KOH-promoted cascade C-Cl bond activation and amidation of trichloromethyl aromatic compounds with formamides in water

Chenyu Wang,^a Yan Wang, Jianglong Wu, Qian Hu, Hui Luo, ZhongJie Wang, Yingxin Wang, DianJun Li^a *, Jun Liang^a *, Jinhui Yang^a *

^a School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, PR China. E-mail: <u>yang_Jh@nxu.edu.cn</u>

Supporting Imformation

Table of contents	Page
1.General information	S2
2.General procedure for synthesis of compound 3	S3
3.Spectroscopic data for the products	S4
4.References	S10
5.NMR spectra	S11

1. General information

Unless otherwise noted, all reactions were carried out in quartz tubes under air atmosphere. ¹H NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer at room temperature. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS, $\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra and ¹⁹F NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.00 ppm). Data for ¹H NMR were reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, br s = broad singlet), coupling constant (Hz) and integration. Data for ¹³C NMR were reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on a Thermo Fisher LTQ Orbit rap XL. Melting points were measured on SGW X-4 melting point apparatus and uncorrected. Anhydrous solvents were from J&K Scientific Ltd and dried by standard procedures. All other commercially available reagents were from Innochem Chemicals and used as received. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. All commercially available chemicals were used as received without further purification. Formamide substrates are mostly purchased directly from reagent platforms, The formamides used in 3h and 3q were prepared according to the literature ^[1, 2].

2. General procedure for synthesis of compound 3:

To a 10 mL quartz tube was charged with trichloromethyl aromatic compounds 1 (0.3 mmol, 1.0 equiv.), formamid compounds 2 (1.2 mmol, 4.0 equiv.), KOH (1.5 mmol, 5.0 equiv.) and H₂O (1 mL). Then the mixture was stirred for 10 h under air atmosphere at 35 °C. After completion, the mixture was extracted with dichloromethane (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give product(s) **3**.

3. Spectroscopic data for the products 3

N-methylbenzamide (3a)

White solid; 40 mg, 99% yield, m. p.: 80–81 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.77 (s, 2H), 7.40 (m, 3H), 6.53(s, 1H), 2.99 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 168.3, 134.5, 131.3, 128.5, 126.8, 26.8. HRMS (ESI): m/z calcd for C₈H₉NO [M + H⁺]: 136.0757, found: 136.0755.

N-ethylbenzamide (3b)

White solid; 44 mg, 99% yield, m. p.: 70–71 °C; d; ¹H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 7.6 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 2H), 6.55 (s, 1H), 3.48 – 3.42 (m, 2H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 167.5, 134.7, 131.1, 128.4, 126.8, 34.8, 14.8, 14.7. HRMS (ESI): m/z calcd for C₉H₁₅NO [M + H⁺]: 150.0913, found: 150.0911.

N-(tert-butyl)benzamide (3c)

White solid; 38 mg, 71% yield, m. p.: 172-174 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.2 Hz, 2H), 6.04 (s, 1H), 1.45 (s, 9H) ; ¹³C NMR (101 MHz, Chloroform-d) δ 166.8, 135.8, 130.9, 128.3, 126.6, 51.5, 28.7. HRMS (ESI): m/z calcd for C₁₁H₁₅NO [M + H⁺]: 178.1226, found: 178.1224.

N-cyclopropylbenzamide (3d)

Colorless oil; 43 mg, 90% yield, $R_f = 0.3$ (petroleum ether : EtOAc = 10 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.74 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 6.61 (s, 1H), 2.89 – 2.84(m, 1H), 0.81 (t, J = 6.0 Hz, 2H), 0.63 – 0.61 (m, 2H).; ¹³C NMR (101 MHz, Chloroform-d) δ 169.1, 134.2, 131.1,

128.1, 126.9 , 23.1, 23.0, 6.3. HRMS (ESI): m/z calcd for $C_{10}H_{11}NO$ [M + H⁺]: 162.0913, found: 162.0911.

N-cyclohexylbenzamide (3e)

Colorless crystals; 54 mg, 89% yield, m. p.: 145–146 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.74 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.2 Hz, 2H), 6.36 (s, 1H), 3.93 – 3.91 (m, 1H), 1.96 (d, J = 10 Hz, 2H), 1.72 – 1.69 (m, 2H), 1.62 – 1.59 (m, 1H), 1.40 – 1.12 (m, 5H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.6, 134.9, 131.0, 128.3, 126.8, 48.6, 33.0, 25.4, 24.8. HRMS (ESI): m/z calcd for C13H17NO [M + H⁺]: 204.1383, found: 204.1379.

N-benzylbenzamide (3f)

White solid; 50 mg, 80% yield, m. p.: 102-105 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.29 – 7.23 (m, 5H), 7.01 (s, 1H), 4.55 (d, J = 5.6 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 167.4, 138.2, 134.2, 131.3, 128.5, 128.4, 127.7, 127.3, 126.9, 43.8. HRMS (ESI): m/z calcd for C₁₄H₁₃NO [M + H⁺]: 212.1070, found: 212.1067.

N-phenethylbenzamide (3g)

white solid; 49 mg, 72% yield, m. p.: 132–136 °C; ¹H NMR (400 MHz, DMSO-d6) δ 7.69 (t, J = 8 Hz, 2H), 7.47 – 7.39 (m, 1H), 7.37 (t, J = 8 Hz, 2H), 7.30 (t, J = 7.2Hz, 2H), 7.24 – 7.20 (m, 3H), 6.48 (s, 1H), 3.70 – 3.65 (m, 2H) ,2.91 (t, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO-d6) δ 167.5, 138.8, 134.5, 131.3, 128.7, 128.6, 128.4, 126.8, 126.4, 41.1, 35.6. HRMS (ESI): m/z calcd for C₁₅H₁₅NO [M + H⁺]: 226.1226, found: 226.1221.

N-(2,5-dimethoxyphenyl)benzamide (3h)^[1] White solid; 22 mg, 28% yield, m. p.: 141 -145 °C; ¹H NMR (400 MHz, **Chloroform-d)** δ 8.60 (s, 1H), 8.30 (s, 1H), 7.89 (s, 2H), 7.49 (s, 3H), 6.81 (s, 1H), 6.61 (s, 1H), 3.86 (s, 3H) , 3.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 164.9, 153.7, 142.2, 134.9, 131.6, 128.6, 128.2, 126.8, 110.4, 108.4, 105.8, 56.1, 56.0, 55.6, 55.5. HRMS (ESI): m/z calcd for C₁₅H₁₅NO₃ [M + H⁺]: 258.1125, found: 258.1122.

N-(4-methoxyphenyl)benzamide (3i)

Grayish solid; 22 mg, 32% yield, m. p.: 171–174 °C; ¹H NMR (400 MHz, DMSO-d6) δ 10.15 (s, 1H), 7.96 (d, J = 6.8 Hz, 2H), 7.79 (d, J = 9.2 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.52 (t, J = 7.2 Hz, 2H), 6.96 – 6.92 (m, 2H), 3.75 (s, 3H); ¹³C NMR (101 MHz, DMSO-d6) δ 165.6, 156.0, 135.5, 132.7, 131.8, 128.8, 128.0, 122.4, 114.2, 55.7, 55.6. HRMS (ESI): m/z calcd for C₁₄H₁₃NO₂ [M + H⁺]: 228.1019, found: 228.1016.

N,N-dimethylbenzamide (3J)

Yellow oil; 44mg, 98% yield, $R_f = 0.3$ (petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.29 (m, 5H), 3.00 (s, 3H), 2.85 (s, 3H).; ¹³C NMR (101 MHz, Chloroform-d) δ 171.4, 136.1, 129.2, 128.1, 126.8, 39.3, 35.0. HRMS (ESI): m/z calcd for C₉H₁₁NO [M + H⁺]: 150.0913, found: 150.0911.

N,N-diethylbenzamide (3k)

Yellow oil; 52 mg, 98% yield, $R_f = 0.2$ (petroleum ether : EtOAc = 5 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.37 (s, 5H), 3.54 (s, 2H), 3.26 – 3.25 (m, 2H), 1.24 (s, 3H),1.12 – 1.10 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 171.7, 137.4, 128.9, 128.3, 126.4, 50.6, 46.2, 21.9, 20.7; HRMS (ESI): m/z calcd for C₁₁H₁₅NO [M + H⁺]: 178.1226, found: 178.1223.

N,N-dipropylbenzamide (3l)

Yellow solid; 26 mg, 43% yield, m. p.: 44-46 °C; ¹H NMR (400 MHz, Chloroform-

d) δ 7.36 (s, 5H), 3.45 (s, 2H), 3.15 (s, 2H), 1.68 (s, 2H), 1.51 (s, 2H), 0.97 (s, 3H), 0.73 (s, 3H); ¹³C **NMR (101 MHz, Chloroform-d)** δ171.7, 137.4, 128.9, 128.3, 126.4, 50.6, 46.2, 21.9, 20.7, 11.4, 11.0. **HRMS (ESI)**: m/z calcd for C₁₃H₁₉NO [M + H⁺]: 206.1539, found: 206.1536.

N-methyl-N-phenylbenzamide (3m)

White solid; 51 mg, 80% yield, m. p. 160 –164 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.29 (s, 2H), 7.21 – 7.14 (m, 6H), 7.03 (s, 2H), 3.45 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.5, 144.7, 135.7, 129.4, 129.0, 128.5, 127.5, 126.7, 126.3, 38.23.HRMS (ESI): m/z calcd for C₁₄H₁₃NO [M + H⁺]: 212.1070, found: 212.1068.

N,N-diphenylbenzamide (3n)

Yellow solid; 63 mg, 77% yield, m. p.: 170–173 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.95 (d, J = 5.6 Hz, 6H), 7.44 (s, 9H); ¹³C NMR (101 MHz, Chloroform-d) δ 144.2, 130.3, 128.3, 125.5, 97.7.HRMS (ESI): m/z calcd for C₁₉H₁₅NO [M + H⁺]: 274.1226, found: 274.1225.

phenyl(pyrrolidin-1-yl)methanone (30)

Colorless oil; 51 mg, 97% yield, $R_f = 0.3$ (petroleum ether : EtOAc = 5 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.46 (t, J = 3.6 Hz, 2H), 7.33 (t, J = 4.4 Hz, 3H), 3.59 (s, 2H), 3.36 (s, 2H), 1.88 (d, J = 6 Hz, 2H), 1.81 (d, J = 5.6 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.57, 137.2, 129.6, 128.1, 127.0, 49.5, 46.1, 26.3, 24.4. HRMS (ESI): m/z calcd for C₁₁H₁₃NO [M + H⁺]: 176.1070, found: 176.1066.

phenyl(piperidin-1-yl)methanone (3p) Yellow solid; 52 mg, 93% yield, m. p.: 48–50 °C; ¹H NMR (400 MHz, Chloroform-

d) δ 7.32 (s, 5H), 3.65 (s, 2H), 3.27 (s, 2H), 1.60 (s, 4H) , 1.44 (s, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.9, 136.2, 129.0, 128.0, 126.4, 48.4, 42.7, 26.2, 25.3, 24.2. HRMS (ESI): m/z calcd for C₁₂H₁₅NO [M + H⁺]: 190.1226, found: 190.1223.

morpholino(phenyl)methanone (3q)^[2]

White solid; 42 mg, 74% yield, m. p.: 62–68 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.47-7.45 (m, 2H), 7.34-7.32 (m, 3H), 3.76 (s, 4H), 3.62 (s, 2H), 3.44 (s, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.4, 135.2, 129.8, 128.5, 127.0, 66.8. HRMS (ESI): m/z calcd for C₁₁H₁₃NO₂ [M + H⁺]: 192.1019, found: 192.1016.

phenyl(piperazin-1-yl)methanone (3r)

White solid; 47 mg, 82% yield, m. p.: 62–65 °C; ¹H NMR (400 MHz, Chloroform-d) δ 3.64 (s, 5H), 3.71 (s, 2H), 3.35 (s, 2H), 2.90(s, 2H), 2.76 (s, 2H), 1.78 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.0, 135.5, 129.2, 128.1, 126.6, 48.6, 46.1, 45.6, 42.8. HRMS (ESI): m/z calcd for C₁₁H₁₄N₂O [M + H⁺]: 191.1179, found: 191.1177.

N-methoxy-N-methylbenzamide (3s)

White solid; 41 mg, 83% yield, m. p.: 69–70 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 7.2 Hz, 2H), 7.41 – 7.34 (m, 3H), 3.50 (s, 3H), 3.31 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.7, 133.9, 130.4, 127.9, 127.8, 60.8, 60.8, 33.6. HRMS (ESI): m/z calcd for C₉H₁₁NO₂ [M + H⁺]: 166.0862, found: 166.0860.

4-fluoro-N,N-dimethylbenzamide (3t)

Yellow oil; 36 mg, 71% yield, $R_f = 0.2$ (petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.33-7.31 (m, 1H), 7.25-7.20 (m, 3H), 3.07 (s, 3H), 2.79 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.4, 136.3, 130.0, 129.5, 127.7, 127.1, 38.0, 34.6. ¹⁹F NMR (376 MHz, Chloroform-d) δ -110.73. HRMS (ESI): m/z

calcd for C₉H₁₀FNO [M + H⁺]: 168.0819, found: 168.0820.

4-chloro-N,N-dimethylbenzamide (3u)

Yellow oil; 23 mg, 42% yield, $R_f = 0.2$ (petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.32 (m, 4H), 3.07 (s, 3H), 2.94 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.4, 135.4, 134.5, 128.5, 39.4, 35.3. HRMS (ESI): m/z calcd for C₉H₁₀ClNO [M + H⁺]: 184.0524, found: 184.0521.

2-fluoro-N,N-dimethylbenzamide (3v)

Yellow oil; 33 mg, 67% yield, $R_f = 0.2$ (petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.33 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 8.8 Hz, 1H), 3.09 (s, 3H), 2.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.7, 159.3, 156.8, 131.1, 131.0, 128.9, 128.9, 124.6, 124.5, 124.5, 124.4, 115.7, 115.5, 38.2, 34.8; ¹⁹F NMR (376 MHz, Chloroform-d) δ -116.20. HRMS (ESI): m/z calcd for C₉H₁₀FNO [M + H⁺]: 168.0819, found: 168.0816.

2-chloro-N,N-dimethylbenzamide (3w)

Yellow oil; 22 mg, 40% yield, $R_f = 0.2$ (petroleum ether : EtOAc = 2 : 1); ¹H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.37(m, 2H), 7.07-7.02 (m, 2H), 3.06 (s, 3H), 2.95 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.5, 164.4, 161.9, 129.3, 129.2, 115.4, 115.2, 39.5, 35.4. HRMS (ESI): m/z calcd for C₉H₁₀ClNO [M + H⁺]: 184.0524, found: 184.0525.

benzoic acid

White solid; 28 mg, 23% yield, m. p.: 121-125 °C; ¹H NMR (400 MHz, Chloroform-d) δ 12.86 (s, 1H), 8.16 – 8.14 (d, J = 7.2 Hz, 2H), 7.63(t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 172.5, 133.8, 130.2, 129.3, 128.5; HRMS (ESI): m/z calcd for C₇H₆O₂ [M + H⁺]: 123.0441, found: 123.0440.

O¹⁸

N,N-dimethylbenzamide (3Ja)

Yellow oil; 44mg, 98% yield, $R_f = 0.3$ (petroleum ether : EtOAc = 2 : 1); **HRMS** (ESI): m/z calcd for C₉H₁₁NO¹⁸ [M + H⁺]: 152.0957, found: 152.0956.

4. References

- K. H. Chiang, S. H. Lu, W. P. Yen, N. Uramaru, W. S. Tseng, T. W. Chang, F. F. Wong, *Heteroat Chem*, 2016, 27(4), 235-242.
- [2] C. D. Gomes, O. Jacquet. C. Villiers, P. Thuery, M. Ephritikhine, T. Cantat, Angew. Chem. Int. 2012, 51, 187-190.

5. NMR spectra

3a ¹H NMR (400 MHz, CDCl3)

3b ¹³C NMR (101 MHz, CDCl₃)

3c ¹H NMR (400 MHz, CDCl3)

3d ¹H NMR (400 MHz, CDCl₃)

3e ¹H NMR (400 MHz, CDCl₃)

3f¹H NMR (400 MHz, CDCl₃)

3g ¹H NMR (400 MHz, CDCl3)

3h ¹H NMR (400 MHz, CDCl₃)

3i ¹H NMR (400 MHz, DMSO)

3J¹H NMR (400 MHz, CDCl₃)

3k ¹H NMR (400 MHz, CDCl₃)

3l ¹H NMR (400 MHz, CDCl₃)

3m ¹H NMR (400 MHz, CDCl₃)

3n ¹H NMR (400 MHz, CDCl₃)

3n ¹³C NMR (101 MHz, CDCl₃)

30 ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

3p ¹H NMR (400 MHz, CDCl₃)

3q ¹H NMR (400 MHz, CDCl₃)

3r ¹H NMR (400 MHz, CDCl₃)

3s ¹H NMR (400 MHz, CDCl₃)

3t ¹H NMR (400 MHz, CDCl₃)

3t ¹³C NMR (101 MHz, CDCl₃)

3t ¹⁹F NMR (376 MHz, CDCl₃)

3u ¹H NMR (400 MHz, CDCl₃)

3u ¹³C NMR (101 MHz, CDCl₃)

3v ¹H NMR (400 MHz, CDCl₃)

3v¹³C NMR (101 MHz, CDCl₃)

3w ¹H NMR (400 MHz, CDCl₃)

3w 13C NMR (101 MHz, CDCl3)

benzoic acid ¹H NMR (400 MHz, CDCl₃)

benzoic acid 13C NMR (101 MHz, CDCl3)

Isotope reaction mass spectrometry data