Factors influencing on-resin depsipeptide bond formation: Case studies on daptomycin- and brevicidine-derived sequences

Dennise Palpal-latoc, Margaret A. Brimble, Paul W. R. Harris,* Aimee J. Horsfall*

Table of Contents

Abbreviations	3
Experimental	4
General Information	4
Chemicals	4
Analytical equipment	4
Amino-acid synthesis	5
Scheme S1: Alloc-L-Ser(tBu)-OH synthetic scheme	5
Methyl-(2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe)	5
(2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH)	5
Figure S1. ¹ H NMR spectrum of methyl (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe)	7
Figure S2. ¹³ C NMR spectrum of methyl (2S)-2-((allyloxycarbonyl)amino)-3- (tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe)	8
Figure S3. ¹ H NMR spectrum of (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH)	9
Figure S4. ¹³ C NMR spectrum of (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH)	10
Peptide synthesis	11
General procedure for loading of HMP linker and subsequent Fmoc-amino-acid attachment	11
General procedure for loading first amino-acid onto 2-chlorotrityl chloride functionalised resin	11
General procedure for peptide synthesis	11
Kaiser test	12
Fmoc liberation test	12
General procedure for peptide cleavage from resin and global deprotection	12
General procedure for esterification of resin bound peptides	13
Depsipeptide conversion calculation	13
Characterisation of peptides	14
Table S1: Characterisation of starting material peptides	14
Supplementary Information	18
Peptidyl resin 1	18
Scheme S2: General synthetic scheme for reaction of peptidyl resin 1	18
Table S2: Additional peak characterisation following reaction of peptidyl resin 1.	18
Table S3: RP-HPLC	20
Peptidyl resin 2	22
Scheme S4: General synthetic scheme for reaction of peptidyl resin 2	22
Table S4: Additional peak characterisation.	22
Table S5: HPLC data following reaction of peptidyl resin 2	24
Peptidyl resin 3	26
Scheme S3: General synthetic scheme for reaction of peptidyl resin 3	26
Table S6: Additional peak characterisation.	26
Table S7: HPLC data following reaction of peptidyl resin 3	27

Peptidyl resin 4	28
Scheme S5: General synthetic scheme for reaction of peptidyl resin 4	28
Table S8: Additional peak characterisation.	28
Table S9: HPLC data following reaction of peptidyl resin 4	29
Peptidyl resin 5	30
Scheme S6: General synthetic scheme for reaction of peptidyl resin 5	30
Table S10: Additional peak characterisation.	30
Table S11: HPLC data following reaction of peptidyl resin 5	31
Peptidyl resin 6	32
Scheme S7: General synthetic scheme for reaction of peptidyl resin 6	32
Table S12: Additional peak characterisation.	32
Table S13: HPLC data following reaction of peptidyl resin 6	33
Peptidyl resins 7 & 12	34
Scheme S8: General synthetic scheme for reaction of peptidyl resins 7	34
Table S14: Additional peak characterisation.	34
Peptidyl resin 8	37
Scheme S16: General synthetic scheme for reaction of peptidyl resin 8	37
Table S16: Additional peak characterisation.	37
Table S17: HPLC data following reaction of peptidyl resin 8	38
Peptidyl resin 9	39
Scheme S10: General synthetic scheme for reaction of peptidyl resin 9	39
Table S18: Additional peak characterisation.	39
Table S19: HPLC data following reaction of peptidyl resin 9	40
Peptidyl resin 10	41
Scheme S11: General synthetic scheme for reaction of peptidyl resin 10	41
Table S20: Additional peak characterisation.	41
Table S21: HPLC data following reaction of peptidyl resin 10	42
Peptidyl resin 11	43
Scheme S14: General synthetic scheme for reaction of peptidyl resin 11	43
Table S22: Additional peak characterisation.	43
Table S23: HPLC data following reaction of peptidyl resin 11	45
Peptidyl resin 13	46
Scheme S12: General synthetic scheme for reaction of peptidyl resin 13	46
Table S24: HPLC data following reaction of peptidyl resin 13	46
Peptidyl resin 14	47
Scheme S13: General synthetic scheme for reaction of peptidyl resin 14	47
Table S25: Additional peak characterisation.	47
Table S26: HPLC data following reaction of peptidyl resin 14	48
References	48

Abbreviations

6-CIHOBt, 1-hydroxy-6-chlorobenzotriazole; Ac, acetyl; Ala (A), alanine; All, allyl; Arg (R), arginine; Asn (N), asparagine; Asp (D), aspartic acid; Boc. *tert*-butoxycarbonyl; **Cys** (**C**), cysteine: **DIC**, *N*,*N*'-diisopropylcarbodiimide; **DCM**, dichloromethane; **DIPEA**, *N*,*N*'-diisopropylethylamine; **DMAP**, 4-dimethylaminopyridine; **DMF**, *N*,*N*'-dimethylformamide; **Fmoc**, 9-fluorenylmethyloxycarbonyl; GIn (Q), glutamine; Glu (E), glutamic acid; Gly (G), glycine; h, hour/s; HCTU, O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; His (H), histidine; HMP, 4-(hydroxymethyl)phenoxyacetic acid; HRMS, high resolution mass spectrometry; Leu (L), leucine; Lys (K), lysine; MeCN, acetonitrile; Met (M), methionine; min, minute/s; MS, mass spectrometry; NMP, N-methyl-2-pyrrolidone; Pbf, 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl; PG, protecting group; Phe (F), phenylalanine; ppm, parts per million; Pro (P), proline; PS, polystyrene; RP-HPLC, reverse phase high performance liquid chromatography; rt, room temperature; sec, second/s; Ser (S), serine; tBu, tert-butyl; TFA, trifluoroacetic acid; Thr (T), threonine; TIPS, triisopropylsilane; TMS, tetramethylsilane; TritonX100[™], tert-octylphenoxypolyethoxyethanol; Trp (W), tryptophan; Trt, trityl; Tyr (Y), tyrosine; UV, ultraviolet; Val (V), valine.

Experimental

General Information

Chemicals

All reagents were purchased from commercial sources and used without further purification unless otherwise stated from the following sources:

Sigma Aldrich: N,N'-diisopropylethylamine (DIPEA), N,N'-diisopropylcarbodiimide (DIC), formic acid,

- AK Scientific: 4-(hydroxymethyl)phenoxyacetic acid (HMP) linker, triisopropylsilane (TIPS), Fmoc-L-Asp(OH)-OAII, Fmoc-D-Ser(*t*Bu)-OH
- Aapptec: 1-hydroxy-6-chlorobenzotriazole (6-ClHOBt), Fmoc-L-Trp(Boc)-OH, 4-dimethylaminopyridine (DMAP), Boc-L-Trp(H)-OH, O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU), Fmoc-D-Asn(Trt)-OH, Fmoc-L-Asp(tBu)-OH, Fmoc-D-Thr(OH)-OH, Fmoc-L-Ser(*t*Bu)-OH, Fmoc-D-Trp(Boc)-OH

Rapp Polymere: Tentagel S resin

- Avantor Performance Materials: Acetic anhydride (Ac₂O), diethyl ether (Et₂O)
- Oakwood Chemicals: Trifluoroacetic acid (TFA)
- Scharlau: N,N'-Dimethylformamide (DMF, AR grade), acetonitrile (MeCN, HPLC grade), acetonitrile (MeCN, MS grade)

ECP Limited: Dichloromethane (DCM), pyridine

AusPep: Fmoc-L-Trp(H)-OH

Polypeptide laboratories: Fmoc-L-Thr(OH)-OH

Chem Supply: piperidine,

ChemPep®: 2-chlorotrityl chloride polystyrene (2-CITrt PS)resin

Chem Impex Int'l Ltd.: Fmoc-D-Ala-OH

CS Bio (Shanghai) Ltd.: Fmoc-Gly-OH, Fmoc-L-Ile-OH, Fmoc-L-Lys(Boc)-OH

GL Biochem: Ser(tBu)-OMe•HCl

Alloc-L-Ser(tBu)-OH was prepared as described below, according to literature procedures.^{1,2}

Analytical equipment

Analytical HPLC was collected on an Agilent 1100 Compact, equipped with an Agilent Zorbax SB300-C8 column (150 x 4.6 mm, 5 μ m) using a linear gradient of MeCN with 0.1% (*v/v*) TFA (Buffer B), in H₂O with 0.1% (*v/v*) TFA (Buffer A) at 1 mL/min and the spectra visualised at 214 nm.

LCMS and MS (ESI+) data was collected using an Agilent 1260 Infinity liquid chromatography system equipped with an Agilent Zorbax SB300-C3 column (150 x 3 mm, 3.5 μ m), over a linear gradient of MeCN with 0.1% (*v/v*) formic acid, in H₂O with 0.1% (*v/v*) formic acid at 0.3 mL/min and visualised at 214 nm; and attached to an Agilent 6120 Quadrupole electrospray mass spectrometer.

UV readings for the '*Fmoc liberation test*' were collected on a Shimadzu (Kyoto, Japan) UV-1280 system, in quartz cuvettes with a 10 mm pathlength.

Nuclear magnetic resonance (NMR) spectra were recorded at 298 K on a Bruker AVANCE 400 spectrometer. All chemical shifts are reported in parts per million (ppm) from referenced to tetramethylsilane (TMS) at 0 ppm.

Amino-acid synthesis

Scheme S1: Alloc-L-Ser(tBu)-OH synthetic scheme

Methyl-(2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe)

A solution of Na₂CO₃ (2.5 g, 23.6 mmol, 5 eq.) in H₂O (7 mL) was added slowly to an ice-water cooled solution of H-Ser(*t*Bu)-OMe.HCl (1.0 g, 4.72 mmol, 1 eq.) in THF (7 mL). The mixture was stirred for 10 min at 0 °C, then allyl chloroformate (1 mL, 9.44 mmol, 2 eq.) was slowly added. The resulting mixture was stirred for 12 h at rt then concentrated *in vacuo*. The reaction was extracted with EtOAc (3 × 20 mL) and the combined organic extracts were washed with brine (30 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography on silica gel (EtOAc-PET ether 15:85) to afford **Alloc-Ser(tBu)-OMe** as a colourless oil (1.1 g, 95%). **R**_f 0.35 (EtOAc-PET ether 15:85); ¹**H NMR** (400 MHz, CDCl₃): δ 5.97-5.88 (ddt, *J* = 17.1, 10.9, 5.6 Hz, 1H, Alloc), 5.58 (d, *J* = 8.4 Hz, 1H, NH), 5.32 (dd, *J* = 17.2, 1.3 Hz, 1H, Alloc), 5.22 (dd, *J* = 10.4, 1.1 Hz, 1H, Alloc), 4.59 (ddd, *J* = 5.6, 1.3, 1.3 Hz, 2H, Alloc), 4.44 (ddd, *J* = 8.9, 3.0, 2.9 Hz, 1H, H-2), 3.80 (dd, *J* = 9.0, 2.8 Hz, 1H, H-3), 3.74 (s, 3H, OCH₃), 3.57 (dd, *J* = 9.0, 3.3 Hz, 1H, H-3), 1.12 (s, 9H, *t*Bu) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 7171.1 (CO₂CH₃, C-1), 156.0 (NHCO₂, Alloc), 132.7 (*CH*=CH₂, Alloc), 117.8 (CH=*CH*₂, Alloc), 73.4 (*C*(CH₃)₃, *t*Bu), 65.8 (CO₂*CH*₂, Alloc), 62.0 (CH₂, C-3), 54.6 (CH, C-2), 52.3 (CH₃, OMe), 27.2 (C(*CH*₃)₃, *t*Bu) ppm; **HRMS** (ESI+) *m/z*: 282.1312 (calcd for [C₁₂H₂₁NO₅+Na]⁺, 282.1312). The spectroscopic data were in agreement with those reported in the literature.²

(2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH)

LiOH (0.23 g, 9.6 mmol, 2 eq.) was dissolved in H₂O (7 mL) and added to a solution of **Alloc-Ser(tBu)-OMe** (1.1 g, 4.8 mmol, 1 eq.) in THF (7 mL). The reaction mixture was allowed to stir at rt for 1 h and concentrated *in vacuo*. The solution was adjusted to pH 2 with 1 M HCl and extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine (30 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography on silica gel (EtOAc-PET ether 3:7 and 0.1% AcOH) to afford **Alloc-Ser(tBu)-OH** as a colourless oil (0.36 g, 50%). **R**_f 0.57 (EtOAc-PET ether 3:7 and 0.1% AcOH);¹**H NMR** (400 MHz, CDCl₃): δ 5.97-5.88 (ddt, *J* = 22.8, 10.9, 5.6 Hz, 1H, Alloc), 5.58 (d, *J* = 8.1 Hz, 1H,

NH), 5.32 (dd, J = 17.2, 1.3, 1H, Alloc), 5.22 (dd, J = 10.4, 1.3, 1H, Alloc), 4.59 (d, J = 5.6, 2H, Alloc), 4.46 (ddd, J = 11.6, 7.5, 3.3 Hz, 1H, H-2), 3.90 (dd, J = 8.8, 3.0 Hz, 1H, H-3), 3.57 (dd, J = 8.9, 4.9 Hz, 1H, H-3), 1.19 (s, 9H, *t*Bu) ppm; ¹³**C** NMR (100 MHz, CDCl₃): δ 175.1 (CO₂H, C-1), 156.4 (NH*C*O₂, Alloc), 132.7 (*CH*=CH₂, Alloc), 118.2 (CH=*CH*₂, C-8), 74.3 (*C*(CH₃)₃, *t*Bu), 66.2 (CO₂*CH*₂, Alloc), 61.9 (CH₂, C-3), 54.4 (CH, C-2), 27.4 (C(*CH*₃)₃, *t*Bu) ppm; **HRMS** (ESI+) *m/z*: 268.1155 (calcd for [C₁₁H₁₉NO₅+Na]⁺, 268.1155). The spectroscopic data were in agreement with those reported in the literature.^{1,2}

Figure S1. ¹H NMR spectrum of methyl (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe) (CDCl₃, 400 MHz, 298 K).

Figure S2. ¹³C NMR spectrum of methyl (2S)-2-((allyloxycarbonyl)amino)-3- (tert-butyloxy)propanoate (Alloc-Ser(tBu)-OMe) (CDCl₃, 100 MHz, 298 K)

Figure S3. ¹H NMR spectrum of (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH) (CDCl₃, 400 MHz, 298 K).

Figure S4. ¹³C NMR spectrum of (2S)-2-((allyloxycarbonyl)amino)-3-(tert-butyloxy)propanoic acid (Alloc-Ser(tBu)-OH) (CDCl₃, 100 MHz, 298 K).

Peptide synthesis

All peptides were synthesised, per the general procedures listed below, using the following protected aminoacids, unless otherwise specified: Fmoc-D-Ala-OH, Fmoc-D-Asn(Trt)-OH, Fmoc-L-Asp(OH)-OAII, Fmoc-L-Asp(tBu)-OH, Fmoc-Gly-OH, Fmoc-L-Ile-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Thr(OH)-OH or Fmoc-D-Thr(OH)-OH, Fmoc-L-Trp(Boc)-OH or Fmoc-L-Trp(H)-OH, and Fmoc-L-Ser(*t*Bu)-OH. Identity of the linear peptide sequence, prior to esterification, was confirmed by RP-HPLC and MS (ESI+) by a 'minicleave' of a small portion of resin. Peptidyl resin was then split, and subjected to esterification reaction conditions. Amino-acids building blocks used in esterification reactions included Fmoc-L-Trp(Boc)-OH , Fmoc-L-Trp(H)-OH, Boc-L-Trp(H)-OH, Fmoc-D-Trp(Boc)-OH, Fmoc-L-Ser(*t*Bu)-OH, Fmoc-D-Ser(*t*Bu)-OH and Alloc-L-Ser(*t*Bu)-OH.

General procedure for loading of HMP linker and subsequent Fmoc-amino-acid attachment

Tentagel S resin (0.26 mmol/g) was swelled in DMF (7 mL/g resin) for 15 min and then the solution drained from the resin. A solution of 4-(hydroxymethyl)phenoxyacetic acid (HMP linker, 4 equiv), 1-hydroxy-6-chlorobenzotriazole (6-ClHOBt, 4 equiv) and *N*,*N*'-diisopropylcarbodiimide (DIC, 4 equiv) in DMF (4 mL/g resin) was added to the preswelled resin and agitated for 2 h. The solution was drained from the resin, and the resin was washed with DMF (3 × 8 mL/g resin) and DCM (2 × 8 mL/g resin). A '*Kaiser test*' was performed to determine if all amine groups were acylated. The resin was immediately reswelled in DCM, and the solution drained from the resin. A solution of Fmoc-amino-acid (Fmoc-L-Asp(OH)-OAll, Fmoc-Gly-OH or Fmoc-L-IIe-OH) (5 equiv) and DIC (5 equiv) in DCM (4 mL/g resin) was then added to the resin, followed by *N*,*N*-dimethylaminopyridine (DMAP, 0.1 equiv) and the mixture agitated for 4 h, or overnight. Acetic anhydride (250 µL/g resin) was then added to the mixture and agitated for a further 1 h, to ensure any remaining hydroxyl groups were acylated. The solution was then drained from the resin, and the resin washed with DMF (3 × 8 mL/g resin) and DCM (3 × 8 mL/g resin). An '*Fmoc liberation test*' was performed to determine the loading of the Fmoc-amino-acid to the resin. Final resin loadings ranged between 0.10-0.19 mmol/g.

General procedure for loading first amino-acid onto 2-chlorotrityl chloride functionalised resin

2-chlorotrityl chloride functionalised polystyrene resin (0.5 g, 0.89 mmol/g) was swelled in DCM (10 mL) for 15 min. Fmoc-protected amino-acid (0.45 mmol, 1 equiv) was dissolved in DCM (5 mL) and DIPEA (75.6 μ L, 2.25 mmol, 5 equiv) added. The amino-acid solution was added to the resin, and the solution shaken (HCI gas evolved) and vented. The mixture was placed on rocker for 2 h and then MeOH (5 mL) added and rocked for a further 30 min to cap any free reactive sites. The solvent was removed and the resin washed with DMF (5 x 8 mL), DCM (2 x 8 mL), DMF (2 x 8 mL) and DCM (5 x 8 mL), then the resin dried by suction. An '*Fmoc liberation test*' was then performed to determine the loading of the Fmoc-amino-acid to the resin. Final resin loadings ranged between 0.077-0.095 mmol/g.

General procedure for peptide synthesis

Resin preloaded with the first Fmoc-amino-acid (0.1 mmol) was preswelled in DMF (5 mL) for 15 min, and the solvent then drained from the resin. Solid-phase peptide chain elongation was carried out on an Activotec Activo-P14 peptide synthesiser. A solution of 20% (v/v) piperidine in DMF (3.8 mL) was added to the resin, and the mixture agitated at rt for 3 min. The solution was then drained from the resin, and a fresh portion of 20% (v/v) piperidine in DMF (3.8 mL) was added to the resin. The solution was then drained from the resin, and a fresh portion of 20% (v/v) piperidine in DMF (3.8 mL) was added to the resin, and the mixture agitated at rt for a further 9 min. The

solution was then drained from the resin and the resin washed with DMF (5 × 1 min, 4 mL). A solution of Fmocamino-acid (5 equiv), HCTU (4.9 equiv, 980 μ L, 0.5 M in DMF) and DIPEA (10 equiv, 174 μ L) in DMF (made up to 4 mL total) was added to the resin and the mixture agitated at rt for 20 min. The solution was then drained from the resin and the resin washed with DMF (4 × 1 min, 4 mL). The deprotection and coupling cycles were repeated until the desired sequence was achieved. Following the final *N*-terminal Fmoc deprotection, the resin was removed from the synthesiser, and a solution of acetic anhydride (470 μ L, 50 equiv) and DIPEA (870 μ L, 50 equiv) in DMF (2.5 mL) was added to the resin and agitated for 30 s. The solution was then drained from the resin, and the resin washed with DMF (3 × 5 mL), then DCM (3 × 5 mL) and then airdried.

Kaiser test

A small sample of resin (~2-5 mg) was washed thoroughly with DCM, and then 2 drops of each 80% (w/v) phenol in *n*-butanol (40 g in 20 mL), 5% (w/v) ninhydrin in *n*-butanol (1.0 g in 20 mL) and 200 μ M KCN in pyridine (16.5 mg KCN in 25 mL H₂O, 1 mL KCN aq. solution in 49 mL pyridine) added to the resin. The mixture was then heated at 100°C for 5 min and the colour assessed. Blue beads (positive result) indicate the presence of free amines, and colourless/yellow beads (negative result) indicate the absence of free amines.

Fmoc liberation test

Immediately following coupling of the Fmoc-protected building block to the resin, two samples of resin (~1-5 mg) were thoroughly washed with DCM (6 x 300 μ L) and airdried with suction. The resin samples were transferred to eppendorfs and the accurate mass of the resin recorded, then freshly prepared 20% (*v/v*) piperidine in DMF (1.0 mL) added to the resin. The mixture was agitated for 20 min at rt. A sample of the supernatant (200 μ L) was then taken and diluted 10-fold in 20% (*v/v*) piperidine in DMF (1.80 mL), and the absorbance at 290 nm recorded. Absorbance at 290 nm was first zeroed against a sample of 20% (*v/v*) piperidine in DMF. The loading of the resin was then calculated for each sample, using the following equation:

Resin loading
$$\left(\frac{mmol}{g}\right) = \frac{(A_{290} \times DF \times V_{rxn})}{(\varepsilon_{290} \times m_{resin})}$$

Where, A290 is the absorbance at 290 nm as recorded by a UV-Vis spectrophotometer

DF is the dilution factor (here, 10)

 V_{rxn} is the volume (in mL) of the deprotection reaction (here, 1 mL)

 ϵ_{290} is the extinction coefficient of the fulvene-piperidine adduct at 290 nm ($\epsilon_{290} = 6089$)³

m_{resin} is the mass of resin in reaction sample (in g)

The two values were averaged (mean) to give the average loading of the resin.

General procedure for peptide cleavage from resin and global deprotection

A solution of 95:2.5:2.5 TFA:TIPS:H₂O (~300 μ L) was added to a small portion of the peptidyl resin (~10 mg) and agitated for 1.5 h to cleave the peptides from the resin. The TFA solution was then concentrated under a stream of nitrogen to ~100-200 μ L, and cold diethyl ether (1.0 mL) added to precipitate the peptides. The mixture was centrifuged to pellet the precipitate, the solvent was decanted and the pellet dried under a stream of nitrogen. The pellet was resuspended in 50% aq. MeCN with 0.1% TFA (~200 μ L), syringe filtered (0.45 μ m) analysed by RP-HPLC over a linear gradient at 214 nm, and peptide identity confirmed by MS analysis.

General procedure for esterification of resin bound peptides

Reagents, tryptophan/serine, DIC and DMAP, were freshly made up as stock solutions in the reaction solvent specified (DMF, DCM, NMP, or 1:1:1 DMF:DCM:NMP). A 6-CIHOBt stock, where applicable, was made up in DMF regardless of reaction solvent due to limited solubility in DCM. An *example* of the typical stock solutions prepared is provided,

DIC stock in reaction solvent (5 equiv/reaction, 0.05 mmol/20 μL): 156.3 μL DIC in 243.7 μL solvent

DMAP stock in reaction solvent (0.1 equiv/reaction, 0.001 mmol/20 $\mu\text{L})\text{:}$ 36.6 mg DMAP in 6.0 mL solvent

Example of amino-acid stock, Fmoc-L-Trp(Boc)-OH in reaction solvent (5 equiv/reaction, 0.05 mmol/50 µL): 263 mg Fmoc-L-Trp(Boc)-OH in 0.5 mL solvent

Peptidyl resin (0.01 mmol) was preswelled in the reaction solvent (0.5 mL) for 15 min then the solvent pipetted from the resin. Reaction solvent (final reaction volume 0.5 mL) was added to the resin, followed by amino-acid stock (5 equiv, 50 μ L), then optional additives as specified (e.g. TritonX100, or 6-CIHOBt as a stock solution in DMF). DIC (5 equiv, 20 μ L), and finally, DMAP (0.1 equiv, 20 μ L) were added to the mixture, which were then agitated for 1 h, and the solvent mixture then pipetted from the resin and fresh reagents added to the resin. The mixtures were agitated for a further 1 h, the solvent mixture then pipetted from the resin, and the resin was washed with DCM (2 × 0.5 mL). A portion of the resin was taken, and the peptide cleaved from the resin as detailed in '*General procedure for peptide cleavage from resin and global deprotection*'.

Depsipeptide conversion calculation

A HPLC spectrum of the reaction mixture was collected and visualised at 214 nm. The resulting spectrum was analysed in the Agilent EZChrom software, and integrated over the relevant gradient time. The percentage (%) area under the curve of the product peak, and any relevant adducts, (e.g. tryptophan CO₂ adducts, as specified in Tables S3, S5, S7, S9, S11, S13, S15, S17, S19, S21, S23, S26), was summed and divided by the sum of the % area of the starting material and product peaks (see generalised equation below). The mean average conversion of at least two experiments is reported.

%conversion to depsipeptide =
$$\frac{\sum Area \text{ under product peaks}}{\sum area \text{ under product and starting material peaks}} \times 100$$

Note: The dried precipitate from the cleavage, was resuspended in 50% aq. MeCN with 0.1% TFA, filtered, and analysed by RP-HPLC within 2 h of redissolution. Extended time in solution, resulted in hydrolysis of the depsipeptide bond for some sequences. Omission of the acid or MeCN resulted in solubility problems for some sequences.

Characterisation of peptides

Table S1: Characterisation of starting material peptides

Peptidyl resin code	Peptide code	Structure	Mass found [M+H]⁺	MS	Rt	HPLC Representative starting material (crude)
1 (TG)	S1	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	1215.7	4001 DPC вы-16 726 19 309 01 DC-6601311004714446E30220203 д.н. Сынуон, Сын Сынуон, Сынуон, Сы	15.1 min	5-95% B over 30min
3 (TG)	S3	$ \begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	1103.6	1001 SPC Imp-12 BF (3 BH d D'O-IMMERIANAAMELAN-LC 201-10-09 82 SPCAPED 04.0) C.D. (E.A.P. Par, B 1003 1003 1003 1003 1004 1004 00 00 1005 00 1005 00 1005 00 1005 00 1005	10.2 min	5-50% B over 20min
2 (TG)	S2	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	803.3	Control Contro Control Control Control Control Control Control Control Control Co	6.0 min	5-50% B over 20min

Supplementary Information

Peptidyl resin 1

Scheme S2: General synthetic scheme for reaction of peptidyl resin 1 (HMP-functionalised Tentagel B) with Fmoc-L-Trp(Boc)-OH for 2 × 1 h, or 20 h (2 × 1 h, + 18 h) as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and products identified in Table S2. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S3.

 Table S2: Additional peak characterisation following reaction of peptidyl resin 1. Representative trace following reaction of 1 with

 Fmoc-L-Trp(Boc)-OH, as shown in Scheme S2, illustrating key products and potential by-products as identified by ESI+ MS.

Table S3: RP-HPLC data following reaction of peptidyl resin 1 with Fmoc-L-Trp(Boc)-OH to give depsipeptidyl resin 1a, as described in the Experimental section and depicted in Scheme S2. Entries 1-7 show data for Table 2 (entries 1-7), and entries 8-9 show data for Table 3 (entry 1). The conversion of peptidyl resin 1 to 1a was determined as described in the Experimental section using the peaks of the linear (S1) and branched depsipeptide (S1a), and any corresponding adducts, specified.

Entry	Reaction time	Additive	Solvent	Conversion of 1 to 1a (%, 214 nm)	HPLC (5-95% B, 3%B/min, 214 nm)	Rt of peaks used for conversion calculation
1	2 x 1 h	-	DMF	10.6%		S1 15.2 min S1a 20.0 min
1	2×1 h+18 h	-	DMF	19.0%		S1 15.2 min S1a 20.0 min
2	2 × 1h	1% TritonX100	DMF	4.8%		S1 15.1 min S1a 20.0 min
	2 × 1 h + 18 h	1% TritonX100	DMF	8.5%		S1 15.1 min S1a 20.0 min
3	2 × 1h	10% TritonX100	DMF	4.9%		S1 15.1 min S1a 20.0 min
	2 × 1 h + 18 h	10% TritonX100	DMF	4.6%		S1 15.1 min S1a 20.0 min
4	2 x 1 h	-	NMP	3.5%		S1 15.1 min S1a 20.1 min
5	2 x 1 h	-	DCM	47.1%		S1+CO₂ 14.4 min S1 14.9 min S1a+CO₂ 19.0 min S1a 19.8 min

Scheme S4: General synthetic scheme for reaction of peptidyl resin 2 (HMP-functionalised Tentagel ®) with appropriately protected tryptophan (specified in Table S5) for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S4. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S5.

Table S4: Additional peak characterisation. Representative trace following reaction of **2** with Fmoc L-Trp(Boc)-OH, as shown in Scheme S4, illustrating key products and potential by-products as identified by ESI+ MS.

В		6.9 min	[M+H] ⁺ 960.2	S2 +156
	100- 480.8 Max: 11411	0.0 1111		
			[M+2H] ²⁺ 480.8	
	80 -			
	60 -			
	40 - 960.2			
	20 - 961.1			
	/85.2			
	400 600 800 1000 1200 1400 1600 1800 m/3			
С	-	8.5 min	Identified by retention	6-CIHOBt (169)
			time against standard	
			une againsi sianuaru	
D	Decays readily in aqueous media. Identified in crude MS and	17.7 min		S2a+CO₂ (1254.2)
	by disappearance of HPLC peak over time.			
F	*MSD1 SPC, time=18.027:18.673 of D1CHEM3211DATAIAIMEE(20220228_AJH_DAP004_DAP001_DAP011 2022-02-28 08-55-53IDAP001	17.1 min	[M+H]+ 1171 2	S22-OAII (1171 2)
	100-586.2			520-0711 (1171.2)
			[M+2H] ²⁺ 586.2	
	80-			
	40 - 1172.3			
	585.3			
	20 -			
	614.2 1173.1 1527.6 corp 1171.4			
	400 600 800 1000 1200 1400 1600 1800 200m/s			
F	MSD1 SPC, time=19.027/19.762 of D1CHEM3211DATAAIMEE\20220228_AJH_DAP004_DAP001_DAP011 2022-02-28 08-55-53/DAP00	18.4 min	[M+H] ⁺ 1211.2	S2a (1211.2)
	100 - 606.5 606.2 Max: 8584		[M+2H] ²⁺ 606 5	
	80-			
	1212.3			
	40 -			
	12133			
	20 -			
	586.3			
	400 600 800 1000 1200 1400 1600 1800 m/s			
G/H	MSD1 SPC, time=22.113.22.814 of D1CHEM3211DATAIAIMEEI20220228_AJH_DAP004_DAP001_DAP001_D202-02-28.08-55-53IDAP00	20.8 min	[M+H]+ 427 2	Emoc-Trp-OH
0,11	100 - 427.2	20.0 11111	[] <u>-</u> 27.2	(400.5)
				(426.5)
	60 -			
	40-			
	427.0			
	20-1 428.0			
	449.0			
1				

 Table S5: HPLC data following reaction of peptidyl resin 2 with an appropriately protected tryptophan to give the corresponding depsipeptidyl resin as described in the Experimental section and depicted in Scheme S4. Entries 1-7 show data for Table 2 (entries 8-15), and entries 8-11 show data for Table 3 (entries 2 & 6). The conversion was determined as described in the Experimental section using the peaks of the linear (S2) and branched depsipeptide, and any corresponding adducts, specified below.

Entry	Tryptophan	Additive	Solvent	Depsipepti dyl resin	Conversion of 2 (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	Fmoc-L- Trp(Boc)- OH	-	DMF	2a	79.8%		S2 5.9 min S2a+CO₂ 17.8 min S2a 18.4 min
2	Fmoc-L- Trp(Boc)- OH	-	DCM	2a	98.2%		S2 6.0 min S2a 18.3 min
3	Fmoc-L- Trp(Boc)- ОН	-	Dry DMF	2a	82.5%		S2 5.9 min S2a+CO ₂ 17.8 min S2a 18.4 min
3	Fmoc-L- Trp(Boc)- ОН	6CIHOBt	DMF	2a	10.1%		S2 6.0 min S2a+CO₂ 17.9 min S2a 18.6 min
4	Fmoc-L- Trp(Boc)- ОН	6CIHOBt	DCM *	2a	57.9%		S2 5.9 min S2a+CO ₂ 17.8 min S2a 18.4 min
5	Fmoc-L- Trp(Boc)- ОН	6CIHOBt	Dry DMF	2a	17.1%		S2 5.9 min S2a 18.5 min
6	Fmoc-L- Trp(H)- OH	-	DMF	2b	67.6%		S2 6.0 min S2a 18.5 min
7	Boc-L- Trp(H)- OH	-	DMF	2c	51.2%		S2 6.0 min S2c 9.9 min

8	Fmoc-L- Trp(Boc)- OH	-	DMF	2a	62.5%	S2 6.0 min S2a+CO₂ 17.8 min S2a 18.5 min
9	Fmoc-L- Trp(Boc)- OH	-	DCM	2a	98.8%	S2 6.0 min S2a 18.4 min
10	Fmoc-ם- Trp(Boc)- ОН	-	DMF	2d	73.9%	S2 6.0 min S2a+CO₂ 17.7 min S2d 18.4 min
11	Fmoc-D- Trp(Boc)- ОН	-	DCM	2d	99.0%	S2 6.0 min S2d 18.4 min

Scheme S3: General synthetic scheme for reaction of peptidyl resin 3 (HMP-functionalised Tentagel ®) with Fmoc-L-Trp(Boc)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S6. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S7.

 Table S6: Additional peak characterisation. Representative trace following reaction of 3 with Fmoc-L-Trp(Boc)-OH, as shown in Scheme S3, illustrating key products and potential by-products as identified by ESI+ MS.

Table S7: HPLC data following reaction of peptidyl resin 3 with Fmoc-L-Trp(Boc)-OH to give depsipeptidyl resin 3a, as described in the Experimental section and depicted in Scheme S3. The conversion of peptidyl resin 3 to 3a was determined as described in the Experimental section using the peaks of the linear (S3) and branched depsipeptide (S3a), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 3 to 3a (%, 214 nm)	HPLC (5-50%B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	17.1%		S3 10.2 min S3a 20.0 min
2	DCM	50.6%		S3 10.2 min S3a 20.2 min

Scheme S5: General synthetic scheme for reaction of peptidyl resin 4 (HMP-functionalised Tentagel ®) with Fmoc-L-Trp(Boc)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S8. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S9.

Table S8: Additional peak characterisation. Representative trace following reaction of **2** with Fmoc-L-Trp(Boc)-OH, as shown in Scheme S5, illustrating key products and potential by-products as identified by ESI+ MS.

			[M+2H] ²⁺ 450.2	Aspartimide
С	MSDT SPC, imwol 844 1 374 or D1CHEM32htDATAAIMEE20220714_AIH_DAP008 2022-07-14 15-58-48/DAP008-03-03_MC2_18	18.7 min	[M+H]⁺ 1413.3	S4a+2CO ₂ (1411.4)
	100- - - -		[M+2H] ²⁺ 707.1	CO2 adduct on both
	- 80 -			tryptophans
	60 707.1			Overlapping MS signals &
				continual CO2 adduct
	40-507.3			decay results in mixed
	523.3 685.6			MS spectrum
	20 523.0 727.3 1413.3 485.3 604.3 727.3 1413.3		[M+H] ⁺ 1369.4	S4a+CO ₂ (1368.4)
	- 402.2 503.3 799.1 947.8 1414.1		[M+2H] ²⁺ 685.3	
			[M+H] ⁺ 1325.3	S4a (1325.4)
D/E	NASDT SPC, (mei-0.827:1.673 of D.XCHEM3211DATAAIMEE200220744_AJH_DAP008.2022.07.14 15 58 48/DAP008.03.03_MX2_19	19.3 / 19.5	[M+H] ⁺ 1369.4	D/E) S4a+CO ₂
	100- 	min	[M+2H] ²⁺ 685.3	(1368.4)
	80 -			Two stereoisomers of
				CO2 adduct possible
	60- 65.8			
	- 			Overlapping MS signals
	40-		[M+H] ⁺ 1325.3	S4a (1325.4)
	20 - 685.4 807.3 1369.4		[M+2H] ²⁺ 663.3	
	461.5 674.8 787.7 654.4 809.8 1325.3 461.0 667.4 667.5 1368.9			
	0- militaria da interna de la companya de la company Esta de la companya de la			
F	1 400 000 800 <u>1000 1200 1400 1600 1800 m_3</u>	20.1 min	[M+H]+ 1325 1	S/1 2 (1325 <i>A</i>)
	100- 663.3 Max: 1270	20.111111	[M+11] 1323.1	044 (1020.4)
			[101+211] 005.5	
	00 - - -			
	40 -			
	20 - 664.3			
	461.3 663.0 1325.3 413.9 676.4 928.0 1326.5			
	1 400 500 800 1000 1200 1400 1600 1800 m/g			

 Table S9: HPLC data following reaction of peptidyl resin 4 with Fmoc-L-Trp(Boc)-OH to give depsipeptidyl resin 4a, as described in the

 Experimental section and depicted in Scheme S5. The conversion of peptidyl resin 4 to 4a was determined as described in the Experimental section using the peaks of the linear (S4) and branched depsipeptide (S4a), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 4 to 4a (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	12.2%		S4 10.2 min S4a 20.2 min

Scheme S6: General synthetic scheme for reaction of peptidyl resin 5 (HMP-functionalised Tentagel ®) with Fmoc-L-Trp(Boc)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S10. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S11.

В	*#SD1 SPC, time/ 902 8 351 of D-CHEMI211DATAAMMEE/20220707_AIH_DAP00X/2022-07-07 10 14-50/DAP005-03-03_MC1_N	6.0 min	[M+H]⁺ 599.2	S5-H₂O (598.6)
	NOU 299.2 Nax: 10000			Aspartimide
	80-			
	80 -			
	40 -			
	600.2			
	20 -			
	601.1			
	400 800 800 1000 1200 1400 1600 1800 m/2			
С	*#SDT SPC, tme=18.343 18.903 of D1CHEM0211DATAAMEE20220707 _AH_DAP00X 2022 07-07 10-14-55DAP005 03_0CT	17.9 min	[M+H]⁺ 1069.3	S5a+CO ₂ (1068.1)
	Max: 6007		[M+2H] ²⁺ 535.2	CO ₂ adduct on
	80 -			tryptophan
	eu -			
	40 - 535.2 1070.4 535.5			
	20 - 1070.2 544,0 648.1			
	0-			
	400 600 800 1000 1200 1400 1600 1800 100			
D	*MSD1 SPC, trim=10.000 of 0.101EM32110A1AAMEE20220707_AIH_DAP00X2022.07.07 16.14.5010AP005.03.03_MC1_HMMED 100- 100-	18.5 min	[M+H]⁺ 1026.2	S5a (1025.1)
	- Next 21096		[M+2H] ²⁺ 513.4	
	513.4			
	0-			
	1026.2			
	40 -			
	535.2 1027.2			
	0- 570.0 1993.0			
	400 600 1000 1200 1400 1800 1800 mid			

 Table S11: HPLC data following reaction of peptidyl resin 5 with Fmoc-L-Trp(Boc)-OH to give depsipeptidyl resin 5a, as described in the Experimental section and depicted in Scheme S6. The conversion of peptidyl resin 5 to 5a was determined as described in the Experimental section using the peaks of the linear (S5) and branched depsipeptide (S5a), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 5 to 5a (%, 214 nm)	HPLC (5-50% B, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	74.2%		S5 5.3min S5a+CO₂ 17.8 min S5a 18.6 min
2	DCM	99.3%		S5 5.1 min S5a 18.6 min

Scheme S7: General synthetic scheme for reaction of peptidyl resin 6 (HMP-functionalised Tentagel ®) with Fmoc-Trp(Boc)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S12. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S13.

Table S13: HPLC data following reaction of peptidyl resin 6 with Fmoc-L-Trp(Boc)-OH to give depsipeptidyl resin 6a, or with Fmocp-Trp(Boc)-OH to give depsipeptidyl resin 6d, as described in the Experimental section and depicted in Scheme S7. The conversion of peptidyl resin 6 to 6a or 6d was determined as described in the Experimental section using the peaks of the linear (S6) and branched depsipeptide (S6a or S6d, respectively), and any corresponding adducts, specified.

Entry	Fmoc- Trp(Boc)- OH	Solvent	Depsipe ptidyl resin	Conversi on of 6 (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	Fmoc-L- Trp(Boc)- OH	DMF	6a	81.6%		S6 5.9 min S6a 18.1 min
2	Fmoc-D- Trp(Boc)- ОН	DMF	6d	78.2%		S6 5.9 min S6d 18.0 min
3	Fmoc-L- Trp(Boc)- OH	DCM	6a	80.9%		S6 5.9 min S6a 18.0 min
4	Fmoc-D- Trp(Boc)- ОН	DCM	6d	87.2%		S6 5.9 min S6d 18.0 min

Peptidyl resins 7 & 12

Scheme S8: General synthetic scheme for reaction of peptidyl resins 7 (HMP-functionalised Tentagel ®) & 12 (2-CITrt functionalised polystyrene) with appropriately protected serine (specified in Table S16) for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S14. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S15.

Table S14: Additional peak characterisation. Representative trace following reaction of **7**, **12** or **13** with Fmoc-Ser(*t*Bu)-OH (in blue) and Alloc-L-Ser(*t*Bu)-OH (in green) as shown in Scheme S8, or Scheme 12. Key products **S7e-g** are identified by ESI+ MS.

		18.8min/ 19.5 min	Overlapping signals
	100- 827.2	[M+H]+ 827 2	D) S7e (826.9)
	80-		
	828.4		
D/F		[M+H]+ 871 2	E) S7e+CO ₂
0/2	40 -		(070 0)
			(870.9)
	20- 829.2 871.2		
	752.2 872.2		
	800 700 800 900 1000 1100 1200 m/		
	100 - 733.2 Max: 28272	19.8 min [M+H] ⁺ 733.2	S12g+CO ₂ (732.7)
	80		
	60 -		
F	734.2		
	40 - 831.4		
	20 - 832.4		
	658.4 689.4 790.2 875.2		
	650 700 750 800 850 900 m/3		
	100 - 680.2	20.1 min [M+H]+ 689.2	S12a (688 7)
	Max: 63880		UILG (000.7)
	80 -		
	60 -		
G			
	40		
	20-733.2		
	614.2 691.2 734.2		
	0		
	550 600 650 700 750 800 850 900 m/z		

Table S15: HPLC data following reaction of peptidyl resin 7 or 12 with appropriately protected serine to give the corresponding depsipeptidyl resin as described in the Experimental section and depicted in Scheme S8. The conversion was determined as described in the Experimental section using the peaks of the linear (S7) and corresponding branched depsipeptide and any corresponding adducts as specified below.

Entry	Peptidyl resin	Solvent	Serine	Depsipeptidyl resin	Conversion of peptidyl resin (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	Rt of peaks used for conversion calculation
1	7	DMF	Fmoc-∟- Ser(<i>t</i> Bu)- OH	7e	20.2%		S7 11.5 min S7+CO ₂ 11.7 min S7e+CO ₂ 18.8 min S7e 19.5 min
2	7	DCM	Fmoc-∟- Ser(<i>t</i> Bu)- OH	7e	47.4%		S7 11.5 min S7+CO₂ 11.7 min S7e+CO₂ 18.8 min S7e 19.5 min

3	7	DMF	Fmoc-D- Ser(<i>t</i> Bu)- ОН	7f	29.9%	S7 11.4 min S7+CO₂ 11.6 min S7f+CO₂ 18.8 min S7f 19.5 min
4	7	DCM	Fmoc-⊳- Ser(<i>t</i> Bu)- ОН	7f	28.1%	S7 11.4 min S7+CO₂ 11.6 min S7f+CO₂ 18.8 min S7f 19.5 min
5	12	DMF	Fmoc-∟- Ser(<i>t</i> Bu)- OH	12e	26.1%	S7 11.6 min S7+CO₂ 11.8 min S7e+CO₂ 18.8 min S7e 19.5 min
6	12	DCM	Fmoc-∟- Ser(<i>t</i> Bu)- OH	12e	51.1%	S7 11.6 min S7+CO₂ 11.8 min S7e+CO₂ 18.8 min S7e 19.5 min
7	12	DCM	Alloc-L- Ser(<i>t</i> Bu)- OH	12g	17.8%	S7 11.4 min S7+CO₂ 11.6 min S7g+CO₂ 19.8 min S7g 20.1 min

Scheme S16: General synthetic scheme for reaction of peptidyl resin 8 with Fmoc-L-Ser(tBu)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S16. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S17.

Table S16: Additional peak characterisation. Representative trace following reaction of **8** with Fmoc-L-Ser(*t*Bu)-OH, as shown in Scheme S9, illustrating key products and potential by-products as identified by ESI+ MS.

	100 -	770.2	19.7 min/ 20.4 min	[M+H] ⁺ 814.0	Overlapping signals C) S8e+CO ₂ (812.8)
	80 -			[M+H] ⁺ 770.2	D) S8e (769.9)
C/D	60 40 531.0 585.6 641.4 685.8 0 500 700	771.2 814.2 772.2 815.2 778.0 80.5 80.0 80.0 100 100 100 80.0			

Table S17: HPLC data following reaction of peptidyl resin 8 with Fmoc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin 8e, as described in the Experimental Section and depicted in Scheme S9. The conversion of peptidyl resin 8 to depsipeptidyl resin 8e was determined as described in the Experimental Section using the peaks of the linear (S8) and branched depsipeptide (S8e), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 8 to 8e (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	29.0%		S8 12.5 min S8e+CO ₂ 19.7 min S8e 20.4 min
2	DCM	90.8%		S8 12.5 min S8e+CO₂ 19.7 min S8e 20.4 min

Scheme S10: General synthetic scheme for reaction of peptidyl resin 9 with Fmoc-L-Ser(tBu)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the identified in Table S18. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S19.

Table S18: Additional peak characterisation. Representative trace following reaction of **9** with Fmoc-L-Ser(*t*Bu)-OH, as shown in Scheme S10, illustrating key products and potential by-products as identified by ESI+ MS.

	100 -	1012.0 Max: 30480	17.4 min	[M+H] ⁺ 1012.0	S9e (1011.5)
D	80 - 60 - 40 -	1013.2			
	20- 919.8 95.8 964.2 957.8 964.2 972.4 972.4 972.4 972.4	1014.2 1056.0 1007.8 1030.6 1051.8 1025.6 1051.8 1025.6 1055.8 1025.6 1055.8 1025.6 1055.8 1095.8 1118.0 1141.0 1104.3 104.2 1056.0 1095.8 1118.0 1141.0 104.2 1056.0 1095.8			
)2 02-Mar-23 9:38:17 AM SYSTEM 1000	1050 1100 1150 Page_/z			

Table S19: HPLC data following reaction of peptidyl resin 9 with Fmoc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin **9e**, as described in the Experimental section and depicted in Scheme S10. The conversion of peptidyl resin **9** to depsipeptidyl resin **9e** was determined as described in the Experimental section using the peaks of the linear (**S9**) and branched depsipeptide (**S9e**), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 9 to 9e (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	2.7%		S9 10.2 min S9+CO ₂ 10.6 min S9e 17.4 min
2	DCM	13.6%		S9 10.2 min S9+CO₂ 10.7 min S9e 17.4 min

Scheme S11: General synthetic scheme for reaction of peptidyl resin 10 with Fmoc-L-Ser(tBu)-OH for 2 x 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S20. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S21.

 Table S20: Additional peak characterisation. Representative trace following reaction of 10 with Fmoc-L-Ser(*t*Bu)-OH, as shown in Scheme S11, illustrating key products and potential by-products as identified by ESI+ MS.

	70-	955.3 999.3	18.4 min	[M+H]⁺ 999.3	Overlapping signals D) S10e+CO ₂ (999.1)
D/E	60 - 50 - 40 -	956.3	18.5 min	[M+H]⁺ 955.3	E) S10e (955.1)
	38.3 30.680.5 702.8 693.0 20.2,3 721.8 377.3 140.2 790.9 54.3,898.3 10.4 700.5 789.0 854.3,898.3 10.4 10.05 789.0 854.3,988.3 10.4 10.5	957.0 1001.3 (968.9 1021.8			
	683.6 724.2 780.0 829.6 882.8 922.	5 9731 1027.8 1102.4			

Table S21: HPLC data following reaction of peptidyl resin 10 with Fmoc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin 10e, as described in the Experimental section and depicted in Scheme S11. The conversion of peptidyl resin 10 to depsipeptidyl resin 10e was determined as described in the Experimental Section using the peaks of the linear (S10) and branched depsipeptide (S10e), and any corresponding adducts, specified.

Entry	Solvent	Conversion of 10 to 10e (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R_t of peaks used for conversion calculation
1	DMF	12.2%		S10 11.2 min S10+CO₂ 11.6 min S10e+CO₂ 18.1 min S10e 18.4 min
2	DCM	12.7%		S10 11.1 min S10e+CO₂ 18.2 min S10e 18.4 min

Scheme S14: General synthetic scheme for reaction of peptidyl resin 11 with Fmoc-L-Ser(*t*Bu)-OH or Fmoc-D-Ser(*t*Bu)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S22. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S23.

 Table S22: Additional peak characterisation. Representative trace following reaction of 11 with Fmoc-Ser(*t*Bu)-OH, as shown in Scheme S14, illustrating key products and potential by-products as identified by ESI+ MS.

	100 -	871.2 Max: 44640	19.1 min	[M+H] ⁺ 871.2	S7e+CO ₂ (870.9)
	80				
	60 -				
D	40	872.2			
	20	873.2			
	.8 797.0 0 - 5 mbit - 2 - 1 bit time toward a bit bit at a single bit about on t	874.2 If there exists to take out cate to the test to take the called services — an atter			
	750 800 850	900 950 1000 m/z			
	100 - 827.2	Max: 29000	19.9 min	[M+H] ⁺ 827.2	S7e (826.9)
	80-				
_	60 - 828.2				
E	40				
	20 - 829.4	871.2 872.2			
	727.0 760.4 790.0 0 0 10 10 10 10 10 10 10 10 10 10 10 10	and the second			
	750 800 850	900 950 1000 m/z			

Table S23: HPLC data following reaction of peptidyl resin 11 with Fmoc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin 11e; or with Fmoc-D-Ser(*t*Bu)-OH to give depsipeptidyl resin 11f, as described in the Experimental section and depicted in Scheme S14. The conversion of peptidyl resin 11 to depsipeptidyl resin 11e or 11f was determined as described in the Experimental section using the peaks of the linear (S11) and branched depsipeptide (S11e or S11f, respectively), and any corresponding adducts, specified.

Entry	Serine	Solvent	Conversion of 11 (%, 214 nm)	Depsipeptidyl resin	HPLC (5-50% B over 20 min, 214 nm)	Peaks used for conversion
1	Fmoc-ь- Ser(<i>t</i> Bu)-ОН	DMF	31.1%	11e		S11 10.8 min S11+CO₂ 11.1 min S11e+CO₂ 19.1 min S11e 19.9 min
2	Fmoc-⊦- Ser(<i>t</i> Bu)-OH	DCM	62.7%	11e		S11 11.1 min S11+CO₂ 11.4 min S11e+CO₂ 19.1 min S11e 19.9 min
3	Fmoc-⊳- Ser(<i>t</i> Bu)-OH	DMF	31.0%	11f		S11 11.2min S11+CO₂ 11.5 min S11f+CO₂ 19.4 min S11f 19.9 min
4	Fmoc-D- Ser(<i>t</i> Bu)-OH	DCM	90.9%	11f		S11 11.1 min S11+CO₂ 11.4 min S11f+CO₂ 18.7 min S11f 19.3 min

Scheme S12: General synthetic scheme for reaction of peptidyl resin 13 with Fmoc-L-Ser(*t*Bu)-OH or Alloc-L-Ser(*t*Bu)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S14. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S24.

Table S24: HPLC data following reaction of peptidyl resin 13 with Fmoc-L-Ser(tBu)-OH to give depsipeptidyl resin 13e; or with Alloc-L-Ser(tBu)-OH to give depsipeptidyl resin 13g, as described in the Experimental section and depicted in Scheme S12. The conversion of peptidyl resin 13 to depsipeptidyl resin 13e or 13g was determined as described in the Experimental section using the peaks of the linear (S7) and branched depsipeptide (S7e or S7g, respectively), and any corresponding adducts, specified.

Entry	Solvent	Serine	Depsiptidyl resin	Conversion of 13 (%, 214 nm)	HPLC (5-50% B over 20 min, 214 nm)	R _t of peaks used for conversion calculation
1	DMF	Fmoc-∟- Ser(<i>t</i> Bu)-OH	13e	30.9%		S7 11.6 min S7e 19.6 min
2	DCM	Fmoc-∟- Ser(<i>t</i> Bu)-OH	13e	33.6%		S7 11.6 min S7e 19.6 min
3	DCM	Alloc-Ŀ- Ser(<i>t</i> Bu)-OH	13g	11.8%		S7 11.4 min S7g 16.5 min

Scheme S13: General synthetic scheme for reaction of peptidyl resin 14 with Fmoc-L-Ser(*t*Bu)-OH or Alloc-L-Ser(*t*Bu)-OH for 2 × 1 h as described in the Experimental Section. The resulting reaction mixtures were characterised by RP-HPLC and MS and the products identified in Table S25. The experimental conditions were varied and the resulting RP-HPLC traces are summarised in Table S26.

Table S25: Additional peak characterisation. Representative trace following reaction of 14 with Fmoc-L-Ser(*t*Bu)-OH, as shown in Scheme S13, illustrating key products and potential by-products as identified by ESI+ MS.

	100 - 869.2 Maxi 33935	17.4 min	[M+H] ⁺ 869.2	S14g (868.9)
	80-			
С	870.3			
	43-			
	20-			
	0			
	1007.2	19.9 min	[M+H] ⁺ 1007.2	S14e (1007.1)
	80 -			
П	60 -			
	40 1008.0			
	20 - 933.2 seg 2			
	932.2 711.6 985.4 920.8 1011.4 1097.6 1448.0			
	8-0 900 1000 1100 1200 1300 1400 m/z			

Table S26: HPLC data following reaction of peptidyl resin 14 with Fmoc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin 14e; or with Alloc-L-Ser(*t*Bu)-OH to give depsipeptidyl resin 14g, as described in the Experimental section and depicted in Scheme S13. The conversion of peptidyl resin 14 to depsipeptidyl resin 14e or 14g was determined as described in the Experimental section using the peaks of the linear (S12) and branched depsipeptide (S14e or S14g, respectively), and any corresponding adducts, specified.

Entry	Solvent	Serine	Depsipeptidyl resin	Conversi on of 14 (%, 214 nm)	HPLC (5-95% B, 3%B/min, 214 nm)	R₁ of peaks used for conversion calculation
1	DMF	Fmoc-ь- Ser(<i>t</i> Bu)-ОН	14e	20.9%		S14 16.4 min S14e 19.9 min
2	DCM	Fmoc-เ- Ser(<i>t</i> Bu)-OH	14e	62.3%		S14 16.4 min S14e 19.9 min
3	DCM	Alloc-Ŀ- Ser(tBu)-OH	14g	22.4%		S14 16.3 min S14g 17.4 min

References

- (1) Martin-Gómez, H.; Albericio, F.; Tulla-Puche, J. A Lasso-Inspired Bicyclic Peptide: Synthesis, Structure and Properties. *Chem. Eur. J.* **2018**, *24* (72), 19250–19257. https://doi.org/10.1002/chem.201803899.
- (2) Hermant, Y.; Palpal-latoc, D.; Kovalenko, N.; Cameron, A. J.; Brimble, M. A.; Harris, P. W. R. The Total Chemical Synthesis and Biological Evaluation of the Cationic Antimicrobial Peptides, Laterocidine and Brevicidine. J. Nat. Prod. 2021, 84 (8), 2165–2174. https://doi.org/10.1021/acs.jnatprod.1c00222.
- (3) Eissler, S.; Kley, M.; Bächle, D.; Loidl, G.; Meier, T.; Samson, D. Substitution Determination of Fmoc-Substituted Resins at Different Wavelengths. J. Pept. Sci. 2017, 23 (10), 757–762. https://doi.org/10.1002/psc.3021.