p}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR of $\mathbf{2 p}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(150
${ }^{1} \mathbf{H}$ NMR of $\mathbf{2 q}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\mathbf{2 q}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{r}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}$ of $\mathbf{2 r}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{~s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

管 太	

2s

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $2 \mathrm{~s}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{ll} \frac{8}{4} & 8 \\ \frac{8}{4} & 8 \\ 0 & \boxed{4} \\ 1 & 1 \end{array}$	\％			

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{t}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR of $\mathbf{2 t}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

					黑	

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 u}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR of $\mathbf{2 u}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $2 \mathrm{u}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{2 v}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\mathbf{2 w}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{x}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $2 \times\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $2 \times\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{y}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR of $\left.\mathbf{2 y} \mathbf{(1 0 1 ~ M H z}, \mathbf{C D C l} 3\right)$

${ }^{1} \mathrm{H}$ NMR of $2 \mathrm{z}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $2 \mathrm{z}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{3 a}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

		N	\%				

${ }^{1} \mathbf{H}$ NMR of $3 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ of 3b $\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{150}{\top}$
${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}$ of $\mathbf{3 c}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $3 \mathrm{c}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR of $\left.\mathbf{3 d} \mathbf{(4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of $\mathbf{3 d}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\xrightarrow[150]{100}$
${ }^{19}$ F NMR of $\left.\mathbf{3 d} \mathbf{(3 7 6 ~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $3 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $3 \mathrm{f}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{3 f}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{3 g}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\left.\mathbf{3 h} \mathbf{(4 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}\right)$

3h

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{3 h}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{3 h} \mathbf{(3 7 6 ~ M H z , ~} \mathbf{C D C l}_{3}$)

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{150}{ }$
${ }^{1} \mathbf{H}$ NMR of $\left.\mathbf{3 j} \mathbf{(4 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{3 j}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8 85易						澹栕

${ }^{1} \mathbf{H}$ NMR of $\mathbf{3 k} \mathbf{(4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$)

3k

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ of $\mathbf{3 k}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{3 k}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $31\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $31\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		 			\%	

(150

10. References

S1. (a) Singleton, D. A.; Thomas, A. A. High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance. J. Am. Chem. Soc. 1995, 117, 9357-9358. (b) Frantz, D. E.; Singleton, D. A.; Snyder, J. P. ${ }^{13}$ C Kinetic Isotope Effects for the Addition of Lithium Dibutylcuprate to Cyclohexenone. Reductive Elimination is Rate-Determining. J. Am. Chem. Soc. 1997, 119, 3383-3384.

S2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. Appl. Cryst. 2009, 42, 339-341.

S3. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment-Olex2 Dissected. Acta Cryst. 2015, A71, 59-75.

S4. Sheldrick, G. M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, C71, 3-8.

S5. Zheng, Z.; Deng, G.; Liang, Y. Synthesis Of Quinolines Through Copper-Catalyzed Intermolecular Cyclization Reaction from Anilines and Terminal Acetylene Esters. RSC Adv. 2016, 6, 103478-103481.

S6. Narasimhamurthy, K.; Chandrappa, S.; Kumar, K.; Swaroop, T.; Rangappa, K. Synthetic Utility of Propylphosphonic Anhydride-DMSO Media: an Efficient One-Pot Three-Component Synthesis of 2Arylquinolines. Chem. Lett. 2013, 42, 1073-1075.

[^0]: ${ }^{a}$ Reaction conditions: 3,5-dimethoxyaniline (0.30 mmol), 4-methoxybenzaldehyde (0.30 mmol), 1,2-dichloroethane (1.5 mL), $20 \mathrm{~h}, 120^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \mathrm{GC}$ yields using hexamethylbenzene as an internal standard

