Electronic Supplementary Informations

A Phosphonium-Based Deep Eutectic Solvent Promotes the Stereoselective Semi-Reduction of Internal Alkynes to (Z)-Alkenes

Andrea Nicola Paparella,^a Francesco Messa,^a Serena Perrone,^{a,*} and Antonio Salomone^{b,*}

^a Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce (Italy)

^d Dipartimento di Chimica, Consorzio C.I.N.M.P.I.S., Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari (Italy)

1	(Gene	eral Methods			
2	9	Synthesis of Internal Alkynes (1)S3				
	2.1	L	Characterization Data for the Alkynes 1g, 1i, 1k			
3	٦	Tabl	le S1: Supplementary Details for the Investigation of Reaction Time in the Semi-reduction of Alkyne			
1k) to	Alke	ene (Z)- 2b			
4	(Grap	ph S1: Temperature Variation During the Semi-reduction of Alkyne 1b to (Z)-Alkene 2bS6			
5	٦	Tabl	le S2: Supplementary Details for the Investigation of Water Influence in the Semi-reduction of Alkyne			
1Ł) to	Alke	ene (Z)- 2b			
6	٦	Tabl	le S3: Supplementary Details for the Influence of Palladium Heterogeneous Catalysts on the Semi-			
re	duc	ction	n of Alkyne 1b to Alkene (<i>Z</i>)- 2b			
7	E	Expe	erimental Procedure for the Stereoselective Semi-reduction of Internal Alkynes to Z-AlkenesS8			
	7.1	L	Table S4: Supplementary Details for the Stereoselective Semi-reduction of Internal Alkyne to Z-			
	Alk	kene	es in MTPBr/EG DES			
	7.2	2	Characterization Data for the Z-Alkenes 2a-p S11			
8	9	Synt	thesis of the Pharmacologically Active Molecule Combretastatin A4 (C-A4)S15			
	8.1	L	Synthesis of the Internal Alkyne 1q S15			
	8.2	2	Semi-reduction of Internal Alkyne 1q to Combretastatin A4 (C-A4)S15			
	8.3	3	Characterization Data for the Compounds 5, 6, 1q and Combretastatin A4 (C-A4)S16			
9	(One [.]	e-pot Synthesis of (Z)-1-Methyl-2-styrylbenzene 2b Starting from 2-lodotoluene and			
Pr	ieny	уіасе	etylene			
TC)	18	te (7) Allong 26			
	куп		b to (2)-Alkene 2b			
~ I I	_ 	18 - 24	b in cheller pre-			
AI	кеп		b in ChCl/EG DES			
12	. + ~	ة ا (ح)	Allenn 2h			
10) (0	(Z)-/	-AIKENE 20			
13	5	۰H	יו ואויוג and אווא Spectra			

1 General Methods

¹H NMR and ¹³C NMR spectra were recorded on a Bruker 600 or 400.12 MHz spectrometer and chemical shifts are reported in parts per million (δ). Dimethyl sulfone has been used as the internal standard for yield determination by ¹H NMR analysis of the crude reaction mixtures. The following abbreviations have been used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, quin = quintuplet, sext = sextet, sep = septet, br = broad. FT-IR spectra were recorded on a Perkin-Elmer 681 spectrometer. Analytical thin-layer chromatography (TLC) was carried out on pre-coated 0.25 mm thick plates of Kieselgel 60 F254; visualisation was accomplished by UV light (254 nm) or by spraying a solution of 5 % (w/v) ammonium molybdate and 0.2 % (w/v) cerium(III) sulfate in 100 mL 17.6 % (w/v) aq. sulphuric acid and heating to 473 K until blue spots appeared. Chromatography was conducted by using silica gel 60 with a particle size distribution 40-63 μm and 230–400 ASTM. GC-MS analyses were performed on HP 5995C model. High-resolution mass spectrometry (HRMS) analyses were performed using a Bruker microTOF QII mass spectrometer equipped with an electrospray ion source (ESI). Melting points were determined with an Electrothermal melting point apparatus. Reagents and solvents, unless otherwise specified, were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) and TCI (Tokyo Chemical Industry, Europe, N. V.) and used without any further purification. Aluminum powder was purchased from Alfa Aesar (Thermo Fisher, Kandel, GmbH, Germany), with the following features: -325 mesh, 99.5%, APS 7–15 μm. Petroleum ether refers to the 40–60 °C boiling fraction. Deep Eutectic Solvents (DES) [cholinium chloride (ChCl)/glycerol (Gly) (1:2 mol/mol); ChCl/ethylene glycol (EG) (1:2 mol/mol); MePh₃PBr (MTPBr)/EG DES (1:5 or 1:4 mol/mol); ChCl/urea (1:2 mol/mol)] were prepared by heating under stirring at 60-80 °C for 10-30 min the corresponding individual components until a clear eutectic mixture was obtained. Particularly, for the preparation of dry MTPBr/EG DES (1:5 mol/mol), freshly distilled EG over anhydrous Na₂SO₄, under reduced pressure and N₂ atmosphere, was used. Full characterization data, including copies of ¹H NMR and ¹³C NMR spectra, have been reported for all the synthesized compounds.

2 Synthesis of Internal Alkynes (1)

For the preparation of non-commercially available alkynes (**1**), unless specified otherwise, a known palladium catalysed Sonogashira cross-coupling reaction in DES was used.¹ To a suspension of aryl iodide (0.5 mmol) in 2.0 g of degassed Gly/ChCl (2:1 mol/mol), aryl-substituted terminal alkyne (1.0 mmol), Et₃N (0.2 mL, 1.5 mmol), and Pd/C 10 wt % (2.0 mol%, 10 mg), were sequentially added. The

reaction mixture was stirred at 60 °C for 3 h until complete consumption of the starting material (monitored by TLC), then cooled to room temperature, and finally extracted with CPME (2.0 mL x 3). The organic layer was filtered through a celite pad and evaporated under reduced pressure to afford the crude mixture. The latter was purified by column chromatography on silica gel (petroleum ether/EtOAc 70:30 ÷ 80:20) to provide the desired alkyne.

Internal alkyne **1o** was prepared by reacting (phenylethynyl)lithium with cyclohexanone, using a known literature method.²

The internal alkynes **1g**, **1i** and **1k** were prepared following a modified literature procedure, reacting iodobenzene and 2-(4-ethynylphenyl)-2-methyl-1,3-dioxolane for **1g**, 1-iodonaphtalene and 4-ethynylbenzonitrile for **1i** and 1-iodonaphthalene and 4-ethynylpyridine for **1k**, and.³ Particularly in a 50 mL round bottom flask, aryl lodide (1.0 mmol), *i*-Pr₂NH (2.0 mmol, 118.0 mg, 170.0 μ L), terminal alkyne (1.0 mmol) were added to a solution of Pd(PPh₃)₂Cl₂ (4.0 mol%, 0.04 mmol, 28.0 mg) and Cul (2 mol%, 0.02 mmol, 3.8 mg) in dry THF (3.0 mL), at room temperature. After 20–30 min of stirring, the mixture was filtered through a short celite pad and washed with petroleum ether and AcOEt (2:1). The combined eluents were concentrated to afford a crude mixture, which was purified by flash silica gel column chromatography (petroleum ether/EtOAc 70:30 ÷ 80:20) obtaining the desired internal alkyne.

Characterization data for unknown alkynes **1g**, **1i**, **1k** have been reported below.

2.1 Characterization Data for the Alkynes 1g, 1i, 1k

2-Methyl-2-(4-(phenylethynyl)phenyl)-1,3-dioxolane (1g): brown solid, 85% (225 mg), m.p. 80-83 °C. ¹H NMR (400.12 MHz, CDCl₃): δ 7.58–7.34 (m, 9H), 4.09–4.00 (m, 2H), 3.82–3.74 (m, 2H), 1.66 (s, 3H);

¹³C NMR (100.62 MHz, CDCl₃): δ 143.4, 131.6, 131.4, 128.4, 128.3, 128.2, 125.3, 123.2, 122.7, 108.6, 89.4, 89.1, 64.4, 27.4; FT–IR (KBr, cm⁻¹): 3056, 2987, 2887, 2217, 1249, 1195, 1118, 836; GC/MS (70 eV) *m/z* (%): 264 [M⁺, 10], 249 (100), 205 (35), 176 (18), 151 (12), 88 (95); HRMS (ESI) *m/z* calcd for [C₁₈H₁₆O₂ + H]⁺ 265.1223; found: 265.1229.

4-(Naphthalen-1-ylethynyl)benzonitrile (1i): pale yellow solid, 96% (243 mg), m.p. 116–119 °C. ¹H NMR (400.12 MHz, CDCl₃): δ 8.40–8.38 (m, 1H), 7.91–7.89 (m, 2H), 7.80–7.78 (m, 1H), 7.71–7.61 (m, 5H),

7.59–7.55 (m, 1H), 7.51–7.47 (m, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 133.1, 133.08, 132.03, 132.02, 131.0, 129.7, 128.5, 128.2, 127.1, 126.6, 125.8, 125.2, 119.8, 118.5, 111.5, 92.5, 92.0; FT–IR (KBr, cm⁻¹):3389, 3087, 3062, 2226, 2205, 1648, 840, 799, 736; GC/MS (70 eV) *m/z* (%): 253 [M⁺, 100], 252 (45), 251 (60), 225 (15), 126 (20), 112 (15); HRMS (ESI) *m/z* calcd for [C₁₉H₁₁N + H]⁺ 254.0964 ; found: 254.0969.

4-(Naphthalen-1-ylethynyl)pyridine (1k): brown oil, 70% (161 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 8.66–8.64 (m, 2H), 8.40–8.37 (m, 1H), 7.91–7.88 (m, 2H), 7.81–7.79 (m, 1H), 7.64–7.61 (m, 1H), 7.58–7.54 (m, 1H), 7.50–7.46 (m,

3H); ¹³C NMR (100.62 MHz, CDCl₃): δ 149.7, 133.12, 133.10, 131.5, 131.1, 129.8, 128.4, 127.1, 126.6, 125.8, 125.5, 125.2, 119.6, 92.2, 91.4; FT–IR (Film, cm⁻¹): 3420, 3055, 3046, 2213, 1593, 1399, 818, 772; GC/MS (70 eV) *m/z* (%): 229 [M⁺, 100], 228 (63), 200 (35), 176 (15), 150 (14), 114 (15), 88 (22); HRMS (ESI) *m/z* calcd for [C₁₇H₁₁N + H]⁺ 230.0964; found: 230.0972.

3 Table S1: Supplementary Details for the Investigation of Reaction Time in the Semi-reduction of Alkyne 1b to Alkene (*Z*)-2b.

0.25 mmol			Al (10.0 equiv.) KOH (20.0 equiv Pd/C (10.0 mol% MTPBr/EG (2.5 m 80 °C, t	$ \begin{array}{c} \cdot \\ $	+	'n
1b				(<i>Z</i>)- 2 b	3b	
	Entry	+ (b)	1b Copy (9/) ^a	(7) 2 h Viold (%)		
	Entry	t (n)	10 CONV. (%) ^a	(2)- 20 Held (%) ³	30 Heid (%) ²	
	1	1	18	10	ND	
	2	5	49	44	ND	
	3	12	99	63	29	
	4	16	98	64	31	

ND = not detected. ^a Calculated *via* ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

4 Graph S1: Temperature Variation During the Semi-reduction of Alkyne 1b to (*Z*)-Alkene 2b.

Time (min)	Temp. (° C)
1	26
2	75
3	77
4	78
5	78
6	78
7	79
8	79
9	79
10	80
15	80
20	80

Experimental procedure: In a three necked 250 mL round bottom flask, equipped with an internal thermometer, MTPBr (17.1 g, 48.0 mmol) and freshly distilled dry EG (14.8 g, 13.3 mL, 240 mmol) were added and gently heated up to 80 °C until 25.0 mL of a clear DES mixture was formed. After cooling the DES to r.t., internal alkyne **1b** (2.5 mmol, 480 mg), distilled water (250 μ L), Pd/C 10 wt % (10.0 mol%, 0.25 mmol, 265 mg) and Al(0) powder (10.0 equiv., 25.0 mmol, 675 mg) were

sequentially added. The mixture was stirred for about 1 min. then, KOH (20.0 equiv., 50.0 mmol, 2.800 g) was carefully added to the mixture, and the flask was quickly closed. The temperature of the reaction mixture was then recorded until it reached the value of 80 °C.

5 Table S2: Supplementary Details for the Investigation of Water Influence in the Semi-reduction of Alkyne 1b to Alkene (*Z*)-2b.

^a Calculated *via* ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

6 Table S3: Supplementary Details for the Influence of Palladium Heterogeneous Catalysts on the Semi-reduction of Alkyne 1b to Alkene (*Z*)-2b.

	Ph	KOH (20.0 equiv. Pd-cat. (10.0 mol% H ₂ O (25.0 μL) MTPBr/EG (2.5 ml 80 °C, 12 h	$ \overset{)}{\overset{(6)}{}} \qquad \overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{}} \overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$	+
	1b		(Z)- 2b	3b
Entry	Pd-cat.	1b Conv	v. (%)ª (Z)- 2b Yie	eld (%) ^a 3b Yield (%) ^a
1	Pd/BaSC) ₄ 31	31	. ND
1 2	Pd/BaSC Pd/Al₂O	0 ₄ 31 ₃ 58	L 31 3 57	ND
1 2 4	Pd/BaSC Pd/Al ₂ O Pd/CaCO ₃ /Pb	0 ₄ 31 ₃ 58 (AcO)₂ 80	L 31 3 57 0 77	ND ND ND

ND = not detected. $[Pd/CaCO_3/Pb(AcO)_2]$ = Lindlar's catalyst.^a Calculated via ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone). ^b Reaction performed in ChCl/urea (1:2 mol/mol).

7 Experimental Procedure for the Stereoselective Semi-reduction of Internal Alkynes to Z-Alkenes.

In a 50 mL round bottom flask, MTPBr (1.71 g, 4.8 mmol) and freshly distilled dry EG (1.48 g, 1.33 mL, 24.0 mmol) were added and gently heated up to 80 °C until 2.5 mL of a clear DES mixture was formed. After cooling the DES to r.t., internal alkyne (0.25 mmol), distilled water (25.0 μ L), Pd/C 10 wt % (10.0 mol%, 0.025 mmol, 26.5 mg), Al(0) powder (10.0 equiv., 2.5 mmol, 67.5 mg) were sequentially added. The mixture was stirred for about 1 min. then, KOH (20.0 equiv., 5.0 mmol, 280 mg) was carefully added to the mixture, and the flask was quickly closed with a rubber stopper equipped with a balloon to prevent the H₂ overpressure. The reaction was stirred for 12 hours at 80°C. After this time, the reaction mixture was cooled to room temperature and water (5.0 ml) was added. For alkenes with an acidic functional group (**2e**, **I**) after the water addition, HCl 10% v/v solution was added up to pH = 2. The reaction mixture was then extracted with AcOEt (5 ml x 3). The reunited organic phases were dried over anhydrous Na₂SO₄, filtered through a celite pad and evaporated under reduced pressure. The crude was purified by flash chromatography column on silica gel (using as eluent petroleum ether/AcOEt 100/0 to petroleum ether/AcOEt 80/20; for

compounds **2I-p**, petroleum ether/acetone 70/30 with 5 gtt of acetic acid for 10.0 mL of eluent was used) to obtain the desired *Z*-alkene.

7.1 Table S4: Supplementary Details for the Stereoselective Semi-reduction of Internal Alkyne to Z-Alkenes in MTPBr/EG DES.

- 1	?	Pd/C (10 mol%), Al (10 equiv.), KOH (20 equiv.) $\xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{R^2} \xrightarrow{R^2}$							
0.:	25 mmol 1	dry MTPBr/EG (2 12 h	.5 mL), H ₂ O (25 μ , 80 °C	L) R ¹ Z-alken	$R^1 R^2 R^1 H R^1$ Z-alkene (2) E-alkene (2) alkane				
-	Entry	Alkyne (1)	1 Conv. (%)	(<i>Z</i>)- 2 Yieldª (%)	Z∕E ratio ^b	3 Yield ^c (%)			
-	1 ^{d,e,f}	Bn N 1a	99	92	>99/1	6			
-	2		99	91	>99/1	<2			
	3	1c	100	80	80/20	ND			
_	4	رر	90	88	>99/1	ND			
	5	()——————————————————————————————	93	85	91/9	ND			
_	6		85	81	99/1	ND			
-	7		99	95	>99/1	ND			
_	8 d,e		100	60	75/25	20			

9 ^{d,e}		100	88	93/7	5
10 ^{d,e}		100	80	>99/1	18
11 ^{d,g}		100	55	63/37	13
12		100	70 ^h	99/1	ND
13 ^g	С Іт ОН	100	87	87/13	ND
14 ^e	OH In	100	97	>99/1	ND
15 ^e		87	83	>99/1	ND
16	1р Он	100	99	>99/1	ND

ND = not detected. ^a Isolated yields. ^b Calculated *via* ¹H NMR analysis of the crude reaction mixture. ^c Calculated *via* ¹H NMR analysis of the crude reaction mixture using an internal standard technique (NMR internal standard: dimethyl sulfone). ^d Reaction performed with Pd/C 5.0 mol%. ^e Reaction performed at 40 °C. ^f Reaction time: 8 h. ^g Reaction performed at r.t. ^h (*Z*)-cinnamic acid was isolated.

7.2 Characterization Data for the Z-Alkenes 2a-p.

(Z)-1-Benzyl-3-(2-(pyridin-4-yl)vinyl)-1*H*-indole (2a): pale orange oil, 92%
(71 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 8.43–8.41 (m, 2H), 7.44–7.42 (m, 1H), 7.33–7.27 (m, 6H), 7.22–7.18 (m, 1H), 7.13–7.06 (m, 4H), 6.92 (d, J = 12.1, Hz, 1H), 6.40 (d, J = 12.1 Hz, 1H), 5.22 (s, 2H); ¹³C NMR (100.62 MHz,

CDCl₃): δ 149.5, 147.0, 136.8, 136.2, 128.8, 127.9, 127.8, 127.3, 126.9, 125.3, 124.0, 122.4, 120.2, 119.7, 111.5, 109.9, 104.2, 50.1; FT–IR (Film, cm⁻¹): 3053, 3025, 2960, 1585, 1564, 1446, 1025, 810; GC/MS (70 eV) *m/z* (%): 310 [M⁺, 100], 219 (25), 191 (10), 91 (95), 65 (15); HRMS (ESI) *m/z* calcd for [C₂₂H₁₈N₂ + H]⁺ 311.1543; found: 311.1547.

(Z)-1-Methyl-2-styrylbenzene (2b):⁴ pale yellow oil, 91% (44 mg). ¹H NMR (400.12 MHz, CDCl₃) δ 7.22–7.10 (m, 8H), 7.07–7.03 (m, 1H), 6.66 (d, J = 12.0 Hz, 1H), 6.62 (d, J = 12.0 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100.62 MHz, CDCl₃) δ 137.05, 137.03, 136.0, 130.4, 130.0, 129.5, 128.83, 128.81, 128.0, 127.1, 127.0, 125.6, 19.8; FT–IR

(Film, cm⁻¹): 3056, 3020, 2920, 1492, 1445, 1105, 734; GC/MS (70 eV) *m/z* (%): 194 [M⁺, 81], 179 (100), 178 (74), 115 (20), 89 (13), 77 (9); HRMS (ESI) *m/z* calcd for [C₁₅H₁₄ + H]⁺ 195.1168; found: 195.1172.

(Z)-1,2-Diphenylethene (2c):⁵ colourless oil, 80% (36 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.19–7.29 (m, 10H) 6.63 (s, 2H); ¹³C NMR (100.62 MHz, CDCl₃): 137.2, 130.2, 128.8, 128.2, 127.0; FT–IR (Film, cm⁻¹): 3079, 3053, 3022, 1946, 1643, 1493, 1446,

781, 697; GC/MS (70 eV) m/z (%): 180 [M⁺, 100], 179 (98), 178 (89), 165 (85), 152 (26), 89 (33), 77 (25); HRMS (ESI) m/z calcd for [C₁₄H₁₂ + H]⁺ 181.1012; found: 181.1019. Spectroscopic data for (*E*)-**2c** are in accordance with those reported in the literature.⁶

(Z)-1-Methoxy-4-styrylbenzene (2d):⁴ light yellow oil, 88% (46 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.21–7.10 (m, 7H), 6.70–6.66 (m, 2H), 6.47 (d, J = 11.9 Hz, 1H), 6.43 (d, J = 11.9Hz, 1H), 3.71 (s, 3H); ¹³C NMR (100.62 MHz, CDCl₃): δ 158.6, 137.6, 130.1, 129.7, 129.6, 128.8, 128.7, 128.2, 126.9, 113.5, 55.2; FT–IR (Film, cm⁻¹): 3076, 3006,

2952, 2928, 2833, 1604, 1570, 1509, 1296, 1252, 1175, 1032, 830; GC/MS (70 eV) *m/z* (%): 210 [M⁺, 100], 195 (41), 167 (50), 165 (63), 152 (45), 89 (28), 77 (12); HRMS (ESI) *m/z* calcd for [C₁₅H₁₄ + H]⁺ 211.1117; found: 211.1122.

(Z)-4-Styrylphenol (2e):⁷ pale yellow waxy solid, 85% (42 mg). ¹H NMR (400.12 MHz, CDCl₃): δ = 7.28–7.22 (m, 5H), 7.14 (d, J = 8.7 Hz, 2H), 6.69 (d, J = 8.7 Hz, 1H), 6.52 (s, 2H) 4.78 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ = 155.2, 137.5, 130.3, 128.8, 128.27, 128.25, 127.2, 126.8, 126.7, 115.5; FT–IR (KBr, cm⁻¹): 3377 (br), 3022, 1659,

1591, 1235, 1173, 816, 747; GC/MS (70 eV) *m/z* (%): 196 [M⁺, 100], 195 (60), 177 (50), 165 (53), 152 (30), 77 (10); HRMS (ESI) *m/z* calcd for [C₁₄H₁₂O + H]⁺ 197.0961; found: 197.0964.

(*Z*)-1-(4-styrylphenyl)ethan-1-one (2f):⁸ pale yellow oil, 81% (45 mg). ¹H NMR (400.12 MHz, CDCl₃): 7.75–7.72 (m, 2H), 7.26–7.23 (m, 2H), 7.18–7.13 (m, 5H), 6.64 (d, *J* = 12.2 Hz, 1H), 6.52 (d, *J* = 12.2 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (100.62 MHz, CDCl3): 197.6, 142.2, 136.6, 135.5, 132.4, 129.1, 129.0, 128.8, 128.34, 128.32, 127.5,

26.5; FT–IR (Film, cm⁻¹): 3343, 3053, 3012, 2963, 2917, 2849, 1681, 1601, 1357, 1267, 1182; GC/MS (70 eV) *m/z* (%): 222 [M⁺, 95], 207 (100), 178 (92), 152 (24), 89 (26), 77 (15); HRMS (ESI) *m/z* calcd for [C₁₆H₁₄O + H]⁺ 223.1117; found: 223.1122.

(Z)-2-Methyl-2-(4–styrylphenyl)-1,3-dioxolane (2g): colourless oil, 95% (62 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.34–7.31 (m, 2H), 7.27–7.16 (m, 7H), 6.60 (d, *J* = 12.3 Hz, 1H), 6.55 (d, *J* = 12.3 Hz, 1H), 4.05–3.96 (m, 2H), 3.81–

3.73 (m, 2H), 1.64 (s, 3H); ¹³C NMR (100.62 MHz, CDCl₃): δ 142.0, 137.2, 136.7, 130.3, 129.8, 128.77, 128.75, 128.2, 127.1, 125.1, 108.7, 64.4, 27.4; FT–IR (Film, cm⁻¹): 3060, 3015, 2970, 2925, 1600, 1510, 1250, 1170, 840, 766, 690; GC/MS (70 eV) *m/z* (%): 266 [M⁺, 25], 252 (41), 251 (100), 207 (83), 178 (69), 105 (15), 89 (22); HRMS (ESI) *m/z* calcd for [C₁₈H₁₈O₂ + H]⁺ 267.1380 ; found: 267.1384.

(*Z*)-4-(2–Methylstyryl)benzonitrile (2h): light yellow oil, 60% (33 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.44–7.42 (m, 2H), 7.23–7.17 (m, 4H), 7.08– 7.04 (m, 2H), 6.84 (d, *J* = 12.1 Hz, 1H), 6.62 (d, *J* = 12.1 Hz, 1H), 2.27 (s, 3H);

¹³C NMR (100.62 MHz, CDCl₃): δ 141.7, 136.04, 136.03, 133.1, 131.8, 130.3, 129.3, 128.8, 128.6, 127.9, 125.9, 118.9, 110.3, 19.8; FT–IR (Film, cm⁻¹): 3057, 3014, 2967, 2924, 2226, 1603, 1504, 839; GC/MS (70 eV) *m/z* (%): 219 [M⁺, 90], 204 (100), 203 (50), 115 (25), 91 (15); HRMS (ESI) *m/z* calcd for [C₁₆H₁₃N + H]⁺ 220.1121; found: 220.1129. Spectroscopic data for (*E*)-**2h** are in accordance with those reported in the literature.⁹

(Z)-4-(2-(Naphthalen-1-yl)vinyl)benzonitrile (2i): yellow oil, 88% (56 mg).
¹H NMR (400.12 MHz, CDCl₃): δ 8.02–7.99 (m, 1H), 7.90–7.88 (m, 1H),
7.81–7.79 (m, 1H), 7.55–7.47 (m, 2H), 7.36–7.32 (m, 3H), 7.28–7.22 (m,

2H), 7.15–7.13 (m, 2H), 6.83 (d, J = 12.1 Hz, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 141.5, 134.2, 133.8, 132.2, 131.9, 131.3, 130.4, 129.5, 128.7, 128.3, 126.44, 126.42, 126.3, 125.6, 124.6, 118.9, 110.4; FT– IR (Film, cm⁻¹): 3055, 3015, 2224, 1603, 1453, 1265, 851; GC/MS (70 eV) m/z (%): 255 [M⁺, 100], 254 (98), 153 (28), 152 (30), 127 (22); HRMS (ESI) m/z calcd for [C₁₉H₁₃N + H]⁺ 256.1121 ; found: 256.1126. Spectroscopic data for (*E*)-**2i** are in accordance with those reported in the literature.¹⁰

(Z)-3-Styrylpyridine (2j):¹¹ yellow oil, 80% (36 mg). ¹H NMR (400.12 MHz, CDCl₃): δ
8.46 (s, 1H), 8.40–8.39 (m, 1H), 7.53–7.51 (m, 1H), 7.25–7.17 (m, 5H), 7.14–7.11 (m, 1H), 6.74 (d, J = 12.1 Hz, 1H), 6.52 (d, J = 12.1 Hz, 1H); ¹³C NMR (CDCl₃, 100.62 MHz):

δ 149.6, 147.5, 136.35, 136.32, 133.3, 132.9, 128.6, 128.5, 127.6, 126.1, 123.2; FT–IR (Film, cm⁻¹): 3079, 3053, 3023, 2960, 1585, 1492, 1446, 1024, 808; GC/MS (70 eV) *m/z* (%): 181 [M⁺, 100], 180 (98), 152 (55), 127 (22), 77 (34); HRMS (ESI) *m/z* calcd for [C₁₃H₁₁N + H]⁺ 182.0964; found: 182.0973.

(*Z*)-4-(2-(Naphthalen-1-yl)vinyl)pyridine (2k): colourless oil, 55% (32 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 8.31–8.30 (m, 2H), 8.02–8.00 (m, 1H), 7.91–7.88 (m, 1H), 7.83–7.81 (m, 1H), 7.54–7.50 (m, 2H), 7.37–7.33 (m, 1H), 7.29–7.28

(m, 2H), 6.95–6.93 (m, 2H), 6.77 (d, *J* = 12.1 Hz, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 149.2, 144.6, 133.9, 133.6, 133.3, 131.2, 129.5, 128.7, 128.5, 128.3, 126.3, 126.2, 125.5, 124.5, 123.5; FT–IR (Film, cm⁻¹): 3080, 3052, 3023, 2960, 1585, 1564, 1445, 1420, 808; GC/MS (70 eV) *m/z* (%): 231 [M⁺, 100], 230 (98), 202 (36), 176 (10), 153 (29), 115 (11), 88 (13); HRMS (ESI) *m/z* calcd for [C₁₇H₁₃N + H]⁺ 232.1121; found: 232.1126. Spectroscopic data for (*E*)-**2k** are in accordance with those reported in the literature.¹²

(Z)-3-Phenylacrylic acid (2I):¹³ colourless solid, m.p. 66–67 °C, 70% (26 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 9.93 (br s, 1H), 7.60–7.57 (m, 2H), 7.37–7.30 (m, 3H), 7.04 (d, J = 12.7 Hz, 1H), 5.96 (d, J = 12.7 Hz, 1H) ; ¹³C NMR (100.62 MHz, CDCl₃): δ 171.3, 145.4, 134.4, 129.9, 129.3, 128.1, 118.9; FT–IR (KBr, cm⁻¹): 3396 (br), 3057, 1694, 1631, 1433, 1228, 764; GC/MS (70 eV) m/z (%): 148 [M⁺, 81], 147 (100), 131 (19), 103 (54), 77 (42), 51 (25); HRMS (ESI) m/z calcd for [C₉H₈O₂ + Na]⁺ 171.0417; found: 171.0413.

(*Z*)-4-Phenylbut-3-en-2-ol (2m):¹⁴ dark yellow waxy solid, 87% (32 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.37–7.33 (m, 2H), 7.28–7.25 (m, 3H), 6.50 (d, *J* = 11.6 Hz, 1H), 5.70 (dd, *J* = 11.6, 9.1 Hz, 1H), 4.82–4.75 (m, 1H), 1.92 (br s, 1H), 1.36 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100.62 MHz, CDCl₃): δ 136.6, 135.7, 129.9, 128.7, 128.2, 127.2, 64.1, 23.5; FT–IR (KBr, cm⁻¹):

3376 (br), 3022, 3010, 2971, 2926, 1647, 1600, 1111, 734; GC/MS (70 eV) *m/z* (%): 148 [M⁺, 55], 133 (39), 115(40) 105 (100), 91 (58), 77 (43), 55 (35); HRMS (ESI) *m/z* calcd for [C₁₀H₁₂O + H]⁺ 149.0961; found: 149.0965.

(*Z*)-1,3-Diphenylprop-2-en-1-ol (2n):⁹ pale yellow waxy solid, 97% (51 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.47–7.45 (m, 2H), 7.41–7.30 (m, 8H), 6.70 (d, *J* = 11.5 Hz, 1H), 5.95 (dd, *J* = 11.5, 9.4 Hz, 1H), 5.66 (d, *J* = 9.4 Hz, 1H), 2.43 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 143.2, 136.4, 133.3, 131.2, 128.8, 128.6, 128.3,

127.7, 127.4, 126.3, 69.9; FT–IR (KBr, cm⁻¹): 3372 (br), 3081, 3058, 3026, 2921, 1642, 1599, 1494, 1445, 1192, 763; GC/MS (70 eV) m/z (%): 210 [M⁺, 35], 105 (100), 91 (15), 77 (30); HRMS (ESI) m/z calcd for [C₁₅H₁₄O + H]⁺ 211.1117; found: 211.1123.

(**Z**)-1-Styrylcyclohexan-1-ol (2o):¹⁵ white solid, 83% (42 mg), m.p. 51–53 °C. ¹H NMR (400.12 MHz, CDCl₃): δ 7.40–7.38 (m, 2H), 7.33–7.29 (m, 2H), 7.24–7.21 (m, 1H), 6.49 (d, *J* = 12.7 Hz, 1H), 5.72 (d, *J* = 12.7 Hz, 1H), 1.67–1.55 (m, 6H), 1.53–1.42 (m, 4H), 1.29 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 138.7, 137.7, 129.0, 128.7, 128.0,

126.9, 72.8, 38.9, 25.3, 22.0; FT–IR (KBr, cm⁻¹): 3425 (br), 3057, 3021, 3002, 2931, 2855, 1597, 1492, 1447, 758; GC/MS (70 eV) m/z (%): 202 [M⁺, 72], 159 (85), 145 (100), 131 (55), 117 (23), 103 (25), 91 (39), 77 (24); HRMS (ESI) m/z calcd for [C₁₄H₁₈O + H]⁺ 203.1430 ; found: 203.1439.

(Z)-3-(Naphthalen-1-yl)prop-2-en-1-ol (2p):¹⁰ colourless oil, 99% (46 mg). ¹H NMR (400.12 MHz, CDCl₃): δ 7.98–7.95 (m, 1H), 7.87–7.85 (m, 1H), 7.80–7.78 (m, 1H), 7.52–7.49 (m, 2H), 7.46–7.42 (m, 1H), 7.27–7.25 (m, 1H), 7.09 (d, *J* =

11.5 Hz, 1H), 6.14 (dt, *J* = 11.5, 6.6 Hz, 1H), 4.29 (d, *J* = 6.6 Hz, 1H), 1.52 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 133.42, 133. 40, 132.4, 131.6, 129.3, 128.4, 127.9, 126.5, 126.1, 125.9, 125.1, 124.7, 59.8; FT–IR (Film, cm⁻¹): 3339 (br), 3058, 3014, 2959, 2934, 1374, 1258, 1013, 781; GC/MS (70 eV) m/z (%): 184 [M⁺, 75], 165 (100), 153 (92), 152 (58), 141 (98), 128 (53), 115 (25), 82 (15); HRMS (ESI) m/z calcd for [C₁₃H₁₂O + H]⁺ 185.0961 ; found: 185.0968.

8 Synthesis of the Pharmacologically Active Molecule Combretastatin A4 (C-A4)

8.1 Synthesis of the Internal Alkyne 1q

For the preparation of the internal alkyne **7**, the starting aldehyde isovanilline **4**, was converted to the corresponding *gem*-dibromoolefine **5**, employing a well-known reaction.¹⁶ Subsequently, starting from the alkene **5**, using a literature protocol,¹⁷ the terminal alkyne **6** was obtained. Then, the synthetised **6** underwent a Sonogashira cross-coupling reaction with the 3,4,5-trimethoxy-iodo benzene, according to the procedure described in the Section 2,³ giving the corresponding internal alkyne **1q**.

8.2 Semi-reduction of Internal Alkyne 1q to Combretastatin A4 (C-A4)

In a 50 mL round bottom flask, MTPBr (1.71 g, 4.8 mmol) and freshly distilled dry EG (1.48 g, 1.33 mL, 24.0 mmol) were added and gently heated up to 80 °C until 2.5 mL of a clear DES mixture was formed. After cooling the DES to r.t., internal alkyne **1q** (0.25 mmol), distilled water (200.0 μ L), Pd/C 10 wt % (10.0 mol%, 0.025 mmol, 26.5 mg), Al(0) powder (10.0 equiv., 2.5 mmol, 67.5 mg) were sequentially added. The mixture was stirred for about 1 min. then, KOH (20.0 equiv., 5.0 mmol, 280 mg) was carefully added to the mixture, and the flask was quickly closed with a rubber stopper equipped with a balloon to prevent the H₂ overpressure. The reaction was stirred for 48 hours at 100 °C. After this time, the reaction mixture was cooled to room temperature, water (5.0 ml) and HCl 10% v/v were added to the mixture up to pH = 4. The reaction mixture was then extracted with

 Et_2O (5 ml x 4). The reunited organic phases were dried over anhydrous Na_2SO_4 , filtered through a celite pad and evaporated under reduced pressure. The crude was purified by flash chromatography column on silica gel (using as eluent petroleum ether/AcOEt 70/30) to obtain the desired combretastatin A4 (**C-A4**) in 70% yield.

8.3 Characterization Data for the Compounds 5, 6, 1q and Combretastatin A4 (C-A4)

5-(2,2-dibromovinyl)-2-methoxyphenol (5): pale yellow solid, m.p. 92°C, 91% (280 mg).¹H NMR (400.12 MHz, CDCl₃): 7.36 (s, 1H), 7.23–7.22 (m, 1H), 7.05–7.02 (m, 1H), 6.84–6.82 (m, 1H), 3.90 (s, 3H); ¹³C NMR (100.62 MHz, CDCl₃):

146.7, 145.2, 136.2, 128.5, 121.1, 114.2, 110.2, 87.6, 55.9; FT–IR (KBr, cm⁻¹): 3510 (br), 1590; GC/MS (70 eV) *m/z* (%): 309 [M⁺+ 4, 50], 307 [M⁺+ 2, 100], 305 [M⁺, 51], 292 (93), 264 (28), 184 (13), 148 (31), 133 (50), 105 (57), 77 (21), 51 (41); HRMS (ESI) *m/z* calcd for [C₉H₈Br₂O₂ + H]⁺ 306.8964 ; found: 306.8967.

5-ethynyl-2-methoxyphenol (6): white waxy solid, 93% (125 mg). ¹H NMR (400.12 MHz, CDCl₃): 7.06–7.05 (m, 1H), 7.04–7.02 (m, 1H), 6.79–6.77 (m, 1H), 5.65 (s, 1H), 3.89 (s, 3H), 2.98 (s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): 147.3, 145.2,

124.8, 118.0, 114.8, 110.3, 83.5, 75.6, 55.9; FT–IR (KBr, cm⁻¹): 3500 (br), 3104, 2990; GC/MS (70 eV) m/z (%): 148 [M⁺, 100], 133 (95), 105 (75), 77 (15), 51 (30); HRMS (ESI) m/z calcd for [C₉H₈O₂ + H]⁺ 149.0597; found: 149.0592.

2-methoxy-5-((3,4,5-trimethoxyphenyl)ethynyl)phenol (1q): pale yellow solid, m.p. 94–96 °C, 92% (242 mg).¹H NMR (400.12 MHz, CDCl₃): 7.09–7.05 (m, 2H), 6.83–6.81 (m, 1H), 6.75 (s, 2H), 5.65 (s, 1H), 3.91 (s, 3H), 3.88 (s, 6H), 3.86 (s, 3H); ¹³C NMR (100.62 MHz,

CDCl₃): 153.0, 146.9, 145.3, 138.5, 124.2, 118.5, 117.4, 115.9, 110.4, 108.6, 88.4, 87.8, 60.9, 60.3, 56.1, 55.9; FT–IR (KBr, cm⁻¹): 3480 (br), 2928, 2860, 1675, 1501, 1439, 1390, 1255; GC/MS (70 eV) *m/z* (%): 314 [M⁺, 100], 299 (90), 271 (20), 241 (15), 211 (10), 157 (20); HRMS (ESI) *m/z* calcd for [C₁₈H₁₈O₅ + H]⁺ 315.1227; found: 315.1222.

(*Z*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenol [Combretastatin A4 (C-A4)]: dark yellow solid, m.p. 114-116°C, 70% (55 mg).¹H NMR (400.12 MHz, CDCl₃): 6.92–6.923 (m, 1H), 6.81–6.78 (m, 1H), 6.74–6.72 (m, 1H), 6.52 (s, 2H), 6.47 (d, J = 12.2 Hz, 1H), 6.41 (d, J = 12.2 Hz, 1H), 5.56 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.70 (s, 6H); ¹³C NMR (100.62 MHz, CDCl₃): 152.8, 145.7, 145.1, 137.0, 132.6, 130.5, 129.4, 128.9, 121.1, 115.0, 110.2, 105.9, 60.9, 55.87, 55.86.; FT–IR (KBr, cm⁻¹): 3747 (br), 3450, 2918, 2855, 1636, 1579, 1509, 1458, 1270, 1125, 1010, 750; GC/MS (70 eV) m/z (%): 316 [M⁺, 100], 301 (90), 241 (10), 226 (10), 115 (10); HRMS (ESI) m/z calcd for [C₁₈H₂₀O₅ + H]⁺ 317.1384; found: 317.1387.

9 One-pot Synthesis of (*Z*)-1-Methyl-2-styrylbenzene 2b Starting from 2lodotoluene and Phenylacetylene.

In a 50 mL triple-neck round bottomed flask equipped with magnetic stirring, MTPBr (3.44 g) and dry EG (2.6 mL) were added. The mixture was heated at 80 °C and stirred until 5 mL of a clear and colourless eutectic mixture was formed. The DES was cooled at r.t. and degassed under vacuum/N₂ atmosphere for 3 times. Afterwards, 2-iodotoluene (1.0 mmol, 218 mg), Pd/C 10% wt (10.0 mol%, 0.1 mmol, 106.4 mg), KOH (3.0 mmol, 168 mg) and phenylacetylene (1.2 mmol, 122.4 mg, 131 µL) were subsequentially added. The mixture was stirred for 2 hours at 60 °C. The reaction was monitored by GC-MS until complete consumption of the starting material. After this time, distilled water (100 µL), aluminum powder (10.0 mmol, 270 mg) and KOH (17.0 mmol, 952 mg) were added to the mixture. The system was quickly sealed with a rubber stopper equipped with a balloon to prevent H₂ overpressure. The reaction mixture was stirred for 12 hours at 80 °C. Then, the mixture was cooled to room temperature and 10 ml of water was added. The mixture was extracted with AcOEt (10 mL x 3). The reunited organic phases were dried over Na₂SO₄, filtered through a celite pad and evaporated under reduced pressure. The crude was purified by flash chromatography column on silica gel using hexane as the eluent to obtain the desired (*Z*)-alkene **2b** in 85% yield (165 mg).

10 Table S5: Supplementary Details for the Influence of DESs and Additives in the Semi-reduction of Alkyne 1b to (*Z*)-Alkene 2b.

	Ph	AI (10.0 equiv.) KOH (20.0 equiv Pd/C (10.0 mol% H ₂ O (25.0 μL) additive DES (2.5 mL) 80 °C, 12 h	$ \xrightarrow{)} (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$	H Ph +	_Ph _/	
	0.25 mmol					
	1b		(Z)-2	2b 3b)	
Entry	DES (mol/mol)	Additive (equiv.)	1b Conv. (%)ª	(Z)- 2b Yield (%) ^a	3b Yield (%) ^a	
1	ChCl/urea (1:2)	MDP (0.35)	82	65	17	
2	ChCl/EG (1:2)	PPh₃ (0.35)	100	77	20	
3	ChCl/EG (1:2)	MTPBr (3.0)	100	ND	99	
4	ChCl/EG (1:2)	MDPO (3.0)	100	ND	99	
ND =	not detect	ed. MDP =	methyldiph	nenylphosphine.	MTPBr =	
mothultr	ethyltrinhenylnhosnhonium bromide MDPO = methyldinhenylnhosnhine oxide a					

methyltriphenylphosphonium bromide. MDPO = methyldiphenylphosphine oxide. ^a Calculated *via* ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

11 Table S6: Supplementary Details for the Influence of MDP in the Semi-reduction of Alkyne 1b to (*Z*)-Alkene 2b in ChCl/EG DES

ND = not detected. MDP = methyldiphenylphosphine. ^a Calculated *via* ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).

12 Table S7: Supplementary Details for the Influence of EG-based DESs in the Semireduction of Alkyne 1b to (*Z*)-Alkene 2b

O.25 mmol		Al (10.0 ed KOH (20.0 d Pd/C (10.0 H ₂ O (25.0 Additiv Ph Solvent (2, 80 °C, 1	quiv.) equiv.) mol%)) μL) /e H .5 mL) 2 h	H + Ph	Ph
	1b		(Z)- 2b	3b
Entry	Solvent	Additive (mol%)	1b Conv. (%)a	(Z)- 2b Yield (%) ^a	3b Yield (%) ^a
1	EG	-	<5	traces	traces
2	ChCl/gly	MDP (35) ^b	>99	30	70
3	ChCl/urea	MDP (35) ^b	>99	30	70
4 ^c	ChCl/EG	Ph ₃ P	>99	77	20
5	ChCl/EG	MDPO ^d (300)	>99	-	>99

^a Calculated *via* ¹H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone). ^b MDP = methyldiphenylphosphine. ^c 5% of alkene (*E*)-**2b** were detected in the crude. ^d MDPO = methyldiphenylphosphine oxide

13 ¹H NMR and ¹³C NMR Spectra

 1 H NMR 400.12 MHz, CDCl₃

 $^{13}\mathrm{C}$ NMR 100.62 MHz, CDCl_3

 ^{13}C NMR 100.62 MHz, CDCl_3

 ^{13}C NMR 100.62 MHz, CDCl_3

 ^{13}C NMR 100.62 MHz, CDCl_3

References

¹ F. Messa, G. Dilauro, F. M. Perna, P. Vitale, V. Capriati, A. Salomone. *ChemCatChem* 2020, 12 (7), 1979–1984

- ³ Y. Saga, R. Motoki, S. Makino, Y. Shimizu, M. Kanai, M. Shibasaki. J. Am. Chem. Soc. 2010, 132 (23), 7905–7907.
- ⁴ Z. Huang, Y. Wang, X. Leng, Z. Huang, J. Am. Chem. Soc. **2021**, 143 (12), 4824–4836.
- ⁵ Z. J. R. Hwu, Y. C. Hsu. *Chem. Eur. J.* **2011**, *17*, 4727–4731.
- ⁶ Y. Yuan, Y. Gu, Y.-E. Wang, J. Zheng, J. Ji, D. Xiong, F. Xue, J. Mao. J. Org. Chem. **2022**, 87, 21, 13907–13918
- ⁷ L. Ilies, T. Yoshida, E. Nakamura. J. Am. Chem. Soc. **2012**, *134* (41), 16951–16954.

⁸ R. Shen, T. Chen, Y. Zhao, R. Qiu, Y. Zhou, S. Yin, X. Wang, M. Goto, L. Han. *J. Am. Chem. Soc.* **2011**, *133* (42), 17037–17044.

⁹ A. T. Lindhardt, T. M. Gøgsig, T. Skrydstrup. *J. Org. Chem*, **2009** *74*, 135–143.

¹⁰ US pat., US2008303428A1, **2008**

- ¹¹ S. Rao, K. R. Prabhu. *Chem. Eur. J.* **2018**, *24*, 13954–13962.
- ¹² B. Dutta, A. Dey, C. Sinha, P. P. Ray, M. H. Mir. *Inorg. Chem.* **2018**, 57(14), 8029–8032.
- ¹³. J.Oyamada, T. Hashimoto, T. Kitamura. *J. Organomet. Chem.* **2009**, *694* (22), 3626–3632.
- ¹⁴ G. Wang, H. Bin, Miao–Sun , S. Chen, J. Liu, C. Zhong. *Tetrahedron* **2014**, *70* (12), 2175–2179.
- ¹⁵ Y. Zeng, H. Zhang, D. Ma, G. Wang. *Molecules* **2022**, 27, 7213.
- ¹⁶ D. Hack, P. Chauhan K., Deckers, G. Hermann, L. Mertens, G. Raabe, D. Enders. *Org. Lett.* **2014**, *16* (19), 5188–5191.
- ¹⁷ S. Li, J. H. Yu, Y. Y. Fan, Q. F. Liu, Z. C. Li, Z. X. Xie, Y. Li, J. M. Yue. J. Org. Chem. **2019**, 84, 5195–5202.

² A. Stephen, K. Hashmi, T. Wang, S. Shi, M. Rudolph. J. Org. Chem. 2012, 77, 7761–7767.