Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Contents

Table S1. Summary of ¹ H NMR chemical shift for compounds 2–6.	2
Table S2. Summary of ¹³ C NMR chemical shift for compounds 1–6.	2
Figure S1. Single crystal X-ray structure analysis of BTC thiolate 3.	3
Table S3. Deviation of the atoms from the plane.	5
Figure S2. The thermogravimetry analysis and differential thermal analysis.	6
Table S4. Selected optimized geometry and vibration frequency of BTC-S 3.	7
Figure S3. Experimental and calculated IR spectra of BTC-S 3.	8
Table S5. The Gibbs free energies of restrict or unstrict calculation geometry of BTC-S 3.	9
Figure S4. DFT calculated energy plot of BTC-S 3.	10
Figure S5. TD-DFT calculated spectra of BTC-S 3.	11
Table S6. Aromaticity indexes of class 5 mesoionic BTC 3 and dehydrodithizone.	12
Figure S6. Calculation of bond index by NBO analysis.	12
Table S7. The calculation Mulliken atomic charge and NBO natural charge.	13
Figure S7. UV spectra for 5•H ⁺ /acetonitrile solution.	14
Figure S8. UV spectra for 6•H ⁺ /acetonitrile solution.	15
Figure S9. ¹ H NMR of BTC-NH ⁿ Bu 6 with acid and base in CD ₂ Cl ₂ .	15
Figure S10. IR spectra of BTC 2–6 using KBr.	16
Figure S11. ¹ H NMR spectra of BTC 2–6.	19
Figure S12. ¹³ C NMR spectra of BTC 2–6.	22
Figure S13. MS of BTC 2-6 using ESI-TOF positive mode.	25
Table S8. The calculation of optimized geometry of BTC-S 3 in gas phase.	28
Table S9. The calculation of optimized geometry of BTC-S 3 in chloroform IEF-PCM.	32
Table S10. The calculation of optimized geometry of dehydrodithizone (DD) in gas phase.	36
Figure S14. UV-Vis spectra and calibration curve of 5•H ⁺ .	37
Figure S15. UV-Vis spectra and calibration curve of 6•H ⁺ .	38

Table S1. Summary of ¹H NMR chemical shift for compounds

Compounds	Solvent	¹ H NMR chemical	¹ H NMR chemical shift [ppm]			
		Benzocinnoline ring	g			Other
2	CD ₃ CN	8.22-8.25	8.30-8.32	8.78-8.80	8.98-9.00	
3	DMSO- d_6	8.00-8.05 (4H)		8.49-8.52	8.93-8.95	
4	DMSO- d_6	8.07-8.16 (4H)		8.55-8.57	9.03-9.06	
5	CD ₃ CN	8.10-8.13	8.14-8.18	8.57-8.59	8.85-8.87	6.57 (NH ₂)
6	CD ₃ CN	8.09-8.17 (4H)		8.58-8.60	8.85-8.87	1.00, 1.49,
						1.75, 3.59
						("Bu), 6.82
						(NH)

Referenced by solvent residual signal (DMSO-d₆: 2.05 ppm, CD₃CN: 1.94 ppm)

Compounds	Solvent	¹³ C NMR chemical shift [ppm]		
		Benzocinnoline ring (6C)	Tetrazolo C*	Others
2	CD ₃ CN	119.45, 123.66, 126.01, 129.49, 134.59, 136.07	158.38	
3	DMSO- d_6	117.76, 121.20, 124.26, 128.05, 131.34, 131.74	181.28	
4	DMSO- d_6	117.92, 119.78, 121.55, 124.49, 128.36, 132.33	168.41	23.78 (methylidene)
5	CD ₃ CN	118.88, 122.75, 125.58, 129.33, 133.75, 134.16	165.94	
6	CD ₃ CN	118.89, 122.74, 125.58, 129.42, 133.73, 134.07	166.24	13.98, 20.53, 31.60,
				43.93 ("Bu)
Type B Cl 1	CD ₃ CN	126.88, 131.84, 133.60, 135.90	158.69	
Type B S ^a	DMSO- d_6	126.3, 129.6, 132.5, 133.4	181.4	
Type B	DMSO- d_6	126.2 (meta), 129.9 (ortho), 133.1 (para), 133.2	169.2	22.4, 119.6 (CN)
dicyanomethylide		(ipso)		
b				

Table S2. Summary of ¹³C NMR chemical shift for compounds

Referenced by solvent signal (DMSO-*d*₆: 39.52 ppm, CD₃CN: 1.32 ppm). a) W. Koźmiński, J. Jaźwiński, L. Stefaniak, *J. Mol. Struct.* **1993**, *295*, 15. b) S. Araki, J. Mizuya, Y. Butsugan, *J. Chem. Soc. Perkin T. 1*, **1985**, 2439.

Figure S1. Single crystal X-ray structure analysis of BTC thiolate **3** CCDC deposit number: 2131771

Empirical Formula	C ₁₃ H ₈ N ₄ S
Formula Weight	252.29
Crystal System	orthorhombic
Lattice Type	Primitive
Lattice Parameters	a = 9.3963(7) Å
	b = 9.7124(9) Å
	c = 12.071(1) Å
	$V = 1101.6(2) \text{ Å}^3$
Space Group	Pna2 ₁ (#33)
Z value	4
D _{calc}	1.521 g/cm ³
Temperature	-100.0°C
No. of Reflections Measured	Total: 9761
	Unique: 2475 (R _{int} = 0.0945)
	Friedel pairs: 1152
Residuals: R1 (I>2.00s(I))	0.0374
Residuals: R (All reflections)	0.0645
Residuals: wR2 (All reflections)	0.0653

atom	Atomic coordinate		B _{eq}	
	Х	У	Z	
S1	-0.1916(1)	0.07721(9)	0.68974(9)	2.50(2)
N1	0.0149(4)	0.1605(3)	0.8322(2)	2.04(6)
N2	0.0563(3)	0.2807(3)	0.8719(3)	1.96(6)
N3	-0.0189(3)	0.3828(3)	0.8253(2)	1.93(6)
N4	-0.1129(3)	0.3323(3)	0.7545(3)	2.15(6)
C1	-0.0921(4)	0.1929(4)	0.7603(3)	2.10(7)

3

C2	0.1627(4)	0.3066(4)	0.9518(3)	2.05(7)
C3	0.2344(4)	0.1951(4)	0.9979(3)	2.31(7)
C4	0.3386(4)	0.2227(4)	1.0739(3)	2.57(8)
C5	0.3731(4)	0.3567(4)	1.1020(3)	2.65(8)
C6	0.2988(4)	0.4658(4)	1.0569(3)	2.41(7)
C7	0.1891(4)	0.4433(4)	0.9815(3)	2.03(6)
C8	0.1023(4)	0.5535(4)	0.9338(3)	2.08(7)
C9	0.1147(4)	0.6914(4)	0.9640(3)	2.39(7)
C10	0.0292(5)	0.7899(4)	0.9154(3)	2.70(8)
C11	-0.0722(4)	0.7547(4)	0.8383(3)	2.63(7)
C12	-0.0903(4)	0.6193(4)	0.8069(3)	2.40(7)
C13	-0.0025(4)	0.5218(4)	0.8561(3)	1.97(6)
atom	Atomic coordinate			B _{iso}
	X	у	Z	_
H1	0.2118	0.1032	0.9774	2.77
H2	0.3880	0.1486	1.1079	3.08
H3	0.4485	0.3737	1.1527	3.17
H4	0.3227	0.5572	1.0777	2.89

0.7178

0.8838

0.8243

0.5937

1.0185

0.9356

0.8064

0.7538

2.86

3.24

3.16

2.88

H5

H6

H7

H8

0.1824

0.0406

-0.1303

-0.1601

Standard plane equation was calculated from X-ray diffraction geometry [angstrom] without hydrogen atoms by singular value decomposition using Numpy (v.1.20.2)^a at Python (v.3.9.2). plane equation:

H1 63 H2 64 65	-0.666x - 0.096y + 0.740z -	- 7.20 = 0
atom	H4 H5 H6 Deviation of the atoms from the plane [Å]	
S 1	0.086	
N1	-0.011	
N2	-0.027	
N3	-0.068	
N4	-0.065	
C1	-0.014	
C2	-0.003	
C3	0.064	
C4	0.065	
C5	-0.025	
C6	-0.064	
C7	-0.031	
C8	-0.016	
C9	0.048	
C10	0.057	
C11	0.035	
C12	-0.006	
C13	-0.025	

a) C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Tio, M. Wiebe, P. Peterson, P. G-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, *Nature*, 2020, 585, 357.

Figure S2. The thermogravimetry analysis and differential thermal analysis of BTC thiolate **3** (upper) and dehydrodithizone (**DD**).

Table S4. Selected optimized geometry and vibration frequency of BTC-S 3

Functionals	Phase	Bond leng	Bond length [Å]					Vibration freque	ency [cm ⁻¹]
		C1-S	C1-N1 (C1-N4)	N1-N2 (N3-N4)	N2-N3	N2-C _{Ph} (N3-C _{Ph})	$C_{Ph}\text{-}C_{Ph}$	C-S stretching	Ph-H bending
B3LYP	Vacuum	1.6679	1.3937 (1.3936)	1.3081(1.3082)	1.3526	1.4016 (1.4015)	1.4589	1293	769
	chloroform	1.6950	1.3767 (1.3767)	1.3137 (1.3137)	1.3447	1.4032 (1.4032)	1.4586	1270, 1287	770
M06-2X	Vacuum	1.6662	1.3853 (1.3854)	1.2997 (1.2996)	1.3312	1.4044 (1.4045)	1.4612	1312, 1356	780
	chloroform	1.6946	1.3690 (1.3690)	1.3036 (1.3036)	1.3254	1.4069 (1.4069)	1.4609	1317, 1360	778
CAM-B3LYP	Vacuum	1.6650	1.3828 (1.3826)	1.3006 (1.3007)	1.3327	1.4029 (1.4028)	1.4604	1316, 1354	785
	chloroform	1.6932	1.3662 (1.3662)	1.3048 (1.3048)	1.3270	1.4049 (1.4049)	1.4595	1314, 1356	784
wB97X-D	Vacuum	1.6655	1.3845 (1.3843)	1.3009 (1.3010)	1.3321	1.4027 (1.4027)	1.4618	1323, 1358	774
	chloroform	1.6930	1.3680 (1.3680)	1.3048 (1.3048)	1.3266	1.4046 (1.4046)	1.4609	1318, 1359	773
Experiment	-	1.692(4)	1.365 (5) (1.370 (5))	1.321 (4) (1.323 (4))	1.342 (4)	1.411 (5) (1.408 (4))	1.464 (5)	1273, 1290	767

Figure S3. Experimental (red, using KBr) and calculated (green, at the B3LYP/6-311++G(d,p) level) IR spectra of BTC-S 3.

Table S5. The Gibbs	free energies	of restrict or unstric	t calculation geomet	try of BTC-S 3 .
---------------------	---------------	------------------------	----------------------	-------------------------

Symmetry	Gibbs free energy
C ₁ [Hartree]	-1117.371884
C _{2v} [Hartree]	-1117.371237
Delta [Hartree]	-0.000674
Delta [kcal/mol]	-0.405

Calculated at the B3LYP/6-311++G(d,p) level. T = 298.150.

Energy level [Hartree]					
LUMO(+1)	LUMO	НОМО	HOMO(-1)	HOMO(-2)	
-0.09514	-0.11323	-0.18597	-0.18742	-0.27698	
-0.06528	-0.07871	-0.22657	-0.23417	-0.32428	
-0.05331	-0.07074	-0.23273	-0.23807	-0.32738	
-0.03057	-0.04777	-0.25333	-0.25824	-0.34715	
	Energy level [Hart LUMO(+1) -0.09514 -0.06528 -0.05331 -0.03057	Energy level [Hartree] LUMO(+1) LUMO -0.09514 -0.11323 -0.06528 -0.07871 -0.05331 -0.07074 -0.03057 -0.04777	Energy level [Hartree]LUMO(+1)LUMOHOMO-0.09514-0.11323-0.18597-0.06528-0.07871-0.22657-0.05331-0.07074-0.23273-0.03057-0.04777-0.25333	Energy level [Hartree]LUMO(+1)LUMOHOMOHOMO(-1)-0.09514-0.11323-0.18597-0.18742-0.06528-0.07871-0.22657-0.23417-0.05331-0.07074-0.23273-0.23807-0.03057-0.04777-0.25333-0.25824	

Figure S4. DFT calculated energy plot of BTC-S **3** with 6-311++(d,p) basis set and molecular orbital at LUMO, HOMO and HOMO (-1) (isovalue = 0.002).

Figure S5. TD-DFT calculated spectra at B3LYP (yellow), M06-2X (green), CAM-B3LYP (blue) and ω B97-D (purple) functionals with 6-311++G(d,p) basis set and experimental spectra (red) of BTC-S **3** in chloroform.

Figure S6. Calculation of bond index by NBO analysis at the B3LYP/6-311++G(d,p) level.

Table S7. The calculation Mulliken atomic charge and NBO natural charge at the B3LYP/6-311++G(d,p) level.

Atom	BTC-S 3		dehydrodithizone		
	Mulliken atomic	NBO natural	Mulliken atomic	NBO natural	
	charge	atomic charge	charge	atomic charge	
S1	-0.54	-0.22	-0.64	-0.25	
N1	0.10	-0.27	0.06	-0.25	
N2	0.30	0.04	0.52	0.03	
N3	0.30	0.04	0.52	0.03	
N4	0.10	-0.27	0.06	-0.25	
C1	-0.15	0.11	0.00	0.11	
C2	-0.37	0.15	-1.30	0.11	
C3	-0.44	-0.19	0.48	-0.19	
C4	-0.06	-0.17	-0.10	-0.19	
C5	-0.87	-0.18	-0.44	-0.18	
C6	-0.74	-0.16	-0.06	-0.19	
C7	1.69	-0.05	0.18	-0.18	
C8	1.69	-0.06	0.18	-0.18	
C9	-0.74	-0.16	-0.06	-0.19	
C10	-0.87	-0.18	-0.44	-0.18	
C11	-0.06	-0.17	-0.10	-0.19	
C12	-0.44	-0.18	0.48	-0.19	
C13	-0.37	0.14	-1.30	0.11	
H1	0.24	0.25	0.20	0.23	
H2	0.19	0.21	0.21	0.22	
H3	0.18	0.21	0.16	0.21	
H4	0.12	0.21	0.21	0.22	
Н5	0.12	0.21	0.21	0.22	
H6	0.18	0.21	0.16	0.21	
H7	0.19	0.21	0.21	0.22	
H8	0.24	0.25	0.20	0.23	
Н9	-	-	0.21	0.24	
H10	-	-	0.21	0.24	

◆Experiments of deprotonation and protonation of BTC amine salts 5•H⁺ (Procedure A) and 6•H⁺ (Procedure B).

A mixture of BTC amine salts (A: 3.5 mg [0.011 mmol], B: 4.2 [0.011 mmol]), NaOH (A: 0.97 g [24 mmol], B: 0.57 g [14 mmol]), CH₂Cl₂ (10 mL), and H₂O (10 mL) was shaken vigorously in the flask. The organic layer was extracted with 1.0 mL and diluted to 10 mL with acetonitrile. The UV-Vis spectra of the acetonitrile solutions were measured on 3 mL in a 1.0×1.0 cm crystal cell at 20 °C. Aq. HBF₄ (42%, 10 µL, 0.066 mmol) was then added to the sample cell, and the measurements were repeated. The concentrations of BTC amine species were calculated from a calibration curve of BTC amine salts in acetonitrile (Figure S14, S15).

Figure S7. 5•H⁺/acetonitrile solution (blue, $[5/5•H^+] = 0.10 \text{ mM}$), NaOH treatment (red, $[5/5•H^+] = 0.15 \text{ mM}$), following added aq. HBF4 (green, $[5/5•H^+] = 0.15 \text{ mM}$)

Figure S8. $6 \cdot H^+$ /acetonitrile solution (blue, $[6/6 \cdot H^+] = 0.14 \text{ mM}$), NaOH treatment (red, $[6/6 \cdot H^+] = 0.10 \text{ mM}$), following added aq. HBF₄ (green, $[6/6 \cdot H^+] = 0.10 \text{ mM}$)

Figure S9. ¹H NMR (left) and the color of samples (right) for tracking of BTC-NH^{*n*}Bu **6** with acid and base in CD₂Cl₂. Initial (top), after NaOH aq. separating (middle), after HBF₄ aq. separating (bottom).

Figure S10. IR spectra of BTC 2-6 using KBr.

Figure S11. ¹H NMR spectra of BTC 2-6.

Current Data Parameters NAME 551_p_1_13CNNR EXPNO 11 FROCNO 1 FROCNO 1 FROCNO 1 FROCHO 1 FROCHO 20211201 Time 4.55 h INSTRUM spect PROBHD 2108618_0210 (FULPROG 2ggg30 TD 65536 SCUPENT DMS0 SCUPENT DMS0 SCUPENT 0 SCU

Figure S12. ¹³C NMR spectra of BTC 2-6.

Figure S13. MS of BTC 2-6 using ESI-TOF positive mode.

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Z
1	S	-4.499500	0.000156	0.000237
2	Ν	-2.017441	-1.130903	0.000099
3	Ν	-0.790915	-0.676221	0.000045
4	Ν	-0.790800	0.676350	-0.000540
5	Ν	-2.017359	1.131113	-0.000491
6	С	-2.831630	0.000192	-0.000066
7	С	0.395096	-1.423056	0.000018
8	С	0.311637	-2.819962	0.000133
9	С	1.483600	-3.552810	0.000096
10	С	2.724231	-2.898365	-0.000072
11	С	2.790382	-1.516220	-0.000154
12	С	1.623046	-0.729534	-0.000052
13	С	1.623147	0.729388	-0.000057
14	С	2.790575	1.515918	0.000214
15	С	2.724627	2.898079	0.000295
16	С	1.484066	3.552666	0.000159
17	С	0.312012	2.819974	-0.000094
18	С	0.395268	1.423051	-0.000165
19	Н	-0.663030	-3.288590	0.000252
20	Н	1.438732	-4.635018	0.000173
21	Н	3.639713	-3.477691	-0.000151
22	Н	3.759396	-1.035334	-0.000301
23	Н	3.759533	1.034905	0.000353
24	Н	3.640182	3.477279	0.000519
25	Н	1.439321	4.634888	0.000233
26	Н	-0.662581	3.288749	-0.000197

Table S8. The calculation of optimized geometry of BTC-S 3 in gas phase.

Calculated at the B3LYP/6-311++G(d,p) level. HF = -1117.5189847, Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Z
1	S	0.000000	0.000000	-4.499448
2	Ν	0.000000	-1.131013	-2.017337
3	Ν	0.000000	-0.676164	-0.790767
4	Ν	0.000000	0.676164	-0.790767
5	Ν	0.000000	1.131013	-2.017337
6	С	0.000000	0.000000	-2.831577
7	С	0.000000	-1.423088	0.395267

8	С	0.000000	-2.819928	0.311733
9	С	0.000000	-3.552894	1.483681
10	С	0.000000	-2.898542	2.724280
11	С	0.000000	-1.516336	2.790486
12	С	0.000000	-0.729591	1.623211
13	С	0.000000	0.729591	1.623211
14	С	0.000000	1.516336	2.790486
15	С	0.000000	2.898542	2.724280
16	С	0.000000	3.552894	1.483681
17	С	0.000000	2.819928	0.311733
18	С	0.000000	1.423088	0.395267
19	Н	0.000000	-3.288597	-0.662896
20	Н	0.000000	-4.635027	1.438690
21	Н	0.000000	-3.477928	3.639722
22	Н	0.000000	-1.035611	3.759536
23	Н	0.000000	1.035611	3.759536
24	Н	0.000000	3.477928	3.639722
25	Н	0.000000	4.635027	1.438690
26	Н	0.000000	3.288597	-0.662896

Calculated at the B3LYP/6-311++G(d,p) level with C_{2v} symmetry . HF = -1117.5189847, Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Z
1	S	-1.733799	0.728422	8.284052
2	Ν	0.119002	1.571724	10.088487
3	Ν	0.483902	2.726392	10.560412
4	Ν	-0.224014	3.705419	10.001467
5	Ν	-1.086648	3.221760	9.158325
6	С	-0.893252	1.850220	9.184768
7	С	1.504335	2.975483	11.492662
8	С	2.218810	1.890186	11.999899
9	С	3.216692	2.138407	12.920050
10	С	3.491432	3.450002	13.324706
11	С	2.770754	4.510581	12.811278
12	С	1.745833	4.301358	11.875232
13	С	0.943761	5.372882	11.289009
14	С	1.093298	6.730983	11.610895
15	С	0.298897	7.693200	11.018522
16	С	-0.678120	7.334344	10.082505

17	С	-0.858750	6.009812	9.740360
18	С	-0.047236	5.054027	10.351507
19	Н	1.973227	0.892938	11.659261
20	Н	3.786550	1.313004	13.327352
21	Н	4.276663	3.637270	14.046447
22	Н	3.001877	5.515579	13.137836
23	Н	1.840824	7.031989	12.332478
24	Н	0.434291	8.734520	11.282886
25	Н	-1.296562	8.094912	9.623170
26	Н	-1.601564	5.688044	9.022347

Calculated at the M06-2X/6-311++G(d,p) level. HF = -1117.2023457 Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)			
number	symbol	X	Y	Z	_
1	S	-1.733637	0.728661	8.284735	_
2	Ν	0.130855	1.573454	10.071088	
3	Ν	0.495986	2.727284	10.547744	
4	Ν	-0.235938	3.704423	10.013728	
5	Ν	-1.100773	3.216901	9.173197	
6	С	-0.893608	1.849925	9.184441	
7	С	1.506730	2.974675	11.488631	
8	С	2.225125	1.895673	11.996453	
9	С	3.215780	2.143745	12.919943	
10	С	3.482000	3.452789	13.327979	
11	С	2.760039	4.508241	12.813908	
12	С	1.743742	4.298721	11.872241	
13	С	0.941257	5.369550	11.287288	
14	С	1.098144	6.725836	11.602558	
15	С	0.307094	7.688943	11.014251	
16	С	-0.673972	7.333186	10.085826	
17	С	-0.859716	6.011176	9.748927	
18	С	-0.051001	5.052811	10.353747	
19	Н	1.987383	0.898023	11.654265	
20	Н	3.786891	1.319734	13.327905	
21	Н	4.261997	3.642419	14.054510	
22	Н	2.984909	5.512286	13.145652	
23	Н	1.850704	7.026371	12.318141	
24	Н	0.449121	8.729967	11.275596	
25	Н	-1.291599	8.095001	9.627817	
26	Н	-1.607309	5.693663	9.035340	

Calculated at the CAM-B3LYP/6-311++G(d,p) level. HF = -1117.1342889. Number of imaginary frequencies = 0

Center	Atomic	Coordinates	s (Angstroms)	
number	symbol	X	Y	Z
1	S	-1.733857	0.729280	8.286121
2	Ν	0.132200	1.572342	10.073220
3	Ν	0.495788	2.727651	10.548109
4	Ν	-0.235536	3.704492	10.013878
5	Ν	-1.101687	3.219390	9.172977
6	С	-0.893305	1.850878	9.185799
7	С	1.506780	2.974620	11.488603
8	С	2.224841	1.892859	11.995153
9	С	3.217007	2.140573	12.919838
10	С	3.484286	3.450121	13.329540
11	С	2.762109	4.508162	12.816143
12	С	1.744613	4.299132	11.873492
13	С	0.941432	5.370956	11.287946
14	С	1.097891	6.728809	11.603137
15	С	0.305075	7.691887	11.012821
16	С	-0.676143	7.334327	10.083508
17	С	-0.861577	6.010377	9.746577
18	С	-0.051045	5.052831	10.353705
19	Н	1.987749	0.894167	11.653037
20	Н	3.787739	1.314776	13.326608
21	Н	4.264886	3.639407	14.056590
22	Н	2.988362	5.512392	13.149699
23	Н	1.850481	7.031539	12.319302
24	Н	0.446829	8.733720	11.274074
25	Н	-1.294934	8.095252	9.623903
26	Н	-1.609780	5.693521	9.032131
Calculated at	the ω B97X-D/	6-311++G(d,p) le	evel. HF = -1117	7.2406949. Number of imaginary frequenci

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Ζ
1	S	-4.509384	0.000285	-0.000126
2	Ν	-2.021732	-1.125417	0.000067
3	Ν	-0.788667	-0.672277	0.000067
4	Ν	-0.788585	0.672399	-0.000103
5	Ν	-2.021597	1.125687	-0.000166
6	С	-2.814391	0.000183	-0.000048
7	С	0.395215	-1.425523	0.000042
8	С	0.310514	-2.821482	0.000047
9	С	1.483476	-3.552977	0.000010
10	С	2.722978	-2.896282	-0.000045
11	С	2.790021	-1.514180	-0.000042
12	С	1.621224	-0.729401	0.000028
13	С	1.621312	0.729232	0.000053
14	С	2.790205	1.513869	0.000178
15	С	2.723329	2.895979	0.000173
16	С	1.483906	3.552824	0.000053
17	С	0.310856	2.821471	-0.000041
18	С	0.395388	1.425502	-0.000025
19	Н	-0.659992	-3.297416	0.000071
20	Н	1.440096	-4.634899	0.000009
21	Н	3.638578	-3.474859	-0.000098
22	Н	3.759185	-1.034818	-0.000110
23	Н	3.759310	1.034390	0.000295
24	Н	3.638999	3.474445	0.000269
25	Н	1.440658	4.634751	0.000048
26	Н	-0.659593	3.297523	-0.000115

Calculated at the B3LYP/6-311++G(d,p) level in chloroform IEF-PCM. HF = -1117.5400429, Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Z
1	S	-4.493664	-0.000084	0.000130
2	Ν	-2.008302	-1.117577	-0.000571
3	Ν	-0.786662	-0.662741	-0.000396
4	Ν	-0.786684	0.662704	0.000470

5	Ν	-2.008341	1.117498	0.000703
6	С	-2.799105	-0.000053	0.000077
7	С	0.398946	-1.420136	-0.000708
8	С	0.301790	-2.810980	-0.001459
9	С	1.470872	-3.544119	-0.002040
10	С	2.710094	-2.892542	-0.002025
11	С	2.783553	-1.513164	-0.001284
12	С	1.617966	-0.730425	-0.000541
13	С	1.617941	0.730472	0.000504
14	С	2.783500	1.513251	0.001193
15	С	2.709993	2.892627	0.001937
16	С	1.470749	3.544161	0.002011
17	С	0.301692	2.810981	0.001484
18	С	0.398897	1.420141	0.000728
19	Н	-0.673285	-3.278893	-0.001549
20	Н	1.424539	-4.625463	-0.002574
21	Н	3.622923	-3.474770	-0.002600
22	Н	3.753632	-1.035359	-0.001442
23	Н	3.753597	1.035480	0.001306
24	Н	3.622802	3.474887	0.002470
25	Н	1.424378	4.625503	0.002547
26	Н	-0.673399	3.278861	0.001619

Calculated at the M06-2X/6-311++G(d,p) level in chloroform IEF-PCM. HF = -1117.2249129. Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Z
1	S	-0.664323	3.281071	-0.000173
2	Ν	-2.010292	-1.115232	0.000067
3	Ν	-0.786249	-0.663435	0.000101
4	Ν	-0.786169	0.663552	-0.000118
5	Ν	-2.010166	1.115489	-0.000230
6	С	-2.799131	0.000177	0.000130
7	С	0.397562	-1.419884	0.000041
8	С	0.307250	-2.808766	0.000026
9	С	1.474185	-3.539333	-0.000021
10	С	2.709338	-2.886467	-0.000058
11	С	2.778298	-1.510011	-0.000041
12	С	1.614066	-0.729855	0.000034
13	С	1.614152	0.729694	0.000041

14	С	2.778475	1.509713	0.000150
15	С	2.709676	2.886178	0.000124
16	С	1.474599	3.539187	-0.000003
17	С	0.307578	2.808757	-0.000090
18	С	0.397728	1.419864	-0.000046
19	Н	-0.664707	-3.280967	0.000044
20	Н	1.429813	-4.620546	-0.000041
21	Н	3.623586	-3.465983	-0.000114
22	Н	3.747228	-1.031555	-0.000098
23	Н	3.747349	1.031144	0.000263
24	Н	3.623991	3.465587	0.000208
25	Н	1.430353	4.620405	-0.000023
26	Н	-0.664323	3.281071	-0.000173

Calculated at the CAM-B3LYP/6-311++G(d,p) level in chloroform IEF-PCM. HF = -1117.1572301. Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)		
number	symbol	X	Y	Ζ
1	S	-4.490578	0.000224	-0.001234
2	Ν	-2.008954	-1.117731	-0.000068
3	Ν	-0.785872	-0.663250	0.000078
4	Ν	-0.785806	0.663349	-0.000339
5	Ν	-2.008848	1.117945	-0.000630
6	С	-2.797536	0.000147	0.000157
7	С	0.397495	-1.419862	0.000009
8	С	0.304020	-2.810088	-0.000076
9	С	1.471957	-3.542483	-0.000111
10	С	2.709060	-2.890680	-0.000079
11	С	2.780423	-1.512441	-0.000001
12	С	1.615551	-0.730528	0.000093
13	С	1.615622	0.730395	0.000118
14	С	2.780571	1.512193	0.000406
15	С	2.709342	2.890439	0.000317
16	С	1.472302	3.542362	-0.000053
17	С	0.304294	2.810082	-0.000289
18	С	0.397633	1.419846	-0.000156
19	Н	-0.668613	-3.282760	-0.000124
20	Н	1.425347	-4.624266	-0.000188
21	Н	3.623480	-3.471174	-0.000147
22	Н	3.751263	-1.035692	-0.000041
23	Н	3.751364	1.035350	0.000723

24	Н	3.623819	3.470845	0.000538
25	Н	1.425798	4.624151	-0.000132
26	Н	-0.668292	3.282848	-0.000543

Calculated at the ω B97X-D/6-311++G(d,p) level in chloroform IEF-PCM. HF = -1117.2635142. Number of imaginary frequencies = 0

Center	Atomic	Coordinates (Angstroms)			
number	symbol	X	Y	Z	
1	S	0.000000	0.000000	-4.463581	
2	С	0.000000	0.000000	-2.791206	
3	Ν	0.032025	1.124694	-1.973847	
4	Ν	0.022690	0.673629	-0.743303	
5	С	0.116020	1.529641	0.404546	
6	С	1.087887	1.301201	1.376164	
7	С	1.171649	2.174821	2.456690	
8	С	0.307493	3.264954	2.548697	
9	С	-0.643542	3.490547	1.553652	
10	С	-0.745428	2.622740	0.471060	
11	Н	1.771500	0.466896	1.286434	
12	Н	1.924157	2.009721	3.218413	
13	Н	0.382897	3.944917	3.389088	
14	Н	-1.306441	4.345171	1.616261	
15	Н	-1.463752	2.787975	-0.321647	
16	Ν	-0.032025	-1.124694	-1.973847	
17	Ν	-0.022690	-0.673629	-0.743303	
18	С	-0.116020	-1.529641	0.404546	
19	С	-1.087887	-1.301201	1.376164	
20	С	-1.171649	-2.174821	2.456690	
21	С	-0.307493	-3.264954	2.548697	
22	С	0.643542	-3.490547	1.553652	
23	С	0.745428	-2.622740	0.471060	
24	Н	-1.771500	-0.466896	1.286434	
25	Н	-1.924157	-2.009721	3.218413	
26	Н	-0.382897	-3.944917	3.389088	
27	Н	1.306441	-4.345171	1.616261	
28	Н	1.463752	-2.787975	-0.321647	

Table S10. The calculation of optimized geometry of dehydrodithizone (DD) in gas phase.

Calculated at the B3LYP/6-311++G(d,p) level. HF = -1118.6980846, Number of imaginary frequencies = 0

Caribration	exp.211			_
Mol No.	15	Sovent	MeCN	
Wavelength [nm]	337	Temperature [°C]	20	
Caribration	p_1	p_5	p_8	p_10
Concentration [mM]	0.020553458	0.051383644	0.102767288	0.205534576
Absorbance [-]	0.132	0.323	0.631	1.273

Figure S14. UV-Vis spectra (top) and calibration curve (bottom) of $5 \cdot H^+$ in acetonitrile. Concentration [mM] = 0.21 (red), 0.10 (green), 0.051 (blue) and 0.021 (yellow).

Caribration	exp.585		
Mol No.	47	Sovent	MeCN
Wavelength [nm]	345	Temperature [°C]	20
Caribration	p_1	p_4	p_5
Concentration [mM]	0.126592294	0.025318459	0.050636917
Absorbance [-]	0.706	0.12	0.265

Figure S15. UV-Vis spectra (top) and calibration curve (bottom) of $6 \cdot H^+$ in acetonitrile. Concentration [mM] = 0.13 (red), 0.051 (green), and 0.025 (blue).