Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2023
Supporting Information
Visible-Light Organophotoredox-Mediated Intermolecular Formal [4+2] Cycloadditions of Arylcyclobutylamines with Olefins

Zhengshan Luo, Zequn Xing, Rui Gao, Yufang Han, Jun Ren, and Zhongwen Wang*

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Mat- ter, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94\# Weijin Road, Tianjin 300071, China
E-mail: wzwrj@nankai.edu.cn
Table of Contents

1. General Information 2
2. Synthesis of Catalyst 3
3. Synthesis of Substrates 4
4. Optimization of Reaction Conditions 8
5. General Experiment Procedures 11
6. Characterization Data of Products 11
7. Limitations of substrates 23
8. Mechanistic Studies 24
9. Synthetic applications 28
10. X-ray Crystallographic Details 29
11. References 35
12. NMR Spectra of New Compounds 36

1. General Information

1.1 General reaction setup and analytical methods

All reactions were carried out under an atmosphere of argon in flame-dried glassware. The solvents used were purified by distillation over standard drying agents and were stored over molecular sieves and transferred under argon. Technical solvents used for aqueous workup and for column chromatography [dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, ethyl acetate (EtOAc), petroleum ether (PE), methanol (MeOH), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), n-hexane (hexane)] were distilled prior to use.
Flash chromatography was performed on silica gel (200~300 or 300~400 mesh) with the indicated eluent mixtures. Thin-layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV ($\lambda=254$ and 365 nm) and/or by staining with a potassium permanganate solution $\left(\mathrm{KMnO}_{4}\right)$ followed by heat treatment.
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker 400 MHz spectrometers at ambient temperature, and spectrometer instruments in CDCl_{3} and/or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. NMR standards were used as follows, ${ }^{1} \mathrm{H}$ NMR spectroscopy: $\delta=7.26 \mathrm{ppm}(\mathrm{CDCl} 3),{ }^{1} \mathrm{H}: \delta=$ $2.50 \mathrm{ppm}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) .{ }^{13} \mathrm{C}$ NMR spectroscopy: $\delta=77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right),{ }^{13} \mathrm{C}: \delta=39.52 \mathrm{ppm}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$. Chemical shifts (δ) are given in parts per million (ppm), are referenced to the residual solvent peaks, and are quoted to the nearest 0.01 ppm for ${ }^{1} \mathrm{H}$ NMR spectra and 0.1 ppm for ${ }^{13} \mathrm{C}$ NMR spectra. The following abbreviations for single multiplicities were used: $s=$ singlet, $d=d o u b l e t, t=$ triplet, $q=$
 of pentets, td = triplet of doublets and furthermore as combinations. Coupling constants $\left(J_{H H}\right)$ are reported in Hz and are quoted to the nearest 0.1 Hz . The relative configuration of new compounds was established by HMBC, NOESY experiments, and X-ray crystallography. Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. High resolution mass spectroscopy (HRMS) were performed on Thermo Scientific Q Exactive combined quadrupole, Orbitrap mass spectrometer with ESI resource. Absorption spectra were recorded on a JASCO V-570 UV/Vis spectrometer. Cyclic voltammetry was performed on a Shanghai Chenhua T-660M electrochemical analyzer. The voltammetric cell consisted of a glassy carbon working electrode, a Pt wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Stern-Volmer quenching experiments were conducted on a FS5 Spectrofluoromete and equipped with a 1 cm quartz cell using MeCN as the solvent. The diffraction data for the compound were obtained on Bruker D8 Venture and Rigaku 007 Saturn 70 diffractometer system using a MoKa radiation ($\lambda \alpha=0.71073 \AA$). The crystallographic figures were generated using the Diamond Version 4.6 .8 software.

1.2 Photoredox catalysis reaction setup

The catalyst is synthesized according to the published procedure. ${ }^{1}$ Blue LED lamp ($18 \mathrm{~W}, \lambda \mathrm{max}=420 \mathrm{~nm}$) as ordinary light source. At room temperature and argon atmosphere, in a 50 mL quartz photoreaction tube (diameter $=2 \mathrm{~cm}$), the distance from the light source to the irradiation container was 2 cm , and photochemical experiments were performed. The sample is placed in the center of a magnetic stirrer and the solvent used in the photochemical reaction is dry in an ultrasonic bath under continuous argon flow for 5 minutes. The LED manufacturer is Shenzhen Shining Lighting Co., Ltd., single bead LED model is PAR38, overall LED lamp model is BG-Z14318-420, Voltage is 220 V and power is 18 W . The wavelength range is $415 \sim 420 \mathrm{~nm}$. The electric fan is used to help the reaction system dissipate heat to eliminate the influence of thermal reaction. The electric fan manufacturer is China Cixi Jiyang Electrical Appliance Co., Ltd., with a voltage of 220 V and a power of 5 W .

Figure S1. Photoredox reaction setup.

2. Synthesis of Catalyst

12H-benzo [5,6] [1,4] thiazine [2,3-b] quinoxaline (QXPT)

In a 50 mL single-necked flask, 2-aminobenzenethiol ($335 \mu \mathrm{~L}, 3.13 \mathrm{mmol}, 1.25$ equiv) was added to a mixed solvents of water and DMF ($\mathrm{v} / \mathrm{v}, 5 \mathrm{~mL} / 15 \mathrm{~mL}$). After the solid was dissolved, a solution of $\mathrm{KOH}(350 \mathrm{mg}, 6.25 \mathrm{mmol}, 2.5$ equiv) and 2,3 -dichloroquinoxaline ($498 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.0$ equiv) in DMF (6 mL) were added, and the mixture was heated to $120^{\circ} \mathrm{C}$ at oil bath and refluxed for 6 h (TLC). The reaction was quenched by adding ice water, and the solid was filtered, washed with water (50 mL) for three times, and dried in vacuo to afford a yellow solid product QXPT ($590 \mathrm{mg}, 94 \%$ yield).
QXPT was known compound, which can be synthesized according to the reported methods, spectral data correspond to those described in the reference. ${ }^{12}$

12-Phenyl-12H-benzo [5,6] [1,4] thiazino[2,3-b] quinoxaline (QXPT-NPh)

A mixture of 12 H -benzo[5,6][1,4]thiazine [2,3-b]quinoxaline (QXPT) ($1 \mathrm{~g}, 4 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(848 \mathrm{mg}, 8 \mathrm{mmol})$ and copper powder (51 $\mathrm{mg}, 20 \mathrm{~mol} \%$) was heated to reflux (oil bath $=190^{\circ} \mathrm{C}$) in iodobenzene (20 mL) until 12 H -benzo[5,6$][1,4]$ thiazine[2,3-b]quinoxaline disappears. The reaction mixture was cooled to room temperature, and the unreacted substituted iodobenzene was distilled off under reduced pressure. Then absolute ethanol was added and the mixture was heated and filtered after the product was dissolved. The filtrate was cooled to give a solid which was recrystallized to afford QXPT-NPh as a yellow solid ($1.18 \mathrm{~g}, 90 \%$ yield).
QXPT-NPh was known compound, which can be synthesized according to the reported methods, spectral data correspond to those described in the reference. ${ }^{16}$

2.1 General Procedure 1 (GP1): synthesis of QXPT-NPhCN and QXPT-NPhOMe

In a 100 mL two-necked flask, QXPT ($4 \mathrm{mmol}, 1.0$ equiv) and substituted phenylboronic acid ($6 \mathrm{mmol}, 1.5$ equiv) were dissolved in a mixed solvent of anhydrous DMF and anhydrous acetonitrile ($\mathrm{v} / \mathrm{v}, 15 \mathrm{~mL} / 45 \mathrm{~mL}$). Anhydrous copper acetate ($6 \mathrm{mmol}, 1.5$ equiv), cesium carbonate ($4 \mathrm{mmol}, 1.0$ equiv) and pyridine ($12 \mathrm{mmol}, 3.0$ equiv) were added to the mixture. Under oxygen, the mixture was stirred at $100^{\circ} \mathrm{C}$ oil bath for 24 hours. The reaction was cooled to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. An appropriate amount of water was added and extracted for three times with ethyl acetate. The combined organic layers were washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 40$) to afford the product.

2.2 General Procedure 2 (GP2): synthesis of QXC-NPh, QXC-NPhCN, QXC-NPhOMe and QXC-Npy

6H-indolo[2,3-b]quinoxaline (QXC): This compound was synthesized according to the reported procedure with a minor modifications. ${ }^{2}$ In a 100 mL round-bottomed flask, isatin ($0.10 \mathrm{~g}, 0.68 \mathrm{mmol}, 1.0$ equiv) and o-phenylenediamine ($0.80 \mathrm{~g}, 0.74 \mathrm{mmol}, 1.1$ equiv) were
dissolved in 10 ml of acetic acid, and the reaction mixture was refluxed at $120^{\circ} \mathrm{C}$ oil bath for 4 h . After cooling to room temperature, the mixture continued to cool in an ice bath. The precipitated product was filtered and was washed with ice water. The obtained crude product was dried and recrystallized using DMF-MeOH (1:1) to obtain a yellow solid ($837 \mathrm{mg}, 83 \%$ yield). The spectral data correspond to those described in the reference. ${ }^{3}$
In a 100 mL two-necked flask, 6 H -indolo[2,3-b]quinoxaline (QXC) ($4 \mathrm{mmol}, 1.0$ equiv) and substituted phenylboronic acid ($6 \mathrm{mmol}, 1.5$ equiv) were dissolved in a mixed solvent of anhydrous DMF and anhydrous acetonitrile ($\mathrm{v} / \mathrm{v}, 22.5 \mathrm{~mL} / 22.5 \mathrm{~mL}$). Anhydrous copper acetate (6 mmol , 1.5 equiv), cesium carbonate ($4 \mathrm{mmol}, 1.0$ equiv) and pyridine ($12 \mathrm{mmol}, 3.0$ equiv) were adde to the mixture. The mixture was stirred at $110^{\circ} \mathrm{C}$ oil bath for 24 h under oxygen. The reaction mixture was cooled to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, an appropriate amount of water was added and extracted for three times with ethyl acetate. The combined organic layers were washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 20$) to afford the product.

A mixture of 6 H -indolo[2,3 -b]quinoxaline (QXC) ($876 \mathrm{mg}, 4 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($848 \mathrm{mg}, 8 \mathrm{mmol}$) and copper powder ($51 \mathrm{mg}, 20 \mathrm{~mol} \%$) was heated to reflux (oil bath $=200^{\circ} \mathrm{C}$) in 2-bromopyridine (20 mL) until QXC disappears. The reaction mixture was cooled to room temperature, and the unreacted substituted iodobenzene was distilled off under reduced pressure. Then absolute ethanol was added and the mixture was heated and filtered after the product was dissolved. The filtrate was cooled to give a solid which was recrystallized to afford QXC-Npy as a yellow solid ($734 \mathrm{mg}, 62 \%$ yield).
M.p.: $188-190{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68$ (ddd, $\left.J=4.9,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.53-8.42(\mathrm{~m}, 3 \mathrm{H}), 8.35-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.15-$ $8.08(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (ddd, $J=7.4,4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6,148.6,145.2,143.6,140.9,140.2,140.1,138.4,131.4,129.4,129.1,128.4,127.1,122.9,122.3,121.5$, 120.7, 119.7, 114.4.. HRMS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 297.1140, found: 297.1136.

QxpT-NPhCN
4-(12H-benzo[5,6][1,4]thiazino[2,3-b]quinoxalin-12-yl) benzonitrile (QXPT-NPhCN). Following GP1 with (4-cyanophenyl) boronic acid ($882 \mathrm{mg}, 6 \mathrm{mmol}, 1.5$ equiv), the product was isolated by column chromatography on silica gel (EtOAc:PE $=1: 40$) to obtain a yellow solid ($887 \mathrm{mg}, 63 \%$ yield).
M.p.: $228-230^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}$, $3 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{dt}, \mathrm{J}=5.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.1,145.2,143.7$, 139.8, 139.7, 139.3, 134.1, 131.8, 129.3, 127.6, 127.2, 127.1, 127.0, 126.9, 123.7, 118.3, 118.3, 117.7, 112.3. HRMS (ESI, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 353.0861, found: 353.0856.

12-(4-Methoxyphenyl)-12H-benzo[5,6][1,4]thiazino[2,3-b]quinoxaline (QXPT-NPhOMe). Following GP1 with (4-methoxyphenyl) boronic acid ($912 \mathrm{mg}, 6 \mathrm{mmol}, 1.5$ equiv), the product was isolated by column chromatography on silica gel (EtOAc:PE = 1:40) to obtain a yellow solid ($957 \mathrm{mg}, 67 \%$ yield).
M.p.: $230-232^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.79$ $(\mathrm{tt}, J=7.3,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.14-6.07(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,145.7,141.0,140.0,139.7,132.0,131.4$, 128.9, 127.5, 127.4, 126.9, 126.6, 126.6, 123.0, 118.0, 117.7, 115.5, 55.6. HRMS (ESI, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 358.1014$, found: 358.1009.

3. Synthesis of Substrates

3.1 General Procedure 3 (GP3): preparation of N-arylcyclobutanamine 1^{4}

0.01 mmol of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and 0.03 mmol of BrettPhos were added to an oven-dried round-bottomed flask, and 1.5 mmol of NaO tPent was added, under argon protection. Then 1 mmol of aromatic halide, 1.5 mmol of cyclobutanamine and 5 mL of toluene were added to the reaction mixture and heated at $80^{\circ} \mathrm{C}$ oil bath for 18 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave 1.

3.2 General Procedure 4 (GP4): preparation of N -aylcyclobutanamine 1^{5}

0.05 mmol of Cul and 0.12 mmol of D-proline were added to an oven-dried round-bottomed flask, and 1.2 mmol of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, under argon protection. Then 1 mmol of aromatic iodides, 1.5 mmol of cyclobutanamine and 2.0 mL of DMSO were added to the reaction mixture and heated at $80^{\circ} \mathrm{C}$ oil bath for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave 1.

3.3 General Procedure 5 (GP5): preparation of \mathbf{N}-arylcyclobutanamine 1

1 mmol aomatic chlorides and 1.5 mmol of cyclobutanamine were added to an oven-dried round-bottomed flask. Then, under argon protection, 1.5 mmol of triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ and 2.5 mL of MeCN were added to the reaction mixture and heated at $80^{\circ} \mathrm{C}$ oil bath for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave 1.

4-trifluoromethyl-N-cyclobutylaniline (1a). Following GP4 with 1-iodo-4-(trifluoromethyl)benzene ($2.25 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel ($\mathrm{EtOAc}: \mathrm{PE}=1: 50$) as a yellowish oil ($2.97 \mathrm{~g}, 92 \%$). The spectral data correspond to those described in the reference. ${ }^{4}$

1b
4-cyano- \boldsymbol{N}-cyclobutylaniline (1b). Following GP4 with 1-cyano-4-iodobenzene ($3.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel (EtOAc: PE = 1:20) as a gray solid ($1.78 \mathrm{~g}, 69 \%$).
M.p.: $80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4,133.7,120.7,112.3,98.3,48.2,30.8,15.3$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 173.1079, found: 173.1074 .

1c

N-cyclobutyl-4-nitroaniline (1c). Following GP4 with 1 -iodo-4-nitrobenzene ($3.81 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE =1:10) as a yellow solid ($1.58 \mathrm{~g}, 55 \%$). The spectral data correspond to those described in the literature. ${ }^{6}$

4-tert-butyl- \mathbf{N}-cyclobutylaniline (1d). Following GP3 with 4-tert-butyl-bromobenzene ($2.61 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:50) as a yellowish oil ($2.90 \mathrm{~g}, 95 \%$). The spectral data correspond to those described in the reference. ${ }^{4}$

1e
3,5-dimethyl- \mathbf{N}-cyclobutylaniline (1e). Following GP3 with 1-iodo-3,5-dimethylbenzene ($2.21 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:50) as a colorless oil ($2.50 \mathrm{~g}, 95 \%$). The spectral data correspond to those described in the reference. ${ }^{4}$

$1 f$
N -cyclobutyl-2-pyridinamine (1f). Following GP3 with 2-bromopyridine ($1.42 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel ($\mathrm{EtOAc}: P E=1: 5$) as a light yellow solid ($1.44 \mathrm{~g}, 65 \%$). The spectral data correspond to those described in the reference. ${ }^{4}$

1g
N-cyclobutylbenzo[d]oxazol-2-amine (1g). Following GP5 with 2-chlorobenzo[d]oxazole ($1.74 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:5) as a yellowish oil ($2.76 \mathrm{~g}, 98 \%$).
M.p.: $100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.00(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{p}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dtt}, J=12.7,7.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{pd}, J=9.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,148.4,142.9,123.9,120.5,115.8,108.8,48.1,31.5,15.0$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 189.1028$, found: 189.1024.

1h
N -cyclobutylbenzo[d]thiazol-2-amine ($\mathbf{1 h}$). Following GP5 with 2-chlorobenzo[d]thiazole ($1.22 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv), the product was isolated after column chromatography on silica gel ($\mathrm{EtOAc}: P \mathrm{PE}=1: 5$) as a yellowish oil ($949 \mathrm{mg}, 31 \%$).
M.p.: $105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.01$ $(\mathrm{m}, 1 \mathrm{H}), 4.09(\mathrm{p}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dtt}, J=12.9,7.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{ddt}, J=11.8,9.0,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,152.4,130.4,125.9,121.3,120.9,118.5,50.7,31.1,15.0$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}:$205.0799, found: 205.0795.

N -cyclopropyl- N -methylaniline (9)

The secondary amine 4-trifluoromethyl- N -cyclobutylaniline (1a) ($1.29 \mathrm{~g}, 6 \mathrm{mmol}, 1.0$ equiv) was mixed with NaH ($288 \mathrm{mg}, 7.2 \mathrm{mmol}$, 1.2 equiv) in DMF (20 mL) and stirred at room temperature for 10 min . The iodomethane ($0.90 \mathrm{~mL}, 14.4 \mathrm{mmol}, 2.4$ equiv) was added.

The resulting mixture was stirred overnight and quenched with brine and extracted with ether. The organic layer was concentrated in vacuo and separated by flash chromatography on silica gel ($\mathrm{PE}: E t O A c=50: 1$) gave the 9 as a pale yellow oil ($1.09 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.33-$ $2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,126.3(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 123.9,118.1(\mathrm{q}, \mathrm{J}=$ 32.3 Hz), 112.9, 54.5, 33.4, 29.1, 14.6. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.91$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 230.1157$, found: 230.1152.

3.4 Synthesis of Olefins

3.4.1 Preparation of N, N-dimethyl-N'-(vinylsulfonyl) formimidamide (4e)

The vinylsulfonamide (3.0 g , 28 mmol 1.0 equiv) was mixed with N, N-dimethylformamide dimethyl acetal (DMF-DMA) ($4.18 \mathrm{~mL}, 30.81$ $\mathrm{mmol}, 1.1$ equiv) in DCM ($56 \mathrm{MI}, 0.5 \mathrm{M}$) and stirred at room temperature for 3 h . Then, the reaction mixture was quenched with brine and extracted with DCM. The organic layer was concentrated in vacuo and separated by flash chromatography on silica gel (PE:EtOAc $=1: 20$) gave the 4 e as a pale yellow oil ($3.44 \mathrm{~g}, 76 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=16.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.16(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H})$, $3.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.6, 138.0, 123.4, 41.4, 35.4. HRMS (ESI, m/z) calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 163.0541$, found: 163.0536 .

3.4.2 Preparation of N, N-dimethyl- N^{\prime}-(vinylsulfonyl) formimidamide (4r)

Typical procedure for the synthesis of (Z)-3-ylidenephthalide 4r. To a solution of 2-acetyl-benzoic acid ($164 \mathrm{mg}, 1.0 \mathrm{mmol}$) and O -(N succinimidyl) - N, N, N ', N-tetramethyl uronium BF_{4} (TSTU) ($301 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DCM (5.0 mL) was added DIPEA ($348 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$). The reaction was allowed to stir at room temperature for 6 h . Then, the reaction mixture was poured into water (10 mL), extracted using EtOAc ($3 \sim 10 \mathrm{~mL}$). The combined organic layers were washed by brine with water ($3 \sim 10 \mathrm{~mL}$) and NaHCO_{3} aqueous ($3 \sim 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation to yield (Z)-3-ylidenephthalide 4 r as a white solid ($122 \mathrm{mg}, 0.84$ $\mathrm{mmol}, 84 \%)$. The spectral data correspond to those described in the reference. ${ }^{7}$

3.4.3 General Procedure 6 (GP6): preparation of exocyclic terminal olefins ${ }^{8}$

To a solution of LiHMDS at $0{ }^{\circ} \mathrm{C}(0.65 \mathrm{~mL}, 0.6 \mathrm{M}$ in THF) was added a solution of substituted ketone (0.19 mmol , 1.0 equiv) in THF $(1.0 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature for over 20 minutes, then $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}(0.41 \mathrm{mmol}, 2.1$ equiv) was added. After an additional 20 minutes at room temperature, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and the resulting mixture was extracted with EtOAc ($3 \sim 5 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Without purification, the crude mixture was immediately dissolved in benzene ($3.8 \mathrm{~mL}, 0.05 \mathrm{M}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(82 \mathrm{mg}, 0.59 \mathrm{mmol}, 3.1$ equiv), 18 -crown- 6 ($13 \mathrm{mg}, 0.05 \mathrm{mmol}, 26 \mathrm{~mol} \%$), and paraformaldehyde ($200 \mathrm{mg}, 6.59 \mathrm{mmol}, 10.0$ equiv) were added in. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 2 hours and then to reflux (oil bath $=90^{\circ} \mathrm{C}$) for 4 hours. The mixture was cooled to room temperature, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added, and the resulting mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. SiO_{2} flash chromatography gave the product.

4s
2-Methylene-2,3-dihydro-1H-inden-1-one (8e). Following GP6 with 2,3-dihydro-1H-inden-1-one ($2.56 \mathrm{~g}, 19 \mathrm{mmol}, 1.0$ equiv.), product was isolated by column chromatography on silica gel ($\mathrm{EtOAc}: P E=1: 30$) as a reddish-brown oil ($1.20 \mathrm{~g}, 44 \%$). The spectral data correspond to those described in the reference. ${ }^{9}$

4. Optimization of Reaction Conditions

Table S1. $\left[\operatorname{lr}(\mathrm{dtbbpy})(\mathrm{ppy})_{2}\right] \mathrm{PF}_{6}$ substrate scope of application ${ }^{\text {a }}$

aUnless otherwise noted, all reactions were performed with $1 \mathrm{a}(0.75 \mathrm{mmol})$, olefins $(2.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol})$ and photocatalyst (0.0375 $\mathrm{mmol})$ in dry DCM ($7.5 \mathrm{~mL}, 0.1 \mathrm{M}$) under irradiation of 18 W blue LEDs $(420 \mathrm{~nm})$, r.t., argon. ${ }^{b}$ Combined yields of the two isomers after column chromatography. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture and d.r. refers to trans/cis.
When $\left[\operatorname{lr}(d t b b p y)(p p y)_{2}\right] \mathrm{PF}_{6}$ was used as photocatalyst, cycloaddition product 3a was obtained from 1a and acrylonitrile $\mathbf{2 a}$ in 68% yield (4.6:1 d.r.). When other olefins were tried, although the reaction could occur, the cycloaddition product yield was generally low ($12 \% \sim 36 \%$), and 1a was severely photodegraded. It indicates that the universality of $\left[\operatorname{Ir}(\mathrm{dtbbpy})\left(\mathrm{ppy}_{2}\right] \mathrm{PF}_{6}\right.$ in this reaction system is not good. Therefore, we have to consider other photocatalysts.

Table S2. Optimization of photocatalysts for [4+2] cycloaddition reaction ${ }^{a}$

1	[Ir(dtbbpy)(ppy) ${ }_{2}$] PF_{6}	420	13	68	4.6.:1
2	QXPT-NPh	420	13	62	2.5:1
3	QXPT-NPhCN	420	13	64	1.9:1
4	QXPT-NPhOMe	395	15	48	3.1:1
5	QXC-NPhOMe	395	15	47	2.8:1
6	QXC-NPh	395	15	61	2.2:1
7	QXC-NPhCN	395	15	62	2.1:1
8	QXC-Npy	395	15	61	1.9:1
9	TXT	395	15	30	>19:1
10	4CzIPN	420	22	22	6.2:1
11	$\left[\mathrm{Ru}(\mathrm{bpz})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$	420	22	15	>19:1
12	$\operatorname{lr}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	420	22	52	>19:1

aUnless otherwise noted, all reactions were performed with $\mathbf{1 a}(0.75 \mathrm{mmol}), \mathbf{2 a}(2.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol})$ and photocatalyst (0.0375 $\mathrm{mmol})$ in dry DCM ($7.5 \mathrm{~mL}, 0.1 \mathrm{M}$) under irradiation of 18 W blue LEDs (420 nm), r.t., argon. ${ }^{b}$ Combined yields of the two isomers after column chromatography. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture and d.r. refers to trans/cis. ${ }^{d}$ Without $\mathrm{K}_{3} \mathrm{PO}_{4}$.

Table S3. Optimization of the solvents ${ }^{a}$

${ }^{2}$ Unless otherwise specified, all reactions were performed with $\mathbf{1 a}(0.75 \mathrm{mmol}), \mathbf{2 a}(2.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol})$ and QXPT-NPhCN (0.0375 mmol) in solvent ($7.5 \mathrm{~mL}, 0.1 \mathrm{M}$) in the presence of 18 W blue LEDs $(\lambda=420 \mathrm{~nm})$ at room temperature under argon. ${ }^{b}$ Combined yields of the two isomers after column chromatography. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis and d.r. refers to trans/cis.

Table S4. Optimization of the additives a

4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	45	$4.3: 1$
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	46	$4.5: 1$
6	KOAC_{2}	48	$4.9: 1$
7	KF	52	$3.8: 1$
8	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	58	$2.2: 1$
9	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	64	$1.9: 1$
	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	58	$2.3: 1$
	KCl	43	$2.2: 1$

${ }^{\text {a }}$ Unless otherwise noted, all reactions were performed with $\mathbf{1 a}(0.75 \mathrm{mmol})$, $\mathbf{2 a}(2.25 \mathrm{mmol})$, addieives (1.13 mmol) and QXPT-NPhCN (0.0375 mmol) in dry DCM ($7.5 \mathrm{~mL}, 0.1 \mathrm{M}$) under irradiation of 18 W blue LEDs (420 nm), r.t., argon, $13 \mathrm{~h} .{ }^{b}$ Combined yields of the two isomers after column chromatography. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture and d.r. refers to trans/cis.

Table S5. Optimization of the concentration ${ }^{\text {a }}$

${ }^{2}$ Unless otherwise specified, all reactions were performed with $\mathbf{1 a}(0.75 \mathrm{mmol}), \mathbf{2 a}(2.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol})$ and QXPT-NPhCN (0.0375 $\mathrm{mmol})$ in DCM under the presence of 18 W blue LEDs $(\lambda=420 \mathrm{~nm})$ at room temperature, argon, 13 h . ${ }^{b}$ Combined yields of the two isomers after column chromatography. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis and d.r. refers to trans/cis.

Table S6. Control experiments for [4+2] cycloaddition reaction ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.75 \mathrm{mmol})$, $\mathbf{2 a}(2.25 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.13 \mathrm{mmol})$ and QXPT-NPhCN (0.0375 mmol$)$ in DCM (18.75 $\mathrm{mL}, 0.04 \mathrm{M})$ under the presence of 18 W blue LEDs $(\lambda=420 \mathrm{~nm})$ at room temperature, argon, 13 h . ${ }^{\mathrm{b}}$ Combined yields of the two isomers after

5. General Experiment Procedures

5.1 General Procedure 7 (GP7): [4+2] cycloaddition of arylcyclobutylamines with acrylonitrile

For 3a-3h: A dried 50 mL quartz photoreaction tube was charged with $\mathbf{1}$ ($0.75 \mathrm{mmol}, 1.0$ equiv), 2a ($2.25 \mathrm{mmol}, 3.0$ equiv), QXPTNPhCN ($0.0375 \mathrm{mmol}, 0.05$ equiv), and dry toluene (18.75 mL), vaccum/argon for three times. Under irradiation of 18 W blue LEDs (λ $=420 \mathrm{~nm}$), the reaction mixture was stirred for 12~24 hour at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with $\mathrm{PE} / \mathrm{EtOAc}$ (10/1-1/1 ratio). The solvent was removed in vacuo to give the products $\mathbf{3 a} \mathbf{3} \mathbf{3 h}$.

5.2 General Procedure 8 (GP8): [4+2] cycloaddition of 4-trifluoromethyl-N-cyclobutylaniline with olefins

For 5a-5d: A dried 50 mL quartz photoreaction tube was charged with $\mathbf{1 a}(0.75 \mathrm{mmol}, 1.0$ equiv), $\mathbf{4}(1.13 \mathrm{mmol}, 1.5$ equiv), QXPTNPhCN ($0.0375 \mathrm{mmol}, 0.05$ equiv), and dry DCM (18.75 mL), vaccum/argon for three times. Under irradiation of 18 W blue LEDs ($\lambda=$ 420 nm), the reaction mixture was stirred for $8 \sim 24$ hours at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with $\mathrm{PE} / \mathrm{EtOAc}$ (100/1-50/1 ratio). The solvent was removed in vacuo to give the products $5 \mathrm{a}-5 \mathrm{~d}$.
For $5 \mathrm{e}-5 \mathrm{w}$: A dried 50 mL quartz photoreaction tube was charged with $\mathbf{1 a}$ ($0.9 \mathrm{mmol}, 1.2$ equiv), $\mathbf{4}$ ($0.75 \mathrm{mmol}, 1.0$ equiv), QXPTNPhCN ($0.0375 \mathrm{mmol}, 0.05$ equiv), and dry DCM $(18.75 \mathrm{~mL})$, vaccum/argon for three times. Under irradiation of 18 W blue LEDs $(\lambda=$ 420 nm), the reaction mixture was stirred for $8 \sim 24$ hours at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with $\mathrm{PE} / \mathrm{EtOAc}(50 / 1-1 / 1$ ratio). The solvent was removed in vacuo to give the products $5 \mathrm{e}-5 \mathrm{w}$.

6. Characterization Data of Products

Following GP7 with 4-trifluoromethyl- N -cyclobutylaniline 1a ($161 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mathrm{LL}, 2.25 \mathrm{mmol}$), QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$ and dry DCM (18.75 mL), cycloadduct 3a was obtained after silica gel column chromatography (EtOAc: PE = $1: 5$) as a separable mixture of two diastereoisomers (trans:cis $=2.5: 1$).

Data for 3a-trans: White solid ($102 \mathrm{mg}, 51 \%$), m.p.: $116-118^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.61(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dq}, J=14.5,3.5$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72 (ddt, $J=8.5,5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 (qd, $J=12.8,12.2,2.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.43 (tt, $J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,127.0(\mathrm{q}, J=3.0 \mathrm{~Hz}), 126.2,123.5,120.0(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.7,51.8,33.6,29.5,27.6,24.8,21.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.15. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 269.1266, found: 269.1260.

Data for 3a-cis: Yellow solid (40.8 mg, 20\%), m.p.: 98-100 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.66 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{dtd}, J=13.5,9.9$,
$5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.47$ (tdd, $J=12.7,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{p}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta 148.9$, $126.9(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}), 126.2,121.2,120.0(\mathrm{q}, ~ J=32.3 \mathrm{~Hz}), 112.7,52.8,34.7,31.7,28.3,23.8$, 23.3. ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 61.15. HRMS (ESI, m/z) calcd $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 269.1266$, found: 269.1260.

Following GP7 with 4-cyano- N-cyclobutylaniline 1b ($129 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN (13.2 mg , $0.0375 \mathrm{mmol})$, and dry DCM (18.75 mL), cycloadduct $\mathbf{3 b}$ was obtained after silica gel column chromatography (EtOAc:PE $=1: 10$) as a separable mixture of two diastereoisomers (trans:cis $=1.5: 1$).

Data for 3b-trans: Light yellow oil ($78 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ (s, 1 H), 3.61 (dd, $J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (td, $J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.17-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.44$ (ddd, $J=13.5,10.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,133.9,121.0,120.3,113.0,99.7,52.7,34.9,31.8,28.6,23.8$, 23.5. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 226.1344 , found: 226.1341.

Data for 3b-cis: Light yellow oil ($52 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ (s, $1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=10.1,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.42$ (dddd, $\left.J=16.6,12.8,8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,134.0,120.1,119.4,112.9,100.0$, 51.5, 33.6, 29.4, 27.6, 24.7, 21.4.. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 226.1344$, found: 226.1341.

Following GP7 with N-cyclobutyl-4-nitroaniline 1c ($144 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN (13.2 mg , $0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 3 c was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 10$) as a separable mixture of two diastereoisomers (trans:cis = 1.7:1).

Data for 3c-trans: Yellow oil ($76 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{qd}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{td}, J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dp}, J=12.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.42(\mathrm{qt}, J=13.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.8,138.7,126.5,120.8,111.9,53.0$, 35.0, 31.9, 28.7, 23.8, 23.6. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+$: 246.1243, found: 246.1237.

Data for 3c-cis: Yellow oil ($44 \mathrm{mg}, 24 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56$ (ddt, $J=12.4,8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dq}, J=12.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{ddq}, J=17.9,8.8,5.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1,139.0,126.6,119.3,111.8$, 51.8, 33.7, 29.4, 27.7, 24.7, 21.4. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+: 246.1243$, found: 246.1237.

Following GP7 with 4-tert-butyl- N -cyclobutylaniline 1d ($152 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN (13.2 mg , $0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 3 d was obtained after silica gel column chromatography (EtOAc:PE $=1: 10$) as a separable mixture of two diastereoisomers (trans:cis $=2.5: 1$).

Data for 3d-trans: Yellow oil ($79 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 3.58$ (dq, $\mathrm{J}=8.0$, $3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 (td, $J=8.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (ddd, $J=13.0,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=12.2,6.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (ttd, $J=16.7$, $6.7,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{td}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,141.3,126.3$, 121.6, 113.6, 53.1, 34.0, 31.6, 31.6, 31.4, 27.6, 23.6, 22.9. HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.2018$, found: 257.2013.

Data for 3d-cis: Red brown oil ($31 \mathrm{mg}, 16 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ (s, $1 \mathrm{H}), 3.41(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,141.4,126.4$, 120.0, 113.7, 52.6, 34.0, 31.6, 29.8, 27.8, 25.1, 22.8, 21.7. HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.2018$, found: 257.2013.

Following GP7 with 3,5 -dimethyl- N-cyclobutylaniline $\mathbf{1 e}(131 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN (13.2 $\mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM (18.75 mL), cycloadduct 3e was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 10$) as a separable mixture of two diastereoisomers (trans:cis $=1.5: 1$).

Data for 3e-trans: Red brown solid ($82 \mathrm{mg}, 48 \%$), m.p.: $110-112^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 3.62$ (td, $J=8.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{td}, J=8.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{dd}, J=10.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (dddd, J $=24.3,13.1,7.2,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{tdt}, J=9.9,6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.3,139.1,121.6,120.5,111.6,52.7,33.9,31.2,27.5,23.5,22.8,21.5$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 229.1705$, found: 229.1701.

Data for 3e-cis: Red brown solid ($55 \mathrm{mg}, 32 \%$), m.p.: $126-128^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H})$, $3.44(\mathrm{dt}, J=11.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.91$ (dq, $J=14.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7,139.2,120.4,119.9$, 111.7, 52.2, 33.8, 29.7, 27.7, 24.9, 21.6, 21.5. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 229.1705, found: 229.1701.

Following GP7 with N-cyclobutyl-2-pyridinamine 1 ($111 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mathrm{\mu L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN (13.2 mg , $0.0375 \mathrm{mmol})$, and dry $\mathrm{DCM}(18.75 \mathrm{~mL})$, cycloadduct 3 f was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 5$) as a single diastereoisomer (trans:cis > 19:1).

Data for 3f: Yellow solid ($81 \mathrm{mg}, 54 \%$), m.p.: 101-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{qd}, J=8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.01$ $(\mathrm{m}, 2 \mathrm{H}), 1.74(\mathrm{qd}, J=11.0,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{tt}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,147.7$, 137.8, 121.5, 113.6, 108.1, $50.8,34.5,31.6,29.8,28.1,23.7$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 202.1344$, found: 202.1339.

Following GP7 with N-cyclobutylbenzo[d]oxazol-2-amine 1 g ($141 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile (148 LL , 2.25 mmol), QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 3 g was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ $1: 10$) as a separable mixture of two diastereoisomers (trans:cis = 1.3:1).

Data for 3 g -trans: Light yellow solid ($43 \mathrm{mg}, 24 \%$), m.p.: $115-117^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25$ (m, 1H), $7.23-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{td}, J=9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, \mathrm{J}=17.0,7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,148.5,142.5,124.2,121.4,120.7,116.4,109.1,53.3,34.8,31.8,29.8,28.5,23.8$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 242.1293, found: 242.1288.

Data for 3 g -cis: Light yellow solid ($33 \mathrm{mg}, 18 \%$), m.p.: $101-103^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=12.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ $-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{dt}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=14.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{qt}, J=$ $12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,148.6,142.4,124.3,121.6,119.8,116.7,109.2,52.3,34.0,29.2,27.5,24.7$, 21.4. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 242.1293$, found: 242.1288.

Following GP7 with N-cyclobutylbenzo[d]thiazol-2-amine $\mathbf{1 h}$ ($153 \mathrm{mg}, 0.75 \mathrm{mmol}$), acrylonitrile ($148 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 3 h was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ 1:10) as a single diastereoisomer (trans:cis =1.1:1).

Data for 3h-trans: Yellow solid ($43 \mathrm{mg}, 22 \%$), m.p.: 117-119 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61$ (dt, $J=15.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.15(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97(\mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,139.3,127.1,126.2$, 123.5, 120.7, 120.4, 113.4, 66.7, 53.6, 41.4, 33.9, 25.0, 24.4. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 258.1065$, found: 258.1057.

Data for 3 h -cis: Yellow solid ($40 \mathrm{mg}, 21 \%$), m.p.: $100-102^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50$ (dd, $J=11.8,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (dd, $J=16.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{q}, J=7.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=5.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=14.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{q}, J=10.9,10.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{q}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,152.1,130.6,126.2,122.2,121.0,120.9,119.3,55.1,38.5,34.2,31.4,28.1,23.6$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 258.1065$, found: 258.1057 .

Following GP8 with 4-trifluoromethyl- N-cyclobutylaniline $\mathbf{1 a}$ ($161 \mathrm{mg}, 0.75 \mathrm{mmol}$), styrene $\mathbf{4 a}$ ($130 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$), QXPT-NPhCN (13.2 $\mathrm{mg}, 0.0375 \mathrm{mmol})$ and dry DCM (18.75 mL), cycloadduct 5a was obtained after silica gel column chromatography (EtOAc : PE = 1:100) as an inseparable mixture of two diastereoisomers (1:1 d.r.).

Data for 5 a: Yellow oil ($81.4 \mathrm{mg}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of diastereomers) $\delta 7.37$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.21$ (m, 7H), 7.17 (d, $J=7.5 \mathrm{~Hz}, 5 \mathrm{H}$), $6.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.92(\mathrm{p}, J=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $1 \mathrm{H}), 3.46$ (td, $J=10.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{td}, J=11.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{dq}, J=12.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{tdd}, J=$ 12.9, $7.9,4.4 \mathrm{~Hz}, 5 \mathrm{H}$), $1.58(\mathrm{qd}, J=12.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of diastereomers) δ $150.1,143.7,128.9(q, J=3.0 \mathrm{~Hz}), 128.7(q, J=4.0 \mathrm{~Hz}), 127.6,127.4,126.7,126.5,123.8,121.1,120.9,118.0(q, J=33.3 \mathrm{~Hz}), 112.2$, $111.9,56.2,56.0,51.3,51.3,49.1,48.6,35.8,33.7,33.5,26.5,25.3 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of diastereomers) $\delta-60.97$, -60.91. HRMS (ESI, m/z) calcd $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 320.1626$, found: 320.1619.

Following GP8 with 4-trifluoromethyl- N-cyclobutylaniline $\mathbf{1 a}$ ($161 \mathrm{mg}, 0.75 \mathrm{mmol}$), 4 -methoxystyrene $\mathbf{4 b}$ ($142 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct $\mathbf{5 b}$ was obtained after silica gel column chromatography (EtOAc:PE $=1: 100$) as a separable mixture of two diastereoisomers (cis:trans $=1.8: 1$).

5b-trans
Data for 5b-trans: Yellow oil ($24 \mathrm{mg}, 9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H})$, $6.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{p}, J=3.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,150.4,135.5,128.5,126.5$ ($\mathrm{q}, J=4.0 \mathrm{~Hz}$), $123.8,118.3\left(\mathrm{q}, J=32.3 \mathrm{~Hz}\right.$), 114.0, $112.3,55.3,53.3,45.3,32.1,30.2,26.1,25.9 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 60.92. HRMS (ESI, m / z) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 350.1732$, found: 350.1725.

Data for 5b-cis: Yellow oil ($44 \mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{td}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{qd}, J=13.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,150.2,135.8,128.3,126.5(\mathrm{q}, J=3.0 \mathrm{~Hz}), 123.8,118.3(\mathrm{q}, J=32.3 \mathrm{~Hz}), 114.2,112.0,56.4,55.3,50.4,36.0$, 33.6, 26.5, 25.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.89. HRMS (ESI, m / z) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 350.1732$, found: 350.1725.

Following GP8 with 4-trifluoromethyl- N-cyclobutylaniline $\mathbf{1 a}$ ($161 \mathrm{mg}, 0.75 \mathrm{mmol}$), 1-(trifluoromethyl)-4-vinylbenzene $\mathbf{4 c}(177 \mu \mathrm{~L}, 1.13$ $\mathrm{mmol})$, QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 c was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 100$) as a separable mixture of two diastereoisomers (cis:trans $=1.4: 1$).

Data for $5 \mathrm{c}-$ trans: Light yellow oil ($67 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.42$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{td}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{td}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=13.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{td}, J=12.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{td}, J=13.1,12.4,3.7$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,148.0,128.85,127.8,126.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 125.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 118.8(\mathrm{q}, J=33.3 \mathrm{~Hz})$,
112.1, 55.8, 51.3, 35.7, 33.5, 26.3, 25.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.03, -62.42. HRMS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 388.1500, found: 388.1493.

5c-cis
Data for 5 c -cis: Light yellow oil ($93 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{dq}, J=13.4,3.5,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=8.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{ddt}, J=24.1,10.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{tt}, J=12.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,147.7,129.0,128.0,126.6(\mathrm{q}, J=3.0 \mathrm{~Hz}), 125.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 118.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.3,53.0,46.2,30.4$, 25.8, 25.6, 20.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.08,-62.43$. $\mathrm{HRMS}(E S I, m / z)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+: 388.1500$, found: 388.1493.

Following GP8 with 4-trifluoromethyl- N-cyclobutylaniline $\mathbf{1 a}$ ($161 \mathrm{mg}, 0.75 \mathrm{mmol}$), 2-vinylpyridine 4d ($121 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 5 d was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 30$) as a separable mixture of two diastereoisomers (cis:trans $=1.5: 1$).

5d-trans
Data for 5 d -trans: Gray solid ($51 \mathrm{mg}, 21 \%$), m.p.: $138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{td}, J$ $=10.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{td}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=13.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{td}$, $J=12.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.46 (dddd, $J=31.4,13.4,8.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2,150.1$, 149.1, 136.9, 126.5 (q, $J=4.0 \mathrm{~Hz}$), 123.8, 122.0, 121.9, 117.8 ($\mathrm{q}, J=32.3 \mathrm{~Hz}$), 111.9, 56.1, 53.1, 33.7, 33.1, 26.0, 25.3. ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.90$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 321.1579$, found: 321.1573.

5d-cis
Data for 5d-cis: Gray solid ($76 \mathrm{mg}, 32 \%$), m.p.: $120-122^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=11.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{ddq}, J=21.9,12.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.39$ (ddd, $J=19.8,9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,150.7,148.8,136.8,126.5(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 123.8,122.7,121.7,117.8$ ($\mathrm{q}, \mathrm{J}=31.3 \mathrm{~Hz}$), 112.2, $52.9,47.7,30.0,26.1,25.4,20.7$. ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.89$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 321.1579$, found: 321.1573.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), phenyl vinyl sulfone $\mathbf{4 e}$ ($126 \mathrm{mg}, 0.75 \mathrm{mmol}$), QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 e was obtained after silica gel column chromatography $(\mathrm{EtOAc}: \mathrm{PE}=$ 1:7) as a single diastereoisomer (trans:cis $>19: 1$).

5e
Data for 5 e : Yellow solid ($147 \mathrm{mg}, 51 \%$), m.p.: $118-120^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{td}, J=10.3$,
$3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddt}, J=19.7,10.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{dt}, J=9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dq}, J=9.2,4.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{td}, J=14.6$, $13.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} N M R\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.6,137.9,133.9,129.0,126.8(\mathrm{q}, \mathrm{J}=3.0$ $\left.\mathrm{Hz}), 126.4,123.7,119.5(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 112.2,66.8,52.1,32.8,26.1,24.5,23.7 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376MHz,CDCl}_{3}\right) \delta-61.01 . \mathrm{HRMS}(\mathrm{ESI}$, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 384.1245$, found 384.1241.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $1 \mathbf{1 a}(194 \mathrm{mg}, 0.9 \mathrm{mmol}$), (methylsulfonyl)ethene $\mathbf{4 f}$ ($68 \mu \mathrm{~L}$, 0.75 mmol), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 5 f was obtained after silica gel column chromatography (EtOAc:PE =1:3) as a single diastereoisomer (trans:cis $>19: 1$).

$5 f$
Data for 5 f : Red brown oil (89 mg, 37\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=12.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dq}, J=12.0,4.4,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{qd}, J=12.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.9,126.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.4,120.1(\mathrm{q}, J=33.3 \mathrm{~Hz}), 113.2,66.5,53.4,41.5,33.7,24.8,24.5,24.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.20$. $\mathrm{HRMS}(\mathrm{ESI}, m / z)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 322.1089$, found 322.1084.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $1 \mathbf{a}(194 \mathrm{mg}, 0.9 \mathrm{mmol}), N, N$-dimethyl- N^{\prime}-(vinylsulfonyl)formimidamide $\mathbf{4 g}$ (122 $\mathbf{m g}$, $0.75 \mathrm{mmol})$, QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 g was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 1$) as an inseparable mixture of two diastereoisomers (2.6:1 d.r.).

5g
Data for 5 g : Reddish-brown oil ($94 \mathrm{mg}, 33 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of diastereomers) $\delta 7.61$ (s, 1H), $7.59(\mathrm{~s}, 0.38 \mathrm{H})$, $7.39(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}, 2.76 \mathrm{H}), 6.61(\mathrm{~s}, 0.76 \mathrm{H}), 6.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 0.38 \mathrm{H}), 3.34(\mathrm{td}, J=10.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28-3.22(\mathrm{~m}, 0.38 \mathrm{H}), 2.96(\mathrm{ddd}, J=12.0,10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4.14 \mathrm{H}), 2.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4.14 \mathrm{H}), 2.53-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.28(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.38 \mathrm{H}), 2.22(\mathrm{dd}, J=14.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 0.38 \mathrm{H}), 1.96(\mathrm{~s}, 0.38 \mathrm{H}), 1.90(\mathrm{dd}, J=12.8,9.1 \mathrm{~Hz}$, $1.38 \mathrm{H}), 1.84(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 0.38 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{tt}, J=10.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 0.38 \mathrm{H})$, $1.39(\mathrm{ddt}, J=18.8,9.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.76 \mathrm{H}), 1.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.38 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$, a mixture of diastereomers) $\delta 160.4,159.5,149.9,149.5,130.2,129.0,126.8(q, J=4.0 \mathrm{~Hz}), 126.3,123.6,118.8(q, J=33.3 \mathrm{~Hz}), 111.8,111.6$, $64.7,62.1,54.0,50.3,49.0,40.9,37.9,35.2,33.3,29.8,27.5,25.0,24.6,24.3,21.4,19.8 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of diastereomers) $\delta-60.98,-60.99$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 378.1463$, found: 378.1458.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), diethyl vinylphosphonate $\mathbf{4 h}$ ($119 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 5 h was obtained after silica gel column chromatography (EtOAc: $\mathrm{PE}=1: 3$) as a single diastereoisomer (trans:cis $>19: 1$).

5h
Data for 5 h : Yellow oil ($137 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, $4.11-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{tdt}$, $J=12.0,5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 1 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.7,135.7,126.6(q, J=4.0 \mathrm{~Hz}), 118.7(q, J=32.3 \mathrm{~Hz}), 112.1,62.1(\mathrm{td}, J=7.1,6.1,7.1 \mathrm{~Hz}), 52.6(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 42.1,41.7,33.6$ $\left.(\mathrm{d}, J=14.1 \mathrm{~Hz}), 26.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 25.5(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 24.4,16.5(\mathrm{q}, J=4.0 \mathrm{~Hz}), 16.5(\mathrm{t}, J=6.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376MHz,CDCl}{ }_{3}\right)$ $\delta-60.92$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 380.1602$, found: 380.1597.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), pent-1-en-3-one $\mathbf{4 i}$ ($77 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPT-NPhCN (13.2 $\mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 5 i was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 20$) as a separable mixture of two diastereoisomers (trans:cis $=1.2: 1$).

Data for 5 i -trans: Light yellow oil ($53 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (s, $1 \mathrm{H}), 3.83(\mathrm{dt}, J=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{tt}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dtd}, J=17.0$, $8.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddt, $J=14.0,7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddt}, J=11.7,7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H})$, $0.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.5,149.6,126.8(\mathrm{q}, J=3.0 \mathrm{~Hz}), 123.7,118.6(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.4,51.1$, $50.8,34.4,28.9,24.9,23.3,22.5,7.8 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-60.98$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 300.1575$, found: 300.1572 .

Data for 5 i -cis: Light yellow oil ($44 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.71 (s, $1 \mathrm{H}), 3.63(\mathrm{td}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=$ $14.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.50(\mathrm{qd}, \mathrm{J}=12.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=12.9,10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=5.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.06(\mathrm{~m}$, $1 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.8,149.7,126.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.7,119.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 112.7$, $57.4,53.4,35.2,33.0,29.3,25.0,24.9,7.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.02$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 300.1575 , found: 300.1572 .

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), methyl acrylate $4 \mathrm{j}(68 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$, QXPT-NPhCN (13.2 $\mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 5 j was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P \mathrm{PE}=1: 20$) as a separable mixture of two diastereoisomers (trans:cis $=1.3: 1$).

Data for 5 j -trans: Light yellow oil ($73 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (s, $1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (ddd, $J=11.6,10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{tdd}, J=13.0,10.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1$, 149.7, $126.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.7,119.2(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.6,53.7,52.0,50.8,32.9,29.8,29.1,24.8 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-61.04$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 302.1368$, found: 302.1362.

Data for 5 j -cis: Light yellow oil ($56 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.67 (s, 1 H), 3.78 (dd, $J=7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dt}, J=8.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (ddd, $J=10.5,8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.95-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{q}, \mathrm{J}=2.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3$, 149.7, $\left.126.8(q, J=3.0 \mathrm{~Hz}), 123.7,118.9(q, J=33.3 \mathrm{~Hz}), 112.5,51.8,51.1,44.6,29.0,26.1,23.2,23.0 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376MHz,CDCl}_{3}\right)$ $\delta-60.98$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 302.1368, found: 302.1362.

Following GP8 with 4-tert-butyl- N -cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), tert-butyl acrylate $\mathbf{4 k}(77 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct $\mathbf{5 k}$ was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ $1: 40$) as a single diastereoisomer (trans:cis > 19:1).

5k
Data for 5 k: Gray oil ($98 \mathrm{mg}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.59-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.10(\mathrm{q}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,149.8,126.7(\mathrm{q}, J=$ 4.0 Hz), $118.9(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 112.3,80.8,53.9,52.1,32.9,29.1,28.1,24.8,24.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.95$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 344.1837$, found: 344.1832.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}(194 \mathrm{mg}, 0.9 \mathrm{mmol})$, phenyl acrylate $\mathbf{4 I}(77 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$, QXPT-NPhCN (13.2 $\mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct 51 was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=1: 30$) as a separable mixture of two diastereoisomers (trans:cis = 3:1).

Data for 5l-trans: Yellow oil ($87 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dt}, J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dtd}, J=15.1,7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.96 (dtd, $J=10.4,7.7,7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (ddt, $J=13.1,8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.54$ (ddt, $J=14.6,8.5,3.9 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,150.6,149.7,129.6,126.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 126.1,121.6,119.2$ (q, $J=32.3 \mathrm{~Hz}$), 112.7, $51.1,44.9$, 29.0, 25.9, 23.3, 22.9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.00. $\mathrm{HRMS}\left(\mathrm{ESI}, \mathrm{m} / \mathrm{z}\right.$) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 364.1524$, found: 364.1518.

$51-$ cis
Data for 51-cis: Yellow oil (29 mg, 11\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80$ (dd, $J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{td}, J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{td}, J=10.8,10.3,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{tt}, J=13.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{td}, J=13.0,12.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,150.7,149.7,129.5,126.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 126.0,121.6,119.4(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.7,54.0$, 51.2, 33.0, 29.1, 24.9, 24.6. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.05$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 364.1524$, found: 364.1518.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline 1a ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), benzyl acrylate $\mathbf{4 m}$ ($119 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry $\operatorname{DCM}(18.75 \mathrm{~mL})$, cycloadduct 5 m was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ $1: 30$) as a separable mixture of two diastereoisomers (trans:cis $=1.3: 1$).

Data for 5m-trans: Yellow solid ($72 \mathrm{mg}, 25 \%$). m.p.: $82-84^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25(\mathrm{~d}, \mathrm{~J}=4.9$ $\mathrm{Hz}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{q}, J=16.4,14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.27(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{q}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,149.5,135.7,128.5,128.2,128.2,126.6(\mathrm{q}$,
 (ESI, m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 378.1681, found: 378.1678.

5m-cis
Data for 5 m -cis: Yellow solid ($55 \mathrm{mg}, 20 \%$). m.p.: $73-75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.22$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{q}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{q}, J=$ $12.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{q}, J=21.5,17.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,149.6,135.9,128.7,128.4,128.2,126.8(\mathrm{q}, \mathrm{J}=3.03 \mathrm{~Hz}), 123.8,119.0(\mathrm{q}, \mathrm{J}=33.3 \mathrm{~Hz}), 112.5,66.4,51.0$, 44.8, 29.0, 25.7, 23.3, 22.7. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.95$. HRMS ($\mathrm{ESI}, m / z$) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 378.1681 , found: 378.1678.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline 1a ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), methyl-but-2-enoate $\mathbf{4 n}(81 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$, QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry $\mathrm{DCM}(18.75 \mathrm{~mL})$, cycloadduct 5 n was obtained after silica gel column chromatography $(\mathrm{EtOAc}: \mathrm{PE}=$ $1: 40$) as a separable mixture of two diastereoisomers (trans:cis $=2.9: 1$).

Data for 5n-trans: Yellow oil ($69 \mathrm{mg}, 29 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{dt}, J=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{tt}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dtd}, J=17.0,8.3$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddt, $J=14.0,7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddt}, J=11.7,7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.98$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,149.7,126.6(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.6,118.5(\mathrm{q}, \mathrm{J}=33.3 \mathrm{~Hz}), 112.2,52.8,51.7$, 49.7, 32.9, 29.7, 28.9, 20.7, 19.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.00$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 316.1524$, found: 316.1517.

Data for 5 n-cis: Yellow oil ($24 \mathrm{mg}, 10 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H})$, $3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{tdd}, J=13.6,9.7,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{qt}, J=13.8$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,149.7,126.7(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 123.7$, $118.9\left(q, J=32.3 \mathrm{~Hz}\right.$), 112.6, 58.8, $54.4,51.8,35.2,33.7,32.7,24.3,20.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-61.02 . \mathrm{HRMS}(\mathrm{ESI}, \mathrm{m} / z)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 316.1524$, found: 316.1517.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline 1a (194 mg, 0.9 mmol), methyl-2-(acetoxymethyl)acrylate 40 ($115 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 50 was obtained after silica gel column chromatography (EtOAc:PE = 1:20) as a single diastereoisomer (trans:cis > 19:1).

Data for 5o: Yellow oil (100.8 mg, 36\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.27(\mathrm{~m}$, $2 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{tt}, J=7.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,170.6,149.9,126.7(\mathrm{q}, \mathrm{J}=$

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), N-benzylacrylamide $\mathbf{4 p}$ ($118 \mathrm{mg}, 0.75 \mathrm{mmol}$), QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 p was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ 1:1) as a single diastereoisomer (trans:cis > 19:1).

Data for 5p: Light yellow soliid ($96 \mathrm{mg}, 35 \%$). m.p.: $182-184^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.14(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (dd, $J=8.1,4.6 \mathrm{~Hz}, 5 \mathrm{H}$), $6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=15.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=15.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{qd}, ~ J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{td}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{qd}, J=12.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ 173.8, 151.0, 139.4, 128.0, 126.8, 126.4, 126.1 (q, $J=3.0 \mathrm{~Hz}$), 124.1, 114.8 (q, $J=32.3 \mathrm{~Hz}$), 111.6, 52.0, $50.7,41.8,32.1,29.5,24.7$, 24.6. ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.75$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+: 377.1841$, found: 377.1835 .

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), N-phenylacrylamide $\mathbf{4 q}$ ($110 \mathrm{mg}, 0.75 \mathrm{mmol}$), QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 q was obtained after silica gel column chromatography ($\mathrm{EtOAc}: \mathrm{PE}=$ 1:1) as a single diastereoisomer (trans:cis > 19:1).

Data for 5q: Light yellow soliid ($33 \mathrm{mg}, 12 \%$). m.p.: 170-172 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{qd}, J=10.5,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40$ (ddd, $J=11.9,10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{qd}, J=12.8$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.06(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 173.1,151.6,139.7,129.1$, $126.5(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.5,123.4,119.7(\mathrm{q}, J=30.3 \mathrm{~Hz}), 115.4,(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.2,52.4,52.3,51.7,32.4,30.6,25.5$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) $\delta-60.81$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 363.1684$, found: 363.1378.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), N-(tert-butyl) acrylamide $4 \mathbf{r}$ ($94 \mathrm{mg}, 0.75 \mathrm{mmol}$), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct $5 \mathbf{r}$ was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 1$) as a separable mixture of two diastereoisomers (trans:cis= 2.2:1).

Data for 5r-trans: Light yellow solid ($56 \mathrm{mg}, 22 \%$). m.p.: $206-208{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{dd}, J=13.5,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,150.0,126.7$ ($q, J=4.0 \mathrm{~Hz}$), 123.8, $119.1\left(\mathrm{q}, J=33.3 \mathrm{~Hz}\right.$), 112.7, $54.3,53.9,51.2,33.8,29.6,28.8,25.1,25.0 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-60.96$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 343.1997, found: 343.1993.

Data for $\mathbf{5 r}$-cis: Light yellow solid ($26 \mathrm{mg}, 10 \%$). m.p.: $193-195^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.62(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.45(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{dt}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{td}, J=7.5,6.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,150.1,126.8(q, J=3.0 \mathrm{~Hz}), 123.8,118.9(q, J=31.3 \mathrm{~Hz}), 112.8,52.0,51.2,46.2,33.1,28.9,26.6,23.3,22.5 .{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-60.96$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 343.1997, found: 343.1993.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}(194 \mathrm{mg}, 0.9 \mathrm{mmol}), N, N$-diethylacrylamide $\mathbf{4 s}(106 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPTNPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct $5 \mathbf{s}$ was obtained after silica gel column chromatography ($\mathrm{EtOAc}:$ PE =1:3) as a single diastereoisomer (trans:cis $>19: 1$).

Data for 5s: Light yellow soliid ($121 \mathrm{mg}, 47 \%$). m.p.: $73-75^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.77(\mathrm{td}, J=10.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{dq}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dq}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.13(\mathrm{~m}$, $2 \mathrm{H}), 2.47(\mathrm{td}, J=10.8,10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=11.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{tt}, J=11.3,5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{qt}, J$ $=12.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,150.1$, $126.5(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.8,118.6(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.9,54.4,47.6,42.0,40.6,33.9,30.0,25.3,25.1,15.2,12.9 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) δ-60.94. HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 343.1997$, found: 343.1991.

Following GP8 with 4-tert-butyl- N -cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), 3-methylenedihydrofuran- $2(3 \mathrm{H})$-one $\mathbf{4 t}(69 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$), QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM (18.75 mL), cycloadduct $\mathbf{5 t}$ was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 5$) as a single diastereoisomer (> 19:1 d.r.).

$5 t$
Data for 5t: Red oil (122 mg, 52\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.35-4.20(\mathrm{~m}, 2 \mathrm{H})$, $4.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{td}, J=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=12.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{ddd}, J=12.8,6.6$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9,150.4,126.9(\mathrm{q}, \mathrm{J}=$ 4.0 Hz), $119.6(\mathrm{q}, \mathrm{J}=33.3 \mathrm{~Hz}), 112.4,65.4,55.3,47.7,34.6,32.1,28.7,24.8,22.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.12$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 314.1368, found: 314.1363.

Following GP8 with 4-tert-butyl- N -cyclobutylaniline $\mathbf{1 a}$ ($194 \mathrm{mg}, 0.9 \mathrm{mmol}$), 3-methyleneisobenzofuran-1(3H)-one $4 \mathbf{u}$ ($110 \mathrm{mg}, 0.75$ $\mathrm{mmol})$, QXPT-NPhCN $(13.2 \mathrm{mg}, 0.0375 \mathrm{mmol})$, and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 u was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 5$) as a single diastereoisomer ($>19: 1$ d.r.).

Data for 5u: Light yellow solid ($114 \mathrm{mg}, 42 \%$). m.p.: $165-167^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dt}, J=7.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 2.15-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.01$ (ddd, $J=15.5,9.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{dq}, J=14.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{tt}, J=9.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H})$, 1.58 (ddd, $J=17.0,10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,152.4,149.4,134.3,129.5,126.5(\mathrm{q}, J=4.0 \mathrm{~Hz}$), 126.3, $125.8,123.5,194.9,119.5(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 112.6,88.8,56.5,37.2,30.4,25.1,21.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.18$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 362.1368, found: 362.1365.

Following GP8 with 4-tert-butyl- N -cyclobutylaniline $\mathbf{1 a}(194 \mathrm{mg}, 0.9 \mathrm{mmol})$, 2-methylene-2,3-dihydro-1H-inden-1-one $\mathbf{4 v}$ ($108 \mathrm{mg}, 0.75$ $\mathrm{mmol})$, QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 v was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 10$) as a single diastereoisomer ($>19: 1$ d.r.).

Data for 5 v : Yellow oil ($108 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (td, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.48(\mathrm{~m}$, $2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,152.8,149.7,136.9,135.1,127.8,126.5(\mathrm{q}, \mathrm{J}=4.0$ Hz), 124.5, $119.5(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 113.2,56.0,55.2,35.1,34.0,30.9,25.2,22.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.12$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 360.1575$, found: 360.1570.

Following GP8 with 4-tert-butyl- N-cyclobutylaniline $\mathbf{1 a}(194 \mathrm{mg}, 0.9 \mathrm{mmol})$, 3-methylenebicyclo [2.2.1] heptan-2-one $\mathbf{4 w}(94 \mu \mathrm{~L}, 0.75$ $\mathrm{mmol})$, QXPT-NPhCN ($13.2 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and dry DCM $(18.75 \mathrm{~mL})$, cycloadduct 5 w was obtained after silica gel column chromatography ($\mathrm{EtOAc}: P E=1: 20$) as a single diastereoisomer ($>$ 19:1 d.r.).

5w
Data for 5w: Yellow solid ($139 \mathrm{mg}, 55 \%$). m.p.: $140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.58(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2H), 5.15 (s, 1H), $3.55(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.71(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (dt, J=14.9, 3.6 $\mathrm{Hz}, 1 \mathrm{H}), 1.77(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{ddd}, \mathrm{J}=14.1,11.0,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ (dd, $J=12.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.8,150.5,126.6(\mathrm{q}, J=3.0 \mathrm{~Hz}), 123.8,118.2(\mathrm{q}, J=32.3 \mathrm{~Hz}), 112.2,53.5$, $51.8,50.2,42.2,35.3,26.6,26.1,25.4,22.4,21.8,19.8 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.89$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 338.1732$, found: 338.1728.

7. Limitations of substrates

(a)

(b)

olefins :

Scheme S1. Selected unsuccessful cyclobutylamine and olefin substrates.

The scheme S1 lists cyclobutylamine and olefin partners that have not been successfully tested or have low yields. For these substrates shown in Scheme S1, crude ${ }^{1} \mathrm{H}$ NMR analysis was performed after 13 h of illumination according to the 0.75 mmol ratio of GP7 and GP8. The unconsumed starting materials were returned alone or degradation was observed in the crude reaction mixture (Scheme S1a). The reactivity of intracyclic olefins is poor. Olefin ketones, ene esters and ene amides can only obtain trace products. Intracyclic alkyl olefins, electron-rich group substituted olefins, conjugated diene and exocyclic alkyl olefins could not react (Scheme S1b).

8. Mechanistic Studies

8.1 Radical Inhibition Experiment

In the reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ in the presence of QXPT-NPhCN ($5.0 \mathrm{~mol} \%$), different equivalents of free radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine oxide) and antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) were added, and the mixture was stirred for 13 hours under the irradiation of 18 W blue LED. When TEMPO is 1.0 eq., the 3 a is 9% yield and $>19: 1$ d.r.. When TEMPO is 2.0 eq., the 3 a is 0% yield. When BHT was 2.0 eq., the 3 a is 5% yield and $>19: 1$ d.r. . When BHT is 2.0 eq., the desired product 3 a was not observed (Scheme S2). These two experiments indicate that the reaction is carried out through a free radical pathway.
(a)

Scheme S2. Radical inhibition experiment.
Under standard reaction conditions, N-cyclobutyl- N-methyl-4-trifluoromethylaniline (9) did not react with $\mathbf{2 a}$ (Scheme S3). This experiment shows that the N-H of trifluoromethylcyclobutanamine 1a may be essential for the generation of carbon radicals through the ring opening of cyclobutane.
(b)

Scheme S3. Study on the reactivity of tertiary arylcyclobutylamine.

8.2 Emission Quenching Experiments

Figure S2. Excitation and emission spectra of QXPT-NPhCN in DMF
Emission intensities were recorded on a spectrofluorometer. The QXPT-NPhCN solution was excited at 414 nm and the emission intensity at 501 nm was observed (Figure S2). A solution of QXPT-NPhCN $\left(5.0 \times 10^{-4} \mathrm{M}\right)$ in DMF was added to the appropriate amount of quencher in 10.0 mL volumetric flask under argon. Transfer 3.0 mL of this solution to a quartz cell and collect the emission spectrum of the sample (Figure S3-S5).

Figure S3. Stern-Volmer quenching experiment of QXPT-NPhCN and 1a.

Figure S4. Stern-Volmer quenching experiment of QXPT-NPhCN and 2a.

Figure S5. Stern-Volmer quenching experiment of QXPT-NPhCN and 4p.

It can be seen from the fluorescence quenching test that the substrate 4-trifluoromethylphenylcyclobutanamine (1a) can significantly quench the photocatalyst QXPT-NPhCN, showing a clear linear relationship: $y=5.75 x+1.00607, R^{2}=0.99833$. Different types of olefins, such as acrylonitrile (2a) and N-benzyl acrylamide ($4 \mathbf{p}$), could not quench QXPT-NPhCN. Therefore, it was proved that substrate 1a preferentially reacted with the excited state of QXPT-NPhCN during the reaction (Figure S3-S5).

8.3 Cyclic Voltammetry Measurement

Cyclic voltammetry was performed on a Shanghai Chenhua T-660M electrochemical analyzer. CV measurements were performed with the three-electrode CHI660E potentiostation by using a glassy carbon working electrode, a platinum wire counter electrode, saturated $\mathrm{KCl} \mathrm{Ag} / \mathrm{AgCl}$ as a reference electrode. The voltammograms were taken in a dry MeCN solution ($\left[n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}\right]=0.1 \mathrm{M}$, $[$ substrate $]=1$ mM in MeCN), each measurement was conducted at $0.1 \mathrm{~V} / \mathrm{s}$ at room temperature under nitrogen atmosphere without stirring. The obtained potentials were calibrated to the saturated calomel electrode (SCE) scale with a ferrocene/ferrocenium ion couple. ${ }^{10}$ The obtained potential is half of the sum of the potentials of the adjacent peaks and troughs of the cyclic voltammetry curve (half-wave potential). ${ }^{11}$ The polishing material is deer skin, the $\mathrm{Al}_{2} \mathrm{O}_{3}$ powder (particle size $0.3 \mu \mathrm{~m}$) is placed on the deer skin wetted by distilled water, the surface of the glassy carbon electrode and the platinum wire electrode is polished, and then washed with distilled water, followed by ultrasonic cleaning with acetone and ethanol for 10 min , and finally washed with distilled water.

Figure S6. Cyclic voltammogram of Ferrocene in MeCN (IUPAC). CV conditions: Ferrocene (1 mM) in n - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ (0.1 M in MeCN). n - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated KCl $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Starting point: (1.2 V, 3.32E-05 A). Initial scan direction: negative. Initial potential =1.2 V, Scan rate = $0.1 \mathrm{~V} / \mathrm{s}$.

Figure S7. Cyclic voltammogram of $\mathbf{1 a}$ in MeCN (IUPAC). CV conditions: $\mathbf{1 a}(1 \mathrm{mM})$ in $n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ (0.1 M in MeCN). n - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated $\mathrm{KCl} \mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Starting point ($\left.\mathrm{P}^{+} / \mathrm{P}\right)$: ($2.0 \mathrm{~V}, 7.49 \mathrm{E}-05 \mathrm{~A}$), Initial scan direction: negative. Initial potential $=2.0 \mathrm{~V}$, Scan rate $=0.1 \mathrm{~V} / \mathrm{s}$.

Figure S8. Cyclic voltammogram of QXPT-NPhCN in MeCN (IUPAC). CV conditions: QXPT-NPhCN (1 mM) in n-Bu4 NBF_{4} (0.1 M in $\mathrm{MeCN}) . n$ - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated $\mathrm{KCl} \mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Starting point (P / P) : ($-1.0 \mathrm{~V}, 4.399 \mathrm{E}-06 \mathrm{~A}$), Initial scan direction: negative. Starting point ($\mathrm{P}^{+} / \mathrm{P}$): (1.7 $\mathrm{V}, 1.823 \mathrm{E}-05 \mathrm{~A})$, Initial scan direction: negative. Initial potential $(P / P)=-1.0 \mathrm{~V}$, Scan rate $=0.1 \mathrm{~V} / \mathrm{s}$. Initial potential $\left(\mathrm{P}^{+} / \mathrm{P}\right)=1.7 \mathrm{~V}$, Scan rate $=0.1 \mathrm{~V} / \mathrm{s}$.

The oxidation peak potential of $1 \mathbf{a}$ was measured to be 1.21 V vs. SCE, which was more positive than the reduction potential of photoexcited QXPT-NPhCN $\left(\mathrm{E}_{1 / 2}{ }^{\left(P^{*} / P_{--)}\right)}=+0.85 \mathrm{~V}\right.$ vs. SCE $)$. Although thermodynamically unfavorable, such SET processes have been reported as long as there is an overlap between the oxidation (or reduction) peak potential of 1a and the redox potential of the excited state of the photocatalyst. ${ }^{12}$ In addition, the SET process is more likely to be completed if it is followed by an irreversible chemical reaction. ${ }^{12}$

Table S7. Redox potential and photophysical properties of common visible light photocatalysts

Photocatalyst	Emission $\lambda_{\max }(\mathrm{nm})^{\mathrm{b}}$	$\mathrm{ES}_{\mathrm{S}_{1}}(\mathrm{~V})^{\mathrm{c}}$	$\underset{\left(P^{*} / P-\left(P_{1}\right)\left(V V^{c, e, g}\right.\right.}{E_{1 / 2}}$	$\mathrm{E}_{1 / 2}{ }^{(P / P)}(\mathrm{V})^{\text {d }}$	$\underset{\left(P_{+}+P^{2}\right)(V)^{c, f, g}}{E_{1 / 2}}$	$\mathrm{E}_{1 / 2}{ }^{(P+P)}(\mathrm{V})^{\text {d }}$
QXPT-NPhCN	501	2.48	(+0.85)	-1.63	(-1.25)	+1.23
4CzIPN ${ }^{13}$	535	2.32	+1.35 (+1.11)	-1.21	-1.04 (-0.80)	+1.52
[lr (dtbbpy)(ppy) ${ }_{2} \mathrm{PFF}_{6}{ }^{14}$	581	2.13	+0.66 (+0.62)	-1.51	-0.96 (-0.92)	+1.21
$\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbbpy}) \mathrm{PFF}_{6}{ }^{14}$	470	2.64	+1.21 (+1.21)	-1.37	-0.89 (-0.95)	+1.69
$\left[\mathrm{Ru}(\mathrm{bpz})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}{ }^{14}$	591	2.10	+1.45 (+1.30)	-0.80	-0.26 (-0.24)	+1.86

[^0]$\left(\left[n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}\right]=0.1 \mathrm{M}\right.$, [photocatalyst] $=1 \mathrm{mM}$ in MeCN , withKCl $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode); esinglet energy (estimated from the maximum emission wavelength) and $\mathrm{E}_{1 / 2}$ to calculate the singlet excited state reduction potential ($\left.\mathrm{E}^{*}{ }_{1 / 2}{ }^{\mathrm{P} / \mathrm{P}_{-}}=\mathrm{E}_{1 / 2}{ }^{\mathrm{P} / \mathrm{P}^{\prime}}+\mathrm{E}_{\mathrm{S}_{1}}\right)$; ${ }^{\mathrm{f}}$ Calculate the singlet excited oxidation potential ($\left.E_{1 / 2}^{*}{ }^{+/ P}=E_{1 / 2}^{P+/ P}-E_{S_{1}}\right)$ using singlet energy (estimated from the maximum emission wavelength) and $E_{1 / 2}$. 9 In parentheses is the estimated value

As can be seen from Table S7, compared with other common visible light photocatalysts, QXPT-NPhCN has the lowest oxidation potential in the excited state $\left(\mathrm{E}_{1 / 2}\left(\mathrm{P}^{+} / \mathrm{P}^{*}\right)=-1.25 \mathrm{~V}\right.$ vs. SCE$)$, which means that in the excited state, the free radical anion QXPT-NPhCN** is very easy to lose electrons back to the ground state. Therefore, this may be an important reason why QXPT-NPhCN is superior to other photocatalysts in this reaction system.

Figure S9. Cyclic voltammetric curves of mixture of QXPT-NPhCN and $\mathrm{K}_{3} \mathrm{PO}_{4}(1: 1.5$, in MeCN) (IUPAC).
In the cyclic voltammogram of the mixture of photocatalyst QXPT-NPhCN and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1:1.5), no new local maximum was observed except for the peak of QXPT-NPhCN, and the addition of $\mathrm{K}_{3} \mathrm{PO}_{4}$ had no significant effect on the potential of the original oxidation peak and reduction peak of QXPT-NPhCN. This experiment shows that there is no interaction between QXPT-NPhCN and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in the mixture (Figure S9).
Note: Due to the particularly poor solubility of potassium phosphate, we employed ultrasonic vibration and agitation to promote its micro-dissolution.

9. Synthetic applications

Scheme S4. Product derivatizations.
Compound 5 g ($500 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.0$ equiv) was placed in 13.3 mL ethanol, and N, N-dimethylformamide dimethyl acetal (DMFDMA) ($485 \mu \mathrm{~L}, 7.98 \mathrm{mmol}, 6.0$ equiv) was added under stirring at room temperature. When $\mathbf{5 g}$ completely disappeared, the reaction solution was concentrated under reduced pressure, slowly added water to quench the reaction, and extracted with $\mathrm{DCM}(20 \mathrm{~mL} \times 3)$.

The organic phase was collected, washed with saturated salt water, and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=1$: 1) to obtain a pair of diastereomers (93%, $2.6: 1 \mathrm{dr}$), and the main product was $\mathbf{6 a}$ ($288 \mathrm{mg}, 67 \%$ yield).

Compound $\mathbf{6 a}$ ($100 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv) was placed in 10 mL MeCN, and then compound $7 \mathbf{a}^{15}$ ($122 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.5$ equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) ($72 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 1.5$ equiv) were added, protected by argon, stirred at room temperature, and monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography ($\mathrm{PE}: \mathrm{EtOAc}=1: 100$) to obtain white solid compound 8 aa ($124 \mathrm{mg}, 82 \%$ yield).

Compound $\mathbf{6 a}$ ($100 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv) was placed in 10 mL MeCN, and then compound $7 \mathbf{b}^{15}$ ($129 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.5$ equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) ($72 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 1.5$ equiv) were added. The reaction was monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE: EtOAc = 1:100) to obtain white solid compound $\mathbf{8 b}$ ($119 \mathrm{mg}, 76 \%$ yield).

Compound $\mathbf{6 a}$ ($100 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv) was placed in 10 mL MeCN, followed by the addition of sodium salt $7 \mathbf{c}^{15}$ ($133 \mathrm{mg}, 0.47$ $\mathrm{mmol}, 1.5$ equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) ($72 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 1.5$ equiv) were added. The reaction was monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE : EtOAc $=1: 100$) to obtain light yellow solid compound $\mathbf{8 c}$ ($144 \mathrm{mg}, 95 \%$ yield).

Data for 6a: Reddish-brown oil ($288 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) $\delta 7.36$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.77(\mathrm{~s}, 2 \mathrm{H}), 6.74$ (d, J $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dq}, J=8.6,5.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{td}, J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (ddt, $J=18.1,13.7,5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 150.3,126.2(\mathrm{q}$, $J=3.0 \mathrm{~Hz}), 124.0,115.6(\mathrm{q}, J=31.3 \mathrm{~Hz}), 112.0,63.0,49.4,29.6,24.6,22.6,22.0 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta-58.98$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 323.1041$, found: 323.1038.

Data for 8a: White solid ($124 \mathrm{mg}, 82$ \% yield), m.p.: $105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.59(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=20.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ $-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,151.0,149.2,126.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 126.1,123.4,118.9(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 112.0$, 111.8, 101.8, 64.3, 54.2, 52.0, 34.1, 25.6, 24.6, 24.6, 23.1. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.21$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 488.1579$, found: 488.1574.

Data for 8b: White solid ($119 \mathrm{mg}, 76$ \% yield), m.p.: $185-187^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.22(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=16.0,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.58(\mathrm{~m}, 6 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.58$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.35(\mathrm{dd}, J=23.4,12.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,150.5,148.9,141.6,129.8,126.6(\mathrm{q}, J=4.0$ Hz), 120.7, $119.4(\mathrm{q}, \mathrm{J}=31.3 \mathrm{~Hz}), 115.5,111.8,85.2,64.5,54.6,51.9,48.7,34.2,25.7,24.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.26$. HRMS (ESI, m/z) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 526.1348$, found: 526.1342.

Data for 8c: Light yellow solid ($144 \mathrm{mg}, 95 \%$ yield), m.p.: $161-163^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.02(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.19$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{td}, J=$ $11.3,10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{dd}, J=13.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2,150.2,149.2,126.6(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}), 126.0,123.3,119.3$ ($q, J=33.3 \mathrm{~Hz}$), 112.1, $64.5,55.6,52.2,34.3,25.4,25.1,24.6,24.6 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.35$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+489.1532$, found: 489.1530.

10. X-ray Crystallographic Details

10.1 Compound 3f

The preparation of crystal 3f: A light yellow sheet-shaped crystal of $\mathbf{3 f}$ for X -ray diffraction was obtained by slowly volatilizing a saturated solution of $\mathbf{3 f}$ in a 25 mL round bottom flask with the solvent of dichlorometan and n-hexane ($\mathrm{V}: \mathrm{V}=3: 1$) at room temperature. The X ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of $\mathbf{3 f}$ are given in Figure S10 and Table S8.

Figure S10. The Crystal parameters of $\mathbf{3 f}$ wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2236343).

Table S8. Crystal data and structure refinement for $\mathbf{3 f}$

Identification code	3f
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3}$
Formula weight	201.27
Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pbca
$a / A ̊$	8.2123(4)
b/Å	8.7897(3)
c/Å	30.3416(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
V^{10}	90
Volume/Å ${ }^{3}$	2190.17(16)
Z	8
pcalcg/cm ${ }^{3}$	1.221
μ / mm^{-1}	0.075
F (000)	864.0
Crystal size/mm ${ }^{3}$	$0.13 \times 0.11 \times 0.1$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ $/{ }^{\circ}$	5.37 to 54.994
Index ranges	$-10 \leq h \leq 9,-11 \leq k \leq 11,-33 \leq 1 \leq 39$
Reflections collected	18586
Independent reflections	$2511\left[\mathrm{R}_{\text {int }}=0.0629, \mathrm{R}_{\text {sigma }}=0.0390\right]$
Data/restraints/parameters	2511/0/136

Goodness-of-fit on F^{2}	1.154
Final R indexes $[l>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0684, \mathrm{wR}_{2}=0.1396$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0975, \mathrm{wR}_{2}=0.1531$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.22 /-0.19$

10.2 Compound 5p

The preparation of crystal $\mathbf{5 p}$: A light yellow sheet-shaped crystal of $\mathbf{5 p}$ for X -ray diffraction was obtained by slowly volatilizing a saturated solution of 5 p in a 25 mL round bottom flask with the solvent of dichlorometan and n-hexane ($\mathrm{V}: \mathrm{V}=4: 1$) at room temperature. The X-ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of 5 p are given in Figure S11 and Table S9.

Figure S11. The Crystal parameters of $\mathbf{5 p}$ wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2236344).

Table S9. Crystal data and structure refinement for 5p

Identification code	5p
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	376.41
Temperature/K	192.90
Crystal system	monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$
$a / A ̊$	11.3145(15)
b/Å	4.9401(6)
c/Å	33.363(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.022(4)
Y^{1}	90
Volume/Å ${ }^{3}$	1863.6(4)
Z	4
pcalcg/cm ${ }^{3}$	1.342
μ / mm^{-1}	0.103

$\mathrm{F}(000)$	792.0
Crystal size/mm ${ }^{3}$	$0.13 \times 0.11 \times 0.1$
Radiation	$\mathrm{MoK}(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.28 to 55.358
Index ranges	$-8 \leq \mathrm{h} \leq 14,-6 \leq \mathrm{k} \leq 6,-43 \leq \mathrm{I} \leq 43$
Reflections collected	12894
Independent reflections	$4357\left[\mathrm{R}_{\text {int }}=0.0651, \mathrm{R}_{\text {sigma }}=0.0768\right]$
Data/restraints/parameters	$4357 / 0 / 244$
Goodness-of-fit on F^{2}	1.028
Final R indexes $[l>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0670, \mathrm{wR}_{2}=0.1408$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1407, \mathrm{wR}_{2}=0.1758$
Largest diff. peak/hole /e \AA^{-3}	$0.25 /-0.33$

10.3 Compound 5w

The preparation of crystal 5 w : A light yellow sheet-shaped crystal of 5 w for X -ray diffraction was obtained by slowly volatilizing a saturated solution of 5 w in a 25 mL round bottom flask with the solvent of dichlorometan and n-hexane ($\mathrm{V}: \mathrm{V}=4: 1$) at room temperature. The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer (Mo). The details of the structure and crystal data details of $5 \mathbf{w}$ are given in Figure S12 and Table S10.

Figure S4. The Crystal parameters of $5 w$ wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2234700).

Table S10. Crystal data and structure refinement for 5 w

Identification code	$5 w$
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}$

Formula weight	337.37
Temperature/K	113.15
Crystal system	tetragonal
Space group	I-4
a/Å	13.5660(3)
b/Å	13.5660(3)
c/Å	18.1175(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
V^{10}	90
Volume/Å ${ }^{3}$	3334.28(18)
Z	8
pcalcg/cm ${ }^{3}$	1.344
μ / mm^{-1}	0.105
F (000)	1424.0
Crystal size/mm ${ }^{3}$	$0.48 \times 0.26 \times 0.22$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	3.75 to 57.382
Index ranges	$-18 \leq h \leq 18,-18 \leq k \leq 18,-23 \leq 1 \leq 24$
Reflections collected	21324
Independent reflections	$4313\left[\mathrm{R}_{\text {int }}=0.0485, \mathrm{R}_{\text {sigma }}=0.0333\right]$
Data/restraints/parameters	4313/0/222
Goodness-of-fit on F^{2}	1.037
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0368, \mathrm{wR}_{2}=0.0830$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0405, \mathrm{wR}_{2}=0.0859$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.15
Flack parameter	0.2(3)

10.4 Compound 8a

The preparation of crystal 8a: A light yellow sheet-shaped crystal of 8a for X-ray diffraction was obtained by slowly volatilizing a saturated solution of $8 \mathbf{a}$ in a 25 mL round bottom flask with the solvent of ethyl acetate at room temperature. The X-ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of 8a are given in Figure S13 and Table S11.

Figure S5. The Crystal parameters of 8a wherein thermal ellipsoid is drawn at 50\% probability (CCDC No. 2236522).

Table S11. Crystal data and structure refinement for 8a

Identification code	8a
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	487.1501
Temperature/K	193.00
Crystal system	triclinic
Space group	P-1
a / A	11.1319(6)
b/Å	12.1324(6)
c/Å	12..4463(2)
$\alpha /{ }^{\circ}$	68.619(2)
$\beta /{ }^{\circ}$	81.912(2)
$\mathrm{Y} /{ }^{\circ}$	65.651(2)
Volume/A ${ }^{3}$	1425.95(13)
Z	2
pcalcg/cm ${ }^{3}$	1.341
μ / mm^{-1}	0.179
F (000)	604.0
Crystal size/mm ${ }^{3}$	$0.13 \times 0.11 \times 0.1$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	3.514 to 55.04

Index ranges	$-14 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 14,-16 \leq \mathrm{I} \leq 16$
Reflections collected	13282
Independent reflections	$6477\left[\mathrm{R}_{\text {int }}=0.0531, \mathrm{R}_{\text {sigma }}=0.0817\right]$
Data/restraints/parameters	$6477 / 0 / 356$
Goodness-of-fit on F^{2}	1.040
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0715, \mathrm{wR}_{2}=0.1884$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1261, \mathrm{wR}_{2}=0.2266$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.53 /-0.35$

11. References

(1) (a) C. O. Okafor, J. Heterocycl. Chem., 1981, 18, 405-407; (b) R. Podsiadły and R. Strzelczyk, Dyes Pigments, 2013, 97, 462-468; (c) Z. Luo, B. Cao, T. Song, Z. Xing, J. Ren and Z. Wang, J. Org. Chem., 2022, 87, 15511-15529.
(2) K. Joshi, P. Chand and A. Dandia, Indian J. Chem. Sect. B, 1984, 15, 28.
(3) N. Edayadulla and Y. R. Lee, RSC Adv., 2014, 4, 11459-11468.
(4) J. Wang and N. Zheng, Angew. Chem. Int. Ed., 2015, 54, 11424-11427.
(5) D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5, 2453-2455
(6) N. Purkait, G. Kervefors, E. Linde and B. Olofsson, Angew. Chem. Int. Ed., 2018, 130, 11597-11601
(7) X. He and F. Xue, Tetrahedron Lett., 2014, 55, 1956-1958.
(8) M. V. Riofski, J. P. John, M. M. Zheng, J. Kirshner and D. A. Colby, J. Org. Chem., 2011, 76, 3676-3683
(9) D. Crich, C. Chen, J.-T. Hwang, H. Yuan, A. Papadatos and R. I. Walter, J. Am. Chem. Soc., 1994, 116, 8937-8951.
(10) H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett, 2016, 27, 714-723.
(11) P. Given, Nature, 1958, 181, 1001-1002.
(12) (a) Y. Yasu, T. Koike and M. Akita, Adv. Synth. Catal., 2012, 354, 3414-3420; (b) D. N. Primer, I. Karakaya, J. C. Tellis and G. A. Molander, J. Am. Chem. Soc., 2015, 137, 2195-2198.
(13) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.
(14) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
(15) L. Wu, Y.-C. Gu, Y.-H. Li, S. Zhou, Z.-W. Wang and Z.-M. Li, Molecules, 2022, 27, 2362.
12. NMR Spectra of New Compounds

QXPT-NPhCN
H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

QXPT-NPhCN
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

QXPT-NPhOMe
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

登

 1 g

品 品 管 嵒
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

1h
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a-cis
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

㖟

3a-trans
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

> 3b-cis
> ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

æ	18%	
~2ris	¢	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\pm	∞	$\underset{\sim}{\infty}$	\wp
$\stackrel{\text { ® }}{ \pm}$	¢	¢్บัర	ํ
	｜	\checkmark	

$\stackrel{\square}{6}$	N	めか®ロロー
¢	ข	

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\infty}$
©

3c-trans
${ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ल\%	ช	
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{ }$	
11		

3d-cis
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3e-cis
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ก	\pm	87
¢	¢	－
1	｜	$1 /$

	お皮がかin $11 \backslash 11$	

3e－trans
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3f
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$	$\stackrel{\square}{\square}$	
	ベ	M-N NiNo
	I	--5

3h-cis
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 品 | |
| :--- | :--- | :--- |
| $\frac{\text { 品 }}{1}$ | 管 |

哲品

4e
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$11 \sqrt{J}$
 1111
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ヘin

むুল্র	$\stackrel{\square}{\circ}$	
セ0\%	\square°	

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5b-cis
H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ञ्ले
இ®
용ㄴㅇㅇㅇ

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

군になに

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


```
#ion
\begin{tabular}{|c|c|c|}
\hline ¢ & ล & mºs \\
\hline ค่ & 9 &  \\
\hline
\end{tabular}
```


5c-cis
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

๒	888	\otimes	¢98088
¢ ¢	茴守	$\stackrel{\oplus}{\circ}$	
］	\}		くリ゙ア

景		

5d－trans
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5d-cis
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5 e
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5 g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 1

5h
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

100	50	1	-50	10	-150	-200	-250	-300
				fl (ppm)				

天
気范岂

${ }^{3} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5i-trans
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

突

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5k
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

51-trans
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

அゥゥロッド

51－cis
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5m-trans
${ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

品	$\frac{\text { 罼 }}{}$		$\begin{aligned} & \text { 覀 } \\ & 1 \end{aligned}$	盛	\％	수ํ～～

5m－cis
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$$
\begin{aligned}
& \text { 5n-trans }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5n-cis
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5n-cis
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \text { 㐛 } \end{aligned}$								
100	50	0	-50	$\begin{gathered} 100 \\ \text { fl (ppm) } \end{gathered}$	-150	-200	-250	-300

$\stackrel{\infty}{4} \stackrel{0}{4}$	$\begin{aligned} & \stackrel{\circ}{\dot{\prime}} \\ & \dot{\mathrm{j}} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		タのおかへ N্NN

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

[^1]

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

M, 品

5q
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

1	$\begin{aligned} & \text { 를 } \\ & \frac{\stackrel{3}{1}}{} \end{aligned}$	

5r-trans
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5r-trans
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

100	50	0	-50	$\begin{gathered} 100 \\ \text { fil (ppm) } \end{gathered}$	-150	-200	-250	-300

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

88ํㅜㅜㄴ

5r-cis
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

$5 t$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$5 u$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5w
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

登

5w
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underset{\sim}{c}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

6a
${ }^{19}$ F NMR $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

l

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

180	17	160	15	1	1	12	110	100	1	10	1	60	1	10	1	1	10	0
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

8b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 $\xlongequal{\substack{0 \\ 1}}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

170	160	150	140	130	120	110	10	90	8	70	60	50	40	30	20	10	0

[^0]: ${ }^{\text {a }}$ UV-vis.absorption spectra obtained in DMF; ${ }^{\text {b }}$ Emission wavelength measured using fluorescence spectroscopy in DMF; ${ }^{\text {c Singlet energy is }}$ estimated by the maximum wavelength emitted, $\mathrm{E}_{\mathrm{S}_{1}}=1240 / \lambda$; ${ }^{\mathrm{d}}$ Cyclic voltammetry, Ar atmosphere, voltammetry obtained in dry MeCN solution

[^1]:

