Supplementary Information

Development of water-soluble phenazine-2,3-diol-based photosensitizers for singlet oxygen generation

Kazunori Yagi, Kazuki Ohira, Keita Yamana, Keiichi Imato, Riku Kawasaki, Atsushi Ikeda and Yousuke Ooyama*

Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan. E-mail: yooyama@hiroshima-u.ac.jp

Synthesis

Compound 1. A solution of dimethyl 4-amino-5-nitrophthalate (407 mg, 1.60 mmol) and ammonium chloride (428 mg, 8.00 mmol) in the mixture of ethanol (360 mL) and water (40 mL) was stirred at 80 °C with iron powder (447 mg, 8.00 mmol) overnight under N₂ atmosphere. After concentrating under reduced pressure, the residue was chromatographed on silica gel (methanol/dichloromethane = 1/19 as eluent) to give 1 as light brown solid (277 mg, 80% yield); m.p. 109–112 °C; IR (ATR): = 3441, 3414, 3360, 3298, 3273, 3248, 2949, 1717, 1688, 1668, 1626, 1589, 1574, 1566, 1522 cm⁻¹; ¹H NMR (500 MHz, dimethyl sulfoxide (DMSO)-*d*₆): δ = 6.79 (s, 2H, aromatic), 5.22 (s, 4H, NH₂), 3.68 (s, 6H, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 168.30, 137.09, 120.70, 113.60, 51.85 ppm; HRMS (ESI): *m/z* found 247.06876 [M+Na]⁺, calculated for C₁₀H₁₂O₄N₂Na [M+Na]⁺: 247.06893.

Compound 2 was synthesized by the method in our previous study.¹

Reference

1. S. Tsumura, K. Ohira, K. Hashimoto, K. Imato, and Y. Ooyama, *Mater. Chem. Front.*, 2020, 4, 2762-2771.

NMR spectra

Fig. S1. ¹H NMR spectrum of 1 in DMSO-*d*₆.

Fig. S2. ¹³C NMR spectrum of **1** in DMSO- d_6

Fig. S3 ¹H NMR spectrum of 3 in DMSO- d_6 .

Fig. S4 ¹H NMR spectrum of **4** in DMSO- d_6 .

Fig. S5 ¹H NMR spectrum of **5** in acetone- d_6 .

Fig. S6 ¹H NMR spectrum of 6 in CDCl₃.

Fig. S7 ¹³C NMR spectrum of 6 in CDCl₃.

Fig. S8 ¹H NMR spectrum of 7 in acetone- d_6 .

Fig. S9 ¹³C NMR spectrum of 7 in CDCl₃.

Fig. S10 ¹H NMR spectrum of 8 in acetone- d_6 .

Fig. S11 13 C NMR spectrum of 8 in acetone- d_6 .

Fig. S12 ¹H NMR spectrum of 9 in acetone- d_6 .

Fig. S13 ¹H NMR spectrum of 10 in acetone- d_6 .

Fig. S14 ¹H NMR spectrum of KY-1 in DMSO-*d*₆.

Fig. S15 ¹H NMR spectrum of KY-2 in DMSO- d_6 .

Fig. S16 1 H NMR spectrum of KY-1Na in D₂O.

Fig. S17 1 H NMR spectrum of KY-2Na in D₂O.

HRMS spectra

Fig. S18 HRMS spectrum of 1.

Fig. S19 HRMS spectrum of 3.

Fig. S20 HRMS spectrum of 4.

Fig. S21 HRMS spectrum of 5.

Fig. S22 HRMS spectrum of 6.

Fig. S23 HRMS spectrum of 7.

Fig. S24 HRMS spectrum of 8.

Fig. S25 HRMS spectrum of 9.

Fig. S26 HRMS spectrum of 10.

Fig. S27 HRMS spectrum of KY-1.

Fig. S28 HRMS spectrum of KY-2.

Fig. S29 HRMS spectrum of KY-1Na.

Fig. S30 HRMS spectrum of KY-2Na.

IR spectra

Fig. S31 FT-IR (ATR) spectrum of 1.

Fig. S32 FT-IR (ATR) spectrum of 3.

Fig. S33 FT-IR (ATR) spectrum of 4.

Fig. S34 FT-IR (ATR) spectrum of 5.

Fig. S35 FT-IR (ATR) spectrum of 6.

Fig. S36 FT-IR (ATR) spectrum of 7.

Fig. S37 FT-IR (ATR) spectrum of 8.

Fig. S38 FT-IR (ATR) spectrum of 9.

Fig. S39 FT-IR (ATR) spectrum of 10.

Fig. S40 FT-IR (ATR) spectrum of KY-1.

Fig. S41 FT-IR (ATR) spectrum of KY-2.

Fig. S42 FT-IR (ATR) spectrum of KY-1Na.

Fig. S43 FT-IR (ATR) spectrum of KY-2Na.

Theoretical calculations

TableS1GeometricalcoordinatesoftheoptimizedKY-1byDFTattheB3LYP/6-311G(d,p)/DMSO-IEFPCM level.

Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	0.049219	-2.78741	-0.29891	24	С	3.064042	-2.911	-1.2159
2	С	0.976895	-1.7674	-0.29557	25	S	3.500757	-1.54679	0.935995
3	С	0.510161	-0.40418	-0.27356	26	С	4.433192	-3.09246	-0.9187
4	С	-0.91449	-0.12938	-0.27792	27	Н	2.575224	-3.33263	-2.08463
5	С	-1.85167	-1.22112	-0.30481	28	С	4.825965	-2.42356	0.219443
6	С	-1.36845	-2.51342	-0.3031	29	Н	5.111988	-3.68351	-1.51969
7	С	-0.47503	2.122418	-0.25472	30	0	-2.14384	-3.61184	-0.2816
8	С	0.932359	1.850184	-0.25156	31	Н	-3.07537	-3.34877	-0.22542
9	С	1.848047	2.932966	-0.23933	32	0	0.358847	-4.09679	-0.27479
10	Н	2.909688	2.722665	-0.23864	33	Н	1.320483	-4.19993	-0.20787
11	С	1.388719	4.22917	-0.2286	34	С	-6.90546	0.104949	0.76317
12	С	-0.01357	4.499215	-0.23116	35	Н	-7.81532	-0.16684	0.19495
13	С	-0.91932	3.474629	-0.2446	36	С	6.159339	-2.38851	0.797715
14	Н	-0.35069	5.526593	-0.22304	37	Н	6.90605	-2.98642	0.241382
15	Н	-1.98613	3.66171	-0.24827	38	38 C	2.395684	5.327822	-0.21567
16	С	-3.30667	-0.99503	-0.3275	39	Ν	-1.37123	1.119979	-0.27283
17	С	-4.20611	-1.4985	-1.24971	40	Ν	1.395548	0.58594	-0.26579
18	S	-4.12503	-0.09935	0.922398	41	0	1.831021	6.551115	-0.20595
19	С	-5.54781	-1.16418	-0.95904	42	Н	2.54768	7.204211	-0.19826
20	Н	-3.90071	-2.06034	-2.12295	43	0	3.595567	5.162559	-0.21407
21	С	-5.67465	-0.41294	0.188325	44	0	-6.97128	0.778197	1.776422
22	Н	-6.39214	-1.45403	-1.57088	45	0	6.46627	-1.77132	1.802298
23	С	2.412049	-2.09583	-0.30817					

Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	1.324116	-2.46013	-0.42434	23	С	3.277859	-0.95894	-0.37063
2	С	1.818323	-1.17524	-0.37389	24	С	4.171151	-1.26847	-1.37723
3	С	0.897828	-0.06998	-0.32452	25	S	4.097156	-0.31329	1.025061
4	С	-0.52531	-0.3257	-0.32106	26	С	5.512414	-0.97681	-1.0382
5	С	-1.00316	-1.68243	-0.37069	27	н	3.862484	-1.66704	-2.33491
6	С	-0.0939	-2.71463	-0.42568	28	С	5.644114	-0.45314	0.230815
7	С	-0.92839	1.933995	-0.2613	29	н	6.354942	-1.13737	-1.69861
8	С	0.48705	2.187006	-0.26687	30	С	-2.34965	5.509544	-0.15255
9	С	0.941772	3.536288	-0.23864	31	С	-6.13263	-2.42655	0.895031
10	н	2.010668	3.717153	-0.24474	32	н	-6.93064	-2.84608	0.255516
11	С	0.039347	4.564971	-0.2029	33	С	6.883248	-0.04853	0.868732
12	С	-1.37001	4.325939	-0.19481	34	н	7.780781	-0.19876	0.241233
13	С	-1.83139	3.032679	-0.22553	35	0	-6.36814	-2.07413	2.040751
14	н	0.375457	5.593611	-0.17981	36	0	-3.57578	5.230221	-0.14661
15	н	-2.89557	2.834176	-0.22154	37	0	6.976275	0.418636	1.993745
16	С	-2.4477	-1.98582	-0.36533	38	0	-0.43542	-4.02097	-0.45863
17	С	-3.19062	-2.5367	-1.38999	39	н	-1.40081	-4.10488	-0.44076
18	S	-3.42334	-1.7246	1.054577	40	0	2.097852	-3.5666	-0.45009
19	С	-4.54714	-2.73833	-1.0454	41	н	3.032236	-3.31052	-0.42086
20	Н	-2.77242	-2.76304	-2.36209	42	0	-1.83531	6.658185	-0.12715
21	С	-4.83695	-2.3499	0.245685	43	Ν	-1.4035	0.675667	-0.29483
22	Н	-5.29066	-3.14797	-1.71709	44	Ν	1.371274	1.175686	-0.30386

Table S3 Geometrical coordinates of the optimized KY-1Na by DFT at theB3LYP/6-311+G(d,p)/Water-IEFPCM level.

-									
Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	1.327674	-2.45807	-0.4257	23	С	3.279216	-0.95396	-0.37185
2	С	1.819953	-1.17251	-0.37484	24	С	4.172251	-1.25729	-1.3804
3	С	0.898002	-0.06867	-0.32479	25	S	4.098278	-0.31359	1.026532
4	С	-0.52494	-0.32652	-0.32159	26	С	5.513317	-0.96497	-1.04086
5	С	-1.00088	-1.6839	-0.37124	27	Н	3.863548	-1.65259	-2.33941
6	С	-0.09008	-2.71478	-0.42646	28	С	5.645014	-0.44695	0.23042
7	С	-0.93105	1.93268	-0.2615	29	Н	6.355661	-1.12131	-1.70251
8	С	0.483887	2.187739	-0.26599	30	С	-2.35767	5.50577	-0.15341
9	С	0.936596	3.537686	-0.23649	31	С	-6.12912	-2.43084	0.896693
10	н	2.005208	3.720234	-0.24163	32	Н	-6.92689	-2.85336	0.25895
11	С	0.032718	4.565127	-0.20092	33	С	6.883696	-0.04349	0.869747
12	С	-1.37626	4.324012	-0.19463	34	Н	7.781342	-0.18974	0.241598
13	С	-1.83567	3.030015	-0.22628	35	0	-6.36481	-2.07444	2.041313
14	н	0.367638	5.594131	-0.17677	36	0	-3.58364	5.224945	-0.15264
15	н	-2.89956	2.829796	-0.22369	37	0	6.976174	0.418914	1.996905
16	С	-2.44498	-1.98913	-0.3653	38	0	-0.42932	-4.02154	-0.45915
17	С	-3.18742	-2.54311	-1.38862	39	Н	-1.39454	-4.10762	-0.4408
18	S	-3.42052	-1.72615	1.054304	40	0	2.10297	-3.56318	-0.45253
19	С	-4.54365	-2.74566	-1.04331	41	Н	3.037131	-3.30603	-0.42474
20	н	-2.76925	-2.77129	-2.3603	42	0	-1.84573	6.655458	-0.12347
21	С	-4.83379	-2.35471	0.246921	43	Ν	-1.40442	0.673665	-0.29554
22	н	-5.28669	-3.15772	-1.71405	44	Ν	1.369603	1.177672	-0.30319

TableS4GeometricalcoordinatesoftheoptimizedKY-2byDFTattheB3LYP/6-311G(d,p)/DMSO-IEFPCM level.

				_	_				_
Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	-0.71706	-3.22259	-0.33162	25	С	5.094198	-2.65832	-0.93878
2	С	-1.43728	-2.04623	-0.31897	26	Н	3.322255	-3.20678	-2.13534
3	С	-0.72401	-0.79723	-0.27893	27	С	5.344711	-1.97135	0.228279
4	С	0.728255	-0.79539	-0.27567	28	Н	5.877353	-3.08505	-1.55194
5	С	1.444593	-2.04267	-0.30929	29	С	-1.54206	5.158975	0.053926
6	С	0.727484	-3.22073	-0.32636	30	С	1.530868	5.172374	-0.34031
7	С	0.713935	1.495304	-0.22739	31	С	-6.64592	-1.7161	0.772551
8	С	-0.71545	1.493487	-0.22892	32	Н	-7.49107	-2.14293	0.200041
9	С	-1.40679	2.733283	-0.1841	33	С	6.643248	-1.70475	0.825942
10	Н	-2.48845	2.72053	-0.1436	34	Н	7.494092	-2.12518	0.25714
11	С	-0.72199	3.922123	-0.14525	35	Ν	-1.40905	0.342122	-0.25941
12	С	0.714147	3.925259	-0.19959	36	Ν	1.410527	0.345719	-0.2571
13	С	1.402017	2.737714	-0.21741	37	0	-0.9666	6.01388	0.917542
14	Н	2.483602	2.729488	-0.26062	38	Н	-1.53992	6.792848	0.994615
15	С	-2.90906	-2.09936	-0.33856	39	0	0.955382	6.063199	-1.16688
16	С	-3.69994	-2.74711	-1.26981	40	Н	1.526428	6.846619	-1.20696
17	S	-3.87713	-1.39674	0.927617	41	0	-1.26733	-4.44849	-0.32604
18	С	-5.07983	-2.67648	-0.97351	42	Н	-2.23219	-4.37017	-0.26932
19	Н	-3.29677	-3.22644	-2.15243	43	0	1.281094	-4.44506	-0.31606
20	С	-5.34191	-1.98285	0.187072	44	Н	2.245414	-4.3639	-0.25442
21	Н	-5.85655	-3.10956	-1.5904	45	0	-2.62813	5.34446	-0.44212
22	С	2.916679	-2.09216	-0.31783	46	0	2.614702	5.338894	0.167146
23	С	3.716896	-2.7315	-1.2467	47	0	-6.83192	-1.08634	1.798578
24	S	3.872076	-1.3951	0.960999	48	0	6.81929	-1.08144	1.857617

Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
1	С	-0.69852	-3.15761	-0.41316	24	S	3.842615	-1.4827	1.029942
2	С	-1.41927	-1.9836	-0.36417	25	С	5.11688	-2.41817	-1.01991
3	С	-0.71612	-0.72894	-0.31224	26	Н	3.369334	-2.83302	-2.3057
4	С	0.727086	-0.71989	-0.30539	27	С	5.340292	-1.90341	0.240021
5	С	1.445492	-1.96574	-0.35705	28	Н	5.917322	-2.73258	-1.67738
6	С	0.739435	-3.14843	-0.41102	29	0	1.314824	-4.37222	-0.43746
7	С	0.709905	1.575027	-0.23814	30	Н	2.278773	-4.27771	-0.40761
8	С	-0.72797	1.566016	-0.24845	31	0	-1.25821	-4.38878	-0.43879
9	С	-1.4202	2.80771	-0.21507	32	Н	-2.22333	-4.30651	-0.41069
10	Н	-2.50414	2.784997	-0.2272	33	С	-6.61021	-1.77844	0.854692
11	С	-0.74611	4.003387	-0.17204	34	Н	-7.46179	-2.10566	0.230387
12	С	0.695748	4.012346	-0.15578	35	С	6.63237	-1.70885	0.8705
13	С	1.385832	2.82548	-0.19447	36	Н	7.488211	-2.02222	0.244912
14	Н	2.47007	2.815864	-0.18354	37	С	1.480863	5.314187	0.003001
15	С	-2.89335	-2.03725	-0.36387	38	С	-1.55091	5.301609	-0.23677
16	С	-3.71129	-2.53063	-1.36179	39	0	6.809379	-1.24708	1.987828
17	S	-3.82358	-1.51889	1.015398	40	0	2.349997	5.571369	-0.86742
18	С	-5.08443	-2.48317	-1.02932	41	0	-6.79364	-1.31141	1.96879
19	Н	-3.33086	-2.88668	-2.31039	42	0	-2.42972	5.474686	0.644763
20	С	-5.31529	-1.96233	0.226778	43	0	-1.28466	6.055669	-1.20711
21	Н	-5.88041	-2.81124	-1.68552	44	0	1.207579	5.985396	1.030666
22	С	2.920132	-2.00205	-0.35401	45	Ν	1.407643	0.428019	-0.27428
23	С	3.744778	-2.47902	-1.35435	46	Ν	-1.41092	0.410538	-0.29299

_	Tag	Symbol	Х	Y	Z	Tag	Symbol	Х	Y	Z
_	1	С	-0.69513	-3.15907	-0.41176	24	S	3.844521	-1.4827	1.030988
	2	С	-1.41733	-1.98591	-0.36404	25	С	5.119748	-2.40805	-1.02291
	3	С	-0.71558	-0.73043	-0.31316	26	Н	3.372384	-2.82251	-2.30912
	4	С	0.727853	-0.71974	-0.30576	27	С	5.342767	-1.89709	0.238596
	5	С	1.447734	-1.96468	-0.35684	28	Н	5.92044	-2.71878	-1.6818
	6	С	0.743105	-3.14814	-0.40987	29	0	1.319704	-4.37103	-0.43574
	7	С	0.707837	1.575155	-0.23884	30	Н	2.283661	-4.27598	-0.40712
	8	С	-0.72973	1.564587	-0.25074	31	0	-1.25292	-4.39079	-0.43597
	9	С	-1.42349	2.805544	-0.21868	32	Н	-2.21825	-4.31048	-0.40812
	10	Н	-2.50738	2.781595	-0.2333	33	С	-6.60809	-1.78302	0.855165
	11	С	-0.7506	4.001826	-0.17415	34	Н	-7.45972	-2.11292	0.232513
	12	С	0.69099	4.012267	-0.15492	35	С	6.634618	-1.70118	0.868993
	13	С	1.382521	2.826293	-0.1936	36	Н	7.490976	-2.01159	0.242811
	14	Н	2.46674	2.817834	-0.18071	37	С	1.473217	5.315175	0.007364
	15	С	-2.89136	-2.04115	-0.36363	38	С	-1.55528	5.299743	-0.23989
	16	С	-3.709	-2.53653	-1.36072	39	0	6.810743	-1.24082	1.987174
	17	S	-3.82176	-1.52216	1.015363	40	0	2.345672	5.574606	-0.85915
	18	С	-5.08215	-2.49008	-1.02797	41	0	-6.79117	-1.31227	1.967897
	19	Н	-3.3285	-2.89378	-2.30884	42	0	-2.435	5.473578	0.640722
	20	С	-5.31329	-1.96766	0.227381	43	0	-1.28774	6.054371	-1.20965
	21	Н	-5.87788	-2.81997	-1.68355	44	0	1.194254	5.98646	1.033672
	22	С	2.922511	-1.99886	-0.35457	45	Ν	1.40698	0.428917	-0.27439
	23	С	3.747557	-2.4705	-1.35694	46	Ν	-1.41148	0.408302	-0.29519

Table S7 Vertical excitation energy for S_1 state and T_1-T_4 states and ΔE_{ST} (S_1-T_1) values of **KO-2**, **KY-1**, **KY-2** at the B3LYP/6-311G(d,p)/DMSO-IEFPCM level; **KY-1Na** and **KY-2Na** at the B3LYP/6-311+G(d,p)/DMSO-IEFPCM level; **KY-1Na** and **KY-2Na** at the B3LYP/6-311+G(d,p)/Water-IEFPCM level by TDDFT calculations

B3LYP/6-311+G(d,p)/Water-IEFPCM level by TDDFT calculations.										
Dye	$\Delta E_{\rm ST} (S_1 - T_1)/eV$	S_1/eV	T_1/eV	T_2/eV	T ₃ /eV	T_4/eV				
KO-2 ^{<i>a</i>}	0.9264	2.8456	1.9192	2.4988	2.5745	2.7024				
KY-1 ^{<i>a</i>}	0.8518	2.7204	1.8686	2.4581	2.5789	2.6988				
KY-2 ^{<i>a</i>}	0.8124	2.7023	1.8899	2.4456	2.613	2.7046				
KY-1Na ^a	0.957	2.8787	1.9217	2.538	2.6444	2.7052				
KY-2Na ^a	0.8038	2.6814	1.8776	2.3092	2.577	2.6573				
KY-1Na ^b	0.9773	2.8995	1.9222	2.5363	2.6459	2.7046				
KY-2Na ^b	0.8196	2.7015	1.8819	2.3196	2.582	2.6601				

^{*a*} Calculated at DMSO-IEFPCM level. ^{*b*} Calculated at Water-IEFPCM level.

Evaluation of ¹O₂ quantum yield

Fig. S44 (a) Photoabsorption spectra for the photooxidation of DPBF (5.0×10^{-5} M) in the presence of **RB** under photoirradiation with 532 nm (300 µW cm⁻²) in DMSO. Insets are magnifications of maxima in the spectra at around 415 nm. (b) Photoabsorption spectra for the photooxidation of ABDA (5.0×10^{-5} M) in the presence of **RB** under photoirradiation with 532 nm (300 µW cm⁻²) in D₂O/DMSO (99:1, v/v). Insets are magnifications of maxima in the spectra at around 400 nm.

Fig. S45 Photoabsorption spectra for the photoaxidation of DPBF (5.0×10^{-5} M) in the presence of (a) KO-2, (b) KY-1, and (c) KY-2 under photoirradiation with 532 nm (300 μ W cm⁻²) in DMSO. Insets are magnifications of maxima in the spectra at around 415 nm.

Photodynamic activity against cancer cell lines

Fig. S46 Photoirradiation-induced anticancer effects on Colon26 cells. Colon26 cells were coincubated with (a) **KY-1Na** or (b) **KY-2Na** for 24 h. Subsequently, the cells were photoirradiated (> 510 nm, 9 mW/cm²) for 30 min. After an additional 24 h, the cell viability was measured with the WST-8 assay (N = 3). The data were presented as mean ± SD.

Evaluation of cellular uptake of KY-2Na

Fig. S47 Observation of cellular uptake of KY-2Na in the Colon26 cells by confocal laser scanning microscopy ($\lambda^{ex} = 488$ nm) and differential interference contrast (DIC). After 24 h of incubation with KY-2Na. Scale bar = 20 µm.