Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Design and synthesis of iso-*allo*-DNJ and L-isoDALDP derivatives: pursuit of potent and selective inhibitors of α-

glucosidase

Lin-Feng Yang,[‡] Ming Zhang,[‡] Yuna Shimadate, Atsushi Kato,^{*} Tian-Yang Liu Hou, Yi-Xian Li,^{*} Yue-Mei Jia, George W. J. Fleet and Chu-Yi Yu^{*}

*E-mail address: kato@med.u-toyama.ac.jp (A. Kato), tamarali@iccas.ac.cn (Y.-X. Li), yucy@iccas.ac.cn (C.-Y. Yu)

Section I: NMR spectra and Infrared spectra for compound 14-40

Compound 14:
Compound 15:
Compound 17:
Compound 19:
Compound 21:
Compound 22:
Compound 23:
Compound 24:
Compound 25:
Compound 26:
Compound 27:
Compound 28:

Compound 29:
Compound 30:
Compound 31:
Compound 32: 32
Compound 33:
Stability experiment of compound 33 (pH = 7.0) 36
Compound 35:
Compound 36:
Compound 37:
Compound 38:
Compound 39
Compound 40:

Section II: X-Ray Crystallographic Data

Compound 15	£9
Compound 19	52
Compound 25	51
Compound 32	57
Compound 39	'2

Section I: NMR spectra and Infrared spectra for compound 14-40 Compound 14:

Compound 15:

Compound 17:

Compound 21:

Compound 21:

Compound 22:

Compound 23:

Compound 24:

Compound 25:

Compound 26:

Compound 28:

Compound 29:

Compound 30:

Compound 31:

Compound 32:

Compound 33:

Stability experiment of compound 33 (pH = 7.0)

The ¹H NMR spectra of compound **33** (pH = 7.0) were monitored at 0.5 h, 1 h, 2 h, 4 h and 8 h, respectively. Since no change was observed even after maintaining in the solution for 8 h, the stability of compound **33** can be ensured.

Compound 35:

Compound 39:

Section II: X-Ray Crystallographic Data

Compound 15

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 2162560)

Fig 1. X-Ray ellipsoid plots of 15·HCl

Table 1-1	Crystal data and	l structure refinement	for compound 15·HCl.
-----------	------------------	------------------------	----------------------

Identification code	mx8226
Empirical formula	C ₆ H ₁₄ ClNO ₄
Formula weight	199.63
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.03620(10)
b/Å	11.5263(3)
c/Å	12.3169(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	856.95(3)
Z	4
$\rho_{calc}g/cm^3$	1.547
µ/mm ⁻¹	0.423
F(000)	424.0
Crystal size/mm ³	$0.35\times0.3\times0.15$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.84 to 61.218
Index ranges	$-8 \le h \le 8, -15 \le k \le 15, -16 \le l \le 17$
Reflections collected	20072
Independent reflections	2374 [$R_{int} = 0.0251, R_{sigma} = 0.0160$]
Data/restraints/parameters	2374/0/111

Goodness-of-fit on F ²	1.080
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0199, wR_2 = 0.0514$
Final R indexes [all data]	$R_1 = 0.0204, wR_2 = 0.0515$
Largest diff. peak/hole / e Å-3	0.30/-0.17
Flack parameter	-0.149(14)

Table 1-2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for compound15·HCl. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	ζ	U(eq)
Cl1	830.0(5)	9561.7(3)	4275.8(2)	10.37(8)
01	1485.8(18)	8858.3(9)	948.3(9)	14.2(2)
02	2819.5(16)	4466.7(9)	3500.7(8)	12.4(2)
O3	3814.3(16)	5507.3(9)	1520.6(8)	11.37(19)
O4	7403.9(17)	6733.5(9)	2030.0(8)	12.4(2)
N1	4201(2)	8267.3(10)	2804.1(9)	9.8(2)
C1	2657(2)	7443.3(12)	2223.0(11)	9.4(2)
C2	3593(2)	6205.9(11)	2459.9(11)	8.7(2)
C3	5942(2)	6451.6(12)	2895.1(11)	10.2(2)
C4	5649(2)	7558.7(12)	3536.8(11)	11.4(2)
C5	2511(2)	7742.8(12)	1031.6(11)	11.6(3)
C6	2100(2)	5623.7(12)	3299.7(11)	10.9(3)

Table 1-3 Anisotropic Displacement Parameters (Å²×10³) for 15·HCl. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	9.38(13)	10.53(14)	11.20(13)	-0.30(11)	1.07(11)	0.44(11)
01	15.2(5)	10.6(5)	16.7(5)	4.7(4)	3.7(4)	4.3(4)
O2	11.5(4)	7.0(5)	18.6(5)	2.8(4)	2.0(4)	0.1(4)
O3	9.9(4)	10.5(4)	13.7(4)	-3.5(4)	-0.7(3)	-0.2(4)
O4	9.3(4)	10.4(5)	17.4(5)	-1.4(4)	3.1(4)	-0.9(4)
N1	10.0(5)	7.5(5)	11.9(5)	-1.2(4)	0.2(5)	0.0(5)
C1	7.5(5)	7.5(6)	13.1(6)	-0.6(5)	0.3(5)	-0.3(5)
C2	7.6(6)	6.7(6)	11.8(6)	-1.3(5)	-0.6(5)	0.8(5)
C3	7.6(6)	9.7(6)	13.4(6)	0.7(4)	-1.0(5)	0.5(5)
C4	10.9(6)	10.7(6)	12.6(6)	0.1(5)	-2.5(5)	-0.2(5)
C5	12.7(6)	9.1(6)	12.9(6)	0.4(5)	-0.4(5)	2.2(5)
C6	9.3(6)	7.4(6)	16.0(6)	1.0(5)	2.0(5)	0.5(5)

Table 1-4 Bond Lengths for 15·HCl.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C5	1.4305(17)	C1	C2	1.5616(18)
02	C6	1.4242(16)	C1	C5	1.5100(19)
03	C2	1.4159(16)	C2	C3	1.5418(19)
04	C3	1.4213(16)	C2	C6	1.5273(18)
N1	C1	1.5110(18)	C3	C4	1.5113(19)
N1	C4	1.4984(18)			

Table 1-5 Bond Angles for 15·HCl.

Atom	Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle	e/°
C4	N1	C1	107.60(10)	C6	C2	C1		108.32(11)
N1	C1	C2	105.21(10)	C6	C2	C3		112.83(11)
C5	C1	N1	110.65(11)	O4	C3	C2		110.63(11)
C5	C1	C2	114.31(11)	O4	C3	C4		105.77(11)
03	C2	C1	113.63(10)	C4	C3	C2		103.27(11)
03	C2	C3	107.57(10)	N1	C4	C3		102.32(10)
03	C2	C6	111.05(11)	01	C5	C1		107.49(11)
C3	C2	C1	103.29(10)	02	C6	C2		110.44(11)

Table 1-6 Hydrogen Bonds for 15·HCl.

D H	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1 H1	Cl11	0.82	2.37	3.1916(11)	177.4
O2 H2	O1 ²	0.82	2.02	2.7760(14)	152.2
O3 H3	Cl1 ²	0.82	2.35	3.1637(10)	171.1
O4 H4	Cl13	0.82	2.37	3.1606(11)	162.7
N1 H1A	O2 ⁴	0.89	1.90	2.7798(15)	169.8
N1 H1B	Cl1	0.89	2.25	3.1069(12)	161.7

¹1/2-X,2-Y,-1/2+Z; ²-X,-1/2+Y,1/2-Z; ³1-X,-1/2+Y,1/2-Z; ⁴1-X,1/2+Y,1/2-Z

Table 1-7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 15·HCl.

Atom	x	У	Ζ	U(eq)
H1	2136.51	9274.46	512.42	21

H2	1762.86	4072.3	3697.86	19
H3	2551.7	5334	1336	17
H4	7575.88	6163.09	1641.09	19
H1A	5025.25	8653.05	2325.75	12
H1B	3426.54	8778.32	3190.46	12
H1C	1177.74	7507.42	2545.11	11
H3A	6506.11	5814.79	3343.84	12
H4A	4931.12	7411.43	4227.78	14
H4B	7059.11	7938.55	3664.46	14
H5A	3979.42	7762.11	712.5	14
H5B	1635.77	7166.24	650.5	14
H6A	2134.17	6063.6	3970.83	13
H6B	585.45	5614.09	3036.5	13

Compound 19

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 2162538)

Fig 2. X-Ray ellipsoid plots of 19

Table 2-1 Crystal data and structure refinement for compound 19.

Identification code	sa5357	
Empirical formula	C12 H21 N O6 S2	
Formula weight	339.42	
Temperature	173.15 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 6.0310(12) Å	α= 90°.
	b = 9.2468(18) Å	β= 90°.
	c = 28.590(6) Å	γ= 90°.
Volume	1594.4(5) Å ³	
Z	4	
Density (calculated)	1.414 Mg/m ³	
	S54	

Absorption coefficient	0.359 mm ⁻¹
F(000)	720
Crystal size	0.8 x 0.254 x 0.197 mm ³
Theta range for data collection	3.452 to 27.480°.
Index ranges	-7<=h<=7, -12<=k<=11, -36<=l<=37
Reflections collected	10459
Independent reflections	3621 [R(int) = 0.0363]
Completeness to theta = 25.242°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.43003
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3621 / 0 / 193
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0371, wR2 = 0.0939
R indices (all data)	R1 = 0.0381, wR2 = 0.0950
Absolute structure parameter	0.02(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.397 and -0.230 e.Å ⁻³

S1 1:	276(1)	9449(1)	2026(1)	
	711(1)		3820(1)	30(1)
S2	/11(1)	7990(1)	2883(1)	29(1)
01 5	160(3)	5154(2)	3954(1)	24(1)
02 2	880(3)	5544(2)	3328(1)	24(1)
03 5	858(3)	6717(2)	4779(1)	23(1)
O4	49(3)	6575(2)	4490(1)	21(1)
05 -	260(5)	3868(3)	5290(1)	53(1)
06 -	541(5)	2911(3)	4603(1)	52(1)
N1	354(4)	3712(3)	4885(1)	33(1)
C1	935(4)	7749(3)	3513(1)	22(1)
C2 -1	193(5)	10394(3)	3640(1)	32(1)
C3 -1	321(5)	10635(3)	3115(1)	33(1)
C4 -1	596(5)	9239(3)	2840(1)	34(1)
C5 3	027(4)	6856(3)	3594(1)	20(1)
C6 3	618(4)	6266(3)	4084(1)	19(1)
C7 4	626(4)	4628(3)	3493(1)	25(1)
C8 1	624(4)	5553(3)	4331(1)	19(1)
C9 2.	338(4)	4545(3)	4726(1)	27(1)
C10 4	872(4)	7365(3)	4379(1)	21(1)
C11 6	674(5)	4771(4)	3188(1)	34(1)
C12 3	764(5)	3093(3)	3516(1)	33(1)

Table 2-2 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for compound 19. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 2-3 Bond lengths [Å] and angles [°] for compound 19.

S1-C1	1.820(3)
S1-C2	1.807(3)
S2-C1	1.820(2)
S2-C4	1.813(3)
O1-C6	1.435(3)
O1-C7	1.441(3)
O2-C5	1.434(3)
O2-C7	1.432(3)

O3-H3	0.8400
O3-C10	1.422(3)
O4-H4	0.8400
O4-C8	1.414(3)
O5-N1	1.224(3)
O6-N1	1.221(4)
N1-C9	1.493(3)
C1-H1	1.0000
C1-C5	1.525(3)
C2-H2A	0.9900
C2-H2B	0.9900
C2-C3	1.518(4)
С3-НЗА	0.9900
С3-Н3В	0.9900
C3-C4	1.520(4)
C4-H4A	0.9900
C4-H4B	0.9900
С5-Н5	1.0000
C5-C6	1.546(3)
C6-C8	1.543(3)
C6-C10	1.522(3)
C7-C11	1.517(4)
C7-C12	1.513(4)
С8-Н8	1.0000
C8-C9	1.527(3)
С9-Н9А	0.9900
С9-Н9В	0.9900
C10-H10A	0.9900
C10-H10B	0.9900
C11-H11A	0.9800
C11-H11B	0.9800
C11-H11C	0.9800
C12-H12A	0.9800
C12-H12B	0.9800
C12-H12C	0.9800
C2-S1-C1	100.35(13)
C4-S2-C1	101.68(13)
C6-O1-C7	109.48(18)

C7-O2-C5	106.30(18)
С10-О3-Н3	108.7
С8-О4-Н4	109.5
O5-N1-C9	118.0(3)
O6-N1-O5	124.2(3)
O6-N1-C9	117.8(2)
S1-C1-S2	112.86(13)
S1-C1-H1	110.1
S2-C1-H1	110.1
C5-C1-S1	107.46(16)
C5-C1-S2	106.03(17)
С5-С1-Н1	110.1
S1-C2-H2A	108.8
S1-C2-H2B	108.8
H2A-C2-H2B	107.7
C3-C2-S1	113.8(2)
С3-С2-Н2А	108.8
С3-С2-Н2В	108.8
С2-С3-НЗА	109.0
С2-С3-Н3В	109.0
C2-C3-C4	113.1(2)
НЗА-СЗ-НЗВ	107.8
С4-С3-НЗА	109.0
С4-С3-Н3В	109.0
S2-C4-H4A	108.5
S2-C4-H4B	108.5
C3-C4-S2	115.0(2)
С3-С4-Н4А	108.5
C3-C4-H4B	108.5
Н4А-С4-Н4В	107.5
O2-C5-C1	109.10(19)
О2-С5-Н5	108.2
O2-C5-C6	101.26(18)
С1-С5-Н5	108.2
C1-C5-C6	121.2(2)
С6-С5-Н5	108.2
01-C6-C5	99.69(18)
O1-C6-C8	108.50(19)

O1-C6-C10	107.45(18)
C8-C6-C5	112.74(18)
C10-C6-C5	112.4(2)
C10-C6-C8	114.8(2)
O1-C7-C11	108.3(2)
O1-C7-C12	110.7(2)
O2-C7-O1	105.44(19)
O2-C7-C11	110.9(2)
O2-C7-C12	108.4(2)
C12-C7-C11	112.8(2)
O4-C8-C6	112.66(19)
О4-С8-Н8	106.8
O4-C8-C9	111.09(19)
С6-С8-Н8	106.8
C9-C8-C6	112.35(19)
С9-С8-Н8	106.8
N1-C9-C8	108.3(2)
N1-C9-H9A	110.0
N1-C9-H9B	110.0
С8-С9-Н9А	110.0
С8-С9-Н9В	110.0
Н9А-С9-Н9В	108.4
O3-C10-C6	111.8(2)
O3-C10-H10A	109.2
O3-C10-H10B	109.3
C6-C10-H10A	109.3
C6-C10-H10B	109.2
H10A-C10-H10B	107.9
С7-С11-Н11А	109.5
С7-С11-Н11В	109.5
С7-С11-Н11С	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C7-C12-H12A	109.5
C7-C12-H12B	109.5
С7-С12-Н12С	109.5
H12A-C12-H12B	109.5

H12A-C12-H12C	109.5
H12B-C12-H12C	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S1	45(1)	20(1)	24(1)	-3(1)	-9(1)	4(1)
S2	41(1)	31(1)	15(1)	2(1)	-2(1)	3(1)
01	23(1)	25(1)	22(1)	-4(1)	0(1)	5(1)
02	29(1)	22(1)	20(1)	-6(1)	-2(1)	3(1)
03	20(1)	32(1)	19(1)	-3(1)	-2(1)	3(1)
04	18(1)	25(1)	21(1)	-2(1)	0(1)	2(1)
05	64(2)	46(1)	49(2)	3(1)	29(1)	-7(1)
O6	60(2)	45(1)	51(2)	11(1)	-3(1)	-26(1)
N1	37(1)	26(1)	37(1)	11(1)	6(1)	-2(1)
C1	29(1)	21(1)	16(1)	1(1)	-2(1)	0(1)
C2	43(2)	25(1)	26(1)	2(1)	-2(1)	8(1)
C3	46(2)	28(1)	26(1)	7(1)	-4(1)	7(1)
C4	39(1)	38(2)	25(1)	7(1)	-5(1)	6(1)
C5	26(1)	20(1)	15(1)	-4(1)	1(1)	-1(1)
C6	20(1)	18(1)	19(1)	-1(1)	1(1)	1(1)
C7	25(1)	24(1)	26(1)	-7(1)	2(1)	2(1)
C8	20(1)	20(1)	17(1)	0(1)	2(1)	1(1)
C9	27(1)	25(1)	29(1)	10(1)	2(1)	2(1)
C10	20(1)	25(1)	18(1)	-2(1)	-1(1)	-2(1)
C11	33(1)	40(2)	29(1)	-12(1)	10(1)	-2(1)
C12	34(1)	23(1)	42(2)	-6(1)	0(1)	2(1)

Table 2-4 Anisotropic displacement parameters (Å²x 10³) for compound 19. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table 2-5 Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for compound 19.

Х	у	Z	U(eq)

H3	7077	6351	4701	35
H4	616	7086	4701	32
H1	-391	7219	3635	26
H2A	-2509	9833	3740	38
H2B	-1251	11344	3799	38
НЗА	48	11128	3010	40
H3B	-2588	11281	3046	40
H4A	-1821	9486	2506	41
H4B	-2953	8744	2951	41
Н5	4323	7423	3475	24
H8	861	4940	4092	23
H9A	3501	3874	4614	32
H9B	2950	5115	4990	32
H10A	6043	7820	4186	25
H10B	3838	8135	4481	25
H11A	6385	4337	2882	51
H11B	7921	4273	3338	51
H11C	7038	5797	3149	51
H12A	2372	3075	3693	49
H12B	4860	2477	3672	49
H12C	3501	2734	3199	49

Table 2-6 Torsion angles [°] for compound 19.

S1-C1-C5-O2	-176.35(15)
S1-C1-C5-C6	66.8(2)
S1-C2-C3-C4	67.2(3)
S2-C1-C5-O2	-55.4(2)
S2-C1-C5-C6	-172.25(18)
01-C6-C8-O4	177.59(17)
01-C6-C8-C9	51.2(3)
01-C6-C10-O3	-57.5(2)
02-C5-C6-O1	40.4(2)
O2-C5-C6-C8	-74.4(2)
O2-C5-C6-C10	153.96(18)
O4-C8-C9-N1	62.9(3)

O5-N1-C9-C8	-118.2(3)
O6-N1-C9-C8	62.4(3)
C1-S1-C2-C3	-61.0(2)
C1-S2-C4-C3	55.6(2)
C1-C5-C6-O1	161.1(2)
C1-C5-C6-C8	46.3(3)
C1-C5-C6-C10	-85.3(3)
C2-S1-C1-S2	57.92(17)
C2-S1-C1-C5	174.45(17)
C2-C3-C4-S2	-64.0(3)
C4-S2-C1-S1	-55.68(17)
C4-S2-C1-C5	-173.06(18)
C5-O2-C7-O1	22.0(2)
C5-O2-C7-C11	-95.1(2)
C5-O2-C7-C12	140.6(2)
C5-C6-C8-O4	-73.0(2)
C5-C6-C8-C9	160.6(2)
C5-C6-C10-O3	-166.13(18)
C6-O1-C7-O2	5.8(2)
C6-O1-C7-C11	124.6(2)
C6-O1-C7-C12	-111.3(2)
C6-C8-C9-N1	-169.9(2)
C7-O1-C6-C5	-28.4(2)
C7-O1-C6-C8	89.7(2)
C7-O1-C6-C10	-145.7(2)
C7-O2-C5-C1	-167.82(19)
C7-O2-C5-C6	-38.9(2)
C8-C6-C10-O3	63.3(3)
C10-C6-C8-O4	57.4(3)
C10-C6-C8-C9	-69.0(3)

Table 2-7 Hydrogen bonds for compound 19 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O3-H3O4#1	0.84	1.90	2.663(2)	150.0

O4-H4O3#2	0.84	1.86	2.665(3)	160.5

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1/2,-y+3/2,-z+1

Compound 25

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 2162555)

Fig 3. X-Ray ellipsoid plots of 25

Table 3-1 Crystal data and structure refinement for compound

25.

Identification code	tx1201
Empirical formula	C ₃₃ H ₄₁ NO ₆ Si
Formula weight	575.76
Temperature/K	169.99(13)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	11.55970(10)
b/Å	10.58310(10)
c/Å	13.69520(10)
a/°	90
β/°	108.3990(10)
γ/°	90
Volume/Å ³	1589.79(3)
Z	2
$\rho_{calc}g/cm^3$	1.203
µ/mm ⁻¹	1.001
F(000)	616.0

Crystal size/mm ³	$0.28\times0.25\times0.2$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.802 to 150.504
Index ranges	$-14 \le h \le 13, -12 \le k \le 12, -16 \le l \le 16$
Reflections collected	30069
Independent reflections	6247 [$R_{int} = 0.0237$, $R_{sigma} = 0.0166$]
Data/restraints/parameters	6247/1/376
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0296, wR_2 = 0.0748$
Final R indexes [all data]	$R_1 = 0.0323, wR_2 = 0.0786$
Largest diff. peak/hole / e Å-3	0.21/-0.20
Flack parameter	-0.003(7)

Table 3-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for compound25. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Si1	5196.6(4)	5004.3(6)	2667.9(4)	28.41(12)
01	10225.7(11)	4873.1(13)	4755.0(11)	29.6(3)
O2	9518.8(11)	6788.1(12)	4114.8(11)	29.0(3)
O3	7811.8(13)	8202.6(14)	4785.5(14)	37.7(4)
O4	6496.4(12)	5416.0(14)	3535.3(10)	31.6(3)
05	10894.7(17)	4338.2(17)	7528.2(14)	51.1(5)
O6	11132.2(16)	6461.3(19)	7795.8(13)	51.1(4)
N1	9558.5(16)	5686.5(17)	6496.3(13)	33.1(4)
C1	8985.4(15)	4870.3(18)	4737.7(14)	24.4(3)
C2	8500.9(16)	6189.1(18)	4315.5(14)	24.7(4)
C3	8158.2(17)	6961.2(19)	5127.0(16)	29.2(4)
C4	9178.6(19)	6970(2)	6152.7(17)	34.0(4)
C5	8979.6(18)	4636.2(18)	5827.4(15)	28.7(4)
C6	10401.3(17)	5851.1(18)	4100.0(16)	29.4(4)
C7	11662.2(19)	6386(2)	4585(2)	45.2(6)
C8	10204(2)	5353(2)	3019.2(19)	42.7(5)
С9	7432.6(17)	6130(2)	3323.1(15)	29.4(4)
C10	5511.3(19)	4617(2)	1441.7(16)	35.2(5)
C11	6417(2)	3730(3)	1447(2)	48.1(6)
C12	6700(3)	3440(3)	561(2)	62.2(8)
C13	6076(3)	4038(4)	-346(2)	70.6(10)
C14	5201(3)	4931(4)	-372.2(19)	65.6(8)
C15	4924(2)	5222(3)	519.9(17)	47.1(6)

C16	4092.5(18)	6351(2)	2473.7(15)	33.2(4)
C17	2901.9(19)	6276(3)	1781.4(17)	40.5(5)
C18	2068(2)	7243(3)	1687.2(19)	46.8(6)
C19	2400(2)	8320(3)	2276(2)	51.1(7)
C20	3570(3)	8433(3)	2959.9(19)	50.5(6)
C21	4400(2)	7449(3)	3056.0(17)	40.1(5)
C22	4662(2)	3627(3)	3287(2)	45.3(6)
C23	3459(3)	3099(4)	2593(3)	72.8(10)
C24	4466(4)	4143(5)	4282(3)	87.6(13)
C25	5611(3)	2593(4)	3576(4)	89.9(14)
C26	10584(2)	5562(2)	7312.6(17)	38.4(5)
C27	11956(2)	4089(3)	8421(2)	52.9(6)
C28	11558(2)	3457(2)	9238.5(17)	42.6(5)
C29	11861(3)	2206(3)	9508(2)	54.1(7)
C30	11477(3)	1630(4)	10266(2)	71.6(10)
C31	10785(3)	2300(5)	10738(2)	77.3(12)
C32	10487(3)	3532(4)	10477(2)	70.1(10)
C33	10867(2)	4101(3)	9742(2)	55.8(7)

Table 3-3 Anisotropic Displacement Parameters (Å²×10³) for compound 25. The Anisotropic displacement factor exponenttakes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si1	19.2(2)	39.1(3)	25.2(2)	2.1(2)	4.53(17)	-2.5(2)
01	22.5(6)	24.6(7)	43.8(7)	6.0(6)	13.5(5)	2.5(6)
02	20.5(6)	21.3(7)	48.8(8)	3.3(6)	16.0(6)	-0.5(5)
O3	26.4(7)	23.5(7)	64.4(10)	-0.4(7)	16.0(7)	2.3(6)
O4	19.5(6)	45.0(9)	28.5(6)	5.2(6)	4.9(5)	-6.1(6)
05	54.3(11)	44.6(10)	39.9(9)	3.3(7)	-5.6(8)	3.0(8)
O6	45.7(9)	53.4(11)	44.5(9)	-14.0(8)	0.5(7)	-6.4(8)
N1	34.9(9)	31.4(9)	30.5(8)	-4.1(7)	6.7(7)	-4.5(7)
C1	20.0(7)	21.5(9)	31.4(9)	-1.8(7)	7.6(6)	-3.0(7)
C2	17.6(8)	22.2(9)	35.2(9)	2.0(7)	9.4(7)	-3.0(7)
C3	23.0(9)	23.8(9)	42.5(11)	-2.6(8)	12.8(8)	-2.3(7)
C4	34.1(10)	28.1(11)	40.4(11)	-7.6(8)	12.6(9)	-3.4(8)
C5	29.3(9)	24.6(10)	31.9(10)	-0.2(7)	9.3(8)	-6.0(7)
C6	24.3(9)	20.9(9)	46.5(11)	4.3(8)	16.3(8)	2.1(7)
C7	23.2(10)	30.1(11)	83.1(18)	2.8(11)	17.8(11)	0.6(9)
C8	48.5(13)	40.4(13)	49.3(13)	4.0(10)	30.0(11)	5.5(10)
C9	23.3(9)	32.3(11)	32.5(9)	6.8(8)	8.7(8)	-1.0(8)

S65

C10	29.0(10)	43.1(12)	32.7(10)	-6.8(8)	8.7(8)	-4.0(8)
C11	42.7(13)	51.4(15)	49.2(14)	-9.2(11)	13.1(11)	4.9(11)
C12	51.9(15)	74(2)	64.0(18)	-25.0(16)	23.0(14)	3.4(15)
C13	60.2(17)	110(3)	50.0(16)	-30.5(18)	29.2(14)	-6.7(18)
C14	54.7(15)	109(3)	34.0(12)	2.2(16)	15.9(11)	3.0(19)
C15	38.7(11)	69.4(18)	34.0(10)	2.2(11)	12.6(9)	6.1(11)
C16	24.4(9)	50.6(13)	25.3(9)	4.4(9)	8.7(7)	3.0(9)
C17	27.9(10)	57.1(15)	34.4(10)	8.4(10)	6.9(8)	2.0(10)
C18	27.8(11)	72.1(18)	41.0(12)	19.8(12)	12.0(9)	9.4(11)
C19	46.7(14)	69.7(18)	44.2(13)	17.5(13)	24.8(11)	26.9(13)
C20	58.2(15)	60.5(17)	36.2(12)	-1.1(11)	19.9(11)	15.8(13)
C21	35.7(11)	56.0(15)	27.7(10)	-3.1(9)	9.0(8)	8.2(10)
C22	24.9(10)	58.1(15)	47.0(13)	17.2(11)	3.0(9)	-7.9(10)
C23	46.7(16)	80(2)	74(2)	21.6(17)	-6.0(14)	-33.8(16)
C24	88(2)	132(4)	51.5(17)	24(2)	34.8(17)	-27(3)
C25	50.0(17)	70(2)	146(4)	63(2)	26(2)	4.0(15)
C26	37.1(11)	45.3(13)	31.4(10)	-4.2(9)	8.7(9)	-2.9(10)
C27	42.7(13)	63.4(17)	44.5(13)	5.4(12)	2.2(10)	7.2(12)
C28	36.0(11)	49.1(14)	33.4(11)	-4.4(10)	-2.2(9)	-0.1(10)
C29	54.3(15)	53.3(16)	46.1(14)	-6.3(12)	3.8(12)	3.2(12)
C30	81(2)	62(2)	52.8(16)	8.9(15)	-4.8(16)	-23.8(17)
C31	66(2)	119(3)	39.7(15)	-7.5(18)	6.0(14)	-47(2)
C32	48.7(16)	112(3)	45.7(15)	-26.3(18)	8.9(12)	-18.8(18)
C33	42.7(13)	68.5(18)	46.9(14)	-17.1(13)	0.8(11)	0.1(13)

Table 3-4 Bond Lengths for compound 25.

Atom Atom		Length/Å	Atom	n Atom	Length/Å
Si1	O4	1.6529(14)	C10	C11	1.405(3)
Si1	C10	1.872(2)	C10	C15	1.387(3)
Si1	C16	1.876(2)	C11	C12	1.387(4)
Si1	C22	1.886(2)	C12	C13	1.378(5)
01	C1	1.426(2)	C13	C14	1.376(5)
01	C6	1.426(2)	C14	C15	1.392(3)
02	C2	1.437(2)	C16	C17	1.406(3)
02	C6	1.427(2)	C16	C21	1.390(3)
03	C3	1.410(2)	C17	C18	1.384(4)
04	C9	1.423(2)	C18	C19	1.378(4)
05	C26	1.351(3)	C19	C20	1.386(4)
05	C27	1.457(3)	C20	C21	1.394(4)

06	C26	1.217(3) C22	C23	1.522(3)
N1	C4	1.459(3) C22	C24	1.550(5)
N1	C5	1.461(3) C22	C25	1.511(4)
N1	C26	1.355(3) C27	C28	1.495(4)
C1	C2	1.546(3) C28	C29	1.389(4)
C1	C5	1.515(3) C28	C33	1.388(4)
C2	C3	1.529(3) C29	C30	1.392(5)
C2	С9	1.522(3) C30	C31	1.373(6)
C3	C4	1.523(3) C31	C32	1.367(6)
C6	C7	1.508(3) C32	C33	1.359(5)
C6	C8	1.519(3)		

Table 3-5 Bond Angles for compound 25.

Aton	1 Aton	n Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
04	Si1	C10	108.20(8)	C11	C10	Si1	119.81(18)
04	Si1	C16	108.97(9)	C15	C10	Si1	122.50(18)
04	Si1	C22	103.49(9)	C15	C10	C11	117.6(2)
C10	Si1	C16	110.81(9)	C12	C11	C10	121.7(3)
C10	Si1	C22	114.73(12)	C13	C12	C11	119.0(3)
C16	Si1	C22	110.25(10)	C14	C13	C12	120.7(3)
C6	01	C1	109.46(14)	C13	C14	C15	120.0(3)
C6	02	C2	109.16(14)	C10	C15	C14	120.9(3)
С9	O4	Si1	124.80(12)	C17	C16	Si1	122.01(19)
C26	05	C27	116.9(2)	C21	C16	Si1	120.97(16)
C4	N1	C5	118.31(16)	C21	C16	C17	116.9(2)
C26	N1	C4	116.92(18)	C18	C17	C16	121.7(2)
C26	N1	C5	123.47(19)	C19	C18	C17	120.0(2)
01	C1	C2	104.35(14)	C18	C19	C20	119.9(2)
01	C1	C5	107.52(14)	C19	C20	C21	119.6(3)
C5	C1	C2	113.72(15)	C16	C21	C20	121.8(2)
02	C2	C1	104.35(13)	C23	C22	Si1	111.57(18)
02	C2	C3	108.59(15)	C23	C22	C24	108.7(3)
02	C2	C9	109.26(15)	C24	C22	Si1	106.4(2)
C3	C2	C1	110.91(15)	C25	C22	Si1	111.27(18)
С9	C2	C1	113.14(15)	C25	C22	C23	110.0(3)
С9	C2	C3	110.34(15)	C25	C22	C24	108.7(3)
03	C3	C2	111.63(17)	05	C26	N1	112.13(19)
03	C3	C4	110.89(17)	06	C26	05	125.0(2)
C4	C3	C2	111.77(16)	06	C26	N1	122.9(2)

N1	C4	C3	111.01(16) O5	5 C27	C28	109.5(2)
N1	C5	C1	110.47(15) C2	.9 C28	C27	120.9(2)
01	C6	O2	104.54(14) C3	3 C28	C27	120.9(3)
01	C6	C7	107.78(18) C3	3 C28	C29	118.2(3)
01	C6	C8	110.72(17) C2	28 C29	C30	120.2(3)
02	C6	C7	109.19(17) C3	1 C30	C29	119.7(3)
02	C6	C8	111.52(17) C3	2 C31	C30	120.4(3)
C7	C6	C8	112.72(19) C3	3 C32	C31	120.2(3)
04	C9	C2	107.13(14) C3	2 C33	C28	121.4(3)

Table 3-6 Hydrogen Bonds for compound 25.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O3 H3 O1 ¹	0.82	2.02	2.7869(19)	156.4

¹2-X,1/2+Y,1-Z

Table 3-7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for compound 25.

x	y	Z	U(eq)
8413.88	8600.68	4768.88	57
8527.76	4206.8	4276.98	29
7450.25	6552.65	5239.74	35
9869.73	7436.4	6081.08	41
8899.94	7394.6	6665.08	41
8146.25	4541.29	5830.67	34
9413.6	3859.14	6085.27	34
11828.41	7002.38	4132.34	68
12251.6	5717.39	4702.68	68
11709.08	6778.75	5228.08	68
9461.55	4873.64	2799.33	64
10876.03	4820.9	3017.38	64
10150.05	6049.51	2557.83	64
7143.93	6974.94	3098.02	35
7679.36	5726.8	2784.31	35
6837.2	3327.03	2059.74	58
7302.97	2850.08	579.17	75
6247.73	3836.42	-946.19	85
4794.88	5338.97	-986.13	79
	x 8413.88 8527.76 7450.25 9869.73 8899.94 8146.25 9413.6 11828.41 12251.6 11709.08 9461.55 10876.03 10150.05 7143.93 7679.36 6837.2 7302.97 6247.73 4794.88	x y 8413.88 8600.68 8527.76 4206.8 7450.25 6552.65 9869.73 7436.4 8899.94 7394.6 8146.25 4541.29 9413.6 3859.14 11828.41 7002.38 12251.6 5717.39 11709.08 6778.75 9461.55 4873.64 10876.03 4820.9 10150.05 6049.51 7143.93 6974.94 7679.36 5726.8 6837.2 3327.03 7302.97 2850.08 6247.73 3836.42 4794.88 5338.97	xyz8413.888600.684768.888527.764206.84276.987450.256552.655239.749869.737436.46081.088899.947394.66665.088146.254541.295830.679413.63859.146085.2711828.417002.384132.3412251.65717.394702.6811709.086778.755228.089461.554873.642799.3310876.034820.93017.3810150.056049.512557.837143.936974.943098.027679.365726.82784.316837.23327.032059.747302.972850.08579.176247.733836.42-946.194794.885338.97-986.13

H15	4335.96	5831.39	497.5	57
H17	2668.29	5557	1376.17	49
H18	1284.32	7167.29	1226.69	56
H19	1839.72	8969.49	2214.11	61
H20	3800.8	9162.52	3352.48	61
H21	5179.69	7528.14	3522.57	48
H23A	2842.01	3740.01	2466.02	109
H23B	3222.82	2388.26	2922.64	109
H23C	3553.74	2834.1	1951.86	109
H24A	5207.53	4521.63	4709.87	131
H24B	4240.13	3461.1	4647.96	131
H24C	3829.02	4764.72	4105.91	131
H25A	5717.94	2244.08	2962.77	135
H25B	5348.33	1941.37	3945.03	135
H25C	6370.86	2938.14	4002.28	135
H27A	12366.88	4876.15	8682.45	63
H27B	12523.65	3548.5	8225.28	63
H29	12321.03	1752.11	9180.79	65
H30	11686.92	795.3	10451.98	86
H31	10518.97	1913.99	11238.71	93
H32	10022.37	3981.25	10802.51	84
H33	10659.14	4940.56	9573.46	67

Compound 32

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 2162552)

Fig 4. X-Ray ellipsoid plots of 32

Table 4-1 Crystal data and structure refinement for compound

32.	
Identification code	TX1796
Empirical formula	C ₉ H ₁₆ ClNO ₃

Formula weight	221.68
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.36560(4)
b/Å	17.75841(12)
c/Å	9.71022(7)
α/°	90
β/°	90.3845(6)
γ/°	90
Volume/Å ³	1097.647(13)
Ζ	4
$\rho_{calc}g/cm^3$	1.341
μ/mm^{-1}	2.968
F(000)	472.0
Crystal size/mm ³	$0.33 \times 0.31 \times 0.25$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.108 to 150.302
Index ranges	$-7 \le h \le 5, -22 \le k \le 22, -11 \le l \le 12$
Reflections collected	12093
Independent reflections	4261 [$R_{int} = 0.0211, R_{sigma} = 0.0170$]
Data/restraints/parameters	4261/1/270
Goodness-of-fit on F ²	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0273, wR_2 = 0.0710$
Final R indexes [all data]	$R_1 = 0.0293, wR_2 = 0.0722$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.34
Flack parameter	0.007(5)

Table 4-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for compound32. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	y	Z	U(eq)
Cl1	-421.9(12)	3136.5(4)	7163.1(7)	48.50(19)
01	1834(2)	3434.2(8)	2830.6(16)	22.7(3)
O2	36(2)	4477.9(9)	2210.0(16)	23.5(3)
O3	5695(2)	4580.5(10)	4633.4(19)	30.2(4)
N1	-59(3)	4556.9(10)	5228(2)	21.3(4)
C1	718(3)	5163.0(12)	4328(2)	22.5(4)
C2	1653(3)	4748.4(13)	3126(2)	21.3(4)
C3	2555(3)	4015.0(12)	3738(2)	20.0(4)

C4	1539(3)	3953.5(12)	5179(2)	20.3(4)
C5	582(4)	3188.8(14)	5435(2)	29.9(5)
C6	4948(3)	3982.5(14)	3796(3)	26.2(5)
C7	787(3)	3781.4(13)	1676(2)	23.5(4)
C8	2306(4)	3905.6(16)	501(3)	34.0(5)
С9	-1049(3)	3293.8(14)	1249(3)	29.3(5)
Cl2	4336.7(12)	6864.5(3)	5306.1(7)	43.16(18)
O4	10725(2)	5447.1(10)	7790.6(18)	29.7(4)
05	6999(2)	6642.1(9)	9564.0(17)	24.8(3)
O6	5152(3)	5619.4(9)	10231.3(16)	25.5(3)
N2	5001(3)	5443.0(10)	7236.4(19)	19.8(4)
C10	6522(3)	6074.6(12)	7255(2)	21.0(4)
C11	7639(3)	6040.4(12)	8681(2)	20.7(4)
C12	6763(3)	5324.2(12)	9363(2)	22.3(4)
C13	5832(3)	4869.7(12)	8193(2)	22.4(4)
C14	5434(4)	6821.1(14)	7022(2)	28.6(5)
C15	10019(3)	6067.2(15)	8573(3)	28.3(5)
C16	5923(4)	6321.4(13)	10727(2)	25.1(5)
C17	7430(4)	6212.1(16)	11927(3)	36.7(6)
C18	4103(4)	6824.3(16)	11102(3)	32.9(5)

Table 4-3 Anisotropic Displacement Parameters (Å²×10³) for compound 32. The Anisotropic displacement factor exponenttakes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	64.9(4)	40.9(3)	40.1(4)	11.0(3)	22.6(3)	-1.2(3)
01	23.2(7)	20.4(7)	24.4(7)	-4.5(6)	-2.1(6)	1.0(6)
02	25.2(7)	21.9(7)	23.5(8)	-3.9(6)	-5.6(6)	1.6(6)
03	13.9(7)	36.6(9)	40.0(9)	-13.7(7)	-1.4(6)	-0.2(6)
N1	15.9(8)	26.2(9)	21.8(9)	-3.9(7)	1.1(7)	2.4(7)
C1	20.6(10)	20.4(10)	26.5(10)	-3.3(8)	-4.2(8)	1.2(8)
C2	20.1(9)	21.3(9)	22.5(10)	0.1(8)	-1.4(8)	-2.6(8)
C3	14.9(9)	21.9(10)	23.2(10)	-3.6(8)	0.6(7)	-0.6(8)
C4	15.7(9)	23.3(10)	22.0(10)	-1.1(8)	-0.7(7)	1.2(8)
C5	33.4(11)	26.8(11)	29.5(11)	1.8(10)	7.6(9)	-1.3(10)
C6	16.1(10)	30.8(12)	31.8(12)	-9.4(9)	1.7(8)	1.6(8)
C7	23.6(10)	24.9(11)	22.1(10)	-3.7(9)	-0.8(8)	-0.3(8)
C8	36.7(13)	39.6(14)	25.7(12)	-6.3(10)	8.2(10)	-8.7(11)
C9	25.8(11)	29.8(12)	32.1(12)	-8.3(9)	-3.2(9)	-3.3(9)
Cl2	55.5(4)	32.5(3)	41.2(3)	7.2(3)	-20.7(3)	-2.6(3)

O4	13.8(7)	36.4(9)	38.8(9)	-12.8(7)	2.0(6)	0.5(6)
05	24.5(7)	22.3(8)	27.6(8)	-4.9(6)	3.0(6)	0.5(6)
O6	24.3(7)	27.5(8)	24.7(8)	-4.0(6)	5.5(6)	0.1(6)
N2	16.6(8)	20.9(9)	22.0(9)	-2.6(7)	0.0(6)	-1.7(6)
C10	16.2(9)	24.6(10)	22.3(10)	-1.6(8)	3.3(7)	-2.7(8)
C11	14.2(9)	22.8(10)	25.2(10)	-3.6(9)	1.0(8)	0.1(8)
C12	22.1(10)	22.2(10)	22.7(10)	-0.5(8)	2.3(8)	4.2(8)
C13	20.3(10)	20.5(10)	26.4(10)	-2.1(8)	4.6(8)	0.1(8)
C14	31.0(11)	23.4(11)	31.4(11)	1.6(10)	-5.7(9)	-3.0(9)
C15	15.9(10)	34.0(12)	35.0(12)	-11.6(10)	0.2(9)	-2.1(9)
C16	25.9(11)	27.9(11)	21.7(11)	-4.4(8)	0.3(8)	3.2(9)
C17	36.2(13)	44.6(15)	29.1(12)	-6.2(11)	-9.9(10)	10.9(11)
C18	27.8(11)	36.6(12)	34.2(12)	-9.6(11)	2.1(9)	8.3(10)

Table 4-4 Bond Lengths for compound 32.

Atom Atom		Length/Å	Atom Atom		Length/Å
C11	C5	1.802(2)	Cl2	C14	1.804(2)
01	C3	1.430(3)	04	C15	1.413(3)
01	C7	1.439(3)	05	C11	1.431(3)
02	C2	1.438(3)	05	C16	1.442(3)
02	C7	1.425(3)	06	C12	1.431(3)
03	C6	1.418(3)	06	C16	1.422(3)
N1	C1	1.474(3)	N2	C10	1.482(3)
N1	C4	1.479(3)	N2	C13	1.474(3)
C1	C2	1.506(3)	C10	C11	1.553(3)
C2	C3	1.541(3)	C10	C14	1.512(3)
C3	C4	1.549(3)	C11	C12	1.540(3)
C3	C6	1.525(3)	C11	C15	1.520(3)
C4	C5	1.510(3)	C12	C13	1.511(3)
C7	C8	1.517(3)	C16	C17	1.517(3)
C7	С9	1.510(3)	C16	C18	1.509(3)

Table 4-5 Bond Angles for compound 32.

Aton	n Aton	n Atom	Angle/°	Aton	1 Aton	1 Atom	Angle/°
C3	01	C7	108.42(16)	C11	05	C16	108.23(16)
C7	02	C2	105.92(16)	C16	06	C12	105.85(16)
C1	N1	C4	106.04(16)	C13	N2	C10	106.45(16)
N1	C1	C2	103.81(16) N2	C10	C11	106.04(17)	
----	----	-----	----------------	-----	-----	------------	
02	C2	C1	110.94(17) N2	C10	C14	111.29(17)	
02	C2	C3	102.68(16) C14	C10	C11	111.96(18)	
C1	C2	C3	105.20(17) O5	C11	C10	111.99(17)	
01	C3	C2	104.76(17) O5	C11	C12	104.69(16)	
01	C3	C4	111.81(17) O5	C11	C15	107.81(17)	
01	C3	C6	108.16(17) C12	C11	C10	104.54(16)	
C2	C3	C4	104.56(16) C15	C11	C10	112.80(18)	
C6	C3	C2	114.56(18) C15	C11	C12	114.80(19)	
C6	C3	C4	112.76(18) 06	C12	C11	102.35(16)	
N1	C4	C3	105.63(16) 06	C12	C13	111.07(17)	
N1	C4	C5	111.60(17) C13	C12	C11	105.00(17)	
C5	C4	C3	112.54(18) N2	C13	C12	104.01(17)	
C4	C5	Cl1	110.22(17) C10	C14	Cl2	110.46(16)	
O3	C6	C3	108.90(17) O4	C15	C11	109.48(17)	
01	C7	C8	110.73(18) O5	C16	C17	110.5(2)	
01	C7	С9	108.78(18) O5	C16	C18	108.94(19)	
02	C7	O1	104.08(16) 06	C16	O5	104.23(16)	
02	C7	C8	111.38(19) 06	C16	C17	111.3(2)	
02	C7	С9	109.68(18) O6	C16	C18	109.66(19)	
С9	C7	C8	111.88(19) C18	C16	C17	111.89(19)	

Table 4-6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for compound32.

Atom	x	У	Ζ	U(eq)
Н3	7060(80)	4490(30)	4870(50)	69(12)
H1	-130(50)	4721(18)	6070(30)	31(7)
H1A	1772.64	5464.58	4797.21	27
H1B	-421.6	5488.08	4029.66	27
H2A	2719.05	5046.37	2647.07	26
H4A	2613.2	4051.61	5884.55	24
H5A	1636.91	2801.55	5303.96	36
H5B	-548.88	3100.83	4780.18	36
H6A	5399.6	3503.72	4176.71	31
H6B	5515.02	4028.46	2874.85	31
H8A	1568.91	4121.91	-268.72	51
H8B	2907.01	3432.35	233.8	51
H8C	3403	4241.33	794.43	51
H9A	-1887.54	3180.83	2040.32	44

H9B	-537.02	2833.83	854.65	44
H9C	-1888.81	3556.93	579.71	44
H4	12003.66	5471.73	7703.71	44
H2	4940(40)	5269(17)	6360(30)	25(7)
H10	7562.16	5996.16	6529.41	25
H12	7837.76	5045.45	9880.09	27
H13A	6898.56	4564.52	7753.16	27
H13B	4718.61	4543.57	8518.66	27
H14A	6433.57	7228	7148.99	34
H14B	4323.44	6883.22	7691.94	34
H15A	10444.62	6533.21	8134.77	34
H15B	10643.54	6050.7	9486.43	34
H17A	8550.72	5883.89	11654.76	55
H17B	6693.02	5992.71	12687.65	55
H17C	7998.64	6690.65	12198.75	55
H18A	4627.23	7299.64	11425.73	49
H18B	3292.64	6589.56	11813.13	49
H18C	3230.09	6903.65	10304.6	49

Compound 39

Structure deposited at the Cambridge Crystallographic Data Centre (**CCDC** 2162553) tx1795:

Fig 5. X-Ray ellipsoid plots of 39

Table 5-1 Crystal data and structure refinement for compound

39.

Identification code	TX1795
Empirical formula	$C_{10}H_{15}NO_5$
Formula weight	229.23
Temperature/K	170.00(10)

Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	8.50310(10)
b/Å	11.03120(10)
c/Å	11.53190(10)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1081.685(19)
Z	4
$\rho_{calc}g/cm^3$	1.408
µ/mm ⁻¹	0.962
F(000)	488.0
Crystal size/mm ³	$0.33 \times 0.12 \times 0.11$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	11.1 to 150.286
Index ranges	$\text{-10} \le h \le 10, \text{-13} \le k \le 13, \text{-10} \le l \le 14$
Reflections collected	12265
Independent reflections	2179 [$R_{int} = 0.0237, R_{sigma} = 0.0129$]
Data/restraints/parameters	2179/0/148
Goodness-of-fit on F ²	1.083
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0280, wR_2 = 0.0754$
Final R indexes [all data]	$R_1 = 0.0292, wR_2 = 0.0766$
Largest diff. peak/hole / e Å- 3	0.33/-0.15
Flack parameter	0.05(5)

Table 5-2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for compound39. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Ζ	U(eq)
01	7356.8(16)	3077.2(12)	9162.4(12)	34.8(3)
O2	5413.6(15)	3299.8(11)	7131.2(10)	26.6(3)
O3	5389.6(16)	5353.0(11)	7086.4(10)	29.2(3)
O4	1445.6(17)	5844.7(14)	6680.9(15)	46.2(4)
O5	1592.0(16)	3817.7(13)	6650.3(13)	35.8(3)
N1	2437.8(19)	4761.9(13)	8241.2(13)	29.8(3)
C1	3056(2)	3531.2(16)	8360.2(15)	27.7(4)
C2	2169(2)	2865.3(18)	7401.6(18)	35.0(4)
C3	1816(2)	4910.4(19)	7159.8(17)	32.7(4)
C4	3616(2)	5614.0(17)	8677.6(16)	32.3(4)

C5	5159(2)	5050.9(15)	8278.9(14)	26.0(3)
C6	4874(2)	3664.1(14)	8250.3(14)	23.8(3)
C7	5702(2)	2958.6(16)	9208.0(15)	29.0(4)
C8	6043(2)	4325.7(17)	6518.1(15)	27.4(4)
С9	5443(3)	4299(2)	5282.7(15)	37.7(4)
C10	7820(2)	4334(2)	6589.0(19)	39.6(4)
C7 C8 C9 C10	5702(2) 6043(2) 5443(3) 7820(2)	2958.6(16) 4325.7(17) 4299(2) 4334(2)	9208.0(15) 6518.1(15) 5282.7(15) 6589.0(19)	29 27 37 39

Table 5-3 Anisotropic Displacement Parameters (Å²×10³) for compound 39. The Anisotropic displacement factor exponenttakes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	34.6(7)	34.5(7)	35.5(7)	2.2(6)	-11.9(6)	1.4(6)
02	32.0(6)	25.9(6)	22.0(6)	1.0(4)	1.4(5)	-1.0(5)
O3	35.1(7)	26.3(6)	26.2(6)	7.0(4)	5.2(5)	1.9(5)
O4	34.8(7)	43.6(8)	60.1(9)	19.7(8)	-10.1(7)	0.2(6)
05	31.6(6)	42.0(7)	33.9(7)	5.4(6)	-6.9(5)	-4.0(6)
N1	29.3(7)	32.5(7)	27.4(7)	1.1(6)	5.5(6)	1.1(6)
C1	29.7(9)	29.2(8)	24.1(8)	6.7(7)	1.5(7)	-3.7(7)
C2	32.3(9)	33.9(9)	38.7(10)	5.4(8)	-6.8(8)	-6.2(8)
C3	21.9(8)	40.7(10)	35.7(9)	8.4(8)	0.6(7)	0.0(8)
C4	39.7(10)	30.3(8)	27.1(8)	-2.4(7)	4.1(8)	-0.3(8)
C5	32.5(8)	24.1(7)	21.5(7)	3.2(6)	-1.9(7)	-2.2(7)
C6	28.6(8)	23.8(7)	19.1(7)	2.6(6)	-2.2(7)	-2.7(6)
C7	34.4(9)	27.4(8)	25.1(8)	5.0(7)	-6.2(7)	-2.8(7)
C8	27.1(8)	29.3(8)	25.9(8)	3.9(7)	2.8(6)	0.3(7)
С9	40.0(11)	48.8(11)	24.3(9)	5.1(8)	3.8(8)	2.2(9)
C10	28.8(9)	46.0(10)	44.1(11)	5.4(9)	4.4(8)	-0.8(9)

Table 5-4 Bond Lengths for compound 39.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C7	1.414(2)	N1	C3	1.365(2)
02	C6	1.4274(19)	N1	C4	1.463(2)
02	C8	1.438(2)	C1	C2	1.527(3)
03	C5	1.4285(19)	C1	C6	1.558(2)
03	C8	1.422(2)	C4	C5	1.523(2)
04	C3	1.211(2)	C5	C6	1.549(2)
05	C2	1.448(2)	C6	C7	1.524(2)
05	C3	1.354(3)	C8	С9	1.514(2)

Table 5-5 Bond Angles for compound 39.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
C6	02	C8	110.04(12)	O3	C5	C6	103.37(13)	1
C8	O3	C5	108.14(12)	C4	C5	C6	105.91(14)	(
C3	05	C2	109.79(14)	02	C6	C1	111.48(13)	1
C1	N1	C4	108.53(14)	02	C6	C5	104.30(13)	1
C3	N1	C1	109.67(15)	02	C6	C7	111.28(14)	1
C3	N1	C4	120.17(15)	C5	C6	C1	104.28(14)	I
N1	C1	C2	101.60(14)	C7	C6	C1	110.58(14)	I
N1	C1	C6	105.18(13)	C7	C6	C5	114.61(14)	I
C2	C1	C6	118.46(15)	01	C7	C6	112.69(15)	I
05	C2	C1	104.58(15)	02	C8	С9	108.78(15)	1
04	C3	05	121.55(17)	02	C8	C10	110.48(15)	I
04	C3	N1	128.3(2)	O3	C8	02	104.78(12)	1
05	C3	N1	110.12(16)	03	C8	С9	108.51(15)	I
N1	C4	C5	102.96(14)	03	C8	C10	111.14(16)	1
03	C5	C4	108.28(14)	C10	C8	С9	112.81(16)	I

Table 5-6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for compound39.

x	У	Ζ	U(eq)
7727.97	2518.37	8781.69	52
2778.85	3196.34	9120.24	33
2865.68	2323.81	6982.48	42
1305.36	2397.85	7720.34	42
3573.3	5674.11	9516.22	39
3470.92	6413.81	8344.94	39
6052.87	5280.23	8768.89	31
5330.93	3245.43	9954.55	35
5427	2107.98	9142.68	35
5778.84	3563.04	4913.71	57
5854.49	4982.08	4865.62	57
4314.95	4334.77	5285.12	57
8137.47	4393.24	7385.74	59
	x 7727.97 2778.85 2865.68 1305.36 3573.3 3470.92 6052.87 5330.93 5427 5778.84 5854.49 4314.95 8137.47	xy7727.972518.372778.853196.342865.682323.811305.362397.853573.35674.113470.926413.816052.875280.235330.933245.4354272107.985778.843563.045854.494982.084314.954334.778137.474393.24	xyz7727.972518.378781.692778.853196.349120.242865.682323.816982.481305.362397.857720.343573.35674.119516.223470.926413.818344.946052.875280.238768.895330.933245.439954.5554272107.989142.685778.843563.044913.715854.494982.084865.624314.954334.775285.128137.474393.247385.74

H10B	8222.37	5015.21	6165.03	59
H10C	8226.03	3597.65	6261.21	59