Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Aryl sulfonyl fluoride synthesis via palladium-catalyzed

fluorosulfonylation of aryl thianthrenium salts

Lingling Shan,^a Zhanhu Ma,^a Caiyun Ou,^a Yinxia Cai,^a Yuyang Ma,^a Yong Guo,^b Xiaoyu Ma,^{*a} Chao Liu^{*a,b}

^aSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China

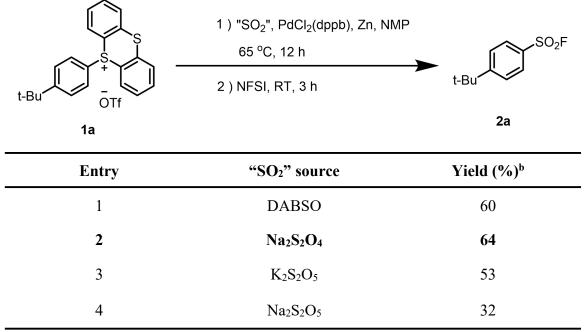
^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032

E-mail: maxiaoyu@sit.edu.cn; chaoliu@sit.edu.cn

Tables of cotents

I.	General information	S2
II.	Screening reaction conditions	S3
III.	Procedures for the synthesis of ary lthianthrenium salts	S10
IV.	Analytical data for compounds 1a-1v	.S12
V. G	eneral procedures for the fluorosulfonylation of various aryl thianthrenium salts	. S22
VI.	Analytical data for compounds 2a-2v	.S23
VII.	Scale-up and derivatization reactions of 2a	. S31
VIII	.General procedure for one-pot fluorosulfonylation starting from arenes	.S35
IX. A	Analytical data for compounds 2a, 2c, 2k, 2n	. S36
X.1	Preliminary mechanistic studies	.S38
XI.	Reference	.S39
X I I. (Copies of ¹ H, ¹⁹ F, and ¹³ C NMR spectra	. S40

I. General information


The solvents were dried and distilled by the standard methods, other commercially available reagents were purchased and used without further purification. ¹H NMR ((CH₃)₄Si (TMS) as the internal standard) and ¹⁹F NMR spectra (CFCl₃ as the outside standard and low field is positive) were recorded on a 400MHz spectrometer. ¹³C NMR also was recorded on 400MHz spectrometer. Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). The NMR yield was determined by ¹⁹F NMR using 1-methoxy-4-(trifluoromethoxy) benzene (¹⁹F NMR: δ -58.4 ppm) as an internal standard before working up the reaction. GC-MS (EI) data were determined on an Agilent 5975C. LRMS (ESI / EI) and HRMS (ESI / EI) data were tested on a Waters Micromass GCT Premier.

II. Screening reaction conditions

t-Bu OTf	1)DABSO, PdCl ₂ (dppb), Zn, So 65 °C, 12 h 2)NFSI, RT, 3 h	lvent. → SO ₂ F t-Bu 2a
1a Entry	Solvent	Yield (%) ^b
1	MeCN	5
2	DMF	41
3	DMAC	3
4	NMP	60
5	DMSO	38
6	EtOH/Dioxane (1:1)	58
7	EtOH	39
8	Dioxane	22
9	DCE	18
10	MeOH	12
11	Acetone	5
12	NMP/EtOH (1:1)	36

Table S1. Screening the solvents^a

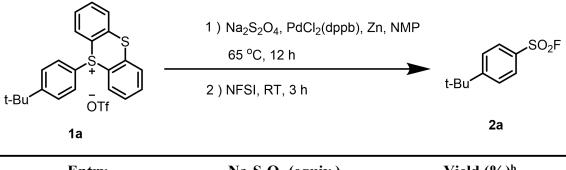
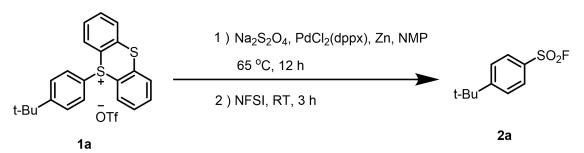

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.24 mmol, 1.2 equiv.), PdCl₂(dppb) (0.01 mmol, 5.0 mol %), Zinc (0.4 mmol, 2.0 equiv.), Solvent (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy) benzene as an internal standard.

Table S2. Screening the "SO₂"source^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), "SO₂" (0.24 mmol, 1.2 equiv.), PdCl₂(dppb) (0.01 mmol, 5.0 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy) benzene as an internal standard.

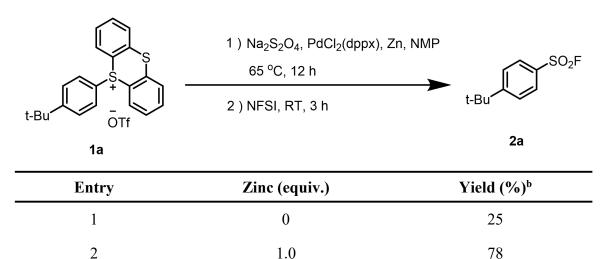
Table S3. Screening the Na₂S₂O₄ equivalent^a


Entry	Na ₂ S ₂ O ₄ (equiv.)	Yield (%) ^b
1	1.2	66
2	1.5	69
3	2.0	59
4	3.0	54

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄, PdCl₂(dppb) (0.01 mmol, 5.0 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

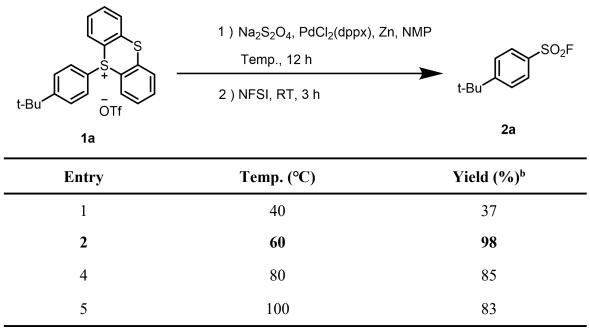
t-Bu OTf	1)Na ₂ S ₂ O ₄ , Pd-catalyst, Zn, NN 65 °C, 12 h 2)NFSI, RT, 3 h	MP → t-Bu SO ₂ F
1a		2a
Entry	Pd-catalyst	Yield (%) ^b
1	PdCl ₂ (dppb)	69
2	Pd(PPh ₃) ₄	55
3	PdCl ₂ (PPh ₃) ₂	68
4	PdCl ₂ (PhCN) ₂	15
5	PdCl ₂ [P(t-Bu) ₂ Ph] ₂	82
6	PdCl ₂ (dppf)	76
7	PdCl ₂ (dppx)	90
8	PdCl ₂ (dppf)·CH ₂ Cl ₂	84
9	Pd(aMphos)Cl ₂	84
10	PdCl ₂	46
11	PdCl ₂ +2,2'-bipyridine	41
12	/	5

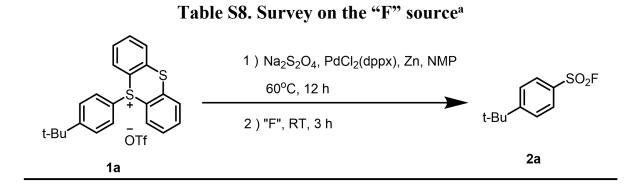
Table S4. Screening the different Pd-catalyst^a


^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), Pd-catalyst (0.01 mmol, 5.0 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

Entry	PdCl ₂ (dppx) (mol %)	Yield (%) ^b
1	0	5
2	2.5	91
3	5	85
4	10	86
5	15	91

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

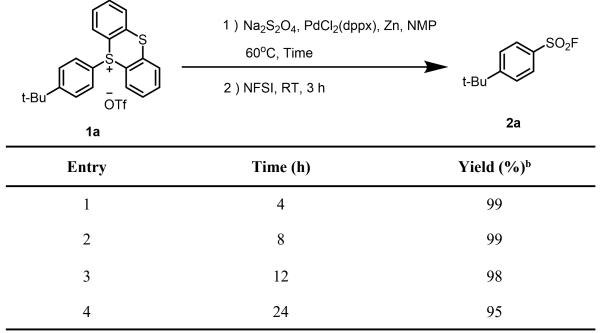

Table S6. Survey on the amount of Zinc^a


3	2.0	87
4	3.0	87

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx) (0.005 mmol, 2.5 mol %), Zinc, NMP (2.0 mL), Ar atmosphere, 65 °C, 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

Table S7. Survey on the reaction temperatures^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx) (0.005 mmol, 2.5 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, Temp., 12 h and then NFSI (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.



Entry	"F" source	Yield (%) ^b
1	NFSI	91
2	KHF ₂	0
3	KF	0
4	Tetrabutylammonium Difluorotriphenylsilicate	0
5	Selectfiour	81

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx) (0.005 mmol, 2.5 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 60 °C, 12 h and then "F" Source (0.6 mmol, 3.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

Table S9. Survey on the amount of "F" source ^a			
S S	1)Na ₂ S ₂ O ₄ , PdCl ₂ (dppx), Zi 60 ^o C, 12 h		
t-Bu OTf	2) NFSI, RT, 3 h	t-Bu	
1a		2a	
Entry	NFSI (equiv.)	Yield (%) ^b	
1	1.0	62	
2	2.0	94	
3	3.0	91	
5	4.0	94	

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx) (0.005 mmol, 2.5 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 60 °C, 12 h, and then NFSI, RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.

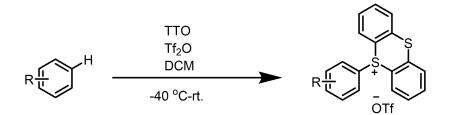
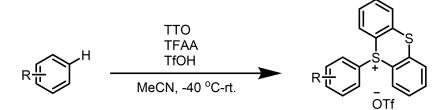


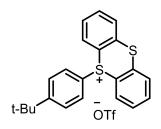
Table S10. Survey on the reaction time^a

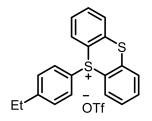
^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), $Na_2S_2O_4$ (0.3 mmol, 1.5 equiv.), $PdCl_2(dppx)$ (0.005 mmol, 2.5 mol %), Zinc (0.4 mmol, 2.0 equiv.), NMP (2.0 mL), Ar atmosphere, 60 °C, time (h) and then NFSI (0.4 mmol, 2.0 equiv.), RT, 3 h. ^bYields were determined by ¹⁹F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene as an internal standard.


III. Procedures for the synthesis of aryl thianthrenium salts

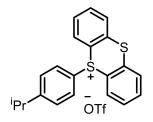
Method A :

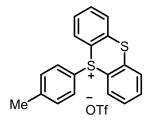
Various aryl thianthrenium salts were prepared according to the known procedures.^[1] S-oxide (6.0 mmol, 1.2 equiv.), DCM (50 mL), arenes (5.0 mmol, 1.0 equiv.) was added to a 250 mL round-bottomed flask equipped with a magnetic stirring bar under Ar atmosphere, and cooled the mixture to -40 °C, then Tf₂O (6.0 mmol, 1.2 equiv.) was added dropwise. The reaction mixture was stirred at the same temperature for 1.0 h, and then warmed up to room temperature until the arenes was completely consumed. After the reaction, wash the organic layer with water for three times and dry it with anhydrous sodium sulfate. Then, the solvent is removed under vacuum, the resulting mixture is dissolved in a small amount of anhydrous dichloromethane, and anhydrous ether is slowly dropped into the system to precipitate a solid. Aryl thianthracene salts are obtained by collecting solids through filtration and washing with ether, or the crude product was purified by column chromatography on silica gel (eluents: DCM/MeOH = 30/0 to 30/1 (v/v)).

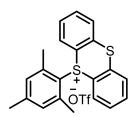

Method B^[2] :


S-oxide (6.0 mmol, 1.0 equiv), MeCN (50 mL), arenes (6.0 mmol, 1.0 equiv.) was added to a round-bottomed flask under Ar atmosphere, and cooled the mixture to

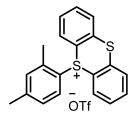
-40 °C, trifluoroacetic anhydride (TFAA, 18 mmol, 3.0 equiv.) and trifluoromethanesulfonic acid (TfOH, 9.0 mmol, 1.5 equiv.) were added dropwise to the round-bottomed flask. The reaction mixture was stirred at the same temperature for 1.0 h, and then the mixture was reacted at room temperature overnight. The mixture was neutralized by a saturated aqueous NaHCO₃ solution, and extracted with DCM (3×20 mL). The combined organic layers were washed with aqueous NaOTf solution (3×20 mL, 5% (w/w)), dried over anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (eluents: DCM/MeOH = 30/0 to 30/1 (v/v)).

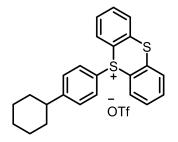

IV. Analytical data for compounds 1a-1v


5-(4-(tert-butyl)phenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1a): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, J = 8.0 Hz, 2H), 7.84-7.73 (m, 6H), 7.44 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 1.24 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 157.4, 136.6, 135.5, 134.9, 130.3 (d, J = 4.0 Hz), 128.1 (d, J = 6.0 Hz), 120.5, 119.1, 35.3, 31.0 ppm. HRMS-ESI (m/z) calcd. for [C₂₂H₂₁S₂] ⁺ ([M]⁺): 349.1079; found: 349.1076.

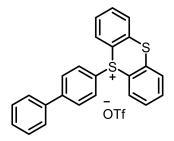

5-(4-ethylphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1b): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, J = 8.0 Hz, 2H), 7.84-7.73 (m, 6H), 7.25 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.63 (q, J = 8.0 Hz, 2H), 1.17 (t, J = 8.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 150.5, 136.6, 135.5, 134.9, 130.4, 130.3 (d, J = 4.0 Hz), 128.3, 120.7, 119.2, 28.7, 14.9 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₇S₂] + ([M]⁺): 321.0766; found: 321.0764.

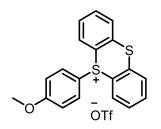
5-(4-isopropylphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1c): According to the Method **A**, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.61 (d, J = 8.0 Hz, 2H), 7.84-7.73 (m, 6H), 7.28 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 2.88 (m, 1H), 1.17 (d, J = 8.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s,3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 155.1, 136.6, 135.5, 134.9, 130.3 (d, J = 3.0 Hz), 129.1, 128.4, 120.7, 119.1, 34.1, 23.5 ppm. HRMS-ESI (m/z) calcd. for [C₂₁H₁₉S₂] ⁺ ([M]⁺): 335.0923; found: 335.0919.

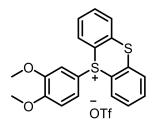

5-(p-tolyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1d): According to the Method **A**, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (d, *J* = 8.0 Hz, 2H), 7.83-7.74 (m, 6H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.3 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 144.5, 136.6, 135.6 (d, *J* = 3.0 Hz), 134.9, 131.5, 130.3 (d, *J* = 4.0 Hz), 128.1, 120.5, 119.2 (d, *J* = 2.0 Hz), 21.5 ppm. HRMS-ESI (m/z) calcd. for [C₁₉H₁₅S₂] + ([M]⁺): 307.0610; found: 307.0607.


5-(4-methoxy-3-(methoxycarbonyl)phenyl)-5H-thianthren-5-ium

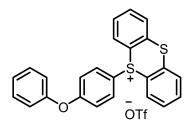
trifluoromethanesulfonate (1e): According to the Method **A**, white solid. ¹H NMR (400 MHz, CDCl₃): 7.86 (d, J = 8.0 Hz, 2H), 7.73 (t, J = 8.0 Hz, 2H), 7.63 (t, J = 8.0 Hz, 2H), 7.40 (s, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.52 (s, 3H), 2.29 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 149.5, 145.6,


134.0, 133.7, 130.8, 130.5, 130.2, 126.9, 124.4, 110.4, 22.1, 21.8 ppm. HRMS-ESI (m/z) calcd. for [C₂₁H₁₉S₂] + ([M]⁺): 335.0966; found: 335.0965.

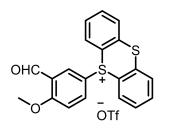

5-(2,4-dimethylphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1f): According to the Method **B**, white solid. ¹H NMR (400 MHz, acetone-d₆): δ 8.46 (d, *J* = 8.0 Hz, 2H), δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.97 (t, *J* = 8.0 Hz, 2H), 7.88 (t, *J* = 8.0 Hz, 2H), 7.43 (s, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 2.74 (s, 3H), 2.36 (s, 3H). ¹⁹F NMR (376 MHz, acetone-d₆): δ -84.0 (s, 3F) ppm. ¹³C NMR (101 MHz, acetone-d₆): δ 145.4, 140.2, 136.7, 134.6, 134.2 (d, *J* = 8.8 Hz), 130.7, 130.0, 129.7, 128.6, 118.9, 118.3, 20.1, 19.6 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₇S₂] + ([M]⁺): 321.0766; found: 321.0763.


(4-cyclohexylphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1g): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): 8.58 (d, J = 8.0 Hz, 2H), 7.84-7.72 (m, 6H), 7.25 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 2.47 (t, J = 12.0 Hz, 1H), 1.77-1.69 (m, 5H), 1.38-1.16 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 154.2, 136.6, 135.5, 134.9, 130.3 (d, J = 2.0 Hz), 129.4, 128.3, 120.6, 119.1, 44.4, 34.0, 26.6, 25.9 ppm. HRMS-ESI (m/z) calcd. for [C₂₄H₂₃S₂] ⁺ ([M]⁺): 375.1236; found: 375.1232.

5-([1,1'-biphenyl]-4-yl)-5H-thianthren-5-ium trifluoromethanesulfonate (1h): According to the Method **A**, white solid. ¹H NMR (400 MHz, CDCl₃): 8.62 (d, J = 8.0 Hz, 2H), 7.85-7.75 (m, 6H), 7.60 (d, J = 8.0 Hz, 2H), 7.47-7.38 (m, 5H), 7.24 (d, J = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 146.2, 138.2, 136.7, 129.2 (d, J = 3.0 Hz), 129.1, 128.7, 127.3, 122.3, 119.0 ppm. HRMS-ESI (m/z) calcd. for [C₂₄H₁₇S₂] + ([M]⁺): 369.0766; found: 369.0763.

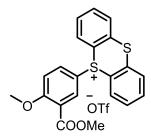


(4-methoxyphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1i): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 8.0 Hz, 2H), 7.83-7.70 (m, 6H), 7.28 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 3.79 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 163.8, 136.2, 134.8 (d, J = 12.0 Hz), 130.8, 130.3 (d, J = 7.0 Hz), 119.7, 116.6, 113.6, 56.0 ppm. HRMS-ESI (m/z) calcd. for [C₁₉H₁₅OS₂] ⁺ ([M]⁺): 323.0569; found: 323.0567.

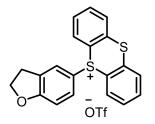


5-(3,4-dimethoxyphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1j): According to the Method A, white solid. ¹H NMR (400 MHz, CD₃CN): 8.21 (d, J =

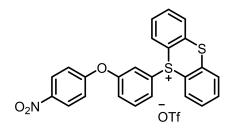
8.0 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.85 (t, J = 8.0 Hz, 2H), 7.76 (t, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 1H), 6.89 (q, J = 4.0 Hz, 1H), 6.76 (s, 1H), 3.83 (s, 3H), 3.65 (s, 3H). ¹⁹F NMR (376 MHz, CD₃CN): δ -84.6 (s, 3F) ppm. ¹³C NMR (101 MHz, CD₃CN): δ 154.8, 151.9, 136.8, 135.7, 134.9, 131.5, 130.9, 124.4, 120.9, 113.9, 113.5, 112.0, 56.9, 57.0 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₇O₂S₂] ⁺ ([M]⁺): 353.0664; found: 353.0662.


5-(4-phenoxyphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1k): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 8.0 Hz, 2H), 7.83-7.71 (m, 6H), 7.36 (t, J = 8.0 Hz, 2H), 7.23-7.17 (m, 3H), 6.99-6.93 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 162.5, 154.4, 136.4 (d, J = 27.3 Hz), 130.4 (d, J = 4.0 Hz), 130.3, 125.7, 120.6, 119.4, 119.2, 115.8 ppm. HRMS-ESI (m/z) calcd. for [C₂₄H₁₇OS₂] ⁺ ([M]⁺): 385.0715; found: 385.0713.

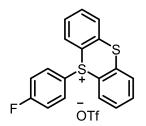
(3-formyl-4-methoxyphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (11): According to the Method A, Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 10.28 (s, 1H), 8.59 (d, *J* = 8.0 Hz, 2H), 7.88-7.75 (m, 7H), 7.40 (d, *J* = 4.0 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 3.96 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.3 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 187.2, 164.8, 136.5 (d, *J* = 3.0 Hz), 135.2 (d, *J* = 11.0 Hz), 130.5 (d, *J* = 3.0 Hz), 128.0, 125.6, 118.9, 115.5, 115.2, 56.9 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₅O₂S₂] ⁺ ([M]⁺): 351.0508; found: 351.0503.

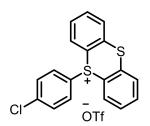


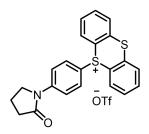
(3-fluoro-4-methoxyphenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1m): According to the Method A, Yellow solid. ¹H NMR (400 MHz, CDCl₃): 8.56 (d, J = 8.0 Hz, 2H), 7.86-7.79 (m, 4H), 7.75 (t, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 3.86 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F), -128.04 (t, J = 7.5 Hz, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 153.8, 152.3 (d, J = 10.0 Hz), 151.3, 136.4, 135.3, 135.1, 130.4 (d, J = 5.0 Hz), 126.6 (d, J = 4.0 Hz), 119.0, 116.1, 115.8, 115.0 (d, J = 2.0 Hz), 114.1 (d, J = 7.0 Hz), 56.8 ppm. HRMS-ESI (m/z) calcd. for [C₁₉H₁₄OFS₂] ⁺ ([M]⁺): 341.0465; found: 341.0461.



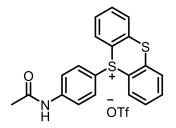
5-(4-methoxy-3-(methoxycarbonyl)phenyl)-5H-thianthren-5-ium

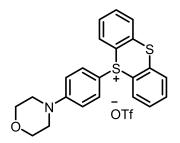

trifluoromethanesulfonate (1n): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): 8.57 (d, J = 4.0 Hz, 2H), 7.85-7.72 (m, 6H), 7.59-7.55 (m, 2H), 7.12 (d, J = 12.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ -72.9 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 164.5, 162.7, 136.4, 135.1, 134.5, 131.7, 130.4, 122.2, 119.1, 114.9, 113.8, 56.9, 52.8 ppm. HRMS-ESI (m/z) calcd. for [C₂₁H₁₇O₃S₂] ⁺ ([M]⁺): 381.0614; found: 381.0612.


5-(2,3-dihydrobenzofuran-5-yl)-5H-thianthren-5-ium trifluoromethanesulfonate (10): According to the Method **B**, white solid. ¹H NMR (400 MHz, acetone-d₆): δ 8.52 (d, J = 4.0 Hz, 2H), 8.09-8.06 (m, 2H), 7.96 (t, J = 8.0 Hz, 2H), 7.86 (t, J = 8.0Hz, 2H), 7.42 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 6.91-6.88 (m, 1H), 4.68-4.63 (m, 2H), 3.21 (t, J = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, acetone-d₆): δ -83.9 (s, 3F) ppm. ¹³C NMR (101 MHz, acetone-d₆): δ 165.7, 136.7, 135.7, 135.2, 132.7, 131.3, 131.2, 131.0, 126.8, 121.0, 114.0, 112.0, 73.7 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₅OS₂] ⁺ ([M]⁺): 335.0559; found: 335.0564.

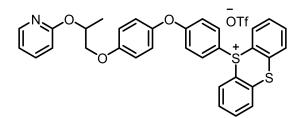

5-(3-(4-nitrophenoxy)phenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1p): According to the Method **B**, white solid. ¹H NMR (400 MHz, acetone-d₆): 8.68 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H), 8.11 (d, J = 8.0 Hz, 2H), 8.01 (t, J = 8.0 Hz, 2H), 7.93 (t, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, acetone-d₆): δ -83.9 (s, 3F) ppm. ¹³C NMR (101 MHz, acetone-d₆): δ 161.7, 160.4, 137.145.1, 137.3, 136.1 (d, J = 5.0 Hz), 131.9, 131.5, 131.0, 127.0, 122.0, 120.3, 120.2, 120.0 ppm. HRMS-ESI (m/z) calcd. for [C₂₄H₁₆O₃NS₂] ⁺ ([M]⁺): 430.0566; found: 430.0563.

5-(4-fluorophenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1q): According to the Method A, Yellow solid. ¹H NMR (400 MHz, dmso-d₆): δ 8.58 (d, J = 12.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.93 (t, J = 8.0 Hz, 2H), 7.86 (t, J = 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.31 (m, 2H). ¹⁹F NMR (376 MHz, dmso-d₆): δ -82.5 (s, 3F), -111.10 (m, 1F) ppm. ¹³C NMR (101 MHz, dmso-d₆): δ 135.6, 135.3, 134.8, 131.1, (d, J = 10.1 Hz), 130.3, 129.6, 120.4 (d, J = 3.3 Hz), 119.5, 117.9, 117.7 ppm. HRMS-ESI (m/z) calcd. for [C₁₈H₁₂FS₂] + ([M]⁺): 311.0358; found: 311.0355.

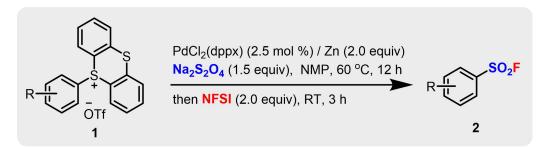

(4-chlorophenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1r): According to the Method **B**, Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.62 (br, 2H), 7.84-7.77 (m, 6H), 7.38 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 144.5, 136.6, 135.5, 134.9, 131.5, 130.3 (d, J = 4.0 Hz), 128.1, 120.5, 119.2 ppm. HRMS-ESI (m/z) calcd. for [C₁₈H₁₂ClS₂] + ([M]⁺): 327.0064; found: 327.0063.


5-(4-(2-oxopyrrolidin-1-yl)phenyl)-5H-thianthren-5-ium

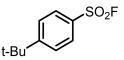
trifluoromethanesulfonate (1s): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): 8.52 (d, J = 8.0 Hz, 2H), 7.83-7.71 (m, 8H), 7.19 (d, J = 8.0 Hz, 2H), 3.79 (t, J = 8.0 Hz, 2H), 2.56 (t, J = 8.0 Hz, 2H), 2.13 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 175.2, 143.9, 136.4, 135.0 (d, J = 11.0 Hz), 130.3 (d, J = 8.0 Hz), 129.2 120.8, 119.1, 116.8, 48.4,


32.8, 17.7 ppm. HRMS-ESI (m/z) calcd. for [C₂₂H₁₈ONS₂] ⁺ ([M]⁺): 376.0824; found: 376.0821.

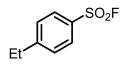
5-(4-acetamidophenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1t): According to the Method **B**, white solid. ¹H NMR (400 MHz, acetone-d₆): δ 9.81 (s, 1H), 8.59 (d, J = 4.0 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.98 (t, J = 8.0 Hz, 2H), 7.92-7.85 (m, 4H), 7.30 (d, J = 8.0 Hz, 2H), 2.08 (s, 3H). ¹⁹F NMR (376 MHz, acetone-d₆): δ -84.1 (s, 3F) ppm. ¹³C NMR (101 MHz, acetone-d₆): δ 170.0, 145.1, 137.1, 135.7, 131.4, 130.9, 130.4, 121.2, 120.6, 116.5, 24.33 ppm. HRMS-ESI (m/z) calcd. for [C₂₀H₁₆ONS₂] ⁺ ([M]⁺): 350.0668; found: 350.0669.



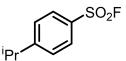
(4-morpholinophenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1u): According to the Method A, white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.76-7.67 (m, 4H), 7.34 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 3.79 (t, J = 8.0 Hz, 4H), 3.26 (t, J = 8.0 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 154.5, 135.3, 134.1 (d, J = 27.3 Hz), 131.4, 130.2 (d, J = 24.2 Hz), 121.2, 115.6, 108.1, 47.0 ppm. HRMS-ESI (m/z) calcd. for [C₂₂H₂₀ONS₂] + ([M]⁺): 378.0981; found: 378.0978.


(5-5-(4-(4-(2-(pyridin-2-yloxy)propoxy)phenoxy)phenyl)-5H-thianthren-5-ium trifluoromethanesulfonate (1v) : According to the Method **B**, Yellow solid. ¹H NMR (400 MHz, acetone-d₆): δ 8.35 (d, J = 8.0 Hz, 2H), 7.81-7.76 (m, 6H), 7.34 (d, J = 8.0Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 3.79 (t, J = 8.0 Hz, 4H), 3.26 (t, J = 8.0 Hz, 4H). ¹⁹F NMR (376 MHz, acetone-d₆): δ -78.2 (s, 3F) ppm. ¹³C NMR (101 MHz, acetone-d₆): δ 154.5, 135.3, 134.1 (d, J = 27.3 Hz), 131.4, 130.2 (d, J = 24.2 Hz), 121.2, 115.6, 108.1, 47.0 ppm. HRMS-ESI (m/z) calcd. for [C₃₂H₂₆O₃NS₂] ⁺ ([M]⁺): 536.1349; found: 536.1346.

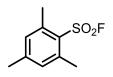
V. General procedures for the fluorosulfonylation of various aryl thianthrenium salts



Aryl thianthrenium salts 1 (0.4 mmol, 1.0 equiv.), Na₂S₂O₄ (0.6 mmol, 1.5 equiv.), PdCl₂(dppx) (0.01 mmol, 2.5 mol %), Zinc (0.8 mmol, 2 equiv.) were added to an oven-dried sealed tube (25 mL) equipped with a magnetic stirring bar. The tube was evacuated and backfilled with Ar (3 times), and then NMP (4.0 mL) was added via syringe under Ar atmosphere. The mixture was sealed and stirred smoothly at 60 °C for 12 h. After cooled to room temperature, NFSI (0.8 mmol, 2.0 equiv.) was added and the reaction mixture was stirred at room temperature for 3 h. Yields of the desired product were measured by ¹⁹F NMR spectroscopy before working-up. Then the reaction mixture was filtered through a pad of celite, diluted with DCM (20 mL) and H₂O (50 mL). The resulting mixture was extracted with DCM (2 × 20 mL). The organic layers were combined, washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel column chromatography to give the desired product.

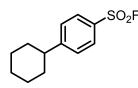

VI. Analytical data for compounds 2a-2v.

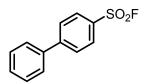
4-(tert-butyl)benzenesulfonyl fluoride (2a): Obtained as a white solid in 86% yield (74.3 mg) by silica gel flash column chromatography eluted with petroleum ether : dichloromethane = 8:1v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 1.37 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 160.1, 130.1 (d, *J* = 24.2 Hz), 128.5, 126.8, 35.7, 31.1 ppm. GC-MS (EI) m/z = 216.1 (M⁺). The analytical data are consistent with literature values.^[3]


4-ethylbenzenesulfonyl fluoride (2b): Obtained as colorless oil in 80% yield (60.2 mg) by silica gel flash column chromatography eluted with petroleum ether : dichloromethane = 8:1 v/v.. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 2.78 (q, *J* = 8.0 Hz, 2H), 1.28 (t, *J* = 8.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 130.2 (d, *J* = 24.2 Hz), 129.2, 128.6, 29.0, 14.9 ppm. GC-MS (EI) m/z = 188.0 (M⁺). The analytical data are consistent with literature values.^[4]

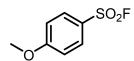
4-isopropylbenzenesulfonyl fluoride (2c): Obtained as colorless oil in 90% yield (72.8 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 3.04 (m, *J* = 8.0 Hz, 1H), 1.29 (d, *J* = 8.0 Hz, 6H).¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 157.8, 130.4

(d, J = 24.2 Hz), 128.7, 127.9, 34.6, 23.6 ppm. GC-MS (EI) m/z = 202.1 (M⁺). The analytical data are consistent with literature values.^[4]

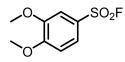

4-methylbenzenesulfony (2d): Obtained as colorless oil in 78% yield (54.3 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 10:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H).¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 147.3, 130.4, 130.2 (d, *J* = 24.2 Hz), 128.5, 21.9 ppm. GC-MS (EI) m/z = 174.0 (M⁺). The analytical data are consistent with literature values.^[3]


2,4,6-trimethylbenzenesulfonyl fluoride (2e): Obtained as white solid in 40% yield (32.3 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.03 (s, 2H), 2.64 (s, 6H), 2.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 68.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 145.2, 140.2, 132.0, 129.4 (d, *J* = 40.4 Hz), 22.5, 21.3 ppm. GC-MS (EI) m/z = 202.0 (M⁺). The analytical data are consistent with literature values.^[5]

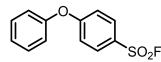
2,4-dimethylbenzenesulfonyl fluoride (2f): Obtained as colorless oil in 74% yield (55.6 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.22 (s, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 2.64 (s, 3H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 60.8 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 146.8, 139.0, 133.7,


130.3, 129.4 (d, J = 22.2 Hz), 127.3, 21.7, 20.3 ppm. GC-MS (EI) m/z = 188.0 (M⁺). The analytical data are consistent with literature values.^[4]

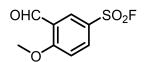
4-cyclohexylbenzenesulfonyl fluoride (2g): Obtained as colorless oil in 85% yield (82.3 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 2.63 (br, 1H), 1.87 (m, 4H), 1.42 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 156.9, 130.3 (d, *J* = 24.2 Hz), 128.7, 128.3, 44.9, 34.1, 26.7, 26.0 ppm. GC-MS (EI) m/z = 242.1 (M⁺). The analytical data are consistent with literature values.^[4]



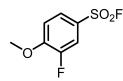
[1,1'-biphenyl]-4-sulfonyl fluoride (2h): Obtained as white solid in 80% yield (75.5 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 5:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H) 7.64 (d, *J* = 8.0 Hz, 2H), 7.55-7.46 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.5 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 148.7, 138.6, 131.5 (d, *J* = 25.3 Hz), 129.4, 129.3, 129.1, 128.3, 127.6 ppm. GC-MS (EI) m/z = 236.0 (M⁺). The analytical data are consistent with literature values.^[3]



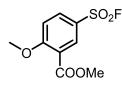
4-methoxybenzenesulfonyl fluoride (2i): Obtained as colorless oil in 75% yield (57.1 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 3.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.3 (s, 1F)


ppm. ¹³C NMR (101 MHz, CDCl₃): δ 165.4, 131.0, 124.2 (d, J = 24.7 Hz), 115.0, 56.0 ppm. GC-MS (EI) m/z = 190.0 (M⁺). The analytical data are consistent with literature values.^[3]

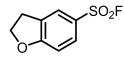
3,4-dimethoxybenzenesulfonyl fluoride (2j): Obtained as white solid in 80% yield (70.4 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 5:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, *J* = 8.0, 0 Hz, 1H), 7.37 (d, *J* = 4.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 72.4 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 155.1, 149.6, 123.9 (d, *J* = 24.2 Hz), 123.3, 110.9, 110.3,56.5, 56.4 ppm. GC-MS (EI) m/z = 220.0 (M⁺). The analytical data are consistent with literature values.^[3]

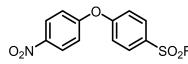


4-phenoxybenzenesulfonyl fluoride (2k): Obtained as colorless oil in 76% yield (76.6 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 4:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H) 7.27 (t, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 12.0 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.1 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 164.3, 154.4, 131.0, 125.9 (d, *J* = 25.3 Hz), 125.8, 120.8, 117.8 ppm. GC-MS (EI) m/z = 252.0 (M⁺). The analytical data are consistent with literature values.^[3]



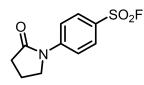
formyl-4-methoxybenzenesulfonyl fluoride (21): Obtained as yellow solid (m.p. 77-79 °C) in 70% yield (61.1 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 4:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 10.46 (s,1H), 8.45 (d, J = 0 Hz, 1H), 8.18 (dd, J = 0, 4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H),


4.12 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 70.9 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 187.2, 166.3, 135.6, 129.9, 125.2 (d, *J* = 5.0 Hz), 125.0, 113.2, 56.9 ppm. HRMS (FI) m/z: [M] ⁺ Calcd for C₈H₇FO₄S 218.0044; Found 218.0042.

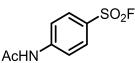

3-fluoro-4-methoxybenzenesulfonyl fluoride (2m): Obtained as white solid (m.p. 46-48 °C) in 82% yield (68.2 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethan = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.70 (dd, *J* =0, 4 Hz, 1H), 7.14 (t, *J* =8 Hz, 1H), 4.01 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.3 (s, 1F), -130.1 (t, *J* = 7.5 Hz, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 154.2 (d, *J* = 10.0 Hz), 153.1, 150.5, 126.5 (d, *J* = 4.0 Hz), 116.5 (d, *J* = 21.2 Hz), 113.4 (d, *J* = 2.0 Hz), 56.8 ppm. HRMS (Dart positive) m/z: [M+NH₄] ⁺ Calcd for C₈H₇FO₄S 226.0344; Found 226.0346. The analytical data are consistent with literature values.^[4]

methyl 5-(fluorosulfonyl)-2-methoxybenzoate (2n): Obtained as yellow solid (m.p. 48-50 °C) in 74% yield (73.4 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, J = 0 Hz, 1H), 8.06 (q, J = 4 Hz, 1H), 7.16 (d, J = 8 Hz, 1H), 4.01 (s, 3H), 3.90 (s, 3H).¹⁹F NMR (376 MHz, CDCl₃): δ 67.3 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 164.3 (d, J = 10.1 Hz), 133.9, 132.8, 124.4 (d, J = 25.3 Hz), 121.3, 112.5, 56.9, 52.7 ppm. HRMS (Dart positive) m/z: [M+H] ⁺ Calcd for C₈H₇FO₄S 249.0227; Found 249.0227.

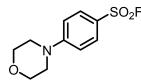
2,3-dihydrobenzofuran-5-sulfonyl fluoride (20): Obtained as white solid in 65% yield (52.5 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethan = 2:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 1H), 4.74 (t, *J* = 8.0 Hz, 2H), 3.31 (t, *J* = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.4 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.4, 130.7, 129.4, 125.8, 123.8 (d, *J* = 23.2 Hz), 110.2, 72.9, 28.9 ppm. GC-MS (EI) m/z=202.0 (M⁺). The analytical data are consistent with literature values.^[4]



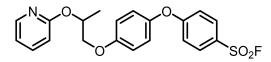
4-(4-nitrophenoxy)benzenesulfonyl fluoride (2p): Obtained in 11% ¹⁹F NMR yield. Characterization of **2p** in reaction solution: Crude ¹⁹F NMR (376 MHz, unlocked): δ 66.3 (s, 1F) ppm. GC-MS (EI) m/z = 297.1 (M⁺). Due to its lower yield, it was not purified by silica gel flash column chromatography from impurities. No further characterization data were provided. The compound was reported in the literature (B. R. Baker, G. J. Lourens, J. Med. Chem. 1969, 12, 95-101.), but no corresponding analytical data are available.


4-fluorobenzenesulfonyl fluoride (2q): Obtained in 84% ¹⁹F NMR yield. Due to its low boiling point, it can not be purified by silica gel flash column chromatography from impurities.

4-chlorobenzenesulfonyl fluoride (2r): Obtained as white solid in 57% yield (44.2 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethan = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.5 (s, 1F) ppm. ¹³C NMR


(101 MHz, CDCl₃): δ 142.8, 131.5 (d, J = 26.3 Hz), 130.3, 130.0 ppm. GC-MS (EI) m/z = 194.0 (M⁺). The analytical data are consistent with literature values.^[3]

4-(2-oxopyrrolidin-1-yl)benzenesulfonyl fluoride (2s): Obtained as yellow solid (m.p. 104-106 °C) in 73% yield (71.0 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 2:1 v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (s, 4H), 3.86 (t, *J* =8.0 Hz, 2H), 2.60 (t, *J* = 8.0 Hz, 2H), 2.21-2.13 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.9 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 175.2, 145.7, 129.4, 126.4 (d, *J* = 26.3 Hz), 119.0, 48.2, 32.7, 17.6 ppm. HRMS (FI) m/z: [M] ⁺ Calcd for C₁₀H₁₀FNO₃S 243.0360; Found 243.0364.

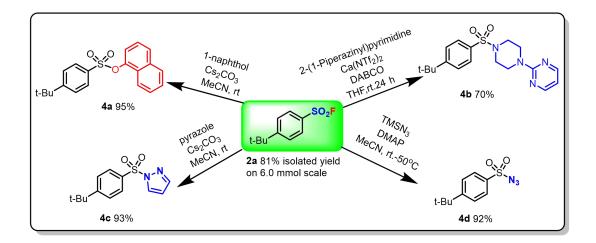


4-acetamidobenzenesulfonyl fluoride (2t): Obtained as white solid in 78% yield (67.7 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 1:1 v/v. ¹H NMR (400 MHz, CD₃CN): δ 8.83 (br, 1H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 2.12 (s, 3H). ¹⁹F NMR (376 MHz, CD₃CN): δ 65.6 (s, 1F) ppm. ¹³C NMR (101 MHz, CD₃CN): δ 170.5,147.0, 130.9, 126.2 (d, *J* = 24.2 Hz), 120.0, 24.6 ppm. GC-MS (EI) m/z = 217.0 (M⁺). The analytical data are consistent with literature values.^[3]

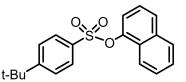
4-morpholinobenzenesulfonyl fluoride (2u): Obtained as yellow solid (m.p. 98-100 °C) in 45% yield (44.1 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (q, J = 12.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 3.85 (t, J = 8.0 Hz, 4H), 3.36 (t, J = 8.0 Hz,

4H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.8 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 155.6, 130.6, 120.1 (d, *J* = 30.0 Hz),113.4, 66.4, 47.0 ppm. HRMS (FI) m/z: [M] ⁺ Calcd for C₁₀H₁₂FNO₃S 245.0516; Found 245.0515.

4-(4-(2-(pyridin-2-yloxy)propoxy)phenoxy)benzenesulfonyl fluoride (2v): Obtained as white solid (m.p. 58-60 °C) in 65% yield (104.8 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 10:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* =4.0 Hz, 1H), 7.89 (d, *J* =8.0 Hz, 2H), 7.54 (d, *J* =8.0 Hz, 2H), 7.40 (t, *J* =8.0 Hz, 1H), 6.99 (s, 4H), 6.85 (t, *J* =8.0 Hz, 1H), 6.74 (d, *J* =8.0 Hz, 1H), 5.60 (m, 1H), 4.20 (m, 1H), 4.10 (m, 1H), 1.48 (d, *J* =4.0 Hz, 3H).¹⁹F NMR (376 MHz, CDCl₃): δ 67.2 (s, 1F) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 164.9, 163.1, 156.7, 147.7, 146.8, 141.4, 138.8, 130.9, 129.9, 129.0, 128.4, 124.5, 121.9, 117.1, 116.9, 116.3, 111.7, 71.0, 69.2, 17.0 ppm. HRMS (Dart positive) m/z: [M+H] ⁺ Calcd for C₂₀H₁₈FNO₅S 404.0962; Found 404.0962.

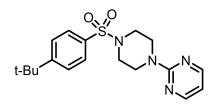

VII. Scale-up and derivatization reactions of 2a

1. Gram-scale synthesis of 4-(tert-butyl)benzenesulfonyl fluoride (2a)


To a 100 mL round-bottomed flask equipped with a magnetic stirring bar were added tert-butylthianthrenium salt 1a (6.0 mmol, 1.0 equiv.), Na₂S₂O₄ (9 mmol, 1.5 equiv.), PdCl₂(dppx) (0.15 mmol, 2.5 mol %), Zinc (12 mmol, 2.0 equiv.). The tube then evacuated and backfilled with Ar (3 times) and NMP was (N-Methyl-2-pyrrolidinone) (4.0 mL) was added via syringe under Ar atmosphere. The mixture was sealed and stirred smoothly at 60 °C for 12 h. NFSI (12 mmol, 2.0 equiv.) was added when the mixture is cooled to room temperature, and then stirred at room temperature for 3 h. The reaction mixture was filtered through a pad of celite, diluted with DCM (20 mL) and H₂O (50 mL). The resulting mixture was extracted with DCM (2×20 mL). The organic layers were combined, washed with brine (50 mL), dried over Na₂SO₄. filtered and concentrated. The crude product was purified by silica gel chromatography to give the desired product 2a (1.05 g, 81%).

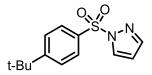
2. Derivatization of 4-(tert-butyl)benzenesulfonyl fluoride 2a with various O- or N-nucleophiles.

(a) The procedure for the preparation of $4a^{[6]}$


A 10 mL sealed tube equipped with a magnetic stirring bar was charged with **2a** (0.3 mmol, 1.0 equiv.), 1-naphthalenol (0.6 mmol, 2.0 equiv.), Cs₂CO₃ (0.33 mmol, 1.1 equiv.) and anhydrous MeCN (3 mL). The reaction mixture was stirred vigorously at room temperature under Ar atmosphere for 12 h. The resulting mixture was filtered through a pad of silica gel and concentrated under reduced pressure. The residue was subjected to flash column chromatography to afford the desired product.

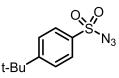
naphthalen-1-yl 4-(tert-butyl)benzenesulfonate: Obtained as white solid in 95% yield (96.9 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethan = 2:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.85-7.80 (m, 4H), 7.74 (d, J = 8.0 Hz, 1H), 7.48-7.41 (m, 3H), 7.39-7.37 (m, 2H),7.28 (d, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 158.5, 145.8, 134.7, 132.6, 128.3, 127.7, 127.3, 127.1, 126.6 (d, J = 5.0 Hz), 126.2, 125.2, 121.7, 118.7, 35.3, 31.0 ppm. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₂₀O₃S 340.1128; Found 340.1127.

(b) The procedure for the preparation of $4b^{[7]}$


A 10 mL sealed tube equipped with a magnetic stirring bar was charged with **2a** (0.4 mmol, 1.0 equiv.), 2-(1-Piperazinyl)pyrimidine (0.44 mmol, 1.1 equiv.), Ca(NTf₂)₂ (0.44 mmol, 1.1 equiv.), DABCO (0.6 mmol, 1.5 equiv.) and anhydrous THF (4 mL). The reaction mixture was stirred vigorously at room temperature under Ar atmosphere for 24 h. The resulting mixture was filtered through a pad of silica gel and concentrated under reduced pressure. The residue was subjected to flash column chromatography to afford the desired product.

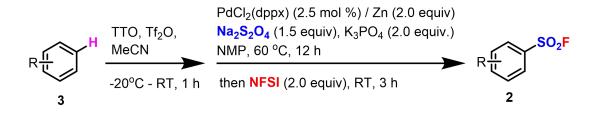
2-(4-((4-(tert-butyl)phenyl)sulfonyl)piperazin-1-yl)pyrimidine: Obtained as white solid (m.p. 188-190 °C) in 70% yield (100.8 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 4.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 6.46 (t, *J* = 4.0 Hz, 1H), 3.90 (t, *J* = 4.0 Hz, 4H), 3.04 (t, *J* = 4.0 Hz, 4H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 157.8, 156.7, 132.4, 127.7, 126.1, 110.5, 46.0, 43.0, 35.2, 31.1 ppm. HRMS (Dart positive) m/z: [M+H] ⁺ Calcd for C₁₈H₂₄FN₄O₂S 361.1693; Found 361.1693.

(c) The procedure for the preparation of $4c^{[6]}$

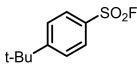

A 10 mL sealed tube equipped with a magnetic stirring bar was charged with 2a (0.3 mmol, 1.0 equiv.), Pyrazole (0.6 mmol, 2.0 equiv.), Cs₂CO₃ (0.33 mmol, 1.1 equiv.) and anhydrous MeCN (3 mL). The reaction mixture was stirred vigorously at room temperature under Ar atmosphere for 12 h. The resulting mixture was filtered through a pad of silica gel and concentrated under reduced pressure. The residue was subjected to flash column chromatography to afford the desired product.

1-((4-(tert-butyl)phenyl)sulfonyl)-1H-pyrazole: Obtained as white solid (m.p. 98-100 °C) in 93% yield (73.6 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 10:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 4.0 Hz, 1H), 7.92 (d, J = 12.0 Hz, 2H), 7.72 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 6.39 (s, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 158.8, 145.3, 134.0, 131.2, 128.1, 126.6, 108.8, 35.4, 31.0 ppm. HRMS (Dart positive) m/z: [M+H]⁺ Calcd for C₁₃H₁₆N₂O₂S 265.1005; Found 265.1005.

(d) The procedure for the preparation of 4d^[8]


A 10 mL sealed tube equipped with a magnetic stirring bar was charged with **2a** (0.4 mmol, 1.0 equiv.), Azidotrimethylsilane (0.6 mmol, 1.5 equiv.), DMAP (0.6 mmol, 1.5 equiv.) and anhydrous MeCN (4 mL). The reaction mixture was stirred vigorously at 50°C under Ar atmosphere for 8 h. The resulting mixture was filtered through a pad of silica gel and concentrated under reduced pressure. The residue was subjected to flash column chromatography to afford the desired product.

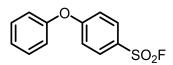
(tert-butyl)benzenesulfonyl azide: Obtained as colorless oil in 92% yield (88.0 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 4:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 159.2, 135.5, 127.5, 126.8, 35.5, 31.0 ppm. HRMS (FI) m/z: [M]⁺ Calcd for C₁₀H₁₃N₃O₂S 239.0723; Found 239.0726.

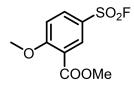

VII. General procedure for one-pot fluorosulfonylation starting from

arenes



General Procedure: A 25 mL Schlenk tube was charged with thianthrene S-oxide (111.4 mg, 0.48 mmol, 1.2 equiv.), CH₃CN (1.0 mL) and **3** (0.4 mmol, 1.0 equiv.) under Ar atmosphere. The reaction mixture was then cooled to -20 °C, followed by the addition of Tf₂O (80 µL, 0.48 mmol, 1.2 equiv.) dropwise. The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 30 minutes. K₃PO₄ (170.0 mg, 0.8 mmol, 2.0 equiv.) was added to neutralize the reaction mixture for 2.0 h. After that, NMP (4.0 mL), Na₂S₂O₄ (174.1 mg, 0.6 mmol, 1.5 equiv.), PdCl₂(dppx) (7.6 mg, 0.01 mmol, 2.5 mol %), zinc (52.3 mg, 0.8 mmol, 2.0 equiv.) were added under Ar atmosphere. The reaction mixture was stirred in preheated oil bath (60 °C) for 12 hours. Then NFSI (252.3 mg, 0.8 mmol, 2.0 equiv.) was added and the reaction mixture was stirred smoothly at room temperature for 3 h. Upon completion, the reaction mixture was filtered through a pad of celite, diluted with DCM (20 mL) and H₂O (50 mL). The resulting mixture was extracted with DCM (2×20 mL). The organic layers were combined, washed with brine (50 mL), dried over Na₂SO₄. filtered and concentrated. The crude product was purified by silica gel chromatography to give the desired product 2.


IX. Analytical data for compounds 2a, 2c, 2k, 2n


4-(tert-butyl)benzenesulfonyl fluoride (2a): Obtained as white solid in 81% yield (70.0 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 1.37 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm.

4-isopropylbenzenesulfonyl fluoride (2c): Obtained as colorless oil in 80% yield (64.6 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 8:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 3.04 (m, *J* = 8.0 Hz, 1H), 1.29 (d, *J* = 8.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ 66.2 (s, 1F) ppm.

4-phenoxybenzenesulfonyl fluoride (2k): Obtained as colorless oil in 70% yield (70.6 mg) by silica gel flash column chromatography eluted with petroleum ether: dichloromethane = 4:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H) 7.27 (t, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 12.0 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.1 (s, 1F) ppm.

methyl 5-(fluorosulfonyl)-2-methoxybenzoate (2n): Obtained as yellow solid in 86% yield (85.3 mg) by silica gel flash column chromatography eluted with petroleum ether: ethyl acetate = 3:1 v/v. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, J = 0 Hz, 1H), 8.06 (q, J = 4 Hz, 1H), 7.16 (d, J = 8 Hz, 1H), 4.01 (s, 3H), 3.90 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ 67.3 (s, 1F) ppm.

X. Preliminary mechanistic studies

1. Radical inhibition experiments

To an oven-dried sealed tube (10 mL) equipped with a magnetic stirring bar were added tert-butylthianthrenium salt **1a** (0.2 mmol, 1.0 equiv.), Na₂S₂O₄ (0.3 mmol, 1.5 equiv.), PdCl₂(dppx) (0.005 mmol, 2.5 mol %), Zinc (0.4 mmol, 2 equiv.), TEMPO (0.4 mmol, 2 equiv.). The tube was then evacuated and backfilled with Ar (3 times) and NMP (N-Methyl-2-pyrrolidinone) (2.0 mL) was added via syringe under Ar atmosphere. The mixture was sealed and stirred smoothly at 60 °C for 12 h. Then NFSI (0.4 mmol, 2.0 equiv.) was added and the reaction mixture was stirred smoothly at room temperature for 3 h. The crude reaction mixture was then analyzed by ¹⁹F NMR spectroscopy and HRMS.

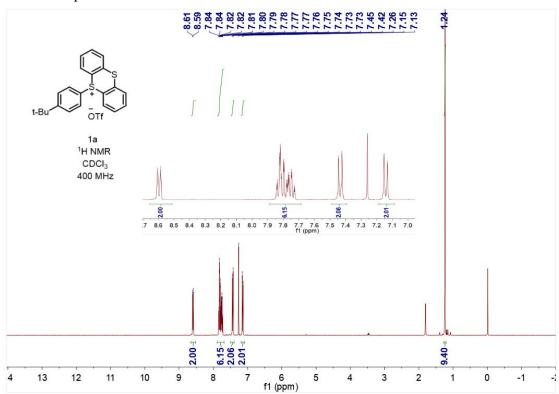
XI. Reference

[1] X.-X. Nie, Y.-H. Huang and P. Wang, Thianthrenation-Enabled α-Arylation of Carbonyl Compounds with Arenes. *Org. Lett.* **2020** *22* (19), 7716-7720.

[2] Z.-Y. Tian, Z.-H. Lin, and C.-P. Zhang, Pd/Cu-Catalyzed C-H/C-H Cross Coupling of (Hetero)Arenes with Azoles through Arylsulfonium Intermediates. *Org. Lett.* **2021**, *23* (11), 4400-4405.

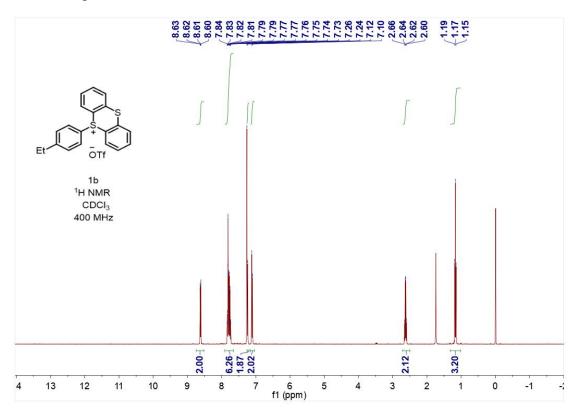
[3] Y. Liu, D. Yu, Y. Guo, J.-C. Xiao, Q.-Y. Chen, and C. Liu, Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. *Org. Lett.* **2020**, *22* (6), 2281-2286.

[4] X. Kong, Y. Chen, Q. Liu, W. Wang, S. Zhang, Q. Zhang, X. Chen, Y.-Q. Xu, and Z.-Y. Cao, Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. *Org. Lett.* **2023**, *25* (4), 581-586.

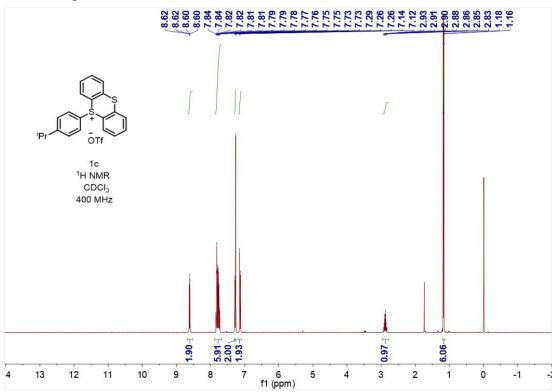

[5] Q. Pan, Y. Liu, W. Pang, J. Wu, X. Ma, X. Hu, Y. Guo, Q.-Y. Chen and C. Liu, Copper-catalyzed three-component reaction of arylhydrazine hydrochloride, DABSO, and NFSI for the synthesis of arenesulfonyl fluorides. *Org. Biomol. Chem.* **2021**,*19*, 8999-9003.

[6] A. L. Tribby, I. Rodríguez, S. Shariffudin, and N. D. Ball, Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO₂ Surrogate DABSO and Selectfluor. *J. Org. Chem.* **2017**, *82*, 2294–2299.

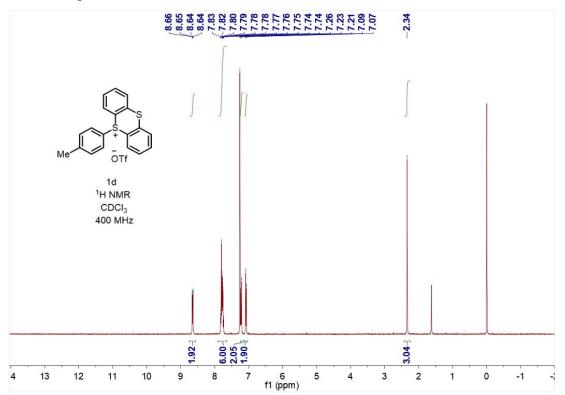
[7] Z. Ma, Y. Liu, X. Ma, X. Hu, Y. Guo, Q.-Y. Chen and C. Liu, Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. *Org. Chem. Front.* **2022**, *9*, 1115-1120.

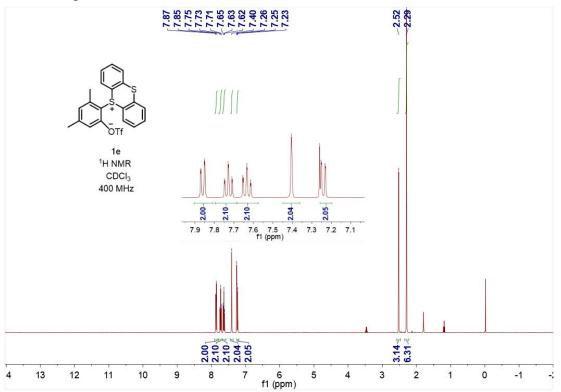

[8] A. S. Barrow and J. E. Moses, Synthesis of Sulfonyl Azides via Lewis Base Activation of Sulfonyl Fluorides and Trimethylsilyl Azide. *Synlett.* **2016**, *27*, 1840–1843.

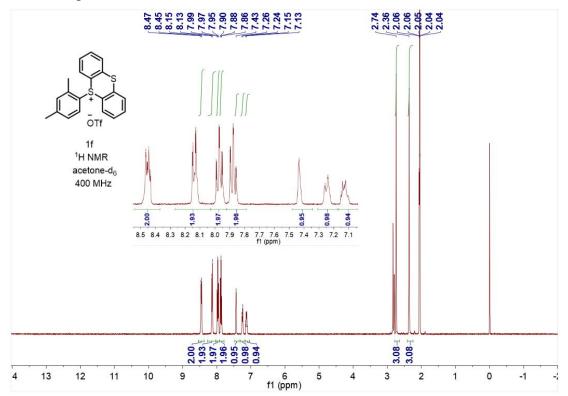
XII. Copies of ¹H, ¹⁹F, and ¹³C NMR spectra

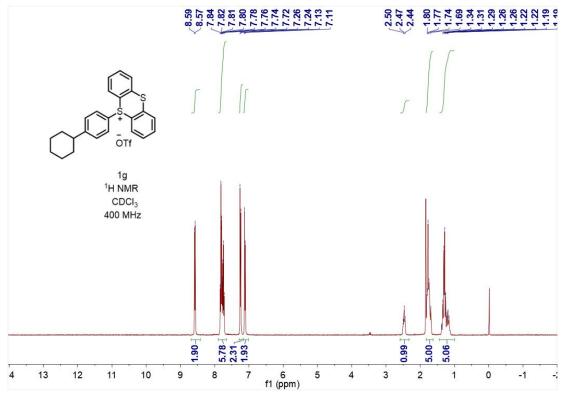


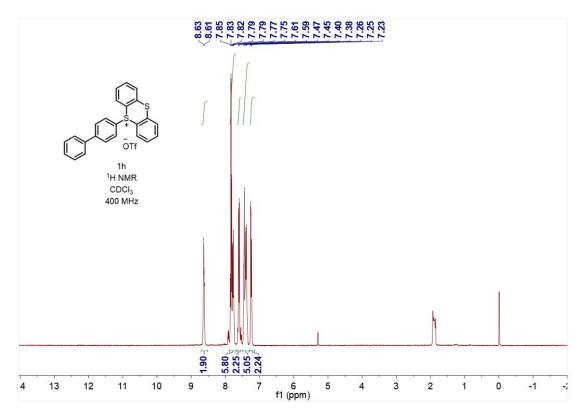
¹H NMR spectrum of **1a**

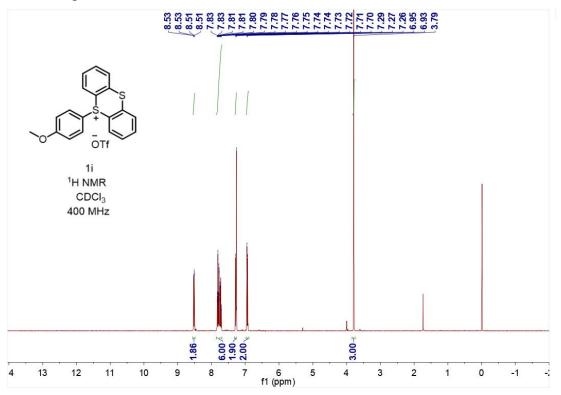

¹H NMR spectrum of **1b**

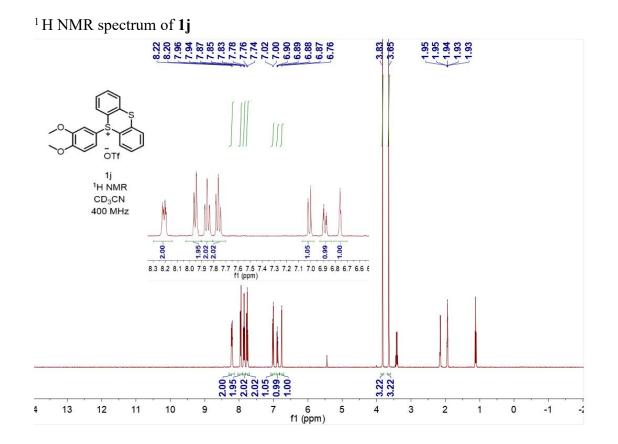

1 H NMR spectrum of **1c**


1 H NMR spectrum of **1d**

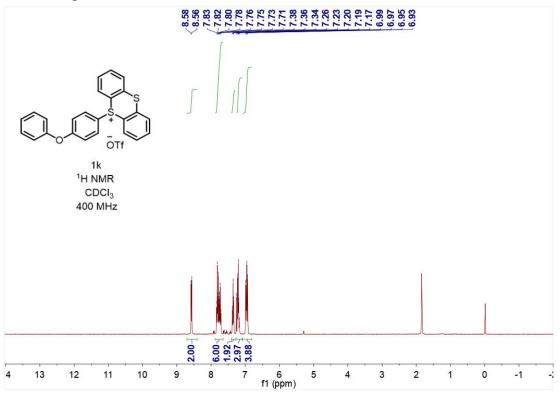

¹H NMR spectrum of **1e**


1 H NMR spectrum of **1f**

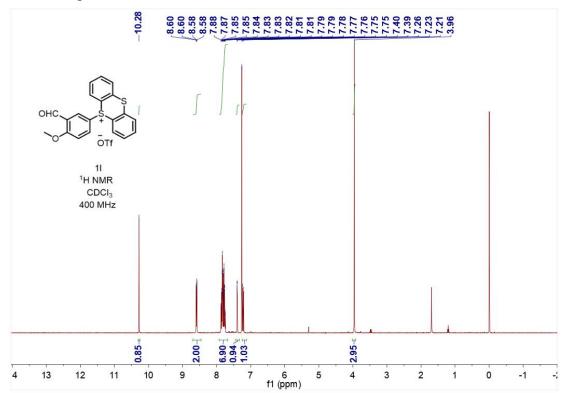

¹H NMR spectrum of **1g**

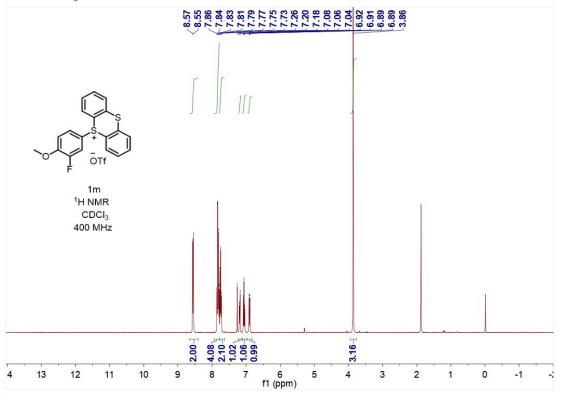


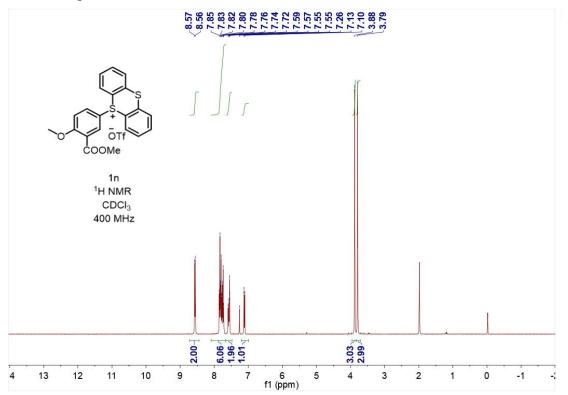
1 H NMR spectrum of **1h**

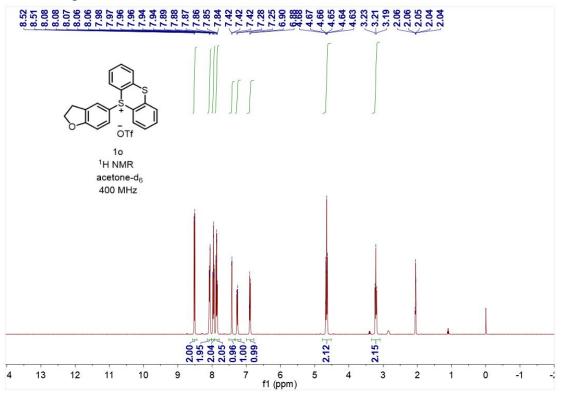


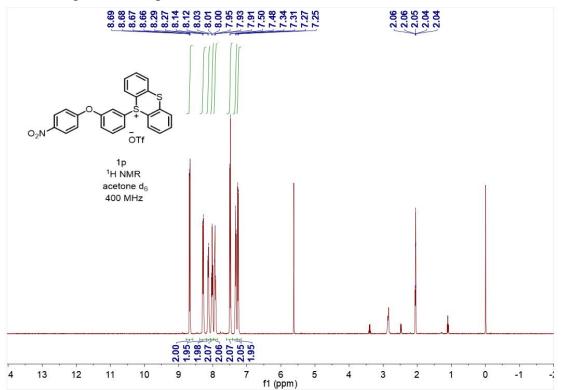
¹H NMR spectrum of **1i**

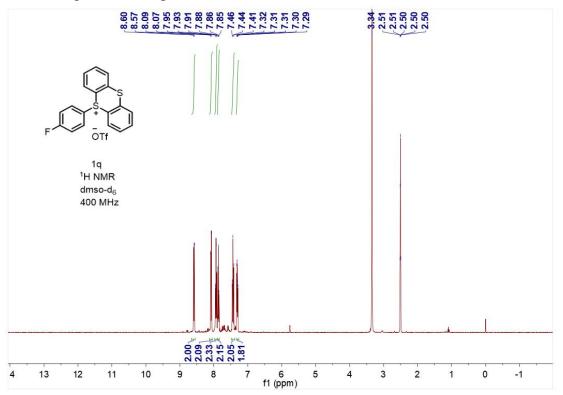


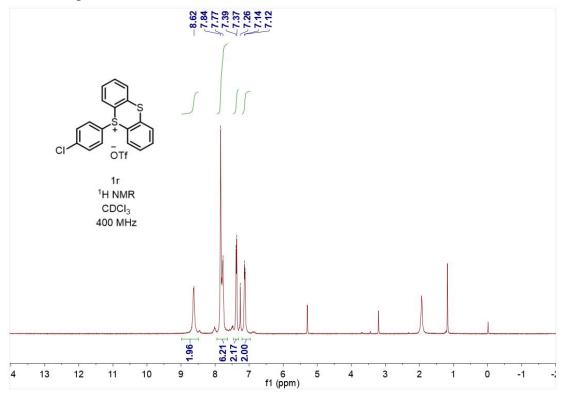

¹H NMR spectrum of **1k**

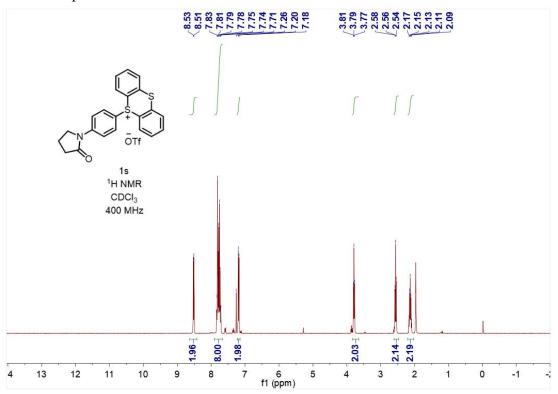

1 H NMR spectrum of **1**

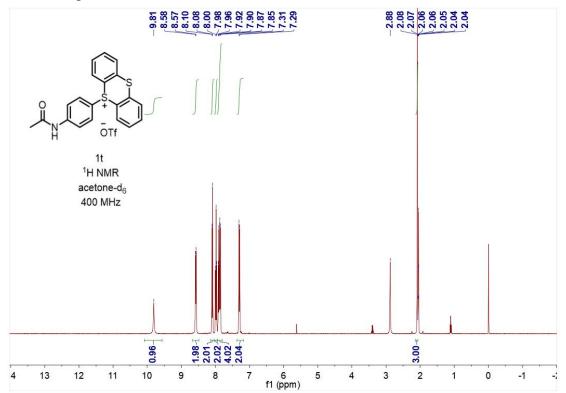

¹ H NMR spectrum of 1m

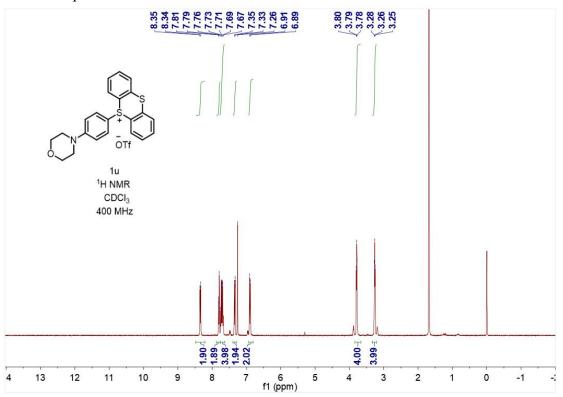

1 H NMR spectrum of 1n

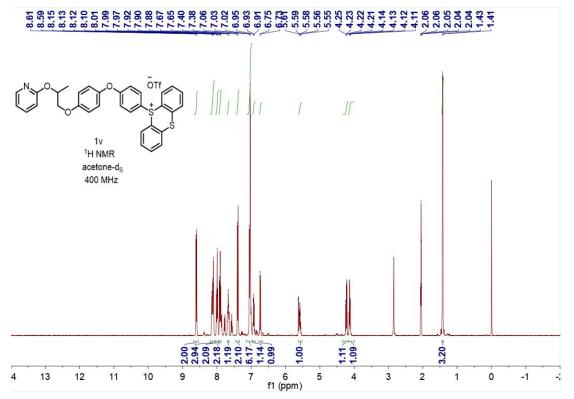

¹H NMR spectrum of **10**

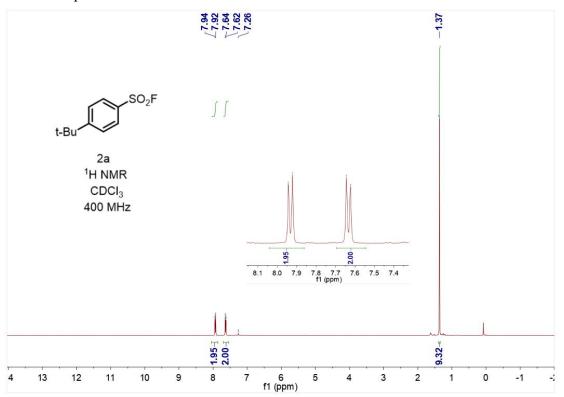

¹H NMR spectrum of **1p**

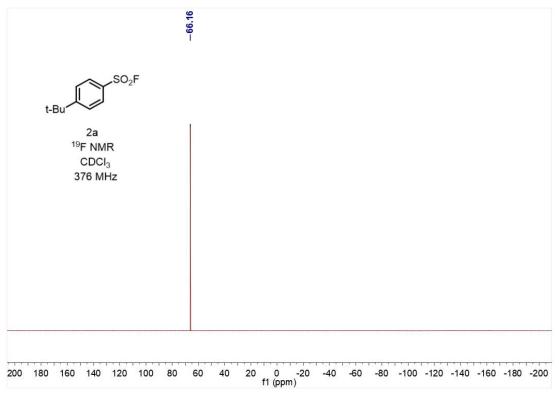

¹ H NMR spectrum of 1q

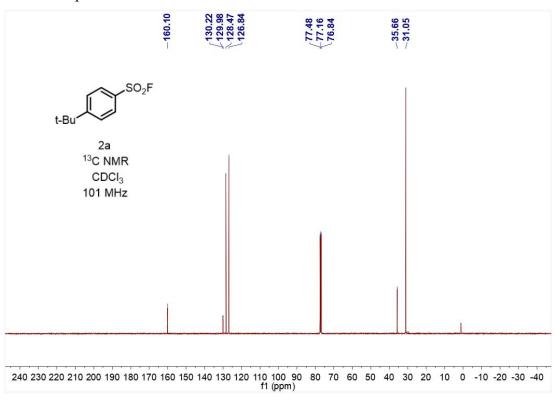

¹ H NMR spectrum of 1r

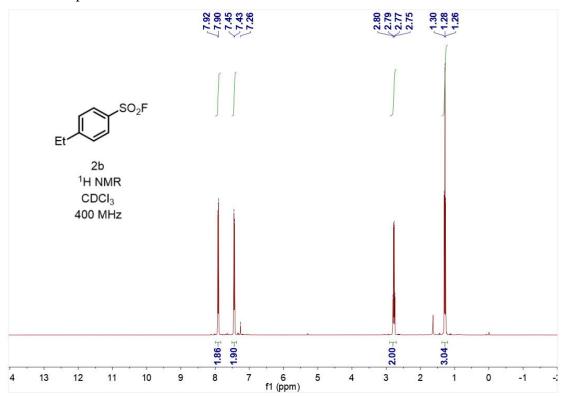

¹H NMR spectrum of **1s**

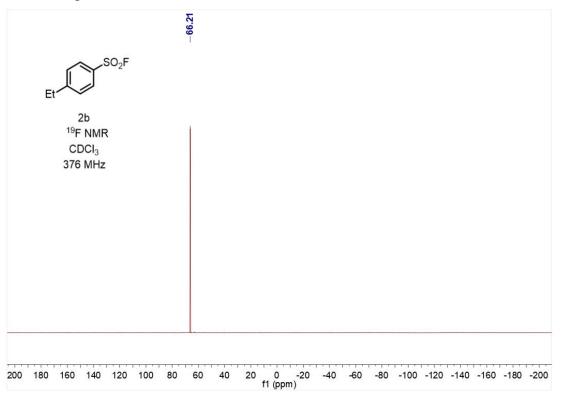

¹ H NMR spectrum of 1t

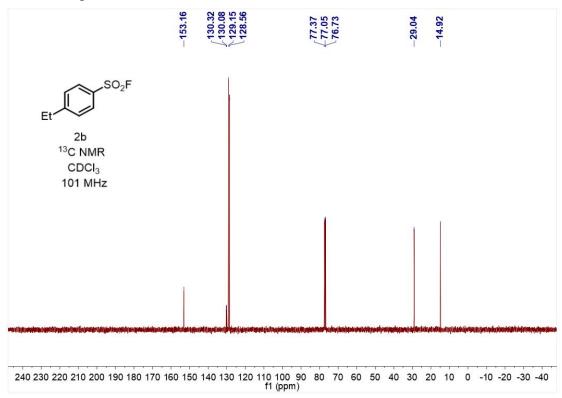

¹H NMR spectrum of **1u**

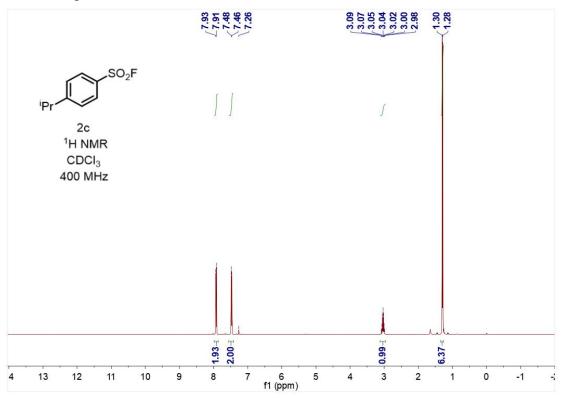

¹ H NMR spectrum of 1v

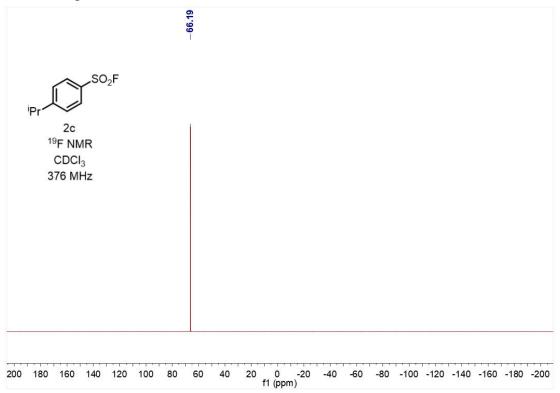

¹H NMR spectrum of **2a**

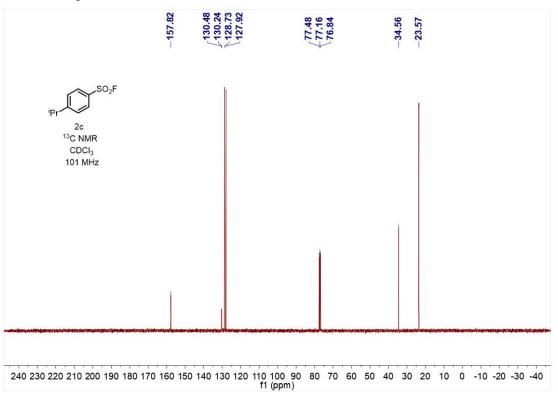

¹⁹ F NMR spectrum of **2a**

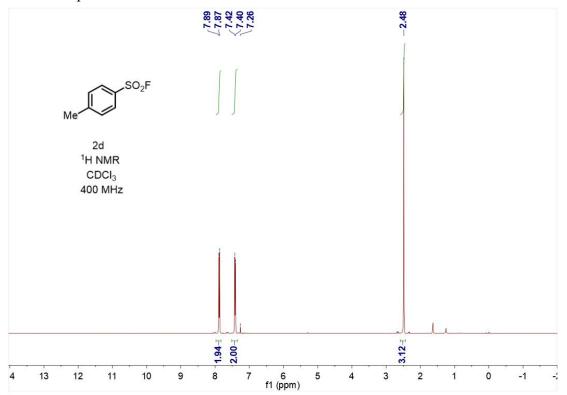

¹³ C NMR spectrum of **2a**

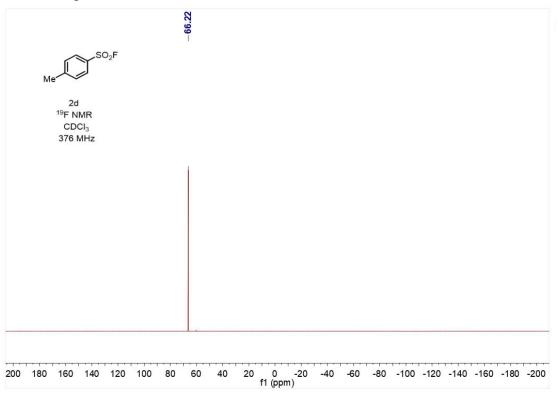

¹ H NMR spectrum of 2b

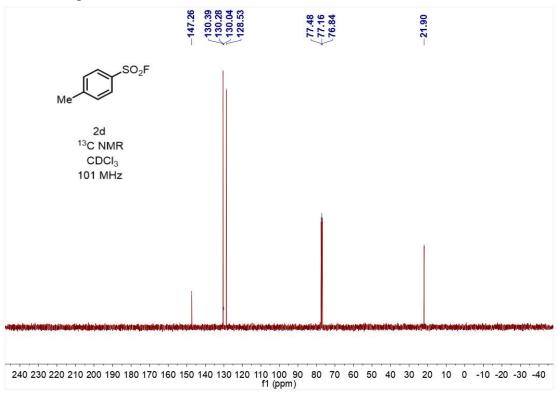

¹⁹ F NMR spectrum of **2b**

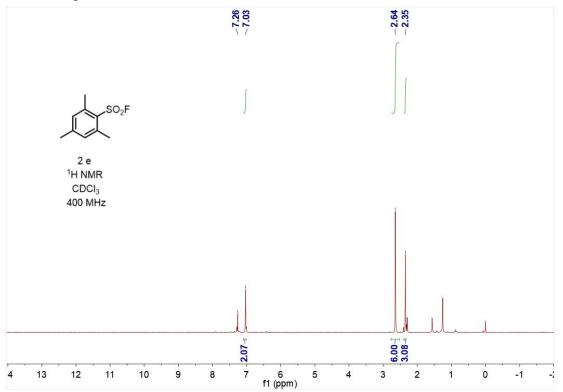

$^{13}\,C$ NMR spectrum of 2b

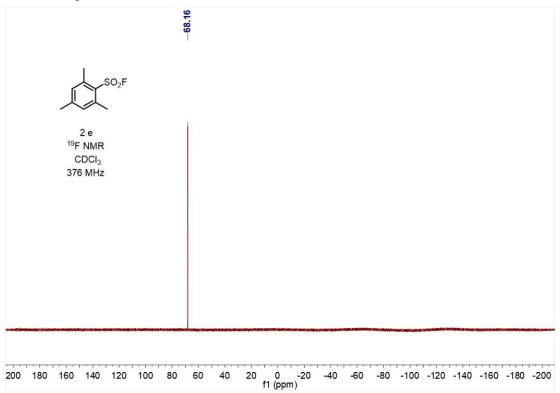

¹ H NMR spectrum of 2c

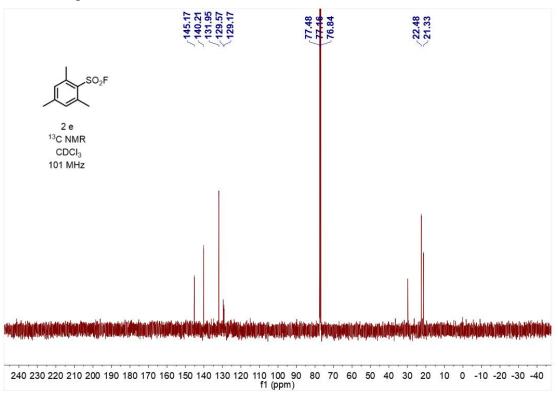

¹⁹ F NMR spectrum of **2c**

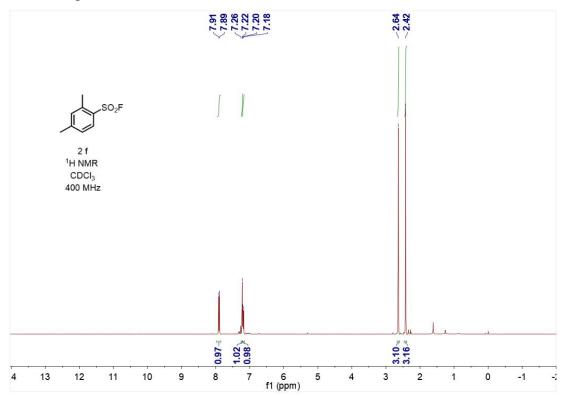

$^{13}\,\mathrm{C}$ NMR spectrum of 2c

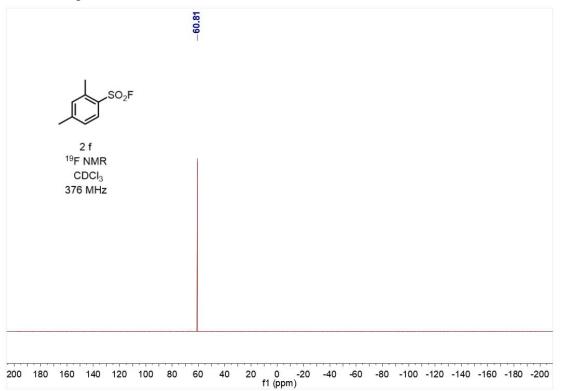

1 H NMR spectrum of **2d**

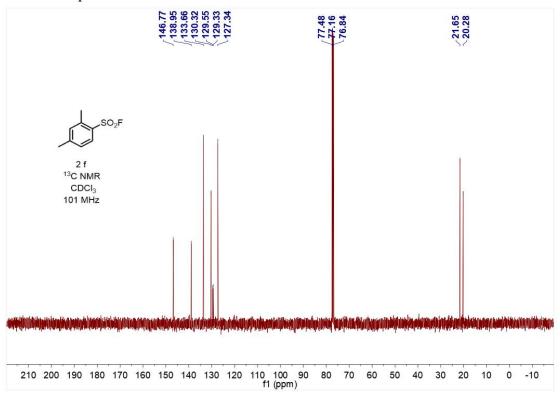

¹⁹ F NMR spectrum of **2d**

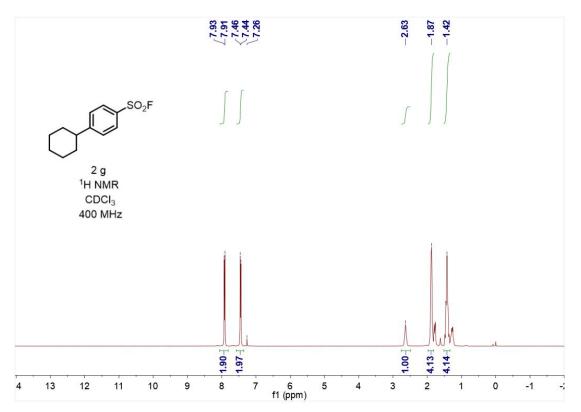

$^{13}\,C$ NMR spectrum of 2d

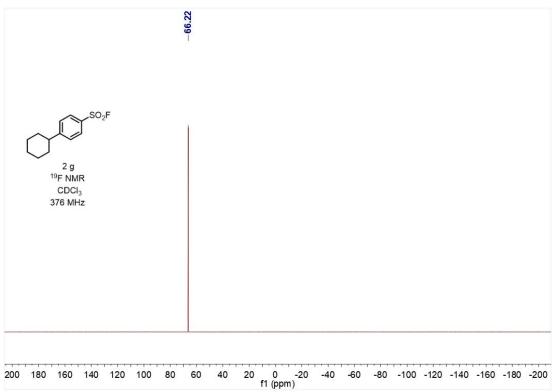

¹H NMR spectrum of **2e**

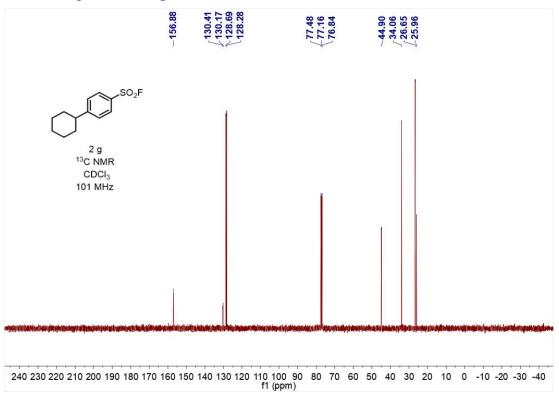

¹⁹ F NMR spectrum of **2e**

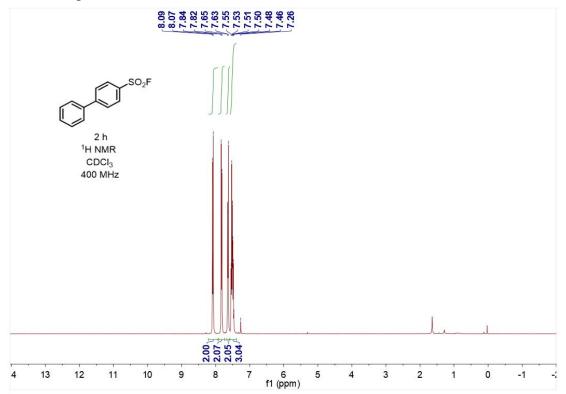

¹³ C NMR spectrum of **2e**

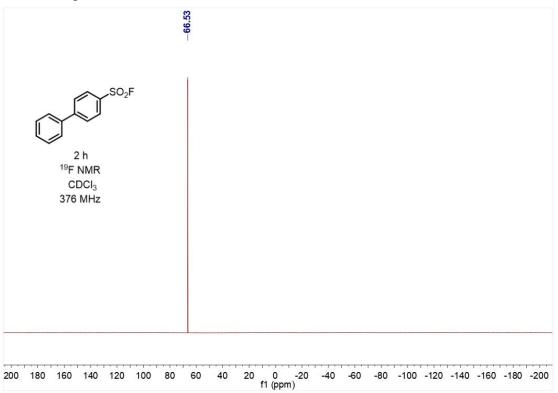

$^1\,\mathrm{H}$ NMR spectrum of 2f

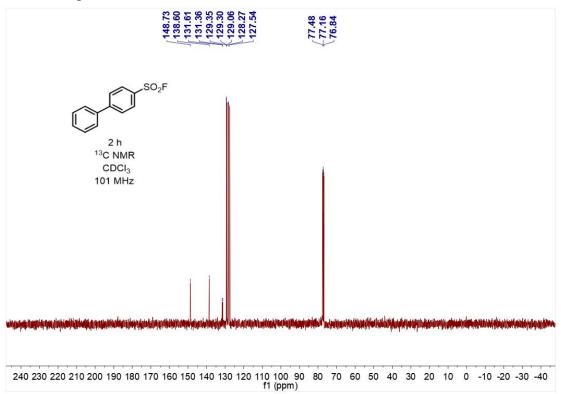

¹⁹ F NMR spectrum of **2f**

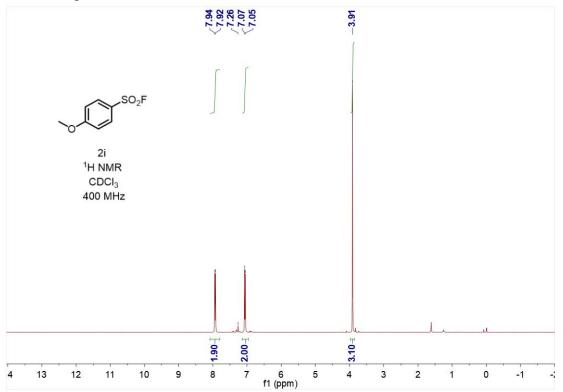

13 C NMR spectrum of 2f

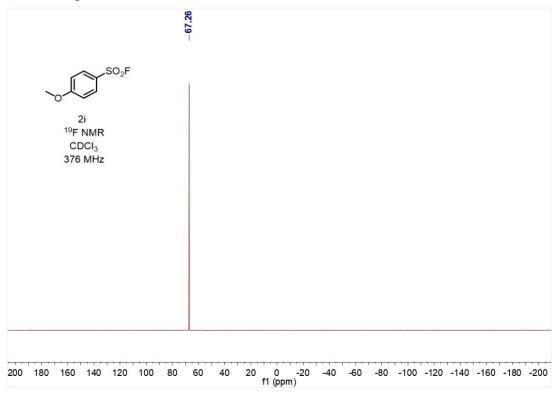

¹ H NMR spectrum of 2g

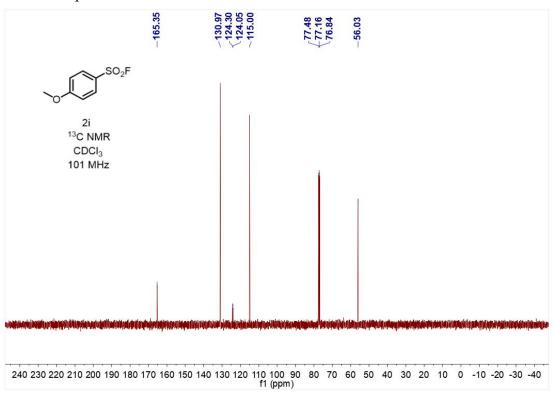

$^{19}\,\mathrm{F}$ NMR spectrum of 2g

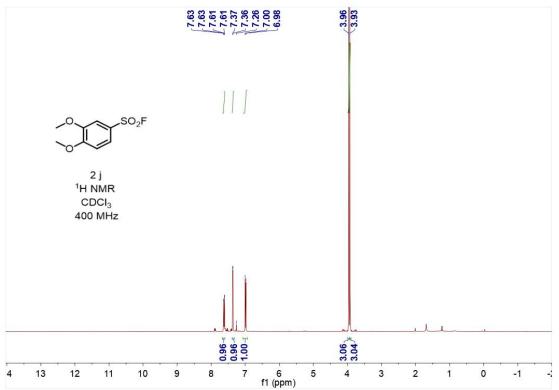

$^{13}\,C$ NMR spectrum of 2g

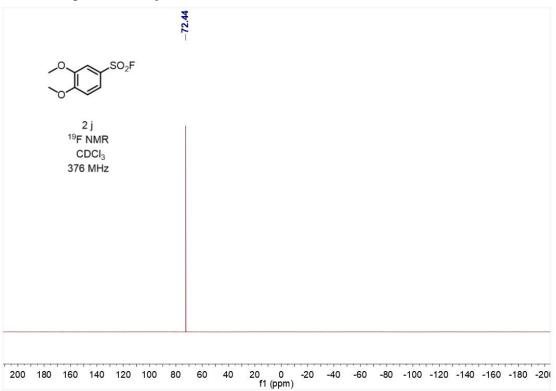

1 H NMR spectrum of **2h**


¹⁹ F NMR spectrum of **2h**

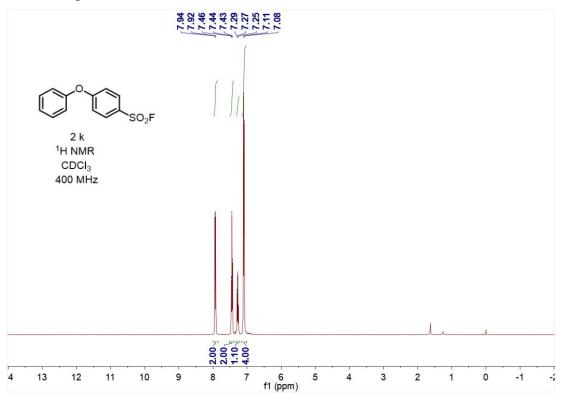

$^{13}\,C$ NMR spectrum of 2h

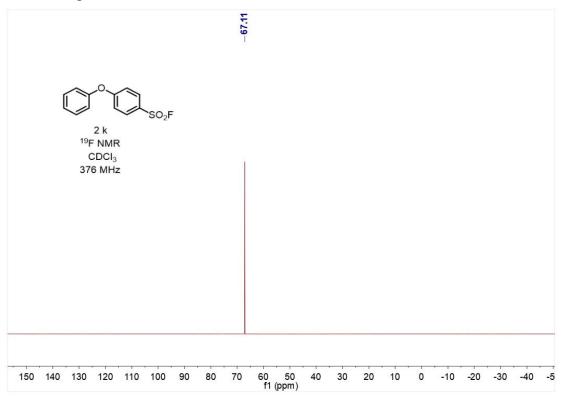

¹H NMR spectrum of 2i

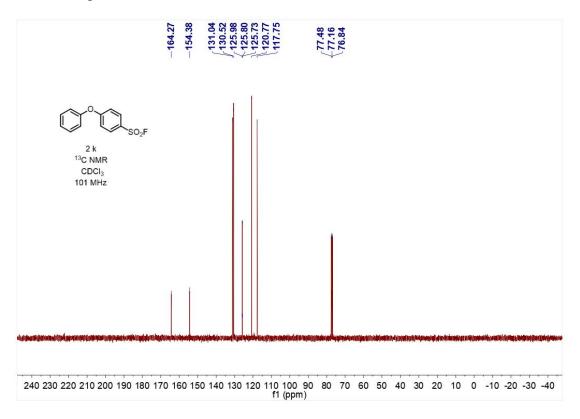

¹⁹ F NMR spectrum of **2i**

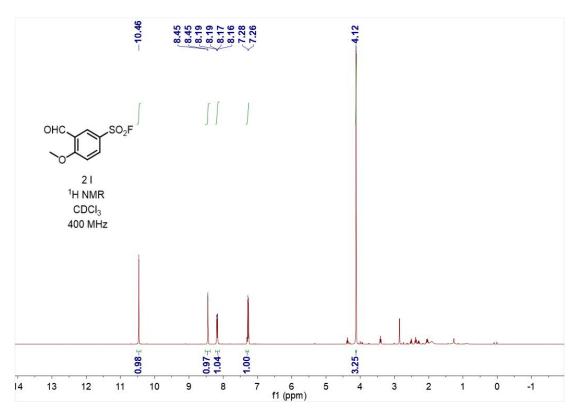

¹³ C NMR spectrum of 2i

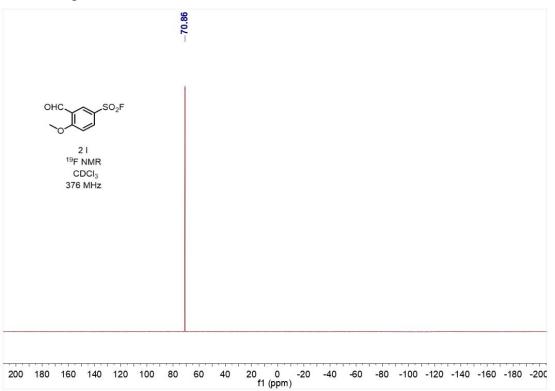
¹ H NMR spectrum of 2j

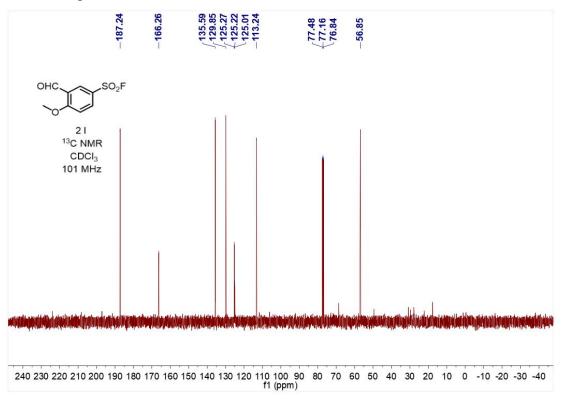

¹⁹ F NMR spectrum of **2**j

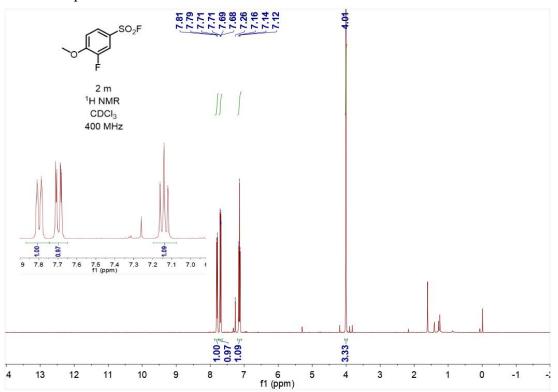

$^{13}\,C$ NMR spectrum of 2j

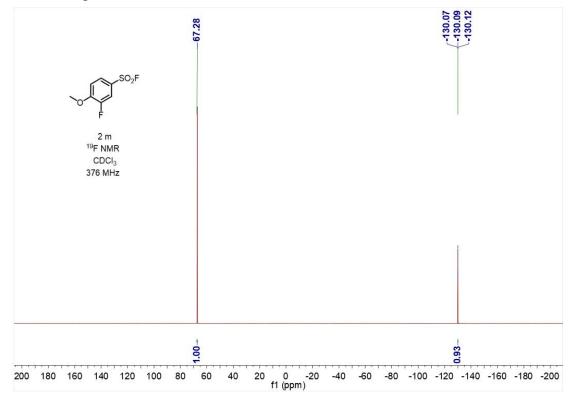

¹ H NMR spectrum of 2k

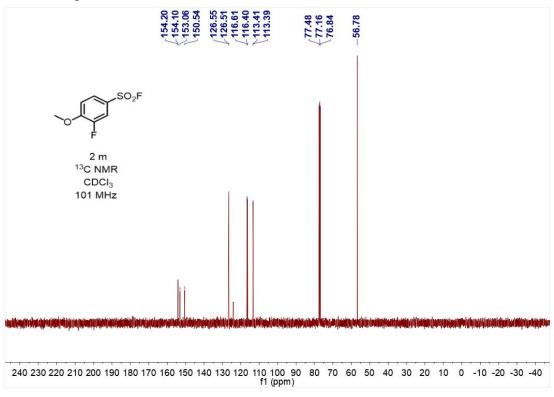

$^{19}\,F$ NMR spectrum of 2k

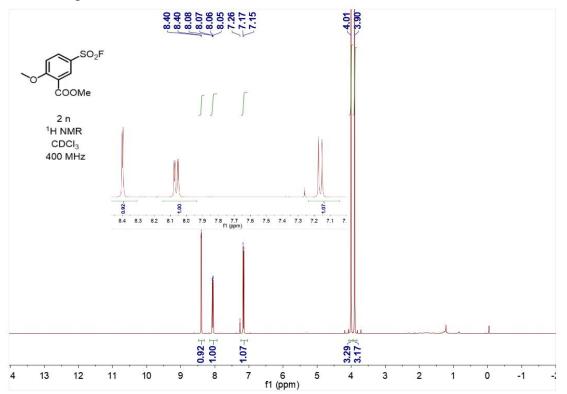

$^{13}\,C$ NMR spectrum of 2k

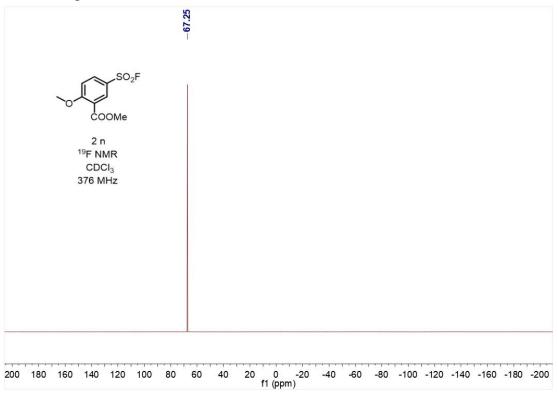

1 H NMR spectrum of **2**l

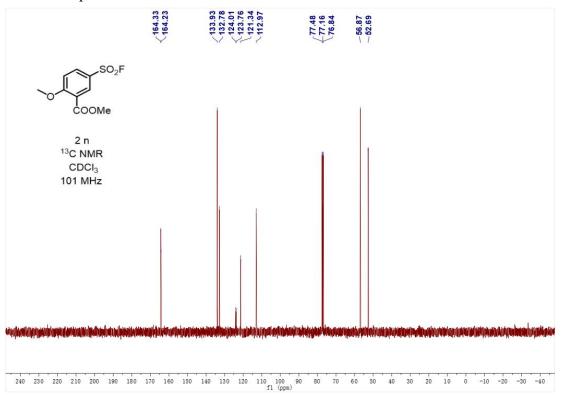

¹⁹ F NMR spectrum of **2l**

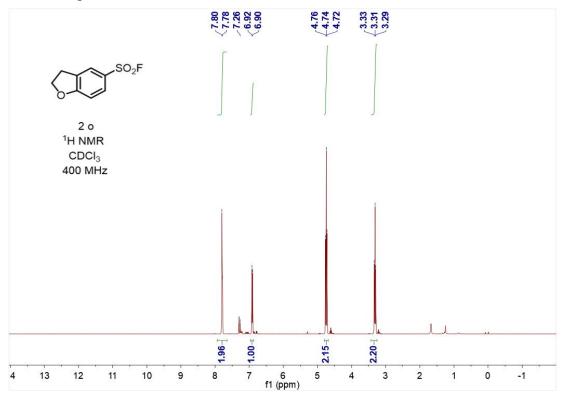

$^{13}\,C$ NMR spectrum of **2l**

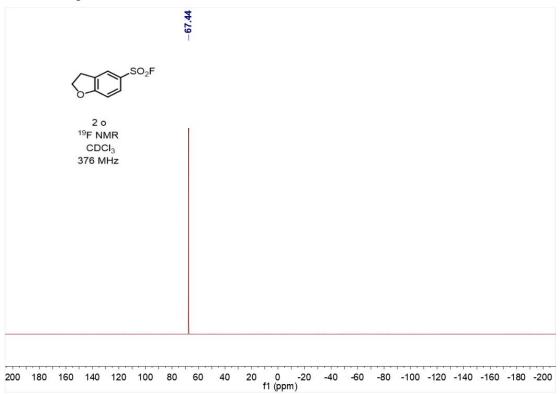

¹ H NMR spectrum of 2m

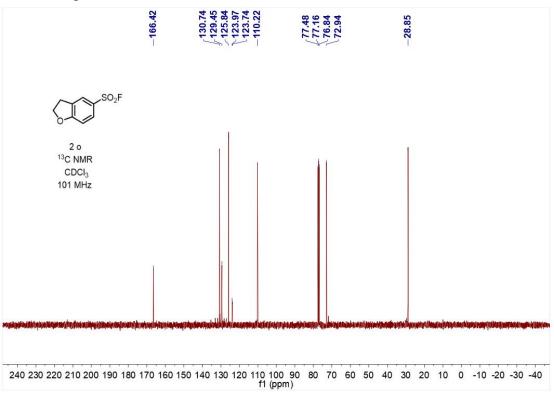

¹⁹ F NMR spectrum of **2m**

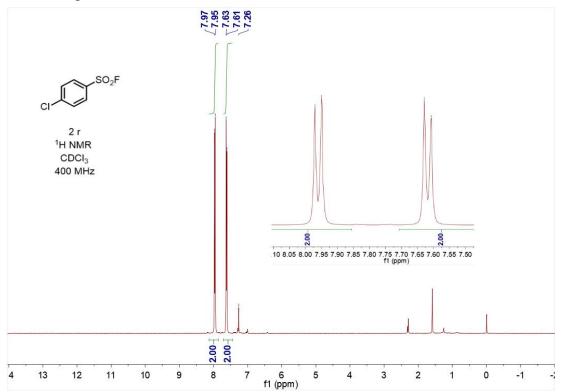

¹³ C NMR spectrum of **2m**

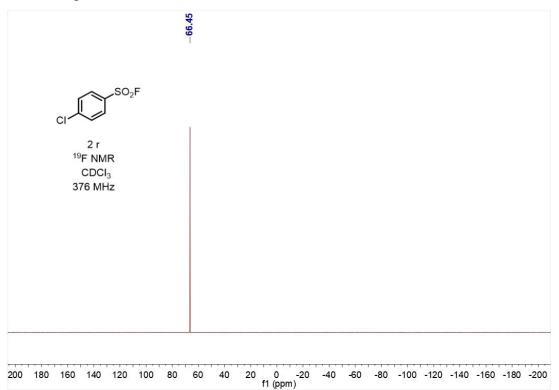

¹ H NMR spectrum of 2n

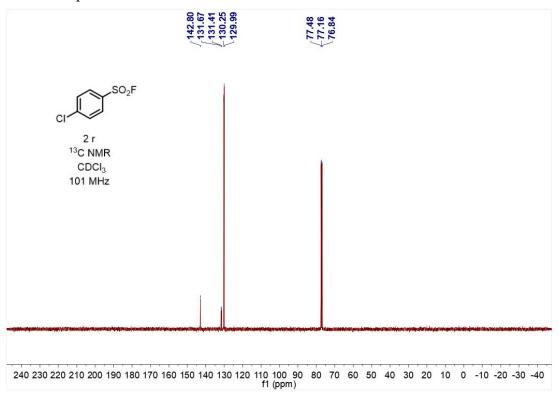

¹⁹ F NMR spectrum of **2n**

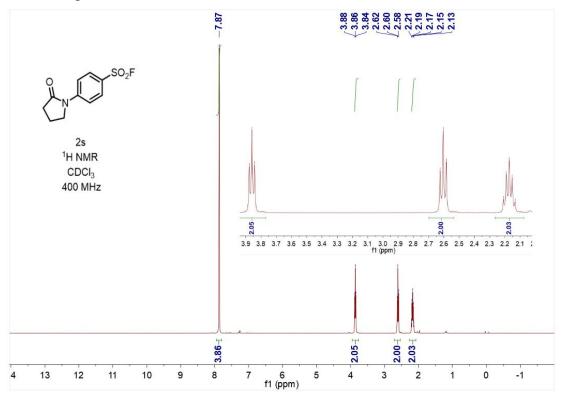

¹³ C NMR spectrum of **2n**

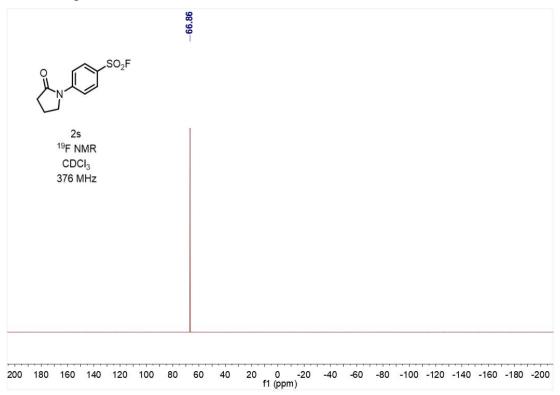

¹H NMR spectrum of **20**

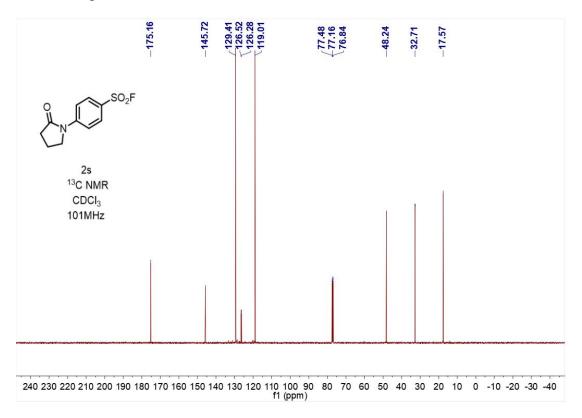

$^{19}\,\mathrm{F}$ NMR spectrum of 20

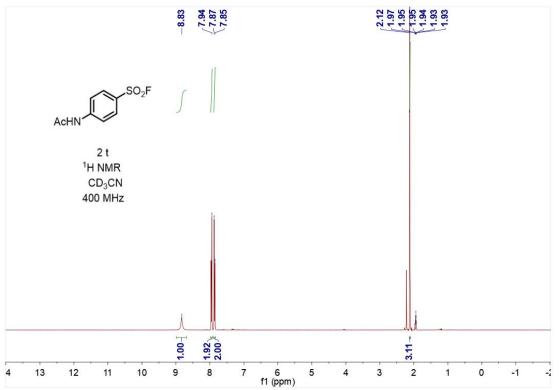

¹³ C NMR spectrum of **20**

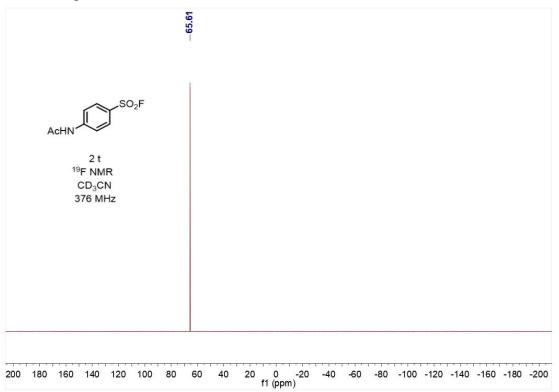

¹ H NMR spectrum of 2r

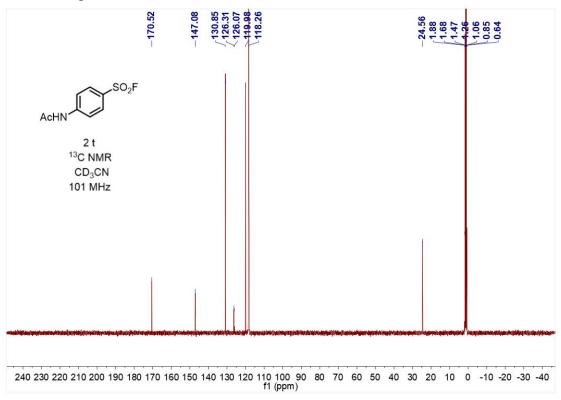

$^{19}\,\mathrm{F}$ NMR spectrum of 2r

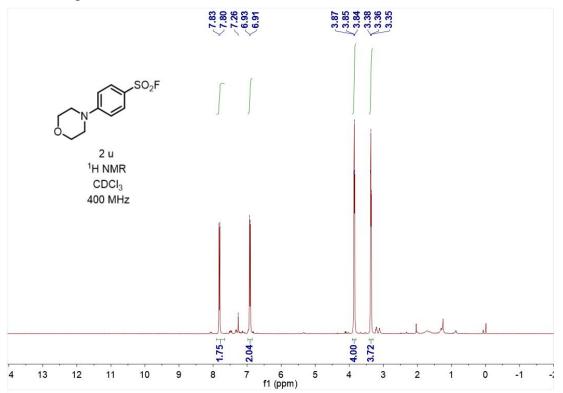

$^{13}\,C$ NMR spectrum of 2r

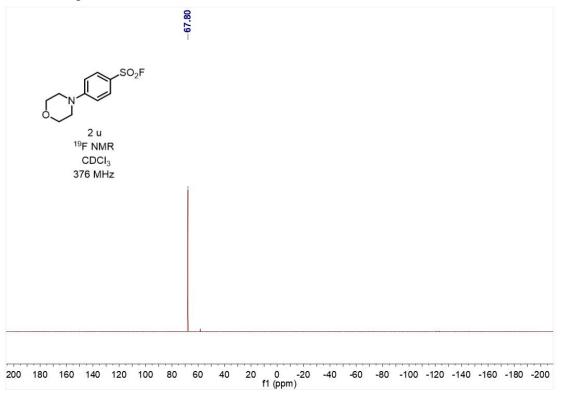

¹H NMR spectrum of **2s**

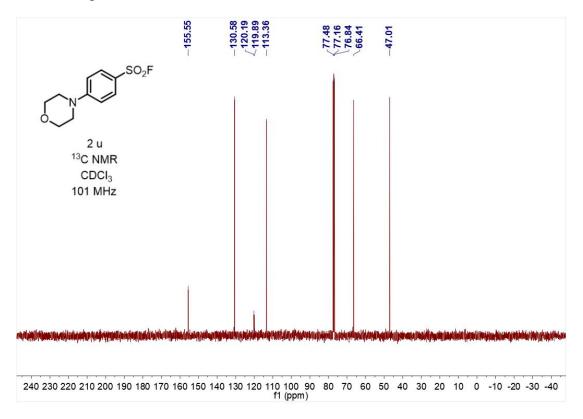

¹⁹ F NMR spectrum of **2s**

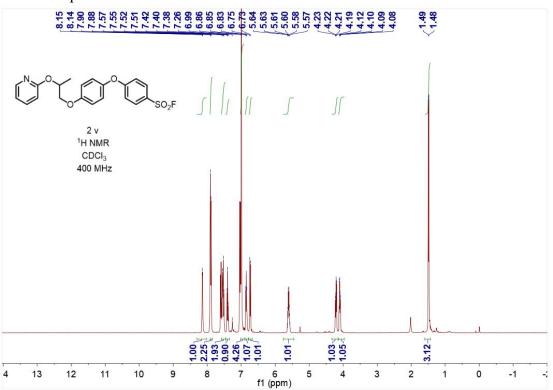

$^{13}\,C$ NMR spectrum of 2s

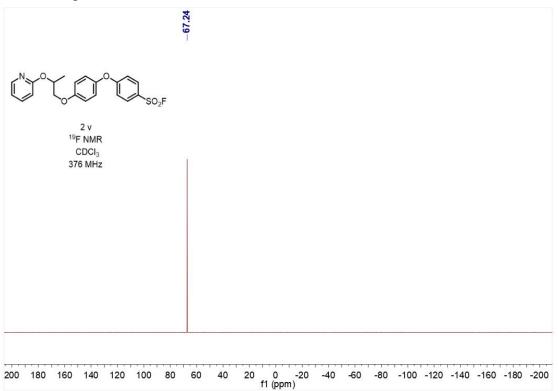

¹H NMR spectrum of **2t**

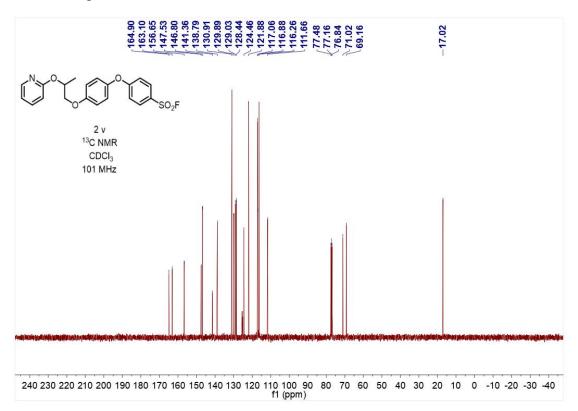

¹⁹ F NMR spectrum of **2t**

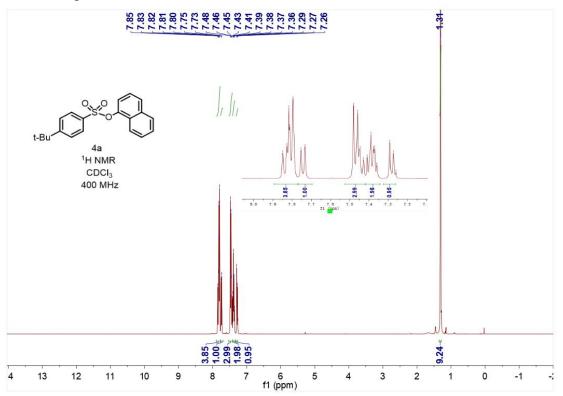

¹³ C NMR spectrum of **2t**

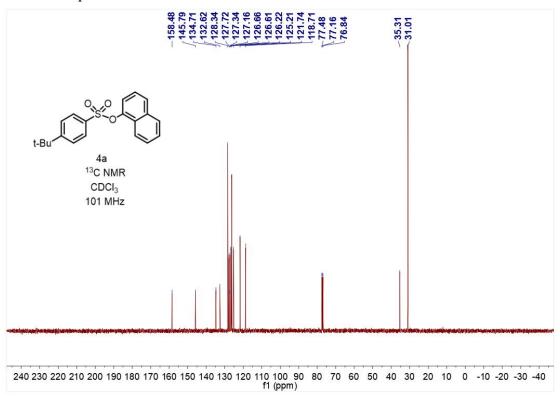

¹ H NMR spectrum of 2u

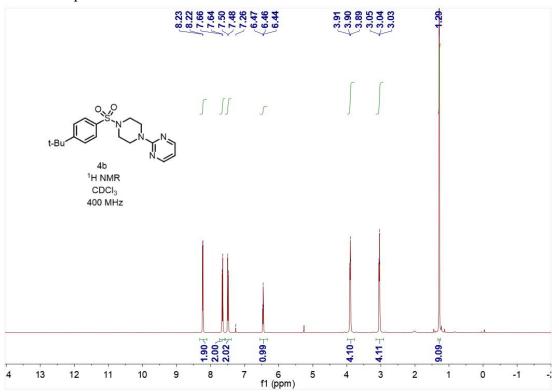

$^{19}\,\mathrm{F}$ NMR spectrum of 2u

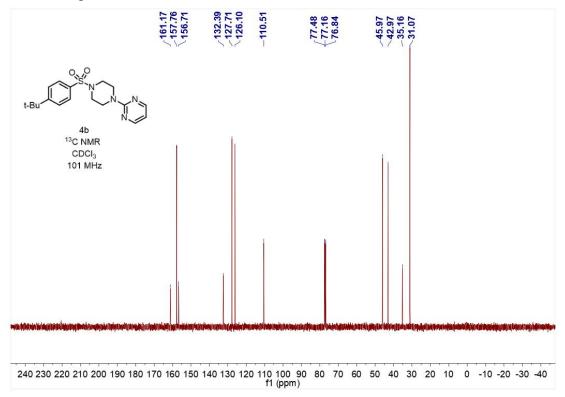

¹³ C NMR spectrum of **2u**

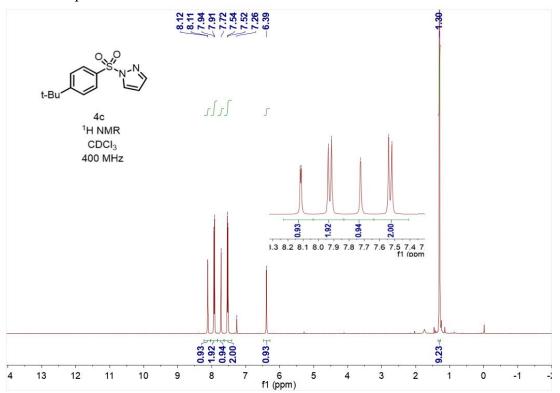

¹H NMR spectrum of **2v**

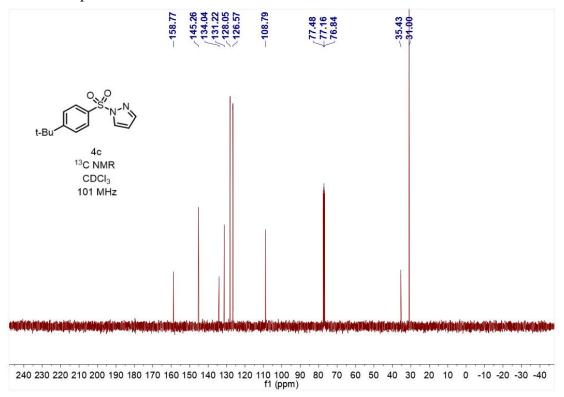

¹⁹ F NMR spectrum of **2v**

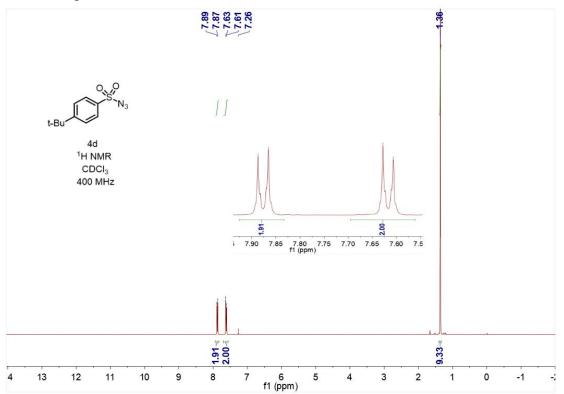

$^{13}\,C$ NMR spectrum of 2v

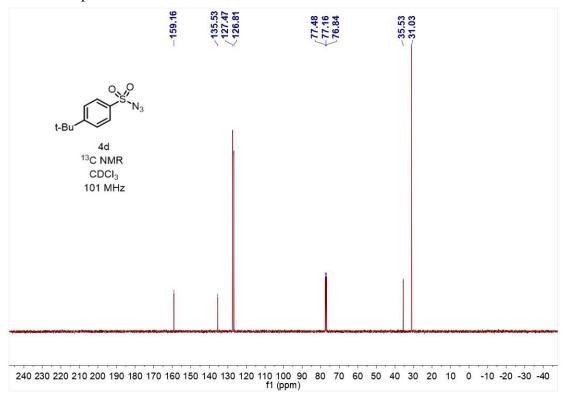

¹H NMR spectrum of **4a**


¹³ C NMR spectrum of **4a**


1 H NMR spectrum of **4b**


$^{13}\,C$ NMR spectrum of 4b


¹H NMR spectrum of **4**c


13 C NMR spectrum of **4c**

1 H NMR spectrum of **4d**

$^{13}\,C$ NMR spectrum of 4d

