Supporting information for

Synthesis of 2-trifluoromethyl benzimidazoles, -benzoxazoles, and -benzothiazoles via condensation of diamines or amino(thio)phenols with $\mathrm{CF}_{3} \mathrm{CN}$

Bo Lin, ${ }^{a}$ Yunfei Yao, ${ }^{\text {a }}$ Minze Wu, ${ }^{\mathrm{b}}$ Lu Qin, ${ }^{\text {b }}$ Shouxiong Chen, ${ }^{\mathrm{b}}$ Yi You, ${ }^{\text {a, } \text {, }}$ and Zhiqiang Weng ${ }^{\text {a,b, }}$ *
${ }^{\text {a }}$ Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China. E-mail: youyi@fzu.edu.cn
${ }^{\mathrm{b}}$ Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engi neering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China. E-mail: zweng@mju.edu.cn

Table of Contents

General information 2
General procedure of the synthesis of 2-trifluoromethyl benzimidazoles (3) 3
General procedure for the synthesis of 2-trifluoromethyl benzoxazoles (5) 4
General procedure for the synthesis of 2-trifluoromethyl benzothiazoles (7) 5
Procedure for gram scale reaction 6
Control experiments 7
Elaboration of 2-trifluoromethyl benzimidazole products 8
Data for compounds 10
Crystal structure analyses. 29
References 34
Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 35

General information

${ }^{1} \mathrm{H}$ NMR, ${ }^{19}$ F NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using Bruker AVIII 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ${ }^{19} \mathrm{~F}$ NMR chemical shifts were determined relative to CFCl_{3} as the external standard and low field is positive. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ NMR (chloroform- $d \delta 7.26$; DMSO- $d_{6} \delta 2.50 \mathrm{ppm}$; methanol- $d_{4} \delta 3.31 \mathrm{ppm}$), ${ }^{13} \mathrm{C}$ NMR (chloroform- $d \delta 77.0$; DMSO- $d_{6} \delta 39.52 \mathrm{ppm}$; methanol $\left.-d_{4} \delta 49.0 \mathrm{ppm}\right)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Solvents are directly purchased commercially without further purification. The infrared(IR) spectra were recorded using a Nicolet iS 50 at room temperature. HRMS data were recorded on a high-resolution Thermo Scientific Exactive Plus instrument. 2,2,2-Trifluoroacetaldehyde O-(4'-cyanophenyl)oxime was prepared according to the published procedures. ${ }^{1}$

General procedure for the synthesis of 2-trifluoromethyl benzimidazoles (3)

Diamines 2 (0.30 mmol), 2,2,2-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime 1 ($96.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5$ equiv), $\mathrm{MeOH}(2 \mathrm{ml})$, and pyridine ($35.6 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the filtrate was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 2-trifluoromethyl benzimidazoles 3 .

General procedure for the synthesis of 2-trifluoromethyl benzoxazoles (5)

Aminophenols 4 (0.30 mmol), 2,2,2-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime $1(96.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5$ equiv), toluene (2 ml), and pyridine ($35.6 \mathrm{mg}, 1.5 \mathrm{mmol}$, 1.5 equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the resulting solution was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 2-trifluoromethyl benzoxazoles 5 .

General procedure for the synthesis of 2-trifluoromethyl benzothiazoles (7)

Aminothiophenols 6 (0.30 mmol), 2,2,2-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime 1 ($96.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5$ equiv), MeOH (2 ml), and pyridine ($36.6 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the resulting solution was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 2-trifluoromethyl benzothiazoles 7 .

Procedure for gram scale reaction

4-Methylbenzene-1,2-diamine 2b ($0.76 \mathrm{~g}, 6.25 \mathrm{mmol}$), 2,2,2-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime $1(2.00 \mathrm{~g}, 9.37 \mathrm{mmol}, 1.5$ equiv), $\mathrm{MeOH}(10 \mathrm{ml})$, and pyridine ($1.11 \mathrm{~g}, 9.37 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the resulting solution was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 6-methyl-2-(trifluoromethyl)-1 H -benzo[d]imidazole 3b ($1.20 \mathrm{~g}, 96 \%$).

3-Amino-[1,1'-biphenyl]-4-ol $4 \mathbf{f}(0.88 \mathrm{~g}, 4.75 \mathrm{mmol}), 2,2,2$-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime $1(1.53 \mathrm{~g}, 7.12 \mathrm{mmol}, 1.5$ equiv), toluene (10 ml), and pyridine ($0.84 \mathrm{~g}, 7.12 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the filtrate was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 5-phenyl-2-(trifluoromethyl)benzo[d]oxazole $\mathbf{5 f}$ (1.07, 85\%).

Control experiments

5-Bromo-6-methylpyridine-2,3-diamine $\quad \mathbf{2 u} \quad(202.0 \quad \mathrm{mg}, \quad 1.0 \mathrm{mmol})$, 2,2,2-trifluoroacetaldehyde O-(4'-cyanophenyl)oxime 1 ($214.0 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{MeOH}(5 \mathrm{~mL})$, and pyridine ($118.6 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. After the reaction was terminated, the resulting solution was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain N-(2-amino-5-bromo-6-methylpyridin-3-yl)-2,2,2-trifluoroacetimidamide $\mathbf{8}$ (50.3 mg , $17 \%)$.

N -(2-amino-5-bromo-6-methylpyridin-3-yl)-2,2,2-trifluoroacetimidamide 8 (29.5 $\mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{MeOH}(1.0 \mathrm{~mL})$, and pyridine ($11.9 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) were added to a reaction tube equipped with a stir bar. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 hours or $110{ }^{\circ} \mathrm{C}$ for 15 hours. After the reaction was terminated, the resulting solution was vacuumed to remove the solvent. The crude product was purified by column chromatography (silica gel) with petroleum ether and ethyl acetate as eluent to obtain 6-bromo-5-methyl-2-(trifluoromethyl)-3 H -imidazo[4,5-b]pyridine $3 \mathbf{u}(6.7 \mathrm{mg}, 24 \%$ or $22.3 \mathrm{mg}, 80 \%$, respectively).

Elaboration of 2-trifluoromethyl benzimidazole products

A Schlenk tube was charged with 2-(trifluoromethyl)-1 H-benzo[d]imidazole 3a ($186.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), sodium hydroxide ($40 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), magnetic stir bar and 20 mL tetrahydrofuran (THF) in sequence. Then the reaction mixture is stirred for 10 minutes at room temperature. Bromomethylbenzene (171.0 $\mathrm{mg}, 118.8 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) was added to the mixture. The mixture was allowed to stir overnight at room temperature. After the reaction was terminated, organic layer was extracted with ethyl acetate for 3 times and washed with water and brine. The solution was dried over sodium sulfate and concentrated. The residue was purification by flash column chromatography to obtain 1-benzyl-2-(trifluoromethyl)- 1 H -benzo[d]imidazole $(\mathbf{9})^{2}$ as a white solid in 82% yield (226.4 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.21(\mathrm{~m}$, $6 \mathrm{H}), 7.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.5(\mathrm{~s}$, 3F). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2(\mathrm{~s}), 140.9(\mathrm{q}, J=38.5 \mathrm{~Hz}), 135.6(\mathrm{~s}), 134.9$ (s), 129.0 (s), 128.3 (s), 126.3 (s$), 125.6$ (s$), 123.8$ (s$), 121.6$ (s$), 119.2$ (q, $J=271.4$ $\mathrm{Hz}), 111.2(\mathrm{~s}), 48.4(\mathrm{q}, J=2.0 \mathrm{~Hz})$. GC-MS (EI) m/z $276\left(\mathrm{M}^{+}\right)$.
(b)

A Schlenk tube was charged with 2,2,2-trifluoro- N -(1-phenyl-2-(trifluoromethyl)-1 H -benzo[d]imidazol-5-yl)acetimida mide $\mathbf{3 z}$ ($37.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), phenyliodine diacetate (PIDA) $(38.6 \mathrm{mg}$, $0.12 \mathrm{mmol}, 1.2$ equiv), magnetic stir bar and 1 mL MeCN in sequence. Then the reaction mixture is stirred for 2 hours at $60^{\circ} \mathrm{C}$. After the reaction was terminated and the solution was concentrated. The residue was purification by flash column chromatography to
obtain 6-phenyl-2,7-bis(trifluoromethyl)-1,6-dihydrobenzo[1,2-d:3,4- d^{\prime}]diimidazole (10) as a white solid in 90% yield (33.3 mg). Mp: $127.1-128.9^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.63 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 7.73-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.61-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{N} H$ was not observed. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , methanol- d_{4}) $\delta-61.5(\mathrm{~s}, 3 \mathrm{~F}),-65.1(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , methanol- d_{4}) $\delta 139.8$ (q, $J=39.8 \mathrm{~Hz}), 139.4(\mathrm{q}, ~ J=38.8 \mathrm{~Hz}), 135.0(\mathrm{~s}), 134.3(\mathrm{~s}), 130.1(\mathrm{~s}), 130.0(\mathrm{~s})$, 129.7 (s), 127.4 (s), 127.3 (s$), 119.0(\mathrm{q}, J=269.5 \mathrm{~Hz}), 118.9(\mathrm{q}, J=270.8 \mathrm{~Hz}), 112.6$ (s), 111.5 (s), 108.5 (s). IR (ATR): v 1635, 1514, 1413, 1340, 1134, $971 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{4}[\mathrm{M}]^{+}: 370.0648$; found: 370.0649 .

Data for compounds

2-(trifluoromethyl)-1H-benzo[d]imidazole (3a) ${ }^{3}$

Obtained as a white solid in 92% yield (51.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 13.93 (br s, 1H), $7.78-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-62.8(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 140.50(\mathrm{q}, J=39.4 \mathrm{~Hz}$), 138.4 (br), 124.6 (s), 119.5 (q, $J=270.4 \mathrm{~Hz}$), 117.0 (br). GC-MS (EI) m/z 186 (M^{+}).

6-methyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3b) ${ }^{4}$
Obtained as a white solid in 99% yield (59.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 13.72 (br s, 1H), $7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-62.7$ ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 140.1$ (q, $J=39.1 \mathrm{~Hz}$), 137.6 (br), 134.2 (s$), 132.7$ (s), 126.1 (s), 124.1 (s), $119.6(\mathrm{q}, ~ J=270.2 \mathrm{~Hz}), 116.7(\mathrm{br}), 21.7(\mathrm{~s}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 200\left(\mathrm{M}^{+}\right)$.

4-methyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3c) ${ }^{5}$

Obtained as a white solid in 85% yield (51.1 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 13.83 (br s, 1H), $7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-62.6(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 140.0(\mathrm{q}, ~ J=39.4 \mathrm{~Hz}), 138.8$ (br), 136.9 (br), 127.5 (br), 126.1(s), $124.6(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 119.6(\mathrm{q}, J=270.4 \mathrm{~Hz}), 113.6(\mathrm{br}), 17.0(\mathrm{~s}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ $200\left(\mathrm{M}^{+}\right)$.

5,6-dimethyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3d) ${ }^{4}$

Obtained as a white solid in 89% yield (57.2 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) δ 7.39 (s, 2H), 5.02 (br s, 1H), 2.34 (s, 6H). ${ }^{19}$ F NMR (376 MHz , methanol- d_{4}) $\delta-65.5$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , methanol- d_{4}) $\delta 139.6$ (q, $J=40.2 \mathrm{~Hz}$), 136.0 (br), 133.9 (s), 119.1 (q, $J=269.5 \mathrm{~Hz}), 115.4(\mathrm{br}), 19.1(\mathrm{~s})$. GC-MS (EI) m/z $214\left(\mathrm{M}^{+}\right)$.

6-(tert-butyl)-2-(trifluoromethyl)-1H-benzo[d]imidazole (3e)

Obtained as a white solid in 99% yield (71.9 mg). Mp: $157.3-158.6^{\circ} \mathrm{C} . R_{\mathrm{f}}$ $($ petroleum ether/ethyl acetate $=5: 1)=0.70 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 7.66$ (s, 1H), $7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{19}$ F NMR (376 MHz , methanol- d_{4}) $\delta-65.6(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , methanol $-d_{4}$) $\delta 148.2$ (s), 140.4 (q, $J=40.2 \mathrm{~Hz}$), 137.3 (br), 135.7 (br), 122.8 (s), 119.0 (q, $J=$ 269.8 Hz), 115.6 (br), 111.2 (br), 34.4 (s), 30.6 (s). IR (ATR): v 2961, 1548, 1324, 1164, 1129, 983, 807, $651 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 243.1104; found: 243.1099 .

2-(trifluoromethyl)-1H-naphtho[2,3- d]imidazole (3f) ${ }^{4}$

Obtained as a white solid in 65% yield $(46.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta$ $8.13(\mathrm{~s}, 2 \mathrm{H}), 8.01-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, methanol- d_{4}) $\delta-66.4(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , methanol- $\left.d_{4}\right) \delta 144.6(\mathrm{q}, J=$ $40.0 \mathrm{~Hz}), 137.5(\mathrm{br}), 131.4(\mathrm{~s}), 127.7(\mathrm{~s}), 124.4(\mathrm{~s}), 118.8(\mathrm{q}, ~ J=270.7 \mathrm{~Hz}), 112.6(\mathrm{br})$. GC-MS (EI) m/z $236\left(\mathrm{M}^{+}\right)$.

6-methoxy-2-(trifluoromethyl)-1H-benzo[d]imidazole (3g) ${ }^{3,5}$

Obtained as a white solid in 92% yield (59.7 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 13.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.19-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, chloroform-d) $\delta-63.6(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform-d) $\delta 161.6$ (s), $158.2(\mathrm{~s}), 140.4(\mathrm{q}, J=40.7 \mathrm{~Hz}), 134.3(\mathrm{~s}), 119.8(\mathrm{~s}), 118.9(\mathrm{q}, J=270.6 \mathrm{~Hz})$, $116.8(\mathrm{~s}), 115.6(\mathrm{~s}), 55.8(\mathrm{~s}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 216\left(\mathrm{M}^{+}\right)$.

4-methoxy-2-(trifluoromethyl)-1H-benzo[d]imidazole (3h) ${ }^{5}$
Obtained as a white solid in 70% yield $(45.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 12.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), \delta 7.39-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, chloroform-d) $\delta-63.9(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform- d) δ $161.2(\mathrm{~s}), 139.8(\mathrm{q}, J=42.2 \mathrm{~Hz}), 134.1(\mathrm{~s}), 119.7(\mathrm{~s}), 118.7(\mathrm{q}, J=270.6 \mathrm{~Hz}), 116.7$ (s), 104.8 (br), 102.6 (s), 55.7 (s). GC-MS (EI) m/z $216\left(\mathrm{M}^{+}\right)$.

6-(phenylthio)-2-(trifluoromethyl)-1H-benzo[d]imidazole (3i)

Obtained as a white solid in 96% yield (84.8 mg). Mp: $119.9-120.8{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.70 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $13.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.21(\mathrm{~m}, 5 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-63.8(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 141.9$ (q, $J=41.0 \mathrm{~Hz}$), 138.1 (br), 137.2 (br), 136.0 (s), 132.5 (s , 130.7 (s), 129.3 (s), 128.7 (s$), 127.2$ (s$), 124.9$ (s$), 119.1$ (br), 118.8 (q, $J=$ 271.1 Hz). IR (ATR): v 2826, 1544, 1439, 1308, 1142, 982, 807, 735, 688, 622, 592 cm^{-1}. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 295.0511; found: 295.0508.

2,5-bis(trifluoromethyl)- $\mathbf{1 H}$-benzo[d]imidazole ($\mathbf{3 j})^{4}$

Obtained as a white solid in 70% yield (53.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 14.47 (br s, 1H), $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-59.4$ (s, 3F), -63.2 (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 143.0(\mathrm{q}, J=39.8 \mathrm{~Hz}), 139.5(\mathrm{br}), 138.5(\mathrm{br}), 125.1(\mathrm{q}, J=31.9 \mathrm{~Hz})$, 125.0 (q, $J=271.8 \mathrm{~Hz}$), 121.3 (s), 117.3 (br), 115.9 (br), 119.2 (q, $J=270.9 \mathrm{~Hz}$). GC-MS (EI) m/z $254\left(\mathrm{M}^{+}\right)$.

Obtained as a brown solid in 74% yield (51.1 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 14.29 (br s, 1H), 12.93 (br s, 1H), $8.41-8.21$ (m, 1H), 7.98 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (s, 1H). ${ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) $\delta-63.1$ ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 167.8(\mathrm{~s}), 142.6(\mathrm{q}, J=39.6 \mathrm{~Hz}), 136.9(\mathrm{~s}), 129.9(\mathrm{~s}), 127.1(\mathrm{br}), 125.6$ (br), 122.4 (s), 120.2 (s), 119.2 (q, $J=270.8 \mathrm{~Hz}$). GC-MS (EI) m/z $230\left(\mathrm{M}^{+}\right)$.

methyl 2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxylate (31) ${ }^{6}$
Obtained as a white solid in 35% yield (25.6 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $8.23(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) δ-63.4 ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 166.6$ (s), 140.6 (br), 138.6 (br), 142.8 (q, $J=39.8 \mathrm{~Hz}$), 125.7 (s), 125.2 (s), 119.6 (br), 119.2 (q, $J=270.6 \mathrm{~Hz}$), 116.3 (br), $52.5(\mathrm{~s})$. GC-MS (EI) m/z $244\left(\mathrm{M}^{+}\right)$

2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carbonitrile (3m) ${ }^{7}$

Obtained as a brown solid in 68% yield (28.7 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $14.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) δ-63.3 (s, 3F). ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 143.4$ ($\mathrm{q}, ~ J=40.0 \mathrm{~Hz}$), 129.4 (s), 127.8 (s), 123.9 (br s), 123.1 (s$), 121.7$ (s$), 119.7(\mathrm{~s}), 119.1$ (q, $J=271.0 \mathrm{~Hz}), 106.7(\mathrm{~s})$. GC-MS (EI) m/z $211\left(\mathrm{M}^{+}\right)$.

6-fluoro-2-(trifluoromethyl)-1H-benzo[d]imidazole (3n) ${ }^{4}$

Obtained as a white solid in 92% yield $(56.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 14.04 (br s, 1H), $7.80-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-63.1$ ($\mathrm{s}, 3 \mathrm{~F}$), $\delta-117.6$ (s, 1F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 160.0(\mathrm{~d}, J=239.2 \mathrm{~Hz}), 141.7(\mathrm{q}, ~ J=40.7,39.5 \mathrm{~Hz}), 138.2(\mathrm{br}), 135.2$ (br), 119.3 (q, $J=270.5 \mathrm{~Hz}$), 118.6 (br), 113.2 (d, $J=26.1 \mathrm{~Hz}$), 102.5 (br). GC-MS (EI) m/z $204\left(\mathrm{M}^{+}\right)$.

4-fluoro-2-(trifluoromethyl)-1 H -benzo[d]imidazole (30) ${ }^{4}$

Obtained as a white solid in 83% yield (50.8 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $14.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-62.9(\mathrm{~s}, 3 \mathrm{~F}),-127.7(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 153.2(\mathrm{~d}$, $J=252.5 \mathrm{~Hz}), 141.1(\mathrm{q}, J=39.9 \mathrm{~Hz}), 138.6(\mathrm{br}), 129.5(\mathrm{br}), 125.9(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, $119.2(\mathrm{q}, J=270.7 \mathrm{~Hz}), 111.1(\mathrm{br}), 109.0(\mathrm{~d}, J=16.7 \mathrm{~Hz}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 204\left(\mathrm{M}^{+}\right)$.

5,6-difluoro-2-(trifluoromethyl)-1H-benzo[d]imidazole (3p) ${ }^{4}$

Obtained as a white solid in 82% yield (54.6 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 13.76 (br s, 1H), $7.92-7.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-63.0(\mathrm{~s}, 3 \mathrm{~F})$, $-140.7(\mathrm{~s}, 2 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 148.6(\mathrm{dd}, J=242.5,15.9 \mathrm{~Hz}$), $142.2(\mathrm{q}, J=40.0 \mathrm{~Hz}), 133.6(\mathrm{~s}), 119.1(\mathrm{q}, J=270.4 \mathrm{~Hz}), 104.7(\mathrm{br}) . \mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$

6-chloro-2-(trifluoromethyl)-1H-benzo[d]imidazole (3q) ${ }^{4}$

Obtained as a white solid in 83% yield (54.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 13.97 (br s, 1H), $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-63.1(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 141.7$ (q, $J=39.6 \mathrm{~Hz}$), 139.1 (br), 136.9 (br), 128.9 (s), 125.0 (s), 119.3 (q, $J=270.7 \mathrm{~Hz}$), 118.4 (br), 116.8 (br). GC-MS (EI) m/z $220\left(\mathrm{M}^{+}\right)$.

4-chloro-2-(trifluoromethyl)-1H-benzo[d]imidazole (3r)

Obtained as a white solid in 96% yield (63.5 mg). R_{f} (petroleum ether/ethyl acetate $=$ $5: 1)=0.53 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) $\delta 14.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, chloroform- d) $\delta-63.8(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 141.9$ ($\mathrm{q}, J=41.3$ $\mathrm{Hz}), 138.2$ (br), 135.9 (br), 125.7 (s), 124.9 (s), 124.3 (s), 118.7 (q, $J=271.3 \mathrm{~Hz}$), 112.4 (br). IR (ATR): v 2983, 2905, 2758, 1708, 1456, 1316, 1199, 1139, 1043, 954, $784,745,612 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ClF}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 221.0088$; found: 221.0084.

6-bromo-2-(trifluoromethyl)-1H-benzo[d]imidazole (3s) ${ }^{4}$

Obtained as a White solid in 90% yield (71.56 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 14.17 (br s, 1H), 7.93 (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.39$ (m, 1H). ${ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) $\delta-63.1$ ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 141.5$ (q, $J=39.6 \mathrm{~Hz}$), 139.7 (br), 136.8 (br), 127.6 (s), 119.7 (br), 119.2 (q, $J=$ 270.7 Hz), 118.9 (br), 116.8 (s). GC-MS (EI) m/z 264 (M ${ }^{+}$).

2,2'-bis(trifluoromethyl)-3H,3'H-5,5'-bibenzo[d]imidazole (3t) ${ }^{4}$

Obtained as a Brown solid in 80% yield (88.86 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 14.05$ (br s, 2H), $8.70-7.30(\mathrm{~m}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-62.8(\mathrm{~s}$, $6 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 141.1$ ($\mathrm{q}, J=39.3 \mathrm{~Hz}$), 137.6 (s), 134.7 (br), 124.7 (br), 124.3 (br), 119.9 (s), 119.5 (q, $J=270.4 \mathrm{~Hz}$), 116.9 (s). GC-MS (EI) m/z $370\left(\mathrm{M}^{+}\right)$.

6-bromo-5-methyl-2-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine (3u)
Obtained as a white solid in 36% yield (30.2 mg). Mp: $174.4-175.0{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ $($ petroleum ether/ethyl acetate $=5: 1)=0.36 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.44(\mathrm{~s}$, 1H), 2.66 (s, 3H). ${ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) $\delta-63.4$ ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 153.9$ (s), 148.3 (s , 142.4 ($\mathrm{q}, ~ J=40.1 \mathrm{~Hz}$), 130.5 (s), 119.1 (q, $J=$ 270.9 Hz), 116.8 (s), 115.9 (s), 25.7 (s). IR (ATR): v 3066, 2949, 2784, 2691, 1545,

1450, 1356, 1258, 1187, 1137, 988, 956, 780, 727, 670, $552 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 279.9692$; found: 279.9690 .

ethyl 1-methyl-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxylate (3v) ${ }^{5}$

Obtained as a white solid in 80% yield (65.3 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2H), $3.98(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform-d) $\delta-62.9$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform-d) $\delta 166.5(\mathrm{~s}), 142.5(\mathrm{q}, J=39.0 \mathrm{~Hz}), 140.6$ (s), 138.9 (s), 126.5 (s), 126.4 (s), 124.0 (s$), 118.8$ (q, $J=271.6 \mathrm{~Hz}$), 109.9 (s), 61.2 (s), 31.1 (s), 14.3 (s). GC-MS (EI) m/z $272\left(\mathrm{M}^{+}\right)$.

1-methyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3w) ${ }^{4}$

Obtained as a white solid in 79% yield (47.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.91-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.21(\mathrm{~m}, 3 \mathrm{H}), 4.09-3.61(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-62.6(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 140.9$ (s), 140.4 (q, $J=38.5 \mathrm{~Hz}$), 136.0 (s$), 125.3$ (s$), 123.6$ (s$), 121.5$ (s$), 119.1(\mathrm{q}, J=271.2 \mathrm{~Hz})$, 110.1 (s), 30.7 (s). GC-MS (EI) m/z $200\left(\mathrm{M}^{+}\right)$.

6-bromo-1-methyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3x)

Obtained as a white solid in 40% yield (33.7 mg). Mp: $134.7-135.2{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$
(petroleum ether/ethyl acetate $=5: 1)=0.76 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz , chloroform- d) $\delta-62.7$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 141.4$ (q, $J=38.8 \mathrm{~Hz}$), 139.8 (s), 136.9 (s), 127.2 (s$), 122.8$ (s$), 118.8$ (s$), 118.7(\mathrm{q}, ~ J=$ 271.5 Hz), 113.3 (s), 30.9 (d, $J=2.2 \mathrm{~Hz}$). IR (ATR): v 2957, 2924, 1614, 1522, 1479, 1405, 1259, 1221, 1117, 1081, 822, 728, 646, $596 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrF}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 278.9739$; found: 278.9737.

1-phenyl-2-(trifluoromethyl)-1H-benzo[d]imidazole (3y) ${ }^{4}$

Obtained as a yellow liquid in 73% yield (57.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 4 \mathrm{H})$, $7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-60.5(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform- d) $\delta 140.8(\mathrm{q}, ~ J=38.5 \mathrm{~Hz}), 140.7(\mathrm{~s}), 137.3(\mathrm{~s}), 134.4(\mathrm{~s})$, 129.9 (s), 129.8 (s), 127.4 (s), 125.9 (s), 124.1 (s), 121.4 (s), 118.9 (q, $J=271.9 \mathrm{~Hz}$), 111.2 (s). GC-MS (EI) m/z 262 (M ${ }^{+}$).

2,2,2-trifluoro- N -(1-phenyl-2-(trifluoromethyl)-1H-benzo[d]imidazol-5-yl)acetimi damide (3z)

Obtained as a white solid in 41% yield $(45.8 \mathrm{mg}) . \mathrm{Mp}: 185.4-186.6^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.59 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ
$7.65-7.59$ (m, 3H), $7.49-7.38$ (m, 3H), 7.18 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1H), 5.25 (s, 2H). ${ }^{19}$ F NMR (376 MHz , chloroform- d) $\delta-60.5$ ($\mathrm{s}, 3 \mathrm{~F}$), -73.1 ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 146.1$ ($\mathrm{q}, J=35.5 \mathrm{~Hz}$), 142.2 (d, $J=175.5 \mathrm{~Hz}$), 141.3 (q, $J=38.3 \mathrm{~Hz}$), 134.4 (s , 134.2 (s$), 130.1$ (s$), 129.9$ (s), 127.3 (s$), 120.6$ (s$)$, $118.7(\mathrm{q}, J=272.0 \mathrm{~Hz}), 118.2(\mathrm{q}, J=278.0 \mathrm{~Hz}), 116.4,112.5(\mathrm{~s}), 111.8$ (s). IR (ATR): $v 3276,3093,1674,1499,1440,1262,1195,1134,876,762,696,653,626,536,487$, $441 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 373.0882; found: 373.0879 .

2-(trifluoromethyl)-3a,4,5,6,7,7a-hexahydro-1H-benzo[d]imidazole (3aa)

Obtained as a white solid in 60% yield (34.6 mg). Mp: $114.0-115.2{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.63 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $5.27(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.60-1.15(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-70.1$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 156.7(\mathrm{q}, J=37.3 \mathrm{~Hz}$), $118.0(\mathrm{q}, J=274.3 \mathrm{~Hz}), 72.6(\mathrm{~s})$, 67.5 (s), 30.3 (s), 25.2 (s), 24.2 (s). IR (ATR): v 3121, 2937, 2860, 1716, 1603, 1186, 1138, 1077, 969, $740 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 193.0947; found: 193.0948.

4,5-diphenyl-2-(trifluoromethyl)-4,5-dihydro-1H-imidazole (3ab)

Obtained as a white solid in 88% yield (76.6 mg). Mp: $160.4-161.2{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=8: 1)=0.59 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ
$7.66-6.87(\mathrm{~m}, 10 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.23-4.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-69.4(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 154.3$ ($\mathrm{q}, J=37.5$ $\mathrm{Hz}), 141.4$ (s), 128.9 (s$), 128.1(\mathrm{~s}), 126.4(\mathrm{~s}), 117.7$ (q, $J=274.9 \mathrm{~Hz}), 79.9(\mathrm{~s}), 69.8$ (s). IR (ATR): v 3089, 2857, 1629, 1515, 1455, 1385, 1157, 1146, 1078, 1007, 925, 751, 691, 614, $523 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2}$: 291.1104; found: 291.1100.

2-(trifluoromethyl)benzo[d]oxazole (5a) ${ }^{3}$

Obtained as a yellow oil in 80% yield (44.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 151.7$ (q, $J=43.6 \mathrm{~Hz}$), 150.6 (s), 139.4 (s$), 127.9$ (s$), 125.9$ (s$), 121.9$ (s$), 116.8$ (q, $J=$ 271.7 Hz), 111.6 (s). GC-MS (EI) m/z $187\left(\mathrm{M}^{+}\right)$.

7-methyl-2-(trifluoromethyl)benzo[d]oxazole (5b)

Obtained as a yellow oil in 90% yield $(54.3 \mathrm{mg}) . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=$ $10: 1)=0.41 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) $\delta 7.73-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform- d) $\delta 151.4$ (q, $J=43.4 \mathrm{~Hz}$), 149.9 (s), 138.9 (s$), 134.2$ (s), 128.7 (s), 125.9 (s , 118.9 (s$), 116.9(\mathrm{q}, ~ J=271.6 \mathrm{~Hz}$), 14.9 (s). IR (ATR): v 3235, 2959, 2227, 1736, 1609, 1587, 1513, 1374, 1286, 1241, 1168, 1045, 839, 548, 523 cm^{-1}. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 202.0474$; found: 202.0473.

4-methyl-2-(trifluoromethyl)benzo[d]oxazole (5c)

Obtained as a yellow oil in 92% yield $(56.7 \mathrm{mg}) . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=$ 10:1) $=0.42 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) $\delta 7.51-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.2(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform- d) $\delta 150.9(\mathrm{q}, ~ J=43.4 \mathrm{~Hz}$), 150.4 (s), $138.8(\mathrm{~s}), 132.7$ (s), 127.5 (s$), 126.3$ (s), 116.9 (q, $J=271.5 \mathrm{~Hz}), 108.8(\mathrm{~s}), 16.3(\mathrm{~s})$. IR (ATR): v 2928, 1632, 1586, 1370, 1317, 1227, 1203, 1158, 1118, 777, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 202.0474; found: 202.0475.

5,7-dimethyl-2-(trifluoromethyl)benzo[d]oxazole (5d)

Obtained as a white solid in 92% yield (59.4 mg). Mp: $40.8-41.2^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=10: 1)=0.48 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- $d) \delta 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3$ (s , 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 151.4(\mathrm{q}, J=43.3 \mathrm{~Hz}$), $148.3(\mathrm{~s}), 139.2(\mathrm{~s})$, 135.9 (s), 130.0 (s), 121.6 (s$), 118.6$ (s), 116.9 (q, $J=271.4 \mathrm{~Hz}$), 21.4 (s$), 14.9$ (s). IR (ATR): v 2927, 1366, 1315, 1204, 1153, 1141, 1110, 941, 849, 750, 597, $564 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 216.0631$; found: 216.0629.

5-(tert-butyl)-2-(trifluoromethyl)benzo[d]oxazole (5e)

Obtained as a colorless oil in 90% yield $(65.7 \mathrm{mg}) . R_{\mathrm{f}}($ petroleum ether/ethyl acetate $=$ $10: 1)=0.48 .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.50(\mathrm{~m}, 2 \mathrm{H})$, 1.41 (s, 9H). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 151.8(\mathrm{q}, J=43.4 \mathrm{~Hz}$), $149.8(\mathrm{~s}), 148.7(\mathrm{~s}), 139.4(\mathrm{~s}), 125.8(\mathrm{~s}), 118.1$ (s), $116.9(\mathrm{q}, ~ J=271.5 \mathrm{~Hz}$), $110.8(\mathrm{~s}), 35.1(\mathrm{~s}), 31.6(\mathrm{~s})$. IR (ATR): v 2964, 1482, 1365, 1210, 1158, 1135, 1105, 943, 837, 812, 745, $652 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 244.0945$; found: 244.0944.

5-phenyl-2-(trifluoromethyl)benzo[d] oxazole (5f) ${ }^{8}$

Obtained as a white solid in 88% yield (69.5 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.2(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) δ 152.2 (q, $J=43.7 \mathrm{~Hz}$), 150.1 (s), 140.2 (s$), 140.1$ (s$), 140.0$ (s$), 129.1$ (s$), 127.8$ (s$)$, 127.5 (s), 120.1 (s), $116.8\left(\mathrm{q}, J=271.8 \mathrm{~Hz}\right.$), 111.7 (s). GC-MS (EI) m/z $263\left(\mathrm{M}^{+}\right)$.

2-(trifluoromethyl)naphtho[2,3-d]oxazole (5g)

Obtained as a brown solid in 65% yield (46.3 mg). Mp: $110.8-111.1{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=10: 1)=0.45 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.7(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 153.6$ ($\mathrm{q}, J=43.6$ Hz), 148.9 (s), 138.7 (s), 132.8 (s), 131.7 (s), 128.9 (s), 128.1 (s), 126.8 (s), 125.6 (s), 120.1 (s), 116.8 (q, $J=272.2 \mathrm{~Hz}$), 107.8 (s). IR (ATR): v 2981, 1738, 1626, 1401, 1338, 1240, 1209, 1152, 1123, 1078, 1045, 936, 865, 841, 749, 736, $551 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 238.0474$; found: 238.0473 .

5-methoxy-2-(trifluoromethyl)benzo[d]oxazole (5h)

Obtained as a colorless oil in 82% yield $(53.4 \mathrm{mg}) . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=$ 10:1) $=0.43 .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 158.3(\mathrm{~s}), 152.2(\mathrm{q}, J=43.4 \mathrm{~Hz}$), 145.2 (s), 140.3 (s), 117.3 (s), 116.8 (q, $J=271.5 \mathrm{~Hz}$), 111.9 (s), 103.6 (s), 55.9 (s). IR (ATR): v 2943, 1737, 1485, 1371, 1269, 1207, 1147, 1119, 1023, 945, 833, 807, 741, $626 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 218.0423; found: 218.0422.

2,5-bis(trifluoromethyl)benzo[d]oxazole (5i)

Obtained as a colorless oil in 40% yield (30.6 mg). R_{f} (petroleum ether/ethyl acetate $=$ 10:1) $=0.84 .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.64(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-61.5$ (s, 3F), -66.4 (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 153.3(\mathrm{q}, ~ J=44.3 \mathrm{~Hz}), 139.5(\mathrm{~s}), 129.0(\mathrm{q}, J=33.4 \mathrm{~Hz}), 125.2(\mathrm{q}, J=$ $3.6 \mathrm{~Hz}), 125.2(\mathrm{~s}), 123.6(\mathrm{q}, ~ J=272.4 \mathrm{~Hz}), 119.8(\mathrm{q}, J=4.1 \mathrm{~Hz}), 116.5(\mathrm{q}, J=272.0$ $\mathrm{Hz}), 112.5$ (s). IR (ATR): v 1586, 1436, 1371, 1324, 1271, 1217, 1162, 1128, 1099, 1047, 893, 821, $669 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{6} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 256.0192; found: 256.0191 .

methyl 2-(trifluoromethyl)benzo[d]oxazole-5-carboxylate (5j)

Obtained as a white solid in 40% yield (29.4 mg). Mp: $55.8-56.7^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=10: 1)=0.76 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- $d) \delta 8.60(\mathrm{~s}, 1 \mathrm{H})$, $8.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 166.0$ (s), 153.2 (s), 152.9 (q, $J=44.1 \mathrm{~Hz}$), 139.5 (s , 129.5 (s), 128.6 (s$), 124.0$ (s$), 116.6$ (q, $J=$ 272.3 Hz), 111.6 (s), 52.6 (s). IR (ATR): v 2957, 1726, 1435, 1307, 1297, 1211, 1159, 1100, 941, 766, $752 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 246.0373; found: 246.0374 .

2-(trifluoromethyl)benzo[d]oxazole-5-carbonitrile (5k)

Obtained as a white solid in 40% yield (25.5 mg). Mp: $110.9-112.6{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.75 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $8.27(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3(\mathrm{~s}, 3 \mathrm{~F})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 153.7$ ($\mathrm{q}, J=44.5 \mathrm{~Hz}$), 152.7 (s), 139.8 (s), 131.6 (s), 126.9 (s), 117.7 (s$), 116.3(\mathrm{q}, ~ J=272.5 \mathrm{~Hz}$), 113.3 (s$), 110.5$ (s$).$ IR (ATR): v 2984, 1736, 1372, 1235, 1166, 1096, 1044, 938, 846, $631 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 213.0275$; found: 213.0270.

7-chloro-2-(trifluoromethyl)benzo[d]oxazole (51)

Obtained as a yellow oil in 65% yield $(43.0 \mathrm{mg}) . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=$ $10: 1)=0.47 .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.86-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.51$
(m, 1H), $7.50-7.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, chloroform- d) $\delta-66.1(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform- d) $\delta 152.0(\mathrm{q}, ~ J=44.3 \mathrm{~Hz}$), 147.3 (s), 140.6 (s), 128.2 (s), 126.7 (s), 120.3 (s), 117.1 (s), 116.5 (q, $J=272.1 \mathrm{~Hz}$). IR (ATR): v 2957, 2925, $2855,1723,1460,1266,1101,1019,967,800,731 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 221.9928$; found: 221.9929 .

4-chloro-2-(trifluoromethyl)benzo[d]oxazole (5m)

Obtained as a colorless oil in 84% yield $(55.8 \mathrm{mg}) . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=$ 5:1) $=0.84 .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.1$ ($\mathrm{s}, 3 \mathrm{~F}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 152.1(\mathrm{q}, J=44.3 \mathrm{~Hz}), 151.2(\mathrm{~s}), 137.5(\mathrm{~s}), 128.4$ (s), 126.8 (s$), 126.3$ (s), 116.6 (q, $J=272.1 \mathrm{~Hz}$), 110.3 (s). IR (ATR): v 2927, 1615, 1418, 1372, 1208, 1156, 1110, 952, 781, 747, $648 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+$ $\mathrm{H}]^{+}: 221.9928$; found: 221.9929 .

5-chloro-2-(trifluoromethyl)benzo[d]oxazole (5n) ${ }^{8}$

Obtained as a yellow oil in 72% yield (47.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 7.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.4$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 152.9$ (q, $J=44.0 \mathrm{~Hz}$), 149.1 (s), 140.4 (s$), 131.7$ (s$), 128.5$ (s), 121.9 (s), 117.9 (q, $J=$ 272.2 Hz), 112.5 (s). GC-MS (EI) m/z $221\left(\mathrm{M}^{+}\right)$.

5-bromo-2-(trifluoromethyl)benzo[d] oxazole (50) ${ }^{8}$

Obtained as a white solid in 88% yield (70.2 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 8.05(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-66.3$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 152.7$ (q, $J=44.1 \mathrm{~Hz}$), 149.6 (s), 140.9 (s , 131.2 (s$), 124.9$ (s$), 118.9$ (s$), 116.5$ (q, $J=$ 272.1 Hz), 112.9 (s). GC-MS (EI) m/z $265\left(\mathrm{M}^{+}\right)$.

2-(trifluoromethyl)benzo[d]thiazole (7a) ${ }^{9}$

Obtained as a colorless oil in 84% yield (50.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 8.23-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , chloroform- d) $\delta-61.7(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 155.9(\mathrm{q}, J=40.5$ Hz), 152.1 (s , $135.0(\mathrm{~s}), 127.5$ (s), 127.3 (s$), 125.0(\mathrm{~s}), 122.0(\mathrm{~s}), 119.9(\mathrm{q}, J=273.2$ Hz). GC-MS (EI) m/z $203\left(\mathrm{M}^{+}\right)$.

5-chloro-2-(trifluoromethyl)benzo[d]thiazole (7b) ${ }^{9}$

Obtained as a yellow oil in 90% yield (63.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 8.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, chloroform-d) $\delta-61.9(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 157.8$ (q, $J=40.8 \mathrm{~Hz}), 152.9(\mathrm{~s}), 133.7(\mathrm{~s}), 133.2(\mathrm{~s}), 128.3(\mathrm{~s}), 124.8(\mathrm{~s}), 122.8(\mathrm{~s}), 119.5(\mathrm{q}$, $J=273.6 \mathrm{~Hz}$). GC-MS (EI) m/z $237\left(\mathrm{M}^{+}\right)$.

N-(2-amino-5-bromo-6-methylpyridin-3-yl)-2,2,2-trifluoroacetimidamide (8)

Obtained as a white solid in 17% yield (15.1 mg). Mp: $152.7-153.4{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (petroleum ether/ethyl acetate $=5: 1)=0.31 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) δ $7.21(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, chloroform- d) $\delta-72.9$ (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 150.8$ (s), 150.4 (s), $146.8(\mathrm{q}, ~ J=35.7 \mathrm{~Hz}), 130.4(\mathrm{~s}), 125.5(\mathrm{~s}), 117.9(\mathrm{q}, J=278.0 \mathrm{~Hz}), 107.6(\mathrm{~s})$, 23.8 (s). IR (ATR): v 3404, 3072, 1671, 1598, 1453, 1428, 1219, 1200, 1148, 987, 902, 723, 701, 636, $513 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 296.9957; found: 296.9958.

Crystal structure analyses

The crystal samples of $\mathbf{3 z}, \mathbf{8}$, and $\mathbf{1 0}$ were prepared by slow volatilization in ethyl acetate. The suitable crystals of $\mathbf{3 z}$ (CCDC 2251314), $\mathbf{8}$ (CCDC 2251569), and $\mathbf{1 0}$ (CCDC 2251569) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at $-50^{\circ} \mathrm{C}$, using $\mathrm{MoK} \alpha$ radiation $(\lambda 0.71073 \AA$) and $\mathrm{CuK} \alpha$ radiation ($\lambda 1.54184 \AA$). The data was corrected for Lorentz and polarisation effect with the SMART suite of programs and for absorption effects with SADABS. ${ }^{10}$ Structure solution and refinement were carried out with the SHELXTL suite of programs. The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

Note: Some Alert level A and Alert B were appeared in the check cif file of compound 8. We still did not solve the alert when we tried to give additional refinement cycles or use new space group. But we have given sufficient evidence to prove the accuracy of this structure by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR as well as high resolution mass spectra.

Table S1. Crystal data and structure refinement for compounds

Compound	3z (CCDC 2251314)	8 (CCDC 2251569)	10 (CCDC 2260578)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrF}_{3} \mathrm{~N}_{4}$	$\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
Formula weight	372.28	297.09	388.28
Temperature/K	293(2)	293(2)	293(2)
Wavelength/Å	1.54184	1.15184	1.54184
Crystal system	Monoclinic	Monoclinic	Monoclinic
a/Å	10.1807(3)	29.3359(4)	14.5247(5)
b/Å	21.2316(5)	9.24130(10)	7.3697(3)
c/Å	16.3707(4)	38.2126(6)	15.8219(6)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	104.958 (3)	90.0520(10)	102.633(4)
$\gamma{ }^{\circ}$	90	90	90
Volume/A ${ }^{3}$	3418.66(16)	10359.5(2)	1652.62(11)
Z	8	32	4
Density (calc.) $/ \mathrm{cm}^{3}$	1.447	1.524	1.561
Absorption coefficient $/ \mathrm{mm}^{-1}$	1.199	4.544	1.314
$\mathrm{F}(000)$	1504.0	4672.0	784.0
Crystal size/mm	$0.10 \times 0.10 \times 0.10$	$0.10 \times 0.10 \times 0.05$	$0.10 \times 0.05 \times 0.05$
Theta range for data collection $/{ }^{\circ}$	6.97~136.458	4.624~136.55	3.127~67.5070
Reflections collected	8658	38924	7782
Independent reflections	$3105[\mathrm{R}(\mathrm{int})=0.0434]$	$17263[\mathrm{R}($ int $)=0.0752]$	$2986[\mathrm{R}(\mathrm{int})=0.1052]$
Data/restraints/parameters	3105 / 48/239	17263 / $0 / 1184$	2986/0/252
Goodness-of-fit on F^{2}	1.070	1.414	1.060
Final R indexes [I $>=2 \sigma$ (I)]	0.0998	0.1209	0.0958
Final R indexes [all data]	0.1253	0.1346	0.1317
Largest diff. peak and hole / e \AA^{-3}	0.57/-0.46	2.08/-2.01	0.30/-0.40

ORTEP diagrams

Figure S1. ORTEP diagram of 3 z with thermal ellipsoids at the $\mathbf{4 0 \%}$ probability level

Figure S2. ORTEP diagram of 8 with thermal ellipsoids at the $\mathbf{4 0 \%}$ probability level

Figure S3. ORTEP diagram of $\mathbf{1 0} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$ with thermal ellipsoids at the $\mathbf{4 0 \%}$ probability level

References

1. B. Lin, Y. Yao, Y. Huang, Q. Lin and Z. Weng, Chem. Commun., 2022, 58, 12224-12227.
2. P. Xu, X.-Y. Wang, Z. Wang, J. Zhao, X.-D. Cao, X.-C. Xiong, Y.-C. Yuan, S. Zhu, D. Guo and X. Zhu, Org. Lett., 2022, 24, 4075-4080.
3. F. Ge, Z. Wang, W. Wan, W. Lu and J. Hao, Tetrahedron Lett., 2007, 48, 3251-3254.
4. Y. Zhou, G. Shen, Y. Sui and H. Zhou, Tetrahedron Lett., 2016, 57, 3396-3399.
5. O. René, A. Souverneva, S. R. Magnuson and B. P. Fauber, Tetrahedron Lett., 2013, 54, 201-204.
6. C. Hernández-Covarrubias, M. A. Vilchis-Reyes, L. Yépez-Mulia, R. Sánchez-Díaz, G. Navarrete-Vázquez, A. Hernández-Campos, R. Castillo and F. Hernández-Luis, Eur. J. Med. Chem., 2012, 52, 193-204.
7. J. Zhu, Z. Chen, H. Xie, S. Li and Y. Wu, J. Fluorine Chem., 2012, 133, 134-138.
8. L. Chu and F.-L. Qing, J. Am. Chem. Soc., 2012, 134, 1298-1304.
9. Y. Yuan, W. Dong, X. Gao, X. Xie and Z. Zhang, Org. Lett., 2019, 21, 469-472.
10. SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19}$ FNMR and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1}$ H NMR spectra of 3a in DMSO- d_{6}

${ }^{19}$ F NMR spectra of 3a in DMSO- d_{6}

$$
--62.758
$$

N-CF
\qquad

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of Bb in DMSO- d_{6}

\qquad

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 b}$ in DMSO- d_{6}
(in

${ }^{19}$ F NMR spectra of $\mathbf{3 c}$ in DMSO- d_{6} \vec{n}
ì
\vdots

${ }^{1} \mathrm{H}$ NMR spectra of 3d in methanol- d_{4}

	$\stackrel{\rightharpoonup}{i}$

M-
${ }^{19}$ F NMR spectra of 3d in methanol- d_{4} $\hat{0}$
+
i
i
i
i

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 3d in methanol- d_{4}

\qquad
${ }^{1} \mathrm{H}$ NMR spectra of 3 e in methanol- d_{4}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3} \mathbf{e}$ in methanol $-d_{4}$

$$
\chi_{1-S_{N} \gg C_{3}}^{H}
$$

\qquad

${ }^{1}$ H NMR spectra of $\mathbf{3 f}$ in Methanol- d_{4}

$$
\begin{gathered}
\dot{+} \\
\stackrel{+}{\dot{~}} \\
\stackrel{y}{2}
\end{gathered}
$$

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 f}$ in methanol- d_{4}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 f}$ in methanol- d_{4}

[^0]${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 g}$ in CDCl_{3}
(N-CN

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 g}$ in CDCl_{3}
\[

$$
\begin{gathered}
n \\
n \\
n \\
i \\
i
\end{gathered}
$$
\]

Cons

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 g}$ in CDCl_{3}

$$
\begin{aligned}
& \text { Concen }
\end{aligned}
$$

\qquad
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 h}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3} \mathbf{h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 i}$ in CDCl_{3}

${ }^{19}$ F NMR spectra of $\mathbf{3 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 i}$ in CDCl_{3}

| 1 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 |

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3} \mathbf{j}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 j}$ in DMSO- d_{6}

-20	$\stackrel{1}{-25}$	${ }_{-30}$	${ }_{-35}$	-40	${ }_{-45}$	${ }_{-50}$	${ }_{-55}$	-60	${ }_{-65}$	${ }_{-70}$	-75	-80	-85	${ }_{-90}$	${ }_{-95}$	-100

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3} \mathbf{j}$ in DMSO- d_{6}

[^1]${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 k}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 k}$ in DMSO- d_{6} $\stackrel{\text { た }}{\substack{\text { た }}}$
ноос
\qquad

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 1}$ in DMSO- d_{6}
$$
\stackrel{\bar{x}_{\infty}^{\infty}}{\substack{i}}
$$

${ }^{19}$ F NMR spectra of 31 in DMSO- d_{6}

\qquad

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 1}$ in DMSO- d_{6}

a
i
i
i
i
CoOC-CF3
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 m}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 m}$ in DMSO- d_{6} $\stackrel{\circ}{\circ}$
N
$\stackrel{0}{0}$
\vdots
NC

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 n}$ in DMSO- d_{6}

${ }^{19} \mathrm{~F}$ NMR spectra of 3n in DMSO- d_{6}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 n}$ in DMSO- d_{6}

为

\qquad
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 o}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 o}$ in DMSO- d_{6}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 o}$ in DMSO- d_{6}

${ }^{1}$ H NMR spectra of 3p in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 p}$ in DMSO- d_{6}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 p}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 q}$ in DMSO- d_{6}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 r}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $3 \mathbf{r}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of 3 s in DMSO- d_{6}
$\stackrel{\vdots}{\vdots}$
(

が

${ }^{19}$ F NMR spectra of 3 s in DMSO- d_{6}
8
$\stackrel{8}{6}$
i
Brens
\qquad

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 t}$ in DMSO- d_{6}

${ }^{19} \mathrm{~F} \mathrm{NMR}$ spectra of 3 t in DMSO- d_{6}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 t}$ in DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 u}$ in DMSO- d_{6}

${ }^{19}$ F NMR spectra of $\mathbf{3 u}$ in DMSO- d_{6}

(

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 v}$ in CDCl_{3}

Etooc

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 v}$ in CDCl_{3} --62.899
Etooc

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 v}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 w}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 w}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 w}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 x}$ in CDCl_{3}

$$
\underbrace{ \pm}
$$

Cosmes

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 x}$ in CDCl_{3}
n

ì
\vdots
i
Cos

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 x}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 y}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 y}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 z}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 z}$ in CDCl_{3}

$\xrightarrow{ }$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 z}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 a a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a b}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of 3ab in CDCl_{3}

\square^{\square}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 3ab in CDCl_{3}

匋动西寺	\％		\％
	子		
	।	ごアアブ	

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 a}$ in CDCl_{3}
(1)

${ }^{19}$ F NMR spectra of $\mathbf{5 a}$ in CDCl_{3} n
0
0
i
($-\mathrm{N}^{0}{ }^{0} \mathrm{CF}_{3}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 b}$ in CDCl_{3}

(1)

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 b}$ in CDCl_{3}
H.
Nु
ín
i

Concolen

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 b}$ in CDCl_{3}

$$
\stackrel{\circ}{\stackrel{\circ}{\unlhd}}
$$

Cons

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 c}$ in CDCl_{3}

${ }^{19}$ F NMR spectra of $\mathbf{5 c}$ in CDCl_{3}

$$
\mathrm{C}_{1}^{0}
$$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 d}$ in CDCl_{3}
ハை

${ }^{19}$ F NMR spectra of $\mathbf{5 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 d}$ in CDCl_{3}

$$
\begin{aligned}
& -21.385 \\
& -14.928
\end{aligned}
$$

Concons

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 e}$ in CDCl_{3}

$$
\underbrace{\text { K }}
$$

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 e}$ in CDCl_{3}
लु
へु
\vdots
1
$x-\mathrm{Cl}^{-0}>\mathrm{N}_{3}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 f}$ in CDCl_{3}

Concen

${ }^{19}$ F NMR spectra of $\mathbf{5 f}$ in CDCl_{3}

Co-CF
P

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 g}$ in CDCl_{3}

 ooooornべn!

~

${ }^{19}$ F NMR spectra of $\mathbf{5 g}$ in CDCl_{3}
> $\stackrel{\rightharpoonup}{*}$
$\stackrel{e}{i}$
$\stackrel{i}{i}$

S $\mathrm{C}^{\circ}{ }^{3} \mathrm{CF}_{3}$

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5} \mathbf{h}$ in CDCl_{3}

Concols

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5} \mathbf{h}$ in CDCl_{3}

尓

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 i}$ in CDCl_{3}

C(

${ }^{19}$ F NMR spectra of $\mathbf{5 i}$ in CDCl_{3} -61.456
-66.349

CF

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5} \mathbf{j}$ in CDCl_{3}
MeOOC

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 j}$ in CDCl_{3}
$\stackrel{m}{\tilde{m}}$
$\stackrel{\circ}{0}$
i
Meooc

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 j}$ in CDCl_{3}
त্চ

Meooc

n
i

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 k}$ in CDCl_{3}
$\begin{array}{lllll}n & m & N & 0 & n \\ n & \infty & \infty & \infty \\ \infty & \infty \\ \sim & \sim & \sim \\ \sim\end{array}$

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 k}$ in CDCl_{3}

nco

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5} \mathbf{I}$ in CDCl_{3}

Coliocms

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 l}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 l}$ in CDCl_{3}

Concens

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 m}$ in CDCl_{3}

$8^{51 /} \mathrm{M}$ 0 -1 -1

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 m}$ in CDCl_{3}

$$
\mathrm{Cl}_{\mathrm{Nl}}^{\mathrm{o}}
$$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 n}$ in CDCl_{3}
(

O-

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5} \mathbf{n}$ in CDCl_{3}
Co-CF3
(

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 n}$ in CDCl_{3}

$$
\begin{aligned}
& \text { Clone }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 0}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5 o}$ in CDCl_{3}

$$
\widehat{B r}_{\mathrm{N}}^{0}
$$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{7 a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectra of $7 \mathbf{a}$ in CDCl_{3}

$$
\begin{gathered}
\circ \\
\stackrel{\rightharpoonup}{\dot{B}} \\
\hline
\end{gathered}
$$

$\left.1(-)^{-5}\right)^{-C F_{3}}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $7 \mathbf{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{7 b}$ in CDCl_{3}

$$
\begin{aligned}
& \text { かかへへへへ }
\end{aligned}
$$

Cl

${ }^{19}$ F NMR spectra of $\mathbf{7 b}$ in CDCl_{3}
Cons

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8}$ in CDCl_{3}

${ }^{19}$ F NMR spectra of $\mathbf{8}$ in CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{8}$ in CDCl_{3}
(
-23.78

\qquad
${ }^{1} \mathrm{H}$ NMR spectra of 9 in CDCl_{3}

${ }^{19}$ F NMR spectra of $\mathbf{9}$ in CDCl_{3}

${ }^{19}$ F NMR spectra of $\mathbf{1 0}$ in methanol- d_{4}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 0}$ in methanol- d_{4}

[^0]:

[^1]:

