Supplementary materials for:

Synthesis of SARS-CoV-2 M^{pro} Inhibitors bearing a Cinnamic Ester Warhead with *In Vitro* Activity against Human Coronaviruses

Andrea Citarella,*^a Davide Moi,*^b Martina Pedrini,^a Helena Pérez-Peña,^a Stefano Pieraccini,^a Alessandro Dimasi,^a Claudio Stagno,^c Nicola Micale,^c Tanja Schirmeister,^d Giulia Sibille,^e Giorgio Gribaudo,^e Alessandra Silvani,^a Clelia Giannini ^a and Daniele Passarella *^a

^aDepartment of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy

^bDipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria - S.S. 554 bivio per Sestu, 09042, Monserrato (CA), Italy

^cDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166, Messina, Italy

^dDepartment of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany

^eDepartment of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy

Table of contents

1.	¹ H- and ¹³ C- NMR Spectra	1 - 14
2.	HPLC traces of the final compounds	15 - 20
3.	Figure S1	21
4.	Figure S2	22
5.	Table S1	23

1. ¹H- and ¹³C- Spectra of the Compounds

2. HPLC traces of the final compounds

Figure S1. (A) Representative ESI-MS spectrum of a solution containing 0.4 μ M SARS-CoV-2 M^{pro} in water/MeOH (1:1) with 0.1% HCOOH. The spectrum was acquired in positive ion mode. The blue dots correspond to the unmodified protein. (B) Representative ESI-MS spectrum of a mixture containing 0.4 mM SARS-CoV-2 M^{pro} after incubation with **11** in water/MeOH (1:1) with 0.1% HCOOH. The spectrum was acquired in positive ion mode. The blue dots correspond to the unmodified protein, and the green stars correspond to the modified protein.

4. Figure S2

SARS_CoV_2_Mpro	SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYCPRHVICTSEDMLNPNYEDLLIR
hCoV_229E_Mpro	SGLRKMAQPSGLVEPCIVRVSYGNNVLNGLWLGDEVICPRHVIASDTTRV-INYENEMSS
hCoV_OC43_Mpro	SGIVKMVNPTSKVEPCVVSVTYGNMTLNGLWLDDKVYCPRHVICSASDMTNPDYTNLLCR
SARS_CoV_2_Mpro	KSNHNFLVQAGN <mark>V</mark> QLRVIGHSMQNCVLKLKVDTANPKTPKYKFVRIQPGQTFSVLACYNG
hCoV_229E_Mpro	VRLHNFSVSKNNVFLGVVSARYKGVNLVLKVNQVNPNTPEHKFKSIKAGESFNILACYEG
hCoV_OC43_Mpro	VTSSDFTVLFDRLSLTVMSYQMRGCMLVLTVTLQNSRTPKYTFGVVKPGETFTVLAAYNG
SARS_CoV_2_Mpro hCoV_229E_Mpro hCoV_OC43_Mpro	₹ SPSGVYQCAMRPNFTIKGSFLNGSCGSVGFNIDYDCVSFCYMHHMELPTGVHAGTDLEGN CPGSVYGVNMRSQGTIKGSFIAGTCGSVGYVLENGILYFVYMHHLELGNGSHVGSNFEGE KPQGAFHVTMRSSYTIKGSFLCGSCGSVGYVIMGDCVKFVYMHQLELSTGCHTGTDFNGD
SARS_CoV_2_Mpro	FYGPFVDRQTAQAAGTDTTI-
hCoV_229E_Mpro	MYGGYEDQPSMQLEGTNVMSS
hCoV_OC43_Mpro	FYGPYKDAQVVQLPIQDYIQ-

Figure S2. Sequence alignment of SARS-CoV-2 M^{pro}, hCoV-229E Mpro, and hCoV-OC43 M^{pro}. Conserved residues are labeled in dark green, the same residues are indicated in lighter green, and residues with similar properties are yellow. The key residues are highlighted by a red square and the number of sequence positions in navy blue.

Table S1. Antiviral activity of cinnamic esters against hCoV-229E and hCoV-OC43.Notes: EC₅₀ was measured for hCoV-229E by evaluating the residual MRC-5 cellviability as a surrogate of viral CPE, or by focus forming reduction assay (FFRA)against hCoV-OC43 in HCT-8 cells.

Compound	hCoV-229Ε ΕC₅₀ (μM)	hCoV-OC43 EC₅₀ (μM)
11	> 50	> 50
12	5.27 ± 0.25	> 50
13	> 50	> 50
15	> 50	> 50
17	> 50	9.14 ± 0.70
18	> 50	10.1 ± 0.17
19	> 50	> 50