Electronic Supplementary Information

Identification of a Highly Promiscuous Glucosyltransferase from *Penstemon barbatus* for natural product glycodiversification

Yanan Wu, ^{a, b, c, †} Yihan Yang, ^{b, c, †} Liping Du, ^a Yibin Zhuang, ^{b, c, *} and Tao Liu ^{b, c, *}

^{a.} Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.

^{b.} Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

^{c.} National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.

⁺ These authors contributed equally to this work.

* Corresponding authors. Tel: +86 22 24828718; fax: +86 22 24828718. E-mail: liu_t@tib.cas.cn Tel: +86 22 24828719; fax: +86 22 24828719. E-mail: zhuang yb@tib.cas.cn.

Table of Contents

1. Supplementary Tables
Table S1. Information of 10 candidates and 6His-MBP tag
Table S2. Primers used in this study
Table S3. Information of all tested compounds catalyzed by UGT84A95
Table S4. HPLC conditions used in this study
Table S5. Information of large-scale reactions and purification
Table S6. The sugar donor specificity of UGT84A95
Table S7. Information of reported plant UGTs with characterized functions that are used for the phylogenetic
analysis in this studyS7
2. Supplementary Figures
Figure S1. SDS-PAGE analysis of expression of His-MBP-UGT84A95 fusion proteinS8
Figure S2. The phylogenetic relationships between UGT84A95 and the reported plant UGTs with characterized
functions
Figure S3. The compounds are not accepted by UGT84A95
Figure S4-S8. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 3-7
Figure S9-S29. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 8-28S12-S22
Figure S30. HPLC analysis of UGT84A95 catalytic reactions for compound 2 and 2'
Figure S31. Determination of kinetic parameters (K_m and V_{max} values) for purified UGT84A95 Using UDP-Glc as a
sugar donor and 2 , 5 , 8 , 14 as sugar acceptors, respectivelyS23
Figure S32. Structures of sugar donor in this study
Figure S33. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and
using 2 as the acceptorS24
Figure S34. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and
using 8 as the acceptorS24
Figure S35 HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and
using 14 as the acceptorS25
Figure S36 HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and
using 21 as the acceptorS25
Figure S37-S40. NMR spectrum of glycosylated product 1a

4. References	
3. Supplementary Note. sequence of UGT84A95	S40
Figure S61-S64. NMR spectrum of glycosylated product 15a	
Figure S57-S60. NMR spectrum of glycosylated product 14a	
Figure S53-S56. NMR spectrum of glycosylated product 4a	
Figure S49-S52. NMR spectrum of glycosylated product 2b	
Figure S45-S48. NMR spectrum of glycosylated product 2a	
Figure S41-S44. NMR spectrum of glycosylated product 1b	

1. Supplementary Tables

Name.	ORF (bp)	amino acids	Molecular weight(kDa)	enzyme activity
45566	1374	457	50.9	β 1 \rightarrow 3 rhamnosyltransferase
43462	1455	484	54.2	C-4" OH glycosyltransferase
51909	1338	445	50.4	No activity
54198	1428	475	54.4	No activity
43107	1371	456	50.8	No activity
57483	1365	454	51.3	No activity
56249	1371	456	51.5	No activity
56575	1425	474	52.1	No activity
49774	1377	458	51.8	No activity
50252	1284	427	47.3	No activity
6His-Mbp	1188	396	43.5	No activity

Table S1. Information of 10 candidates and 6His-MBP tag

Table S2. Primers used in this study

Name	Sequences (5'-3')
MBP_45566_F	AATCCAATATTGGAAGTGGAATGCCTGAATTACAAAAGTCATCAAAAC
MBP_45566_R	GGCGCTCGAATTCGGATCCGCTACAATTCATACAAATTCTGAATAAAACTATCAATG
MBP_43462_F	AATCCAATATTGGAAGTGGAATGACCGCTGCAGAGAAAAAACAC
MBP_43462_R	GGCGCTCGAATTCGGATCCGCTAGATTATTGTATGATCGGTTCCTATCCGG
MBP_51909_F	AATCCAATATTGGAAGTGGAATGGAATCAAAATCTATTTTCAGAGTTCTAATG
MBP_51909_R	GGCGCTCGAATTCGGATCCGTCATTTCTTCATACAAATGTTTGACAACTGC
MBP_54198_F	AATCCAATATTGGAAGTGGAATGTTGATAATTGTAAAAAGAAAACTAGCAAAG
MBP_54198_R	GGCGCTCGAATTCGGATCCGCTACTTGTTCTTCATACAAAGTTTCATTAGC
MBP_43107_F	AATCCAATATTGGAAGTGGATGAATTTGATGATGAAGAAGAAGAA
MBP_43107_R	GGCGCTCGAATTCGGATCCGTCAAATAAATTGAGAGAAAGTAGACATTGCTGTAG
MBP_57483_F	AATCCAATATTGGAAGTGGAATGGATAATCAAGGTACAACATCTGTTCTGC
MBP_57483_R	GGCGCTCGAATTCGGATCCGTTAAGCAGTAGAAGATCTAAATGATGTAATAAAATCAACC
MBP_56249_F	AATCCAATATTGGAAGTGGAATGGATACGGTGATAAGAACCTACCC
MBP_56249_R	GGCGCTCGAATTCGGATCCGTCAATTAAATGATGAAATATCTTTCAAAAAAGAATCCAAG
MBP_56575_F	AATCCAATATTGGAAGTGGAATGTCAGACTCCGGCGCACACATC
MBP_56575_R	GGCGCTCGAATTCGGATCCGTCACATTAAACCTTTGTCCAATAAATCTTTGGTG
MBP_49774_F	AATCCAATATTGGAAGTGGAATGGACTACCATATTCTTCAAGTAACATTTCCAG
MBP_49774_R	GGCGCTCGAATTCGGATCCGTTACCCTTGACAATGCCCACCAAC
MBP_50252_F	AATCCAATATTGGAAGTGGAATGGGGATGGAATTGGCTCGAGGG
MBP_50252_R	GGCGCTCGAATTCGGATCCGTTACGCCTCAACCAGTTCAACCTTTC
Т7	TAATACGACTCACTATAGG
T7t	CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAG

Туре	No.	Name	Molecular formula	Molecular weight	CAS number
	1	Osmanthuside B	$C_{29}H_{36}O_{13}$	592.588	94492-23-6
	2	Verbascoside	$C_{29}H_{36}O_{15}$	624.587	61276-17-3
	3	Forsythoside A	$C_{29}H_{36}O_{15}$	624.587	79916-77-1
PhGs	4	Forsythoside B	$C_{34}H_{44}O_{19}$	756.702	81525-13-5
	5	Calceolarioside B	$C_{23}H_{26}O_{11}$	478.446	105471-98-5
	6	Calceolarioside A	$C_{23}H_{26}O_{11}$	478.446	84744-28-5
	7	Echinacoside	$C_{35}H_{46}O_{20}$	786.728	82854-37-3
	8	Rutin	$C_{27}H_{30}O_{16}$	610.518	153-18-4
	9	Quercetin	$C_{15}H_{10}O_7$	302.236	117-39-5
	10	Icariin	$C_{33}H_{40}O_{15}$	676.662	489-32-7
flavonoids	11	Orientin	$C_{21}H_{20}O_{11}$	448.377	28608-75-5
	12	Kaempferol	$C_{15}H_{10}O_6$	286.236	520-18-3
	13	Eriodictyol	$C_{15}H_{12}O_6$	288.252	552-58-9
	14	Picroside II	$C_{23}H_{28}O_{13}$	512.461	39012-20-9
	15	Oleuropein	$C_{25}H_{32}O_{13}$	540.514	32619-42-4
terpenoids	16	Ginsenoside Re	$C_{48}H_{82}O_{18}$	947.154	52286-59-6
	17	Ginsenoside Rg1	$C_{42}H_{72}O_{14}$	801.013	22427-39-0
	18	Paclitaxel	$C_{47}H_{51}NO_{14}$	853.906	33069-62-4
Stilbene	10	2,3,5,4'-Tetrahydroxy	C	106 282	۹۵۵۲۵ ۵ <i>۱</i> ۵
glycosides	15	stilbene 2-O-β-D-glucoside	C201122O9	400.385	82373-34-2
	20	alloisoimperatorin	$C_{16}H_{14}O_4$	270.280	35214-83-6
	21	Umbelliferone	$C_9H_6O_3$	162.142	93-35-6
coumaring	22	Scopoletin	$C_{10}H_8O_4$	192.168	92-61-5
countaints	23	Isoscopoletin	$C_{10}H_8O_4$	192.168	776-86-3
	24	Esculetin	$C_9H_6O_4$	178.141	305-01-1
	25	7-demethylsuberosin	$C_{14}H_{14}O_3$	230.259	21422-04-8
simplo	26	Caffeic acid	C ₉ H ₈ O ₄	180.157	331-39-5
simple	27	ferulic acid	$C_{10}H_{10}O_4$	194.184	1135-24-6
polyphenois	28	Resveratrol	C ₁₄ H ₁₂ O ₃	228.243	501-36-0

 Table S3. Information of all tested compounds catalyzed by UGT84A95.

Table S4. HPLC conditions used in this study.

Method	Solvent A	Solvent B	Gradient Analysis	Substrates
H_2O containing A			5% B, 5min; 5-13.2%B, 13min; 18-	
		Acetonitrile	21.6%B, 25min; 100%B, 7min;	1, 2, 6, 7
	0.1% formic acid		5%B, 7min.	
_	H ₂ O containing	A	5% B, 5min; 5-52.5%B, 20min;	
В	0.1% formic acid	Acetonitrile	100%B, 7min; 5%B, 7min.	3, 4, 5, 8–28

Substrate	reaction	Reaction	gradient	LI\/ (mma)	product No.
(No)	volumes	time(h)	conditions	UV (nm)	– Weight (mg)
1	1mL×15	5	18% B, 5 min; 18-19.5% B, 15 min;100 B, 10 min; 18% B, 10min;	312	1a –5.5 1b –3.2
2	1mL×20	5	17.5% B, 5 min; 17.5-19% B,15 min;100 B, 10 min; 17.5% B, 10min;	312	2a –4.5 2b –1.5
3	1mL×15	5	15% B, 12 min; 100% B, 8 min; 15% B, 8 min;	312	3a –3.7
4	1mL×20	24	15% B, 12 min; 100% B, 8 min; 15% B, 8 min;	312	4a –3.3
5	1mL×15	5	16% B, 10 min; 16-16.5% B, 5 min; 100% B, 8 min; 16% B, 8 min;	312	5a –3.9
8	1mL×15	5	15% B, 12 min; 100% B, 8 min; 15% B, 8 min;	254	8a –2.8
9	1mL×30	7	16% B, 7 min; 16-24% B, 20 min; 100% B, 8 min; 16% B, 8 min;	254	9b-4.5 9c-1.2 9d-3.4
14	1mL×15	5	14% B, 10 min; 100% B, 8 min; 14% B, 8 min;	254	14a –6.5
15	1mL×40	24	18.5% B, 8min; 19% B, 13 min; 100% B, 8 min;18.5% B, 8 min;	254	15a –6.0

 Table S5. Information of large-scale reactions and purification.

Table S6. The sugar donor specificity of UGT84A95. Different substrates (**2**, **8**, **14**, **21**) were selected as acceptor substrates. " $\sqrt{}$ " means that the enzymatic reactions could be catalyzed by UGT84A95.

	UDP-Glc	UDP-GlcA	UDP-Xyl	UDP-Rha	UDP-GlcNAc	UDP-Gal
2	٧					
8	v		٧			v
14	v					v
21	V		V			v

Name	Source	Genbank	Reference
FaGT2	Fragaria anana	Q66PF4.1	1
VLRSgt	Vitis labrusca	ABH03018.1	2
UGT84A77	Canarium album	QZM06937.1	3
UGT84A23	Punica granatum	ANN02875.1	4
UGT84A34	Nemophila menziesii	BBA68563.1	5
DcUSAGT1	Daucus carota	AMC33112.1	6
UGT84A33	Carthamus tinctorius	AYW01718.1	7
UGT84A9a	Gentiana triflora	BAQ19550 .1	8
UGT73A4	Beta vulgaris	AAS94329	9
UGT84F1	Medicago truncatula	ABI94023.1	10
UGT84F6	Glycyrrhiza uralensis	QDM38904.1	11
UGT84F9	Medicago truncatula	XP_013470035.1	12
GgSGT	Gomphrena globosa	BAG14302.1	13
UGT84A9	Brassica napus var. napus	CAS03354 .1	14
UGT84A2	Arabidopsis thaliana	NP_188793.1	15
UGT84A1	Arabidopsis thaliana	Q5XF20	15
UGT84A57	Eutrema japonicum	BBI55602.1	16
UGT84B1	Arabidopsis thaliana	NP_179907.1	17
GAGT	Solanum lycopersicum	CAI62049.1	18
UGT74M1	Nicotiana tabacum	AAF61647.1	19
UGT74F2	Arabidopsis thaliana	NP_181910.1	20
PgUGT8	Panax ginseng	AIE12488.1	21
UGT74M1	Gypsophila vaccaria	ABK76266	22
LOC542250	Zea mays	AAA59054	23
UGT74H5	Avena strigosa	ACD03250	24
UGT74F11	Oryza sativa Japonica Group	5TME	25
HvUGT13248	Hordeum vulgare subsp. vulgare	ADC92550	26
Bradi5g03300	Brachypodium distachyon	PNT60691.1	27
UGT723F9	Crocus sativus	ACM66950.1	28
UGT75C1	Arabidopsis thaliana	AAL69494.1	29
UGT75B1	Arabidopsis thaliana	AEE27854	30
UGT75D1	Arabidopsis thaliana	AAB58497.1	15

 Table S7. Information of reported plant UGTs with characterized functions that are used for the phylogenetic analysis in this study.

2. Supplementary Figures

Figure S1. SDS-PAGE analysis of expression of His-MBP-UGT84A95 fusion protein. Lane 1,2 and 3: Cell lysate, Supernatant and Precipitation of His-MBP. Lane 4,5 and 6: Cell lysate, Supernatant and Precipitation of His-MBP-UGT84A95. Lane 7: His-MBP-UGT84A95 purified by Ni-NTA affinity chromatography.

Figure S2. The phylogenetic relationships between UGT84A95 and the reported plant UGTs with characterized functions. The accession numbers of the sequences used in this study are shown in Table S6. The protein sequences were aligned using ClustalW. The neighbour-joining phylogenetic tree was drawn using MEGA 7. The bootstrap value was 1000, and the branch lengths represent the relative genetic distances.

Figure S3. The compounds are not accepted by UGT84A95

Figure S4. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 3.

Figure S5. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 4.

Figure S6. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 5.

Figure S7. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 6.

Figure S8. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 7.

Figure S9. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 8.

Figure S10. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 9.

Figure S11. HPLC analysis of UGT84A95 catalytic reaction mixtures for compound 10.

Figure S12. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 11.

Figure S13. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 12.

Figure S14. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 13.

Figure S15. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 14.

Figure S16. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 15.

Figure S17. HPLC analysis of UGT84A95 catalytic reaction mixtures for compound 16.

Figure S18. HPLC analysis of UGT84A95 catalytic reaction mixtures for compound 17.

Figure S19. HPLC analysis of UGT84A95 catalytic reaction mixtures for compound 18.

Figure S20. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 19.

Figure S21. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 20.

Figure S22. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 21.

Figure S23. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 22.

Figure S24. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 23.

Figure S25. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 24.

Figure S26. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 25.

Figure S27. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 26.

Figure S28. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 27.

Figure S29. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures for compound 28.

Figure 30. HPLC analysis of UGT84A95 catalytic reactions for compound 2 and 2'.

Figure S31. Determination of kinetic parameters (K_m and V_{max} values) for purified UGT71BD1 using UDP-Glc as a sugar donor and 2, 5, 8 and 14 as sugar acceptors, respectively.

Figure S32. Structures of sugar donor in this study.

Figure S33. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and

using 2 as the acceptor.

Figure S34. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and using 8 as the acceptor.

Figure S35. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and

using 14 as the acceptor

Figure S36. HPLC and LC-HRMS analysis of UGT84A95 catalytic reaction mixtures using different sugar donors and using 21 as the acceptor.

Figure S37. ¹H NMR spectrum of glycosylated product 1a (CD₃OD, 600 MHz).

Figure S38. ¹³C NMR spectrum of glycosylated product 1a (CD₃OD, 400 MHz).

Figure S39. HSQC spectrum of glycosylated product 1a (CD₃OD, 400 MHz).

Figure S40. HMBC spectrum of glycosylated product 1a (CD₃OD, 400 MHz).

Figure S41. ¹H NMR spectrum of glycosylated product 1b (CD₃OD, 600 MHz).

Figure S42. ¹³C NMR spectrum of glycosylated product 1b (CD₃OD, 600 MHz).

Figure S44. HMBC spectrum of glycosylated product 1b (CD₃OD, 600 MHz).

Figure S45. ¹H NMR spectrum of glycosylated product 2a (CD₃OD, 600 MHz).

Figure S46. ¹³C NMR spectrum of glycosylated product 2a (CD₃OD, 600 MHz).

Figure S47. HSQC NMR spectrum of glycosylated product 2a (CD₃OD, 600 MHz).

Figure S48. HMBC NMR spectrum of glycosylated product 2a (CD₃OD, 600 MHz).

Figure S49. ¹H NMR spectrum of glycosylated product 2b (CD₃OD, 600 MHz).

Figure S50. ¹³C NMR spectrum of glycosylated product 2b (CD₃OD, 600 MHz).

Figure S52. HMBC spectrum of glycosylated product 2b (CD₃OD, 600 MHz).

Figure S53. ¹H NMR spectrum of glycosylated product 4a (CD₃OD, 600 MHz).

Figure S54. ¹³C NMR spectrum of glycosylated product 4a (CD₃OD, 600 MHz).

Figure S55. HSQC spectrum of glycosylated product 4a (CD₃OD, 600 MHz).

Figure S56. HMBC spectrum of glycosylated product 4a (CD₃OD, 600 MHz).

Figure S57. ¹H NMR spectrum of glycosylated product 14a (CD₃OD, 600 MHz).

Figure S58. ¹³C NMR spectrum of glycosylated product 14a (CD₃OD, 600 MHz).

Figure S59. HSQC spectrum of glycosylated product 14a (CD₃OD, 600 MHz).

Figure S60. HMBC spectrum of glycosylated product 14a (CD₃OD, 600 MHz).

Figure S61. ¹H NMR spectrum of glycosylated product 15a (CD₃OD, 600 MHz).

Figure S62. ¹³C NMR spectrum of glycosylated product 15a (CD₃OD, 600 MHz).

Figure S63. HSQC spectrum of glycosylated product 15a (CD₃OD, 600 MHz).

Figure S64. HMBC spectrum of glycosylated product 15a (CD₃OD, 600 MHz).

3. Supplementary Note.

>UGT84A95

ATGACCGCTGCAGAGAAAAAAACACATTCATGTTTTTATGGTCTCATTTCCGGGGCAAGGACATGTAAATCCCCTCCTAAGACTG GGCAAGCGCCTAGCTTCTTCGGGCCTCTTCGTCACTCTTTCAGCACCCGAATTCATAGGCCAGAGCATCCGAGAAGCCACCAAA ATCACCAACAACGACCCCCCGACTCCAATAGGCACGGGCTTCGTGCAGTTTGAATTCTTTGACGACGGTTGGGACCTCAACGA CCCCAAACGGGAAAGCCTAGACGCGTACTTAGCCCAGCTCGAGCTCATCGGTAGGCAAAGGCTACCTCAGATGATAAAAAATC TCCCGAGTGCAATGCTTTGGGTCCAATCTTGTGCTTGTTGTTTTTCAGCTTATTATCACTACTGCAACAATCTTGTACCTTTCCCTAGTG AAGCTGAACCTGAAATCGATGTTCAATTACCTTTCATGCCCTTGTTGAAGTACGATGAGGTTCCTAGCTTCTTGCATCCTAACACG CCTTACCCTTTTTTGGGGAGGGCTATTTTGGGTCAGTCAAGAATATTTTCCAAGCCTTTTTGTATACTTATGGACACTTTTGAAGA ACTTGAGCATGAAATTATTGATTACATGTCCAAAATTTGTCGGCCCATTAAGACTATAGGTCCATTGTTCATGACTAGTAAGGTTG TTGATTCCAATTCGAAAAACGAAATTCGGGGGGGATATTTTTACGGCAGAGAATTGCAAGGAGTGGTTGGACTCGAAACCGGA GGGAACGGTGGTGTACATTTCGTTTGGTAGTATTGTACAGTTGAAACAAGAGCAAGTAAATGAGATTGCGCACGGGCTTTTGG CGGCCGAGGTTTCCTTTTATGGGTTTTGAGGCCACCGCCTAAAGAAAAGATCACTCTTGACCCACATGTGTTGCCGGACCGGT TCCTTGAGAAAGCTGGGGAGAGAGGGAAGATAGTGAAGTGGAGCCCACAAGAGGAGGTGTTGGCCCACCCTTCGACGGCGT GTTTTCTGACGCACTGTGGATGGAATTCGACGATGGAGGCGTTGACAAGTGGCGTTCCGGTATTGGCTTTTCCTCAGTGGGGGG GATCAGGTGACGGATGCTAAGTTTTTGGTTGATGTTTTTAAGATTGGGATTAGGATGTGTAGAGGTGAAGCTGAGGGGAGGAT TGTGTCACGTGAGGAGGTGGAGAGGTGTTTGAGAGCCGCGGGTTAGTGGTCCCCAGGCAGCGGAGTTGAAGGCCAATGCAAT GAAGTGGAAGAAAGTGGCGGAGGAGGCGGTGGCGGAGGGTGGTTCGTCGTCTAGGAATATGCAAAATTTTGTAGATCAAATT GTCCGGATAGGAACCGATCATACAATAATCTAG

4. References

- 1. S. Lunkenbein, M. Bellido, A. Aharoni, E. M. Salentijn, R. Kaldenhoff, H. A. Coiner, J. Muñoz-Blanco and W. Schwab, *Plant physiology*, 2006, **140**, 1047-1058.
- 2. D. Hall and V. De Luca, *Plant J.*, 2007, **49**, 579-591.
- 3. Q. Ye, S. Zhang, N. Qiu, L. Liu, W. Wang, Q. Xie, Q. Chang and Q. Chen, Molecules, 2021, 26, 4650.
- 4. N. N. Ono, X. Qin, A. E. Wilson, G. Li and L. Tian, PloS one, 2016, 11, e0156319.
- 5. N. Okitsu, K. Matsui, M. Horikawa, K. Sugahara and Y. Tanaka, Plant & cell physiology, 2018, 59, 2075-2085.
- 6. Y. Y. Chen, Z. S. Xu and A. S. Xiong, *PloS one*, 2016, **11**, e0154938
- 7. Y. Zhang, K. Xie, A. Liu, R. Chen, D. Chen, L. Yang and J. Dai, Chinese Chemical Letters, 2019, 30, 443-446.
- N. Sasaki, Y. Nishizaki, E. Yamada, F. Tatsuzawa, T. Nakatsuka, H. Takahashi and M. Nishihara, *FEBS lett.*, 2015, 589, 182-187.
- 9. J. Isayenkova, V. Wray, M. Nimtz, D. Strack and T. Vogt, Phytochemistry, 2006, 67, 1598-1612.
- 10. L. V. Modolo, J. W. Blount, L. Achnine, M. A. Naoumkina, X. Wang and R. A. Dixon, *Plant Mol. Biol.*, 2007, 64, 499-518.
- 11. K. Chen, Z. M. Hu, W. Song, Z. L. Wang, J. B. He, X. M. Shi, Q. H. Cui, X. Qiao and M. Ye, ACS synthetic biology, 2019, 8, 1858-1866.
- 12. O. A. Adiji, M. L. Docampo-Palacios, A. Alvarez-Hernandez, G. M. Pasinetti, X. Wang and R. A. Dixon, *Plant physiology*, 2021, **185**, 1617-1637.
- 13. Y Matsuba, Y Okuda, Y Abe, Y Kitamura, K Terasaka, H Mizukami, H Kamakura, N Kawahara, Y Goda, N Sasaki and Y Ozeki1, *Plant Biotechnology*, 2008, **25**, 369–375.
- J. Mittasch, S. Mikolajewski, F. Breuer, D. Strack and C. Milkowski, Theoretische und angewandte Genetik, 2010, 120, 1485-1500.
- 15. B. Messner, O. Thulke and A. R. Schäffner, Planta, 2003, 217, 138-146.
- 16. K. Mashima, M. Hatano, H. Suzuki, M. Shimosaka and G. Taguchi, Plant & cell physiology, 2019, 60, 2733-2743.
- 17. Y. Aoi, H. Hira, Y. Hayakawa, H. Liu, K. Fukui, X. Dai, K. Tanaka, K. I. Hayashi, Y. Zhao and H. Kasahara, *Biochemical and biophysical research communications*, 2020, **532**, 244-250.
- S. Tárraga, P. Lisón, M. P. López-Gresa, C. Torres, I. Rodrigo, J. M. Bellés and V. Conejero, *Journal of experimental botany*, 2010, 61, 4325-4338.
- 19. H. I. Lee and I. Raskin, J. Biol. Chem., 1999, 274, 36637-36642.
- 20. A. M. George Thompson, C. V. Iancu, K. E. Neet, J. V. Dean and J. Y. Choe, *Scientific reports*, 2017, 7, DOI: 10.1038/srep46629.
- 21. X. Yan, Y. Fan, W. Wei, P. Wang, Q. Liu, Y. Wei, L. Zhang, G. Zhao, J. Yue and Z. Zhou, *Cell research*, 2014, **24**, 770-773.
- 22. D. Meesapyodsuk, J. Balsevich, D. W. Reed and P. S. Covello, Plant physiology, 2007, 143, 959-969.
- 23. J. B. Szerszen, K. Szczyglowski and R. S. Bandurski, Science, 1994, 265, 1699-1701.
- A. Owatworakit, B. Townsend, T. Louveau, H. Jenner, M. Rejzek, R. K. Hughes, G. Saalbach, X. Qi, S. Bakht, A. D. Roy, S. T. Mugford, R. J. Goss, R. A. Field and A. Osbourn, *J. Biol. Chem.*, 2013, 288, 3696-3704.
- 25. K. M. Wetterhorn, S. A. Newmister, R. K. Caniza, M. Busman, S. P. McCormick, F. Berthiller, G. Adam and I. Rayment, *Biochemistry*, 2016, **55**, 6175-6186.
- W. Schweiger, J. Boddu, S. Shin, B. Poppenberger, F. Berthiller, M. Lemmens, G. J. Muehlbauer and G. Adam, Molecular plant-microbe interactions, 2010, 23, 977-986.
- 27. Y. Zhao, W. Li, L. Sun, H. Xu, W. Su, F. Xue, R. Wu and C. Lu, *Pesticide biochemistry and physiology*, 2022, **183**, 105057.
- 28. A. R. Moraga, A. T. Mozos, O. Ahrazem and L. Gómez-Gómez, BMC plant biology, 2009, 9, 109.

- 29. C. M. Gachon, M. Langlois-Meurinne, Y. Henry and P. Saindrenan, Plant Mol. Biol., 2005, 58, 229-245.
- 30. T. T. Chen, F. F. Liu, D. W. Xiao, X. Y. Jiang, P. Li, S. M. Zhao, B. K. Hou and Y. J. Li, *Plant Mol. Biol.*, 2020, **102**, 389-401.