Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Visible-Light Organophotoredox-Mediated Intermolecular Formal [4+2] Cycloadditions of Arylcyclobutylamines with Olefins

Zhengshan Luo, Zequn Xing, Rui Gao, Yufang Han, Jun Ren, and Zhongwen Wang*

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin

> Road, Tianjin 300071, China E-mail: wzwrj@nankai.edu.cn

Table of Contents

1. General Information	2
2. Synthesis of Catalyst	3
3. Synthesis of Substrates	4
4. Optimization of Reaction Conditions	8
5. General Experiment Procedures	11
6. Characterization Data of Products	11
7. Limitations of substrates	23
8. Mechanistic Studies	24
9. Synthetic applications	
10. X-ray Crystallographic Details	29
11. References	35
12. NMR Spectra of New Compounds	

1. General Information

1.1 General reaction setup and analytical methods

All reactions were carried out under an atmosphere of argon in flame-dried glassware. The solvents used were purified by distillation over standard drying agents and were stored over molecular sieves and transferred under argon. Technical solvents used for aqueous workup and for column chromatography [dichloromethane (CH₂Cl₂), ethyl acetate (EtOAc), petroleum ether (PE), methanol (MeOH), dimethyl sulfoxide (DMSO), *N*,*N*-dimethylformamide (DMF), *n*-hexane (hexane)] were distilled prior to use.

Flash chromatography was performed on silica gel (200~300 or 300~400 mesh) with the indicated eluent mixtures. Thin-layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV (λ = 254 and 365 nm) and/or by staining with a potassium permanganate solution (KMnO₄) followed by heat treatment.

The ¹H NMR and ¹³C NMR spectra were recorded with Bruker 400 MHz spectrometers at ambient temperature, and spectrometer instruments in CDCl₃ and/or (CD₃)₂SO. NMR standards were used as follows, ¹H NMR spectroscopy: δ = 7.26 ppm (CDCl₃), ¹H: δ = 2.50 ppm ((CD₃)₂SO). ¹³C NMR spectroscopy: δ = 77.16 ppm (CDCl₃), ¹³C: δ = 39.52 ppm ((CD₃)₂SO). Chemical shifts (δ) are given in parts per million (ppm), are referenced to the residual solvent peaks, and are quoted to the nearest 0.01 ppm for ¹H NMR spectra and 0.1 ppm for ¹³C NMR spectra. The following abbreviations for single multiplicities were used: s = singlet, d = doublet, t = triplet, q = couplet, t = triplet, q = couplet, t = triplet, t = triplet, q = couplet, t = triplet, quartet, p = pentet, sex = sextet, sept = septet, m = multiplet, br = broad, dd = doublet of doublets, dt = doublet of triplets, dp = doublet of pentets, td = triplet of doublets and furthermore as combinations. Coupling constants (J_{HH}) are reported in Hz and are quoted to the nearest 0.1 Hz. The relative configuration of new compounds was established by HMBC, NOESY experiments, and X-ray crystallography. Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. High resolution mass spectroscopy (HRMS) were performed on Thermo Scientific Q Exactive combined quadrupole, Orbitrap mass spectrometer with ESI resource. Absorption spectra were recorded on a JASCO V-570 UV/Vis spectrometer. Cyclic voltammetry was performed on a Shanghai Chenhua T-660M electrochemical analyzer. The voltammetric cell consisted of a glassy carbon working electrode, a Pt wire counter electrode, and an Ag/AgCl reference electrode. Stern-Volmer quenching experiments were conducted on a FS5 Spectrofluoromete and equipped with a 1 cm quartz cell using MeCN as the solvent. The diffraction data for the compound were obtained on Bruker D8 Venture and Rigaku 007 Saturn 70 diffractometer system using a MoK α radiation ($\lambda \alpha = 0.71073$ Å). The crystallographic figures were generated using the Diamond Version 4.6.8 software.

1.2 Photoredox catalysis reaction setup

The catalyst is synthesized according to the published procedure.¹ Blue LED lamp (18 W, λ max = 420 nm) as ordinary light source. At room temperature and argon atmosphere, in a 50 mL quartz photoreaction tube (diameter = 2 cm), the distance from the light source to the irradiation container was 2 cm, and photochemical experiments were performed. The sample is placed in the center of a magnetic stirrer and the solvent used in the photochemical reaction is dry in an ultrasonic bath under continuous argon flow for 5 minutes. The LED manufacturer is Shenzhen Shining Lighting Co., Ltd., single bead LED model is PAR38, overall LED lamp model is BG-Z14318-420, Voltage is 220 V and power is 18 W. The wavelength range is 415~420nm. The electric fan is used to help the reaction system dissipate heat to eliminate the influence of thermal reaction. The electric fan manufacturer is China Cixi Jiyang Electrical Appliance Co., Ltd., with a voltage of 220 V and a power of 5 W.

Figure S1. Photoredox reaction setup.

2. Synthesis of Catalyst

12H-benzo [5,6] [1,4] thiazine [2,3-b] quinoxaline (QXPT)

In a 50 mL single-necked flask, 2-aminobenzenethiol (335 µL, 3.13 mmol, 1.25 equiv) was added to a mixed solvents of water and DMF (v/v, 5 mL/15 mL). After the solid was dissolved, a solution of KOH (350 mg, 6.25 mmol, 2.5 equiv) and 2,3-dichloroquinoxaline (498 mg, 2.5 mmol, 1.0 equiv) in DMF (6 mL) were added, and the mixture was heated to 120 °C at oil bath and refluxed for 6 h (TLC). The reaction was quenched by adding ice water, and the solid was filtered, washed with water (50 mL) for three times, and dried in vacuo to afford a yellow solid product **QXPT** (590 mg, 94% yield).

QXPT was known compound, which can be synthesized according to the reported methods, spectral data correspond to those described in the reference.^{1a}

12-Phenyl-12H-benzo [5,6] [1,4] thiazino[2,3-b] quinoxaline (QXPT-NPh)

QXPT

A mixture of 12H-benzo[5,6][1,4]thiazine [2,3-*b*]quinoxaline (**QXPT**) (1 g, 4 mmol), Na₂CO₃ (848 mg, 8 mmol) and copper powder (51 mg, 20 mol%) was heated to reflux (oil bath = 190 °C) in iodobenzene (20 mL) until 12H-benzo[5,6][1,4]thiazine[2,3-*b*]quinoxaline disappears. The reaction mixture was cooled to room temperature, and the unreacted substituted iodobenzene was distilled off under reduced pressure. Then absolute ethanol was added and the mixture was heated and filtered after the product was dissolved. The filtrate was cooled to give a solid which was recrystallized to afford **QXPT-NPh** as a yellow solid (1.18 g, 90% yield).

QXPT-NPh was known compound, which can be synthesized according to the reported methods, spectral data correspond to those described in the reference.^{1b}

2.1 General Procedure 1 (GP1): synthesis of QXPT-NPhCN and QXPT-NPhOMe

In a 100 mL two-necked flask, **QXPT** (4 mmol, 1.0 equiv) and substituted phenylboronic acid (6 mmol, 1.5 equiv) were dissolved in a mixed solvent of anhydrous DMF and anhydrous acetonitrile (v/v, 15 mL/45 mL). Anhydrous copper acetate (6 mmol, 1.5 equiv), cesium carbonate (4 mmol, 1.0 equiv) and pyridine (12 mmol, 3.0 equiv) were added to the mixture. Under oxygen, the mixture was stirred at 100 °C oil bath for 24 hours. The reaction was cooled to room temperature and quenched with saturated NH_4CI solution. An appropriate amount of water was added and extracted for three times with ethyl acetate. The combined organic layers were washed with saturated brine, dried over Na_2SO_4 , filtered, concentrated under reduced pressure and purified by column chromatography (EtOAc:PE = 1:40) to afford the product.

2.2 General Procedure 2 (GP2): synthesis of QXC-NPh、QXC-NPhCN、QXC-NPhOMe and QXC-Npy

6H-indolo[2,3-b]quinoxaline (QXC): This compound was synthesized according to the reported procedure with a minor modifications.² In a 100 mL round-bottomed flask, isatin (0.10 g, 0.68 mmol, 1.0 equiv) and o-phenylenediamine (0.80 g, 0.74 mmol, 1.1 equiv) were

dissolved in 10 ml of acetic acid, and the reaction mixture was refluxed at 120 °C oil bath for 4 h. After cooling to room temperature, the mixture continued to cool in an ice bath. The precipitated product was filtered and was washed with ice water. The obtained crude product was dried and recrystallized using DMF-MeOH (1:1) to obtain a yellow solid (837 mg, 83% yield). The spectral data correspond to those described in the reference.³

In a 100 mL two-necked flask, 6H-indolo[2,3-*b*]quinoxaline (**QXC**) (4 mmol, 1.0 equiv) and substituted phenylboronic acid (6 mmol, 1.5 equiv) were dissolved in a mixed solvent of anhydrous DMF and anhydrous acetonitrile (v/v, 22.5 mL/22.5 mL). Anhydrous copper acetate (6 mmol, 1.5 equiv), cesium carbonate (4 mmol, 1.0 equiv) and pyridine (12 mmol, 3.0 equiv) were adde to the mixture. The mixture was stirred at 110 °C oil bath for 24 h under oxygen. The reaction mixture was cooled to room temperature and quenched with saturated NH₄Cl solution, an appropriate amount of water was added and extracted for three times with ethyl acetate. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by column chromatography (EtOAc:PE = 1:20) to afford the product.

A mixture of 6H-indolo[2,3-*b*]quinoxaline (**QXC**) (876 mg, 4 mmol), Na_2CO_3 (848 mg, 8 mmol) and copper powder (51 mg, 20 mol%) was heated to reflux (oil bath = 200 °C) in 2-bromopyridine (20 mL) until **QXC** disappears. The reaction mixture was cooled to room temperature, and the unreacted substituted iodobenzene was distilled off under reduced pressure. Then absolute ethanol was added and the mixture was heated and filtered after the product was dissolved. The filtrate was cooled to give a solid which was recrystallized to afford **QXC-Npy** as a yellow solid (734 mg, 62% yield).

M.p.: 188-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (ddd, J = 4.9, 2.0, 0.8 Hz, 1H), 8.53 – 8.42 (m, 3H), 8.35 – 8.26 (m, 1H), 8.15 – 8.08 (m, 1H), 8.05 – 7.96 (m, 1H), 7.79 – 7.65 (m, 3H), 7.46 (td, J = 7.6, 1.0 Hz, 1H), 7.32 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 148.6, 145.2, 143.6, 140.9, 140.2, 140.1, 138.4, 131.4, 129.4, 129.1, 128.4, 127.1, 122.9, 122.3, 121.5, 120.7, 119.7, 114.4.. HRMS (ESI, m/z) calcd for C₂₀H₁₃N₄ [M+H]*: 297.1140, found: 297.1136.

QXPT-NPhCN

4-(12H-benzo[5,6][1,4]thiazino[2,3-*b*]quinoxalin-12-yl) benzonitrile (QXPT-NPhCN). Following GP1 with (4-cyanophenyl) boronic acid (882 mg, 6 mmol, 1.5 equiv), the product was isolated by column chromatography on silica gel (EtOAc:PE = 1:40) to obtain a yellow solid (887 mg, 63% yield).

M.p.: 228-230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.57 – 7.51 (m, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.19 (m, 3H), 7.00 – 6.93 (m, 1H), 6.84 – 6.78 (m, 2H), 5.98 (dt, *J* = 5.0, 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 145.2, 143.7, 139.8, 139.7, 139.3, 134.1, 131.8, 129.3, 127.6, 127.2, 127.1, 127.0, 126.9, 123.7, 118.3, 118.3, 117.7, 112.3. HRMS (ESI, m/z) calcd for C₂₁H₁₃N₄S [M+H]⁺: 353.0861, found: 353.0856.

12-(4-Methoxyphenyl)-12H-benzo[5,6][1,4]thiazino[2,3-*b*]quinoxaline (QXPT-NPhOMe). Following GP1 with (4-methoxyphenyl) boronic acid (912 mg, 6 mmol, 1.5 equiv), the product was isolated by column chromatography on silica gel (EtOAc:PE = 1:40) to obtain a yellow solid (957 mg, 67% yield).

M.p.: 230-232 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 1H), 7.28 – 7.16 (m, 5H), 7.08 – 7.01 (m, 2H), 6.98 – 6.93 (m, 1H), 6.79 (tt, *J* = 7.3, 5.5 Hz, 2H), 6.14 – 6.07 (m, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 145.7, 141.0, 140.0, 139.7, 132.0, 131.4, 128.9, 127.5, 127.4, 126.9, 126.6, 126.6, 123.0, 118.0, 117.7, 115.5, 55.6. HRMS (ESI, m/z) calcd for C₂₁H₁₆N₃OS [M+H]⁺: 358.1014, found: 358.1009.

3. Synthesis of Substrates

3.1 General Procedure 3 (GP3): preparation of N-arylcyclobutanamine 1⁴

0.01 mmol of Pd₂(dba)₃ and 0.03 mmol of BrettPhos were added to an oven-dried round-bottomed flask, and 1.5 mmol of NaO^tPent was added, under argon protection. Then 1 mmol of aromatic halide, 1.5 mmol of cyclobutanamine and 5 mL of toluene were added to the reaction mixture and heated at 80 °C oil bath for 18 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave **1**.

3.2 General Procedure 4 (GP4): preparation of N-aylcyclobutanamine 1⁵

0.05 mmol of Cul and 0.12 mmol of D-proline were added to an oven-dried round-bottomed flask, and 1.2 mmol of K_2CO_3 was added, under argon protection. Then 1 mmol of aromatic iodides, 1.5 mmol of cyclobutanamine and 2.0 mL of DMSO were added to the reaction mixture and heated at 80 °C oil bath for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave **1**.

3.3 General Procedure 5 (GP5): preparation of N-arylcyclobutanamine 1

1 mmol aomatic chlorides and 1.5 mmol of cyclobutanamine were added to an oven-dried round-bottomed flask. Then, under argon protection, 1.5 mmol of triethylamine (Et₃N) and 2.5 mL of MeCN were added to the reaction mixture and heated at 80 °C oil bath for 24 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, filtered through a short pad of silica gel, and concentrated in vacuo. Purification by silica gel flash chromatography gave **1**.

4-trifluoromethyl-*N***-cyclobutylaniline (1a)**. Following **GP4** with 1-iodo-4-(trifluoromethyl)benzene (2.25 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:50) as a yellowish oil (2.97 g, 92%). The spectral data correspond to those described in the reference.⁴

4-cyano-N-cyclobutylaniline (1b). Following **GP4** with 1-cyano-4-iodobenzene (3.5 g, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc: PE = 1:20) as a gray solid (1.78 g, 69%).

M.p.: 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 6.53 – 6.45 (m, 2H), 4.55 (d, *J* = 6.1 Hz, 1H), 3.96 – 3.87 (m, 1H), 2.50 – 2.35 (m, 2H), 1.95 – 1.74 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 133.7, 120.7, 112.3, 98.3, 48.2, 30.8, 15.3. HRMS (ESI, m/z) calcd for C₁₁H₁₃N₂ [M+H]⁺: 173.1079, found: 173.1074.

N-cyclobutyl-4-nitroaniline (1c). Following GP4 with 1-iodo-4-nitrobenzene (3.81 g, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:10) as a yellow solid (1.58 g, 55%). The spectral data correspond to those described in the literature.⁶

4-tert-butyl-N-cyclobutylaniline (1d). Following **GP3** with 4-tert-butyl-bromobenzene (2.61 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:50) as a yellowish oil (2.90 g, 95%). The spectral data correspond to those described in the reference.⁴

3,5-dimethyl-*N***-cyclobutylaniline (1e)**. Following **GP3** with 1-iodo-3,5-dimethylbenzene (2.21 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:50) as a colorless oil (2.50 g, 95%). The spectral data correspond to those described in the reference.⁴

N-cyclobutyl-2-pyridinamine (1f). Following GP3 with 2-bromopyridine (1.42 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:5) as a light yellow solid (1.44 g, 65%). The spectral data correspond to those described in the reference.⁴

N-cyclobutylbenzo[*d*]oxazol-2-amine (1g). Following GP5 with 2-chlorobenzo[*d*]oxazole (1.74 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:5) as a yellowish oil (2.76 g, 98%).

M.p.: 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.7 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 7.00 (t, *J* = 7.7 Hz, 1H), 4.37 (p, *J* = 8.3 Hz, 1H), 2.47 (dtt, *J* = 12.7, 7.6, 2.6 Hz, 2H), 2.06 (pd, *J* = 9.2, 2.7 Hz, 2H), 1.85 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 148.4, 142.9, 123.9, 120.5, 115.8, 108.8, 48.1, 31.5, 15.0. HRMS (ESI, m/z) calcd for C₁₁H₁₃N₂O [M+H]⁺: 189.1028, found: 189.1024.

N-cyclobutylbenzo[*d*]thiazol-2-amine (1h). Following GP5 with 2-chlorobenzo[*d*]thiazole (1.22 mL, 15 mmol, 1.0 equiv), the product was isolated after column chromatography on silica gel (EtOAc:PE = 1:5) as a yellowish oil (949 mg, 31%).

M.p.: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.10 – 7.01 (m, 1H), 4.09 (p, *J* = 7.9 Hz, 1H), 2.47 (dtt, *J* = 12.9, 7.3, 2.7 Hz, 2H), 2.00 (ddt, *J* = 11.8, 9.0, 6.1 Hz, 2H), 1.84 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 152.4, 130.4, 125.9, 121.3, 120.9, 118.5, 50.7, 31.1, 15.0. HRMS (ESI, m/z) calcd for C₁₁H₁₃N₂S [M+H]⁺: 205.0799, found: 205.0795.

N-cyclopropyl-N-methylaniline (9)

The secondary amine 4-trifluoromethyl-*N*-cyclobutylaniline (1a) (1.29 g, 6 mmol, 1.0 equiv) was mixed with NaH (288 mg, 7.2 mmol, 1.2 equiv) in DMF (20 mL) and stirred at room temperature for 10 min. The iodomethane (0.90mL, 14.4 mmol, 2.4 equiv) was added.

The resulting mixture was stirred overnight and quenched with brine and extracted with ether. The organic layer was concentrated in vacuo and separated by flash chromatography on silica gel (PE:EtOAc = 50:1) gave the **9** as a pale yellow oil (1.09 g, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 2H), 6.72 (d, *J* = 8.6 Hz, 2H), 4.13 – 4.00 (m, 1H), 2.88 (d, *J* = 1.0 Hz, 3H), 2.33 – 2.21 (m, 2H), 2.18 – 2.03 (m, 2H), 1.79 – 1.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 126.3 (q, *J* = 4.0 Hz), 123.9, 118.1 (q, *J* = 32.3 Hz), 112.9, 54.5, 33.4, 29.1, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.91. HRMS (ESI, m/z) calcd for C₁₂H₁₅F₃N [M+H]⁺: 230.1157, found: 230.1152.

3.4 Synthesis of Olefins

3.4.1 Preparation of N,N-dimethyl-N'-(vinylsulfonyl) formimidamide (4e)

The vinylsulfonamide (3.0 g, 28 mmol 1.0 equiv) was mixed with *N*,*N*-dimethylformamide dimethyl acetal (DMF-DMA) (4.18 mL, 30.81 mmol, 1.1 equiv) in DCM (56 MI, 0.5 M) and stirred at room temperature for 3 h. Then, the reaction mixture was quenched with brine and extracted with DCM. The organic layer was concentrated in vacuo and separated by flash chromatography on silica gel (PE:EtOAc = 1:20) gave the **4e** as a pale yellow oil (3.44 g, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 6.61 (dd, *J* = 16.6, 9.9 Hz, 1H), 6.24 – 6.16 (m, 1H), 5.81 (t, *J* = 8.3 Hz, 1H), 3.18 (s, 3H), 3.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 138.0, 123.4, 41.4, 35.4. HRMS (ESI, m/z) calcd for C₅H₁₁N₂O₂S [M+H]⁺: 163.0541, found: 163.0536.

3.4.2 Preparation of N,N-dimethyl-N'-(vinylsulfonyl) formimidamide (4r)

Typical procedure for the synthesis of (*Z*)-3-ylidenephthalide **4r**. To a solution of 2-acetyl-benzoic acid (164 mg, 1.0 mmol) and O-(N-succinimidyl)-*N*,*N*,*N*',*N*-tetramethyl uronium BF₄ (TSTU) (301 mg, 1.0 mmol) in DCM (5.0 mL) was added DIPEA (348 μ L, 2.0 mmol). The reaction was allowed to stir at room temperature for 6 h. Then, the reaction mixture was poured into water (10 mL), extracted using EtOAc (3 ~10 mL). The combined organic layers were washed by brine with water (3~10 mL) and NaHCO₃ aqueous (3 ~10 mL) and dried over Na₂SO₄. The solvent was removed by rotary evaporation to yield (*Z*)-3-ylidenephthalide **4r** as a white solid (122mg, 0.84 mmol, 84%). The spectral data correspond to those described in the reference.⁷

3.4.3 General Procedure 6 (GP6): preparation of exocyclic terminal olefins⁸

$$\mathsf{R} \overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\underset{\mathsf{N}}{\overset{\mathsf{CO}}{\underset{\mathsf{C}}{\mathsf{CO}_3}}}}}}}_{\mathsf{R}} \overset{\mathsf{LiHMDS}(2.1\ eq.),\ \mathsf{CF}_3\mathsf{CO}_2\mathsf{CH}_2\mathsf{CF}_3(2.1\ eq.)}{\overset{\mathsf{Ar},\ \mathsf{THF},\ 0\ ^\circ\mathsf{C}\rightarrow\mathsf{r.t.}}} \overset{\mathsf{O}}{\underset{\mathsf{K}_2\mathsf{CO}_3}{\overset{\mathsf{CO}}{\underset{\mathsf{S}}{\mathsf{CO}_3}}}}} \overset{\mathsf{CO}}{\underset{\mathsf{Benzene}}{\overset{\mathsf{O}}{\mathsf{(0,05\ M)}}}}}_{\mathsf{Benzene}} \overset{\mathsf{O}}{\underset{\mathsf{(0,05\ M)}}{\overset{\mathsf{N}}{\mathsf{0}}}} \overset{\mathsf{O}}{\underset{\mathsf{C}}{\overset{\mathsf{O}}{\mathsf{O}}{\mathsf{C}}}}} \overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\mathsf{C}}{\mathsf{C}}}}}}}}}}{\overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\underset{\mathsf{R}}{\overset{\mathsf{O}}{\mathsf{C}}}}}}}}$$

To a solution of LiHMDS at 0 °C (0.65 mL, 0.6 M in THF) was added a solution of substituted ketone (0.19 mmol, 1.0 equiv) in THF (1.0 mL). The reaction mixture was allowed to warm to room temperature for over 20 minutes, then $CF_3CO_2CH_2CF_3$ (0.41 mmol, 2.1 equiv) was added. After an additional 20 minutes at room temperature, saturated aqueous NH₄Cl (5 mL) was added and the resulting mixture was extracted with EtOAc (3~5 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Without purification, the crude mixture was immediately dissolved in benzene (3.8 mL, 0.05 M) and K₂CO₃ (82 mg, 0.59 mmol, 3.1 equiv), 18-crown-6 (13 mg, 0.05 mmol, 26 mol%), and paraformaldehyde (200 mg, 6.59 mmol, 10.0 equiv) were added in. The reaction mixture was heated to 80 °C for 2 hours and then to reflux (oil bath = 90 °C) for 4 hours. The mixture was cooled to room temperature, saturated aqueous NH₄Cl (10 mL) was added, and the resulting mixture was extracted with EtOAc (3 x 10 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure.

2-Methylene-2,3-dihydro-1H-inden-1-one (8e). Following **GP6** with 2,3-dihydro-1H-inden-1-one (2.56 g, 19 mmol, 1.0 equiv.), product was isolated by column chromatography on silica gel (EtOAc:PE = 1:30) as a reddish-brown oil (1.20 g, 44%). The spectral data correspond to those described in the reference.⁹

4. Optimization of Reaction Conditions

Table S1. [Ir(dtbbpy)(ppy)₂]PF₆ substrate scope of application ^a

^aUnless otherwise noted, all reactions were performed with **1a** (0.75 mmol), **olefins** (2.25 mmol), K₃PO₄ (1.13 mmol) and photocatalyst (0.0375 mmol) in dry DCM (7.5 mL, 0.1 M) under irradiation of 18 W blue LEDs (420 nm), r.t., argon. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis of the crude reaction mixture and d.r. refers to trans/cis.

When $[Ir(dtbbpy)(ppy)_2]PF_6$ was used as photocatalyst, cycloaddition product **3a** was obtained from **1a** and acrylonitrile **2a** in 68% yield (4.6:1 d.r.). When other olefins were tried, although the reaction could occur, the cycloaddition product yield was generally low (12%~36%), and 1a was severely photodegraded. It indicates that the universality of $[Ir(dtbbpy)(ppy)_2]PF_6$ in this reaction system is not good. Therefore, we have to consider other photocatalysts.

Table S2. Optimization of photocatalysts for [4+2] cycloaddition reaction^a

1	[Ir(dtbbpy)(ppy) ₂]PF ₆	420	13	68	4.6.:1
2	QXPT-NPh	420	13	62	2.5:1
3	QXPT-NPhCN	420	13	64	1.9:1
4	QXPT-NPhOMe	395	15	48	3.1:1
5	QXC-NPhOMe	395	15	47	2.8:1
6	QXC-NPh	395	15	61	2.2:1
7	QXC-NPhCN	395	15	62	2.1:1
8	QXC-Npy	395	15	61	1.9:1
9	ТХТ	395	15	30	>19:1
10	4CzIPN	420	22	22	6.2:1
11	$[Ru(bpz)_3](PF_6)_2$	420	22	15	>19:1
12	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$	420	22	52	>19:1

^aUnless otherwise noted, all reactions were performed with **1a** (0.75 mmol), **2a** (2.25 mmol), K₃PO₄ (1.13 mmol) and photocatalyst (0.0375 mmol) in dry DCM (7.5 mL, 0.1 M) under irradiation of 18 W blue LEDs (420 nm), r.t., argon. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis of the crude reaction mixture and d.r. refers to trans/cis.^dWithout K₃PO₄.

Table S3. Optimization of the solvents^a

-

\sim	H N M	+ CN	QXPT- K ₃ P	NPhCN (5 mol%) O ₄ (1.5 eq.)	_ Í	\approx^{H}
F ₃ C	a	2a	18 W bl r.t. , s	ue LEDs, argon olvent (0.1 M)	F ₃ C	≪ _{NC} 3a
	Entry	solvent	t (h)	yield (%) ^b	d.r.°	
	1	Toluene	15	56	2.6:1	
	2	MeOH	12	11	3.6:1	
	3	MeCN	20	44	3.6:1	
	4	THF	12	45	2.3:1	
	5	DCE	12	48	2.5:1	
	6	DCM	13	64	1.9:1	
	7	DMF	12	50	2.2:1	
	8	DMSO	20	43	1.5:1	

^aUnless otherwise specified, all reactions were performed with **1a** (0.75 mmol), **2a** (2.25 mmol), K_3PO_4 (1.13 mmol) and **QXPT-NPhCN** (0.0375 mmol) in solvent (7.5 mL, 0.1 M) in the presence of 18 W blue LEDs (λ = 420 nm) at room temperature under argon. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis and d.r. refers to trans/cis.

Table S4. Optimization of the additives^a

		+ 🖍 CNI	QXPT-N additi	PhCN (5 mol%) ves (1.5 eq.)		
F ₃ C	لما [ر 1a	2a	18 W blue r.t.,D	ELEDs, argon CM (0.1 M)	F ₃ C	NC Ba
	Entry	ado	litives	yield (%) ^b	d.r.°	
-	1	DI	PEA	0		
	2	DMAP		18	3.1:1	
	3	КОН		42	3.9:1	

4	Cs ₂ CO ₃	45	4.3:1
5	K ₂ CO ₃	46	4.5:1
6	KOAc	48	4.9:1
7	KF	52	3.8:1
8	Na ₃ PO ₄	58	2.2:1
9	K ₃ PO ₄	64	1.9:1
10	K ₂ HPO ₄	58	2.3:1
11	KCI	43	2.2:1

^aUnless otherwise noted, all reactions were performed with **1a** (0.75 mmol), **2a** (2.25 mmol), addieives (1.13 mmol) and **QXPT-NPhCN** (0.0375 mmol) in dry DCM (7.5 mL, 0.1 M) under irradiation of 18 W blue LEDs (420 nm), r.t., argon, 13 h. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis of the crude reaction mixture and d.r. refers to trans/cis.

Table S5. Optimization of the concentration^a

N N	+ 🔨 CN -	QXPT-N K₃PO	PhCN (5 mol%) 4 (1.5 eq.)		γ^{H}
a	2a	18 W blu r.t.,[e LEDs, argon DCM (x M)	F ₃ C	^{NC} 3a
Entry	concentra	tion (x M)	yield (%) ^b	d.r.°	
1	0.	2	59	2.9:1	
2	0.	1	64	1.9:1	
3	0.0)8	64	2.7:1	
4	0.0)6	65	3.0:1	
5	0.0)4	71	2.5:1	
6	0.0)2	65	2.7:1	

^aUnless otherwise specified, all reactions were performed with **1a** (0.75 mmol), **2a** (2.25 mmol), K₃PO₄ (1.13 mmol) and **QXPT-NPhCN** (0.0375 mmol) in DCM under the presence of 18 W blue LEDs (λ = 420 nm) at room temperature, argon, 13 h. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis and d.r. refers to trans/cis.

Table S6. Control experiments for [4+2] cycloaddition reaction^a

Û	J ^H J + ∕⊂CN	QXPT-NPhCN (5) K ₃ PO ₄ (1.5 ec		
F ₃ C ⁻ →	1a 2a	r.t. , DCM (0.04	argon F ₃ C ∼ M)	3a
Entry	variation from the sta	indard conditions	yield (%) ^b	d.r.°
1	none		71	2.5:1
2	without QXPT-NPhCN		20	3.2:1
3	without K ₃ PO ₄		43	3.2:1
4	without QXPT-NPhCN and K_3PO_4		19	3.5:1
5	without light		0	
6	under air		22	>19:1

^aReaction conditions: **1a** (0.75 mmol), **2a** (2.25 mmol), K_3PO_4 (1.13 mmol), K_3PO_4 (1.13 mmol) and **QXPT-NPhCN** (0.0375 mmol) in DCM (18.75 mL, 0.04 M) under the presence of 18 W blue LEDs (λ = 420 nm) at room temperature, argon, 13 h. ^bCombined yields of the two isomers after column chromatography. ^cDetermined by ¹H NMR analysis and d.r. refers to trans/cis.

5. General Experiment Procedures

5.1 General Procedure 7 (GP7): [4+2] cycloaddition of arylcyclobutylamines with acrylonitrile

For **3a–3h**: A dried 50 mL quartz photoreaction tube was charged with **1** (0.75 mmol, 1.0 equiv), **2a** (2.25 mmol, 3.0 equiv), **QXPT-NPhCN** (0.0375 mmol, 0.05 equiv), and dry toluene (18.75 mL), vaccum/argon for three times. Under irradiation of 18 W blue LEDs ($\lambda = 420$ nm), the reaction mixture was stirred for 12~24 hour at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with PE/EtOAc (10/1-1/1 ratio). The solvent was removed in *vacuo* to give the products **3a–3h**.

5.2 General Procedure 8 (GP8): [4+2] cycloaddition of 4-trifluoromethyl-N-cyclobutylaniline with olefins

For **5a–5d**: A dried 50 mL quartz photoreaction tube was charged with **1a** (0.75 mmol, 1.0 equiv), **4** (1.13 mmol, 1.5 equiv), **QXPT-NPhCN** (0.0375 mmol, 0.05 equiv), and dry DCM (18.75 mL), vaccum/argon for three times. Under irradiation of 18 W blue LEDs (λ = 420 nm), the reaction mixture was stirred for 8~24 hours at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with PE/EtOAc (100/1-50/1 ratio). The solvent was removed in *vacuo* to give the products **5a–5d**.

For **5e-5w**: A dried 50 mL quartz photoreaction tube was charged with **1a** (0.9 mmol, 1.2 equiv), **4** (0.75 mmol, 1.0 equiv), **QXPT-NPhCN** (0.0375 mmol, 0.05 equiv), and dry DCM (18.75 mL), vaccum/argon for three times. Under irradiation of 18 W blue LEDs (λ = 420 nm), the reaction mixture was stirred for 8~24 hours at room temperature under argon atmosphere. The solvent was evaporated to dryness under reduced pressure, and the reaction mixture was loaded directly onto a short silica gel column, followed by gradient elution with PE/EtOAc (50/1-1/1 ratio). The solvent was removed in *vacuo* to give the products **5e-5w**.

6. Characterization Data of Products

Following **GP7** with 4-trifluoromethyl-*N*-cyclobutylaniline **1a** (161 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol) and dry DCM (18.75 mL), cycloadduct **3a** was obtained after silica gel column chromatography (EtOAc: PE = 1:5) as a separable mixture of two diastereoisomers (*trans:cis* = 2.5:1).

Data for **3a-***trans***:** White solid (102 mg, 51%), m.p.: 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 6.61 (d, *J* = 8.5 Hz, 2H), 4.20 (s, 1H), 3.52 – 3.45 (m, 1H), 3.34 (q, *J* = 3.5 Hz, 1H), 2.16 – 2.05 (m, 1H), 2.03 – 1.95 (m, 1H), 1.91 (dq, *J* = 14.5, 3.5, 2.9 Hz, 1H), 1.72 (ddt, *J* = 8.5, 5.5, 2.6 Hz, 1H), 1.63 (qd, *J* = 12.8, 12.2, 2.7 Hz, 3H), 1.43 (tt, *J* = 12.2, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 127.0 (q, *J* = 3.0 Hz), 126.2, 123.5, 120.0 (q, *J* = 32.3 Hz), 112.7, 51.8, 33.6, 29.5, 27.6, 24.8, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.15. HRMS (ESI, *m/z*) calcd for C₁₄H₁₆F₃N₂ [M+H]⁺: 269.1266, found: 269.1260.

Data for **3a**-*cis*: Yellow solid (40.8 mg, 20%), m.p.: 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 4.02 (d, *J* = 8.4 Hz, 1H), 3.63 (d, *J* = 9.5 Hz, 1H), 2.57 (td, *J* = 9.2, 3.8 Hz, 1H), 2.23 – 2.06 (m, 2H), 1.76 (dtd, *J* = 13.5, 9.9,

5.7 Hz, 3H), 1.47 (tdd, J = 12.7, 6.3, 2.9 Hz, 1H), 1.38 – 1.33 (m, 1H), 1.29 (p, J = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 126.9 (q, J = 4.0 Hz), 126.2, 121.2, 120.0 (q, J = 32.3 Hz), 112.7, 52.8, 34.7, 31.7, 28.3, 23.8, 23.3. ¹⁹F NMR (376 MHz, CDCl₃) δ - 61.15. HRMS (ESI, m/z) calcd C₁₄H₁₆F₃N₂ [M+H]⁺: 269.1266, found: 269.1260.

Following **GP7** with 4-cyano-*N*-cyclobutylaniline **1b** (129 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3b** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a separable mixture of two diastereoisomers (*trans:cis* = 1.5:1).

3b-*trans*

Data for **3b-***trans*: Light yellow oil (78 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 6.64 (d, *J* = 8.4 Hz, 2H), 4.46 (s, 1H), 3.61 (dd, *J* = 9.2, 3.7 Hz, 1H), 2.57 (td, *J* = 9.8, 3.9 Hz, 1H), 2.17 – 2.11 (m, 2H), 1.80 – 1.70 (m, 3H), 1.44 (ddd, *J* = 13.5, 10.7, 3.0 Hz, 1H), 1.38 – 1.27 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 133.9, 121.0, 120.3, 113.0, 99.7, 52.7, 34.9, 31.8, 28.6, 23.8, 23.5. HRMS (ESI, *m/z*) calcd for C₁₄H₁₆N₃ [M+H]⁺: 226.1344, found: 226.1341.

Data for **3b-***cis*: Light yellow oil (52 mg, 31%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 2H), 4.46 (s, 1H), 3.54 – 3.42 (m, 1H), 3.32 (d, *J* = 4.1 Hz, 1H), 2.11 (dd, *J* = 10.1, 5.1 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.75 (dd, *J* = 10.1, 4.3 Hz, 1H), 1.70 – 1.58 (m, 3H), 1.42 (dddd, *J* = 16.6, 12.8, 8.1, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 134.0, 120.1, 119.4, 112.9, 100.0, 51.5, 33.6, 29.4, 27.6, 24.7, 21.4.. HRMS (ESI, *m/z*) calcd for C₁₄H₁₆N₃ [M+H]⁺: 226.1344, found: 226.1341.

Following **GP7** with *N*-cyclobutyl-4-nitroaniline **1c** (144 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3c** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a separable mixture of two diastereoisomers (*trans:cis* = 1.7:1).

Data for **3c**-*trans*: Yellow oil (76 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.9 Hz, 2H), 6.59 – 6.52 (m, 2H), 4.58 (d, J = 8.8 Hz, 1H), 3.62 (qd, J = 9.2, 3.8 Hz, 1H), 2.53 (td, J = 9.9, 3.8 Hz, 1H), 2.11 (dp, J = 12.3, 4.0 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.71 – 1.63 (m, 1H), 1.42 (qt, J = 13.5, 3.9 Hz, 1H), 1.33 – 1.24 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 138.7, 126.5, 120.8, 111.9, 53.0, 35.0, 31.9, 28.7, 23.8, 23.6. HRMS (ESI, m/z) calcd for C₁₃H₁₆N₃O₂ [M+H]⁺: 246.1243, found: 246.1237.

Data for **3c-***cis*: Yellow oil (44 mg, 24%).¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 6.60 – 6.53 (m, 2H), 4.70 (d, *J* = 8.7 Hz, 1H), 3.56 (ddt, *J* = 12.4, 8.5, 4.0 Hz, 1H), 3.35 (t, *J* = 4.1 Hz, 1H), 2.14 (dq, *J* = 12.4, 2.6 Hz, 1H), 2.07 – 1.93 (m, 2H), 1.81 – 1.73 (m, 1H), 1.71 – 1.60 (m, 3H), 1.45 (ddq, *J* = 17.9, 8.8, 5.0, 4.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 139.0, 126.6, 119.3, 111.8, 51.8, 33.7, 29.4, 27.7, 24.7, 21.4. HRMS (ESI, *m/z*) calcd for C₁₃H₁₆N₃O₂ [M+H]⁺: 246.1243, found: 246.1237.

Following **GP7** with 4-*tert*-butyl-*N*-cyclobutylaniline **1d** (152 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3d** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a separable mixture of two diastereoisomers (*trans:cis* = 2.5:1).

Data for **3d-***trans*: Yellow oil (79 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 6.64 – 6.58 (m, 2H), 3.58 (dq, J = 8.0, 3.8 Hz, 2H), 2.63 (td, J = 8.1, 3.8 Hz, 1H), 2.19 (ddd, J = 13.0, 7.2, 3.6 Hz, 1H), 2.05 (ddd, J = 12.2, 6.7, 3.5 Hz, 1H), 1.72 (ttd, J = 16.7, 6.7, 3.0 Hz, 3H), 1.48 (td, J = 9.3, 4.6 Hz, 1H), 1.44 – 1.33 (m, 2H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 141.3, 126.3, 121.6, 113.6, 53.1, 34.0, 31.6, 31.4, 27.6, 23.6, 22.9. HRMS (ESI, m/z) calcd for C₁₇H₂₅N₂ [M+H]⁺: 257.2018, found: 257.2013.

Data for **3d-***cis*: Red brown oil (31 mg, 16%).¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.1 Hz, 2H), 6.57 (d, *J* = 8.1 Hz, 2H), 3.85 (s, 1H), 3.41 (dd, *J* = 11.3, 4.3 Hz, 1H), 3.35 (s, 1H), 2.06 (d, *J* = 11.6 Hz, 1H), 1.99 (d, *J* = 13.6 Hz, 1H), 1.90 (d, *J* = 13.4 Hz, 1H), 1.75 – 1.67 (m, 1H), 1.60 (s, 2H), 1.58 – 1.52 (m, 1H), 1.46 – 1.39 (m, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.4, 126.4, 120.0, 113.7, 52.6, 34.0, 31.6, 29.8, 27.8, 25.1, 22.8, 21.7. HRMS (ESI, *m/z*) calcd for C₁₇H₂₅N₂ [M+H]⁺: 257.2018, found: 257.2013.

Following **GP7** with 3,5-dimethyl-*N*-cyclobutylaniline **1e** (131 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3e** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a separable mixture of two diastereoisomers (*trans:cis* = 1.5:1).

Data for **3e-***trans*: Red brown solid (82 mg, 48%), m.p.: 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.44 (s, 1H), 6.31 (s, 2H), 3.62 (td, J = 8.0, 4.0 Hz, 2H), 2.64 (td, J = 8.2, 3.9 Hz, 1H), 2.27 (s, 6H), 2.21 (dd, J = 10.4, 2.9 Hz, 1H), 2.05 (q, J = 4.0 Hz, 1H), 1.74 (dddd, J = 24.3, 13.1, 7.2, 3.5 Hz, 3H), 1.51 (tdt, J = 9.9, 6.3, 2.6 Hz, 1H), 1.46 – 1.38 (m, 1H), 1.37 – 1.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 139.1, 121.6, 120.5, 111.6, 52.7, 33.9, 31.2, 27.5, 23.5, 22.8, 21.5. HRMS (ESI, *m/z*) calcd for C₁₅H₂₁N₂ [M+H]⁺: 229.1705, found: 229.1701.

Data for **3e-***cis*: Red brown solid (55 mg, 32%), m.p.: 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.42 (s, 1H), 6.26 (s, 2H), 3.68 (s, 1H), 3.44 (dt, *J* = 11.6, 4.0 Hz, 1H), 3.36 (q, *J* = 3.2 Hz, 1H), 2.25 (s, 6H), 2.09 (d, *J* = 3.1 Hz, 1H), 2.01 – 1.94 (m, 1H), 1.91 (dq, *J* = 14.3, 3.0 Hz, 1H), 1.75 – 1.70 (m, 1H), 1.65 – 1.53 (m, 3H), 1.47 – 1.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 139.2, 120.4, 119.9, 111.7, 52.2, 33.8, 29.7, 27.7, 24.9, 21.6, 21.5. HRMS (ESI, *m/z*) calcd for C₁₅H₂₁N₂ [M+H]⁺: 229.1705, found: 229.1701.

Following **GP7** with *N*-cyclobutyl-2-pyridinamine **1f** (111 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3f** was obtained after silica gel column chromatography (EtOAc:PE = 1:5) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **3f**: Yellow solid (81 mg, 54%), m.p.: 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 5.1 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 6.64 – 6.56 (m, 1H), 6.45 (d, J = 8.4 Hz, 1H), 4.67 (d, J = 8.6 Hz, 1H), 4.08 (qd, J = 8.5, 3.8 Hz, 1H), 2.75 – 2.70 (m, 1H), 2.24 – 2.01 (m, 2H), 1.74 (qd, J = 11.0, 5.5 Hz, 3H), 1.50 (tt, J = 9.9, 5.7 Hz, 1H), 1.44 – 1.31 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 147.7, 137.8, 121.5, 113.6, 108.1, 50.8, 34.5, 31.6, 29.8, 28.1, 23.7. HRMS (ESI, m/z) calcd for C₁₂H₁₆N₃ [M+H]⁺:202.1344, found: 202.1339.

Following **GP7** with *N*-cyclobutylbenzo[*d*]oxazol-2-amine **1g** (141 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3g** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a separable mixture of two diastereoisomers (*trans:cis* = 1.3:1).

Data for **3g-***trans*: Light yellow solid (43 mg, 24%), m.p.: 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 7.7 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.23 – 7.14 (m, 1H), 7.06 (t, J = 7.7 Hz, 1H), 6.05 (s, 1H), 4.00 (td, J = 9.5, 3.9 Hz, 1H), 2.85 (td, J = 9.9, 3.9 Hz, 1H), 2.28 – 2.20 (m, 1H), 2.15 (ddd, J = 17.0, 7.3, 3.4 Hz, 1H), 1.87 – 1.77 (m, 2H), 1.76 – 1.65 (m, 1H), 1.63 – 1.47 (m, 2H), 1.35 (d, J = 12.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 148.5, 142.5, 124.2, 121.4, 120.7, 116.4, 109.1, 53.3, 34.8, 31.8, 29.8, 28.5, 23.8. HRMS (ESI, m/z) calcd for C₁₄H₁₆N₃O [M+H]⁺: 242.1293, found: 242.1288.

Data for **3g-***cis*: Light yellow solid (33 mg, 18%), m.p.: 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.7 Hz, 1H), 5.39 (s, 1H), 3.94 (dt, J = 12.1, 4.2 Hz, 1H), 3.66 (d, J = 4.3 Hz, 1H), 2.14 – 2.01 (m, 2H), 1.92 (dt, J = 10.6, 3.6 Hz, 1H), 1.75 (dt, J = 14.1, 3.9 Hz, 2H), 1.72 – 1.66 (m, 1H), 1.64 – 1.55 (m, 1H), 1.44 (qt, J = 12.8, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 148.6, 142.4, 124.3, 121.6, 119.8, 116.7, 109.2, 52.3, 34.0, 29.2, 27.5, 24.7, 21.4. HRMS (ESI, m/z) calcd for C₁₄H₁₆N₃O [M+H]⁺: 242.1293, found: 242.1288.

Following **GP7** with *N*-cyclobutylbenzo[*d*]thiazol-2-amine **1h** (153 mg, 0.75 mmol), acrylonitrile (148 μ L, 2.25 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **3h** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a single diastereoisomer (*trans:cis* =1.1:1).

Data for **3h-***trans*: Yellow solid (43 mg, 22%), m.p.: 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dt, *J* = 15.6, 8.0 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.19 (dd, *J* = 8.4, 2.2 Hz, 1H), 5.28 – 5.15 (m, 1H), 2.87 (d, *J* = 10.4 Hz, 1H), 2.33 (d, *J* = 8.8 Hz, 2H), 2.14 (d, *J* = 12.2 Hz, 1H), 1.97 (t, *J* = 10.2 Hz, 2H), 1.83 – 1.71 (m, 2H), 1.58 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 139.3, 127.1, 126.2, 123.5, 120.7, 120.4, 113.4, 66.7, 53.6, 41.4, 33.9, 25.0, 24.4. HRMS (ESI, *m/z*) calcd for C₁₄H₁₆N₃S [M+H]⁺: 258.1065, found: 258.1057.

Data for **3h-***cis*: Yellow solid (40 mg, 21%), m.p.: 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 11.8, 8.0 Hz, 2H), 7.22 (dd, *J* = 16.4, 8.6 Hz, 1H), 7.05 (q, *J* = 7.6, 6.7 Hz, 1H), 5.82 (s, 1H), 3.90 (q, *J* = 5.8, 4.4 Hz, 1H), 2.78 (dt, *J* = 14.0, 8.2 Hz, 1H), 2.17 (d, *J* = 10.5 Hz, 1H), 2.11 – 1.96 (m, 1H), 1.68 (q, *J* = 10.9, 10.0 Hz, 3H), 1.46 (q, *J* = 9.8 Hz, 2H), 1.28 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 152.1, 130.6, 126.2, 122.2, 121.0, 120.9, 119.3, 55.1, 38.5, 34.2, 31.4, 28.1, 23.6. HRMS (ESI, *m/z*) calcd for C₁₄H₁₆N₃S [M+H]⁺: 258.1065, found: 258.1057.

Following **GP8** with 4-trifluoromethyl-*N*-cyclobutylaniline **1a** (161 mg, 0.75 mmol), styrene **4a** (130 μ L, 1.13 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol) and dry DCM (18.75 mL), cycloadduct **5a** was obtained after silica gel column chromatography (EtOAc: PE = 1:100) as an inseparable mixture of two diastereoisomers (1:1 d.r.).

Data for **5a**: Yellow oil (81.4 mg, 34%). ¹H NMR (400 MHz, CDCl₃, a mixture of diastereomers) δ 7.37 (d, J = 8.4 Hz, 1H), 7.30 – 7.21 (m, 7H), 7.17 (d, J = 7.5 Hz, 5H), 6.52 (d, J = 8.3 Hz, 1H), 6.41 (d, J = 8.4 Hz, 4H), 3.92 (p, J = 8.0, 7.0 Hz, 1H), 3.78 (s, 1H), 3.66 (s, 1H), 3.46 (td, J = 10.8, 3.7 Hz, 2H), 2.51 (td, J = 11.3, 3.6 Hz, 2H), 2.46 – 2.33 (m, 2H), 1.97 (dq, J = 12.8, 3.1 Hz, 2H), 1.85 (tdd, J = 12.9, 7.9, 4.4 Hz, 5H), 1.58 (qd, J = 12.9, 3.5 Hz, 2H), 1.51 – 1.37 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, a mixture of diastereomers) δ 150.1, 143.7, 128.9 (q, J = 3.0 Hz), 128.7 (q, J = 4.0 Hz), 127.6, 127.4, 126.7, 126.5, 123.8, 121.1, 120.9, 118.0 (q, J = 33.3 Hz), 112.2, 111.9, 56.2, 56.0, 51.3, 51.3, 49.1, 48.6, 35.8, 33.7, 33.5, 26.5, 25.3. ¹⁹F NMR (376 MHz, CDCl₃, a mixture of diastereomers) δ -60.97, -60.91. HRMS (ESI, m/z) calcd C₁₉H₂₁F₃N [M+H]⁺: 320.1626, found: 320.1619.

Following **GP8** with 4-trifluoromethyl-*N*-cyclobutylaniline **1a** (161 mg, 0.75 mmol), 4-methoxystyrene **4b** (142 μ L, 1.13mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5b** was obtained after silica gel column chromatography (EtOAc:PE = 1:100) as a separable mixture of two diastereoisomers (*cis:trans* = 1.8:1).

Data for **5b**-*trans*: Yellow oil (24 mg, 9%).¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 7.16 – 7.11 (m, 2H), 6.82 – 6.76 (m, 2H), 6.38 (d, J = 8.5 Hz, 2H), 3.92 (s, 1H), 3.83 (p, J = 3.4, 2.9 Hz, 1H), 3.74 (s, 3H), 3.01 – 2.92 (m, 1H), 2.09 – 2.02 (m, 1H), 1.95 – 1.88 (m, 1H), 1.88 – 1.77 (m, 2H), 1.69 – 1.56 (m, 2H), 1.55 – 1.45 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 150.4, 135.5, 128.5, 126.5 (q, J = 4.0 Hz), 123.8, 118.3 (q, J = 32.3 Hz), 114.0, 112.3, 55.3, 53.3, 45.3, 32.1, 30.2, 26.1, 25.9. ¹⁹F NMR (376 MHz, CDCl₃) δ - 60.92. HRMS (ESI, *m/z*) calcd for C₂₀H₂₃F₃NO [M+H]⁺: 350.1732, found: 350.1725.

Data for **5b-***cis*: Yellow oil (44 mg, 17%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.79 (d, J = 8.2 Hz, 2H), 6.41 (d, J = 8.3 Hz, 2H), 3.95 – 3.80 (m, 1H), 3.74 (s, 3H), 3.39 (td, J = 10.8, 3.7 Hz, 1H), 2.46 (td, J = 11.3, 3.5 Hz, 1H), 2.41 – 2.33 (m, 1H), 1.99 – 1.91 (m, 1H), 1.82 (d, J = 11.8 Hz, 2H), 1.55 (qd, J = 13.1, 3.9 Hz, 2H), 1.47 – 1.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 150.2, 135.8, 128.3, 126.5 (q, J = 3.0 Hz), 123.8, 118.3 (q, J = 32.3 Hz), 114.2, 112.0, 56.4, 55.3, 50.4, 36.0, 33.6, 26.5, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.89. HRMS (ESI, *m/z*) calcd for C₂₀H₂₃F₃NO [M+H]⁺: 350.1732, found: 350.1725.

Following **GP8** with 4-trifluoromethyl-*N*-cyclobutylaniline **1a** (161 mg, 0.75 mmol), 1-(trifluoromethyl)-4-vinylbenzene **4c** (177 μ L, 1.13 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5c** was obtained after silica gel column chromatography (EtOAc:PE = 1:100) as a separable mixture of two diastereoisomers (*cis:trans* = 1.4:1).

Data for **5c**-*trans*: Light yellow oil (67 mg, 23%).¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.1 Hz, 4H), 6.42 (d, J = 8.5 Hz, 2H), 3.91 (s, 1H), 3.53 (td, J = 10.8, 3.7 Hz, 1H), 2.59 (td, J = 11.2, 3.6 Hz, 1H), 2.38 (dd, J = 13.8, 3.9 Hz, 1H), 2.01 – 1.93 (m, 1H), 1.92 – 1.81 (m, 2H), 1.59 (td, J = 12.7, 3.4 Hz, 1H), 1.54 – 1.47 (m, 1H), 1.47 – 1.38 (m, 1H), 1.20 (td, J = 13.1, 12.4, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 148.0, 128.85, 127.8, 126.7 (q, J = 4.0 Hz), 125.7 (q, J = 4.0 Hz), 118.8 (q, J = 33.3 Hz),

112.1, 55.8, 51.3, 35.7, 33.5, 26.3, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.03, -62.42. HRMS (ESI, *m/z*) calcd for C₂₀H₂₀F₆N [M+H]⁺: 388.1500, found: 388.1493.

Data for **5c**-*cis*: Light yellow oil (93 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 6.37 (d, *J* = 8.5 Hz, 2H), 3.99 (s, 1H), 3.93 (q, *J* = 3.4 Hz, 1H), 3.12 – 3.03 (m, 1H), 2.08 (dq, *J* = 13.4, 3.5, 2.9 Hz, 1H), 2.01 – 1.94 (m, 1H), 1.90 (dd, *J* = 8.2, 3.1 Hz, 2H), 1.69 (ddt, *J* = 24.1, 10.2, 3.9 Hz, 2H), 1.53 (tt, *J* = 12.2, 4.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 147.7, 129.0, 128.0, 126.6 (q, *J* = 3.0 Hz), 125.4 (q, *J* = 4.0 Hz), 118.8 (q, *J* = 32.3 Hz), 112.3, 53.0, 46.2, 30.4, 25.8, 25.6, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.08, -62.43. HRMS (ESI, *m/z*) calcd for C₂₀H₂₀F₆N [M+H]⁺: 388.1500, found: 388.1493.

Following **GP8** with 4-trifluoromethyl-*N*-cyclobutylaniline **1a** (161 mg, 0.75 mmol), 2-vinylpyridine **4d** (121 μ L, 1.13 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5d** was obtained after silica gel column chromatography (EtOAc:PE = 1:30) as a separable mixture of two diastereoisomers (*cis:trans* = 1.5:1).

5d-*trans*

Data for **5d**-*trans*: Gray solid (51 mg, 21%), m.p.: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.0 Hz, 1H), 7.57 – 7.49 (m, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 7.8 Hz, 1H), 7.06 (dd, J = 7.5, 4.9 Hz, 1H), 6.42 (d, J = 8.4 Hz, 2H), 4.02 (s, 1H), 3.62 (td, J = 10.7, 3.8 Hz, 1H), 2.70 (td, J = 11.4, 3.7 Hz, 1H), 2.33 (dd, J = 13.9, 3.9 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.91 – 1.83 (m, 2H), 1.74 (td, J = 12.7, 3.2 Hz, 1H), 1.46 (dddd, J = 31.4, 13.4, 8.5, 3.8 Hz, 2H), 1.38 – 1.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 150.1, 149.1, 136.9, 126.5 (q, J = 4.0 Hz), 123.8, 122.0, 121.9, 117.8 (q, J = 32.3 Hz), 111.9, 56.1, 53.1, 33.7, 33.1, 26.0, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.90. HRMS (ESI, m/z) calcd for C₁₈H₂₀F₃N₂ [M+H]⁺:321.1579, found: 321.1573.

5d-cis

Data for **5d-***cis*: Gray solid (76 mg, 32%), m.p.: 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 4.9 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 1H), 7.01 (dd, *J* = 7.5, 4.9 Hz, 1H), 6.38 (d, *J* = 8.3 Hz, 2H), 5.12 (s, 1H), 3.79 (d, *J* = 5.1 Hz, 1H), 3.05 (dt, *J* = 11.9, 3.7 Hz, 1H), 2.14 – 1.99 (m, 2H), 1.77 (ddq, *J* = 21.9, 12.8, 4.0 Hz, 2H), 1.60 – 1.48 (m, 3H), 1.39 (ddd, *J* = 19.8, 9.9, 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 150.7, 148.8, 136.8, 126.5 (q, *J* = 4.0 Hz), 123.8, 122.7, 121.7, 117.8 (q, *J* = 31.3 Hz), 112.2, 52.9, 47.7, 30.0, 26.1, 25.4, 20.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.89. HRMS (ESI, *m/z*) calcd for C₁₈H₂₀F₃N₂ [M+H]⁺:321.1579, found: 321.1573.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), phenyl vinyl sulfone **4e** (126 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5e** was obtained after silica gel column chromatography (EtOAc:PE = 1:7) as a single diastereoisomer (*trans:cis* >19:1).

Data for **5e**: Yellow solid (147 mg, 51%), m.p.: 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 6.43 (d, *J* = 8.3 Hz, 2H), 4.46 (s, 1H), 3.39 (t, *J* = 9.2 Hz, 1H), 3.10 (td, *J* = 10.3, 10 (td, *J* = 10.3), 10 (td,

3.8 Hz, 1H), 2.30 (ddt, *J* = 19.7, 10.9, 4.2 Hz, 2H), 1.92 (dt, *J* = 9.4, 4.7 Hz, 1H), 1.71 (dq, *J* = 9.2, 4.9, 4.3 Hz, 1H), 1.53 (td, *J* = 14.6, 13.1, 9.4 Hz, 1H), 1.44 – 1.35 (m, 1H), 1.34 – 1.27 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 137.9, 133.9, 129.0, 126.8 (q, *J* = 3.0 Hz), 126.4, 123.7, 119.5 (q, *J* = 32.3 Hz), 112.2, 66.8, 52.1, 32.8, 26.1, 24.5, 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.01. HRMS (ESI, *m/z*) calcd for $C_{19}H_{21}F_3NO_2S$ [M+H]⁺: 384.1245, found 384.1241.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), (methylsulfonyl)ethene **4f** (68 μ L, 0.75 mmol), **QXPT**-**NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5f** was obtained after silica gel column chromatography (EtOAc:PE = 1:3) as a single diastereoisomer (*trans:cis* >19:1).

Data for **5f**: Red brown oil (89 mg, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 2H), 6.74 (d, J = 8.3 Hz, 2H), 4.22 (s, 1H), 3.71 (s, 1H), 2.96 (d, J = 6.4 Hz, 1H), 2.93 (s, 3H), 2.48 – 2.40 (m, 1H), 2.26 (dt, J = 12.9, 4.1 Hz, 1H), 1.97 (dq, J = 12.0, 4.4, 3.9 Hz, 1H), 1.85 – 1.77 (m, 1H), 1.61 (qd, J = 12.4, 3.8 Hz, 1H), 1.42 (d, J = 6.4 Hz, 1H), 1.39 – 1.33 (m, 1H), 1.30 (d, J = 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 126.9 (q, J = 4.0 Hz), 123.4, 120.1 (q, J = 33.3 Hz), 113.2, 66.5, 53.4, 41.5, 33.7, 24.8, 24.5, 24.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.20. HRMS (ESI, m/z) calcd for C₁₄H₁₉F₃NO₂S [M+H]⁺: 322.1089, found 322.1084.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *N*,*N*-dimethyl-*N'*-(vinylsulfonyl)formimidamide **4g** (122 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5g** was obtained after silica gel column chromatography (EtOAc:PE = 1:1) as an inseparable mixture of two diastereoisomers (2.6:1 d.r.).

Data for **5g**: Reddish-brown oil (94 mg, 33%). ¹H NMR (400 MHz, CDCl₃, a mixture of diastereomers) δ 7.61 (s, 1H), 7.59 (s, 0.38H), 7.39 (dd, J = 8.7, 4.0 Hz, 2.76H), 6.61 (s, 0.76H), 6.57 (d, J = 8.7 Hz, 2H), 4.87 (s, 1H), 4.85 (s, 0.38H), 3.34 (td, J = 10.4, 3.9 Hz, 1H), 3.28 – 3.22 (m, 0.38H), 2.96 (ddd, J = 12.0, 10.0, 3.8 Hz, 1H), 2.90 (d, J = 4.5 Hz, 4.14H), 2.60 (d, J = 4.9 Hz, 4.14H), 2.53 – 2.45 (m, 1H), 2.28 (d, J = 3.5 Hz, 0.38H), 2.22 (dd, J = 14.1, 3.9 Hz, 1H), 2.04 (d, J = 6.1 Hz, 0.38H), 1.96 (s, 0.38H), 1.90 (dd, J = 12.8, 9.1 Hz, 1.38H), 1.84 (d, J = 3.9 Hz, 0.38H), 1.80 – 1.73 (m, 1H), 1.71 – 1.61 (m, 1H), 1.56 (tt, J = 10.8, 5.7 Hz, 1H), 1.49 – 1.44 (m, 0.38H), 1.39 (ddt, J = 18.8, 9.1, 3.1 Hz, 2H), 1.32 (d, J = 2.8 Hz, 0.76H), 1.28 (d, J = 3.6 Hz, 0.38H). ¹³C NMR (101 MHz, CDCl₃, a mixture of diastereomers) δ 160.4, 159.5, 149.9, 149.5, 130.2, 129.0, 126.8 (q, J = 4.0 Hz), 126.3, 123.6, 118.8 (q, J = 33.3 Hz), 111.8, 111.6, 64.7, 62.1, 54.0, 50.3, 49.0, 40.9, 37.9, 35.2, 33.3, 29.8, 27.5, 25.0, 24.6, 24.3, 21.4, 19.8. ¹⁹F NMR (376 MHz, CDCl₃, a mixture of diastereomers) δ -60.98, -60.99. HRMS (ESI, m/z) calcd for C₁₆H₂₂F₃N₂O₂S [M+H]⁺: 378.1463, found: 378.1458.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), diethyl vinylphosphonate **4h** (119 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5h** was obtained after silica gel column chromatography (EtOAc:PE = 1:3) as a single diastereoisomer (*trans:cis* >19:1).

Data for **5h**: Yellow oil (137 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 4.80 (s, 1H), 4.11 – 3.93 (m, 4H), 3.46 – 3.39 (m, 1H), 2.34 – 2.26 (m, 1H), 2.18 – 2.08 (m, 1H), 1.95 – 1.85 (m, 1H), 1.85 – 1.74 (m, 2H), 1.53 (tdt, J = 12.0, 5.7, 3.0 Hz, 1H), 1.47 – 1.40 (m, 1H), 1.40 – 1.33 (m, 1H), 1.32 (s, 1H), 1.30 – 1.23 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 135.7, 126.6 (q, J = 4.0 Hz), 118.7 (q, J = 32.3 Hz), 112.1, 62.1 (td, J = 7.1, 6.1, 7.1 Hz), 52.6 (d, J = 5.1 Hz), 42.1, 41.7, 33.6 (d, J = 14.1 Hz), 26.5 (d, J = 5.1 Hz), 25.5 (d, J = 14.1 Hz), 24.4, 16.5 (q, J = 4.0 Hz), 16.5 (t, J = 6.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.92. HRMS (ESI, m/z) calcd for C₁₇H₂₆F₃NO₃P [M+H]⁺: 380.1602, found: 380.1597.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), pent-1-en-3-one **4i** (77 µL, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5i** was obtained after silica gel column chromatography (EtOAc:PE = 1:20) as a separable mixture of two diastereoisomers (*trans:cis* = 1.2:1).

Data for **5i**-*trans*: Light yellow oil (53 mg, 23%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 8.4 Hz, 2H), 4.47 (s, 1H), 3.83 (dt, J = 7.6, 3.6 Hz, 1H), 2.89 (dt, J = 8.5, 4.4 Hz, 1H), 2.53 – 2.31 (m, 2H), 2.04 (tt, J = 9.6, 4.6 Hz, 1H), 1.90 (dtd, J = 17.0, 8.3, 3.4 Hz, 1H), 1.73 (ddt, J = 14.0, 7.6, 4.2 Hz, 1H), 1.66 – 1.56 (m, 2H), 1.52 (ddt, J = 11.7, 7.3, 3.7 Hz, 1H), 1.47 – 1.37 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.5, 149.6, 126.8 (q, J = 3.0 Hz), 123.7, 118.6 (q, J = 32.3 Hz), 112.4, 51.1, 50.8, 34.4, 28.9, 24.9, 23.3, 22.5, 7.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.98. HRMS (ESI, m/z) calcd for C₁₆H₂₁F₃NO [M+H]⁺: 300.1575, found: 300.1572.

Data for **5i**-*cis*: Light yellow oil (44 mg, 20%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.5 Hz, 2H), 3.71 (s, 1H), 3.63 (td, J = 10.8, 4.0 Hz, 1H), 2.55 – 2.46 (m, 1H), 2.46 – 2.37 (m, 2H), 2.21 – 2.12 (m, 1H), 1.91 – 1.83 (m, 1H), 1.79 (dt, J = 14.1, 3.5 Hz, 2H), 1.50 (qd, J = 12.7, 3.2 Hz, 1H), 1.36 (ddd, J = 12.9, 10.0, 3.8 Hz, 1H), 1.29 (dd, J = 5.3, 3.7 Hz, 1H), 1.15 – 1.06 (m, 1H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.8, 149.7, 126.7 (q, J = 4.0 Hz), 123.7, 119.0 (q, J = 33.3 Hz), 112.7, 57.4, 53.4, 35.2, 33.0, 29.3, 25.0, 24.9, 7.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.02. HRMS (ESI, *m/z*) calcd for C₁₆H₂₁F₃NO [M+H]⁺: 300.1575, found: 300.1572.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), methyl acrylate **4**j (68 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5**j was obtained after silica gel column chromatography (EtOAc:PE = 1:20) as a separable mixture of two diastereoisomers (*trans:cis* = 1.3:1).

Data for **5***j*-*trans*: Light yellow oil (73 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.5 Hz, 2H), 3.83 (s, 1H), 3.58 (s, 3H), 2.31 (ddd, J = 11.6, 10.2, 3.7 Hz, 1H), 2.21 – 2.12 (m, 1H), 2.02 – 1.93 (m, 1H), 1.83 – 1.75 (m, 2H), 1.72 – 1.58 (m, 2H), 1.43 (d, J = 3.1 Hz, 1H), 1.38 (d, J = 6.5 Hz, 1H), 1.11 (tdd, J = 13.0, 10.8, 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 149.7, 126.7 (q, J = 4.0 Hz), 123.7, 119.2 (q, J = 32.3 Hz), 112.6, 53.7, 52.0, 50.8, 32.9, 29.8, 29.1, 24.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.04. HRMS (ESI, m/z) calcd for C₁₅H₁₉F₃NO₂ [M+H]⁺: 302.1368, found: 302.1362.

Data for **5***j*-*cis*: Light yellow oil (56 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.5 Hz, 2H), 6.60 (d, *J* = 8.5 Hz, 2H), 4.67 (s, 1H), 3.78 (dd, *J* = 7.9, 3.9 Hz, 1H), 3.64 (s, 3H), 2.86 (dt, *J* = 8.0, 4.3 Hz, 1H), 2.01 (ddd, *J* = 10.5, 8.6, 4.9 Hz, 1H), 1.95 – 1.83 (m, 1H), 1.76 – 1.66 (m, 2H), 1.65 – 1.58 (m, 1H), 1.54 – 1.46 (m, 2H), 1.43 (q, *J* = 2.8, 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 149.7, 126.8 (q, *J* = 3.0 Hz), 123.7, 118.9 (q, *J* = 33.3 Hz), 112.5, 51.8, 51.1, 44.6, 29.0, 26.1, 23.2, 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.98. HRMS (ESI, *m/z*) calcd for C₁₅H₁₉F₃NO₂ [M+H]⁺: 302.1368, found: 302.1362.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *tert*-butyl acrylate **4k** (77 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5k** was obtained after silica gel column chromatography (EtOAc:PE = 1:40) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **5k**: Gray oil (98 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.2 Hz, 2H), 6.60 (d, *J* = 8.2 Hz, 2H), 3.97 – 3.87 (m, 1H), 3.59 – 3.49 (m, 1H), 2.17 (q, *J* = 11.5 Hz, 2H), 1.97 (d, *J* = 13.6 Hz, 1H), 1.77 (d, *J* = 12.6 Hz, 2H), 1.70 – 1.60 (m, 1H), 1.60 – 1.46 (m, 1H), 1.45 – 1.37 (m, 1H), 1.33 (d, *J* = 2.9 Hz, 9H), 1.10 (q, *J* = 12.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 149.8, 126.7 (q, *J* = 4.0 Hz), 118.9 (q, *J* = 32.3 Hz), 112.3, 80.8, 53.9, 52.1, 32.9, 29.1, 28.1, 24.8, 24.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.95. HRMS (ESI, *m/z*) calcd for C₁₈H₂₅F₃NO₂ [M+H]⁺: 344.1837, found: 344.1832.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), phenyl acrylate **4I** (77 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5I** was obtained after silica gel column chromatography (EtOAc:PE = 1:30) as a separable mixture of two diastereoisomers (*trans:cis* = 3:1).

Data for **5I-***trans*: Yellow oil (87 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 4H), 7.20 (t, *J* = 7.4 Hz, 1H), 6.95 – 6.88 (m, 2H), 6.65 (d, *J* = 8.4 Hz, 2H), 4.64 (s, 1H), 3.98 (d, *J* = 7.6 Hz, 1H), 3.13 (dt, *J* = 8.2, 4.4 Hz, 1H), 2.14 (dtd, *J* = 15.1, 7.6, 3.5 Hz, 1H), 1.96 (dtd, *J* = 10.4, 7.7, 7.2, 3.0 Hz, 1H), 1.86 (ddt, *J* = 13.1, 8.3, 4.2 Hz, 1H), 1.79 – 1.60 (m, 3H), 1.54 (ddt, *J* = 14.6, 8.5, 3.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 150.6, 149.7, 129.6, 126.9 (q, *J* = 4.0 Hz), 126.1, 121.6, 119.2 (q, *J* = 32.3 Hz), 112.7, 51.1, 44.9, 29.0, 25.9, 23.3, 22.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.00. HRMS (ESI, *m/z*) calcd for C₂₀H₂₁F₃NO₂ [M+H]⁺: 364.1524, found: 364.1518.

Data for **5I**-*cis*: Yellow oil (29 mg, 11%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.33 – 7.24 (m, 2H), 7.17 (t, J = 7.4 Hz, 1H), 6.80 (dd, J = 7.8, 1.6 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 3.97 (s, 1H), 3.77 (td, J = 10.7, 3.9 Hz, 1H), 2.53 (td, J = 10.8, 10.3, 3.6 Hz, 1H), 2.26 – 2.12 (m, 2H), 1.89 – 1.73 (m, 3H), 1.51 – 1.41 (m, 1H), 1.34 (tt, J = 13.8, 3.8 Hz, 1H), 1.17 (td, J = 13.0, 12.1, 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 150.7, 149.7, 129.5, 126.9 (q, J = 4.0 Hz), 126.0, 121.6, 119.4 (q, J = 32.3 Hz), 112.7, 54.0, 51.2, 33.0, 29.1, 24.9, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.05. HRMS (ESI, m/z) calcd for C₂₀H₂₁F₃NO₂ [M+H]⁺: 364.1524, found: 364.1518.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), benzyl acrylate **4m** (119 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5m** was obtained after silica gel column chromatography (EtOAc:PE = 1:30) as a separable mixture of two diastereoisomers (*trans:cis* = 1.3:1).

Data for **5m**-*trans*: Yellow solid (72 mg, 25%). m.p.: 82-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 4.9 Hz, 3H), 7.19 (d, J = 6.8 Hz, 2H), 6.55 (d, J = 8.1 Hz, 2H), 5.08 – 4.95 (m, 2H), 3.85 (s, 1H), 3.62 (t, J = 11.0 Hz, 1H), 2.35 (t, J = 11.3 Hz, 1H), 2.16 (d, J = 13.3 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.78 (d, J = 12.7 Hz, 2H), 1.71 – 1.60 (m, 1H), 1.40 (q, J = 16.4, 14.6 Hz, 1H), 1.27 (d, J = 11.5 Hz, 1H), 1.09 (q, J = 12.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 149.5, 135.7, 128.5, 128.2, 128.2, 126.6 (q, J = 1.5 Hz, 1H), 1.09 (hz = 1.5 Hz, 1H).

J = 4.0 Hz), 123.6, 118.7 (q, J = 33.3 Hz), 112.4, 66.5, 53.6, 50.9, 32.8, 29.0, 24.7, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.98. HRMS (ESI, m/z) calcd for C₂₁H₂₃F₃NO₂ [M+H]⁺: 378.1681, found: 378.1678.

Data for **5m**-*cis*: Yellow solid (55 mg, 20%). m.p.: 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.2 Hz, 2H), 7.26 (s, 3H), 7.22 (d, J = 7.3 Hz, 2H), 6.54 (d, J = 8.2 Hz, 2H), 5.07 (q, J = 12.5 Hz, 2H), 4.56 (s, 1H), 3.84 (s, 1H), 2.90 (d, J = 7.9 Hz, 1H), 1.99 (q, J = 12.6, 8.6 Hz, 1H), 1.88 (d, J = 10.0 Hz, 1H), 1.74 (d, J = 13.2 Hz, 1H), 1.61 (q, J = 21.5, 17.0 Hz, 3H), 1.44 (t, J = 9.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 149.6, 135.9, 128.7, 128.4, 128.2, 126.8 (q, J = 3.03 Hz), 123.8, 119.0 (q, J = 33.3 Hz), 112.5, 66.4, 51.0, 44.8, 29.0, 25.7, 23.3, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.95. HRMS (ESI, m/z) calcd for C₂₁H₂₃F₃NO₂ [M+H]⁺: 378.1681, found: 378.1678.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), methyl-but-2-enoate **4n** (81 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5n** was obtained after silica gel column chromatography (EtOAc:PE = 1:40) as a separable mixture of two diastereoisomers (*trans:cis* = 2.9:1).

Data for **5n-***trans*: Yellow oil (69 mg, 29%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 8.4 Hz, 2H), 4.47 (s, 1H), 3.83 (dt, J = 7.6, 3.6 Hz, 1H), 2.89 (dt, J = 8.5, 4.4 Hz, 1H), 2.53 – 2.31 (m, 2H), 2.04 (tt, J = 9.6, 4.6 Hz, 1H), 1.90 (dtd, J = 17.0, 8.3, 3.4 Hz, 1H), 1.73 (ddt, J = 14.0, 7.6, 4.2 Hz, 1H), 1.66 – 1.56 (m, 2H), 1.52 (ddt, J = 11.7, 7.3, 3.7 Hz, 1H), 1.47 – 1.37 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 149.7, 126.6 (q, J = 4.0 Hz), 123.6, 118.5 (q, J = 33.3 Hz), 112.2, 52.8, 51.7, 49.7, 32.9, 29.7, 28.9, 20.7, 19.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.00. HRMS (ESI, *m/z*) calcd for C₁₆H₂₁F₃NO₂ [M+H]⁺: 316.1524, found: 316.1517.

Data for **5n**-*cis*: Yellow oil (24 mg, 10%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 8.3 Hz, 2H), 3.76 (s, 1H), 3.73 – 3.63 (m, 1H), 3.58 (s, 3H), 2.22 – 2.14 (m, 1H), 1.94 (t, *J* = 10.6 Hz, 1H), 1.79 (tdd, *J* = 13.6, 9.7, 5.6 Hz, 3H), 1.43 (qt, *J* = 13.8, 6.7 Hz, 1H), 1.09 – 0.96 (m, 2H), 0.92 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 149.7, 126.7 (q, *J* = 4.0 Hz), 123.7, 118.9 (q, *J* = 32.3 Hz), 112.6, 58.8, 54.4, 51.8, 35.2, 33.7, 32.7, 24.3, 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.02. HRMS (ESI, *m/z*) calcd for C₁₆H₂₁F₃NO₂ [M+H]⁺: 316.1524, found: 316.1517.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), methyl-2-(acetoxymethyl)acrylate **4o** (115 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5o** was obtained after silica gel column chromatography (EtOAc:PE = 1:20) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **5o**: Yellow oil (100.8 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 8.5 Hz, 2H), 4.38 – 4.27 (m, 2H), 4.26 – 4.19 (m, 1H), 4.18 (s, 1H), 3.68 (s, 3H), 2.03 (d, J = 7.6 Hz, 3H), 2.02 – 1.98 (m, 1H), 1.79 (tt, J = 7.7, 3.3 Hz, 1H), 1.67 – 1.58 (m, 2H), 1.58 – 1.54 (m, 2H), 1.54 (s, 1H), 1.49 – 1.40 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 170.6, 149.9, 126.7 (q, J = 1.58 (m, 2H), 1.58 – 1.54 (m, 2H), 1.54 (s, 1H), 1.49 – 1.40 (m, 1H).

4.0 Hz), 126.3, 123.6, 118.9 (q, J = 32.3 Hz), 114.2, 112.6, 65.7, 52.4, 52.0, 50.7, 28.5, 28.0, 21.9, 21.5, 20.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.04. HRMS (ESI, m/z) calcd C₁₈H₂₂F₃NNaO₄ [M+Na]⁺: 396.1399, found: 396.1393.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *N*-benzylacrylamide **4p** (118 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5p** was obtained after silica gel column chromatography (EtOAc:PE = 1:1) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **5p**: Light yellow soliid (96 mg, 35%). m.p.: 182-184 °C. ¹H NMR (400 MHz, $(CD_3)_2SO$) δ 8.14 (t, J = 6.0 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.13 (dd, J = 8.1, 4.6 Hz, 5H), 6.68 (d, J = 8.4 Hz, 2H), 6.05 (d, J = 9.2 Hz, 1H), 4.28 (dd, J = 15.5, 6.3 Hz, 1H), 4.14 (dd, J = 15.5, 5.6 Hz, 1H), 3.58 (qd, J = 10.5, 3.8 Hz, 1H), 2.26 (td, J = 11.2, 3.6 Hz, 1H), 2.02 – 1.95 (m, 1H), 1.83 (d, J = 13.0 Hz, 1H), 1.70 (d, J = 12.1 Hz, 2H), 1.54 (qd, J = 12.9, 3.2 Hz, 1H), 1.42 – 1.29 (m, 1H), 1.26 – 1.12 (m, 2H). ¹³C NMR (101 MHz, (CD₃)₂SO) δ 173.8, 151.0, 139.4, 128.0, 126.8, 126.4, 126.1 (q, J = 3.0 Hz), 124.1, 114.8 (q, J = 32.3 Hz), 111.6, 52.0, 50.7, 41.8, 32.1, 29.5, 24.7, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.75. HRMS (ESI, m/z) calcd for C₂₁H₂₄F₃N₂O [M+H]⁺: 377.1841, found: 377.1835.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *N*-phenylacrylamide **4q** (110 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5q** was obtained after silica gel column chromatography (EtOAc:PE = 1:1) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **5q**: Light yellow soliid (33 mg, 12%). m.p.: 170-172 °C. ¹H NMR (400 MHz, $(CD_3)_2SO$) δ 9.72 (s, 1H), 7.55 – 7.49 (m, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 7.26 – 7.17 (m, 2H), 7.02 – 6.94 (m, 1H), 6.68 (d, *J* = 8.5 Hz, 2H), 6.07 (d, *J* = 9.2 Hz, 1H), 3.61 (qd, *J* = 10.5, 3.8 Hz, 1H), 2.40 (ddd, *J* = 11.9, 10.2, 3.6 Hz, 1H), 2.05 – 1.99 (m, 1H), 1.93 (d, *J* = 13.3 Hz, 1H), 1.76 – 1.70 (m, 2H), 1.54 (qd, *J* = 12.8, 3.4 Hz, 1H), 1.44 – 1.32 (m, 1H), 1.24 – 1.20 (m, 1H), 1.16 – 1.06 (m, 1H). ¹³C NMR (101 MHz, $(CD_3)_2SO$) δ 173.1, 151.6, 139.7, 129.1, 126.5 (q, *J* = 4.0 Hz), 124.5, 123.4, 119.7 (q, *J* = 30.3 Hz), 115.4, (q, *J* = 32.3 Hz), 112.2, 52.4, 52.3, 51.7, 32.4, 30.6, 25.5. ¹⁹F NMR (376 MHz, $(CD_3)_2SO$) δ -60.81. HRMS (ESI, *m/z*) calcd for $C_{20}H_{22}F_3N_2O$ [M+H]⁺: 363.1684, found: 363.1378.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *N*-(tert-butyl) acrylamide **4r** (94 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5r** was obtained after silica gel column chromatography (EtOAc:PE = 1:1) as a separable mixture of two diastereoisomers (*trans:cis*= 2.2:1).

Data for **5r**-*trans*: Light yellow solid (56 mg, 22%). m.p.: 206-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 2H), 6.64 (d, *J* = 8.2 Hz, 2H), 5.40 (s, 1H), 3.91 (s, 1H), 3.50 (s, 1H), 2.18 – 2.11 (m, 1H), 1.93 (d, *J* = 13.9 Hz, 2H), 1.78 (d, *J* = 12.5 Hz, 2H), 1.67 – 1.55 (m, 1H), 1.37 (dd, *J* = 13.5, 10.8 Hz, 2H), 1.28 (d, *J* = 2.2 Hz, 1H), 1.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 150.0, 126.7 (q, *J* = 4.0 Hz), 123.8, 119.1 (q, *J* = 33.3 Hz), 112.7, 54.3, 53.9, 51.2, 33.8, 29.6, 28.8, 25.1, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.96. HRMS (ESI, *m/z*) calcd for C₁₈H₂₆F₃N₂O [M+H]⁺: 343.1997, found: 343.1993.

Data for **5***r*-*cis*: Light yellow solid (26 mg, 10%). m.p.: 193-195 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 2H), 6.62 (d, *J* = 8.4 Hz, 2H), 5.45 (s, 1H), 4.81 (s, 1H), 3.67 (dt, *J* = 7.1, 3.5 Hz, 1H), 2.52 (td, *J* = 7.5, 6.9, 3.6 Hz, 1H), 2.09 – 1.97 (m, 1H), 1.89 – 1.78 (m, 1H), 1.76 – 1.67 (m, 2H), 1.67 – 1.62 (m, 1H), 1.61 – 1.50 (m, 1H), 1.47 – 1.39 (m, 2H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 150.1, 126.8 (q, *J* = 3.0 Hz), 123.8, 118.9 (q, *J* = 31.3 Hz), 112.8, 52.0, 51.2, 46.2, 33.1, 28.9, 26.6, 23.3, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.96. HRMS (ESI, *m/z*) calcd for C₁₈H₂₆F₃N₂O [M+H]⁺: 343.1997, found: 343.1993.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), *N*,*N*-diethylacrylamide **4s** (106 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5s** was obtained after silica gel column chromatography (EtOAc:PE = 1:3) as a single diastereoisomer (*trans:cis* > 19:1).

Data for **5s**: Light yellow soliid (121 mg, 47%). m.p.: 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.3 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 3.77 (td, J = 10.7, 4.1 Hz, 1H), 3.59 (s, 1H), 3.44 (dq, J = 14.3, 7.1 Hz, 1H), 3.32 (dq, J = 14.1, 7.1 Hz, 1H), 3.27 – 3.13 (m, 2H), 2.47 (td, J = 10.8, 10.4, 3.5 Hz, 1H), 2.13 (dt, J = 11.7, 3.7 Hz, 1H), 1.79 (tt, J = 11.3, 5.8 Hz, 3H), 1.73 – 1.64 (m, 1H), 1.42 (qt, J = 12.9, 3.2 Hz, 1H), 1.30 – 1.19 (m, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 150.1, 126.5 (q, J = 4.0 Hz), 123.8, 118.6 (q, J = 32.3 Hz), 112.9, 54.4, 47.6, 42.0, 40.6, 33.9, 30.0, 25.3, 25.1, 15.2, 12.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.94. HRMS (ESI, m/z) calcd for C₁₈H₂₆F₃N₂O [M+H]*: 343.1997, found: 343.1991.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), 3-methylenedihydrofuran-2(3H)-one **4t** (69 μ L, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5t** was obtained after silica gel column chromatography (EtOAc:PE = 1:5) as a single diastereoisomer (> 19:1 d.r.).

Data for **5t**: Red oil (122 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2H), 6.61 (d, *J* = 8.4 Hz, 2H), 4.35 – 4.20 (m, 2H), 4.02 (d, *J* = 9.5 Hz, 1H), 3.42 (td, *J* = 10.0, 4.1 Hz, 1H), 2.60 (dt, *J* = 12.5, 9.1 Hz, 1H), 2.23 – 2.08 (m, 2H), 1.92 (ddd, *J* = 12.8, 6.6, 3.8 Hz, 1H), 1.87 – 1.78 (m, 2H), 1.75 – 1.62 (m, 2H), 1.61 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 150.4, 126.9 (q, *J* = 4.0 Hz), 119.6 (q, *J* = 33.3 Hz), 112.4, 65.4, 55.3, 47.7, 34.6, 32.1, 28.7, 24.8, 22.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.12. HRMS (ESI, *m/z*) calcd for C₁₆H₁₉F₃NO₂ [M+H]⁺: 314.1368, found: 314.1363.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), 3-methyleneisobenzofuran-1(3H)-one **4u** (110 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5u** was obtained after silica gel column chromatography (EtOAc:PE = 1:5) as a single diastereoisomer (> 19:1 d.r.).

Data for **5u**: Light yellow solid (114 mg, 42%). m.p.: 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.41 (dt, *J* = 7.4, 3.6 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 6.37 (d, *J* = 8.4 Hz, 2H), 3.83 (d, *J* = 8.6 Hz, 1H), 3.75 (s, 1H), 2.15 – 2.07 (m, 1H), 2.01 (ddd, *J* = 15.5, 9.0, 4.4 Hz, 2H), 1.92 (dq, *J* = 14.4, 2.9 Hz, 1H), 1.81 (tt, *J* = 9.6, 3.3 Hz, 2H), 1.77 – 1.66 (m, 1H), 1.58 (ddd, *J* = 17.0, 10.5, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 152.4, 149.4, 134.3, 129.5, 126.5 (q, *J* = 4.0 Hz), 126.3, 125.8, 123.5, 194.9, 119.5 (q, *J* = 32.3 Hz), 112.6, 88.8, 56.5, 37.2, 30.4, 25.1, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.18. HRMS (ESI, *m/z*) calcd for C₂₀H₁₉F₃NO₂ [M+H]⁺: 362.1368, found: 362.1365.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), 2-methylene-2,3-dihydro-1H-inden-1-one **4v** (108 mg, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5v** was obtained after silica gel column chromatography (EtOAc:PE = 1:10) as a single diastereoisomer (> 19:1 d.r.).

Data for **5v**: Yellow oil (108 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.7 Hz, 1H), 7.59 (td, J = 7.4, 1.2 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.30 – 7.24 (m, 2H), 6.54 (d, J = 8.5 Hz, 2H), 3.90 (dd, J = 12.0, 3.8 Hz, 1H), 3.48 (s, 1H), 3.19 (d, J = 17.6 Hz, 1H), 3.03 (d, J = 17.6 Hz, 1H), 2.10 – 2.02 (m, 1H), 1.89 – 1.80 (m, 2H), 1.77 (dd, J = 8.1, 3.9 Hz, 1H), 1.58 – 1.48 (m, 2H), 1.47 – 1.39 (m, 1H), 1.36 – 1.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 210.0, 152.8, 149.7, 136.9, 135.1, 127.8, 126.5 (q, J = 4.0 Hz), 124.5, 119.5 (q, J = 32.3 Hz), 113.2, 56.0, 55.2, 35.1, 34.0, 30.9, 25.2, 22.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.12. HRMS (ESI, m/z) calcd for C₂₁H₂₁F₃NO [M+H]⁺: 360.1575, found: 360.1570.

Following **GP8** with 4-*tert*-butyl-*N*-cyclobutylaniline **1a** (194 mg, 0.9 mmol), 3-methylenebicyclo [2.2.1] heptan-2-one **4w** (94 µL, 0.75 mmol), **QXPT-NPhCN** (13.2 mg, 0.0375 mmol), and dry DCM (18.75 mL), cycloadduct **5w** was obtained after silica gel column chromatography (EtOAc:PE = 1:20) as a single diastereoisomer (> 19:1 d.r.).

Data for **5w**: Yellow solid (139 mg, 55%). m.p.: 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.3 Hz, 2H), 5.15 (s, 1H), 3.55 (d, *J* = 3.7 Hz, 1H), 2.71 (d, *J* = 3.8 Hz, 1H), 2.53 (d, *J* = 5.2 Hz, 1H), 2.05 – 1.95 (m, 2H), 1.86 (dt, *J* = 14.9, 3.6 Hz, 1H), 1.77 (tt, *J* = 12.0, 3.3 Hz, 2H), 1.69 (dt, *J* = 12.5, 5.0 Hz, 1H), 1.64 – 1.56 (m, 4H), 1.44 (ddd, *J* = 14.1, 11.0, 4.4 Hz, 3H), 1.21 (dd, *J* = 12.7, 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 220.8, 150.5, 126.6 (q, *J* = 3.0 Hz), 123.8, 118.2 (q, *J* = 32.3 Hz), 112.2, 53.5, 51.8, 50.2, 42.2, 35.3, 26.6, 26.1, 25.4, 22.4, 21.8, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.89. HRMS (ESI, *m/z*) calcd for C₁₉H₂₃F₃NO [M+H]⁺: 338.1732, found: 338.1728.

7. Limitations of substrates

Scheme S1. Selected unsuccessful cyclobutylamine and olefin substrates.

The scheme S1 lists cyclobutylamine and olefin partners that have not been successfully tested or have low yields. For these substrates shown in Scheme S1, crude ¹H NMR analysis was performed after 13 h of illumination according to the 0.75 mmol ratio of **GP7** and **GP8**. The unconsumed starting materials were returned alone or degradation was observed in the crude reaction mixture (Scheme S1a). The reactivity of intracyclic olefins is poor. Olefin ketones, ene esters and ene amides can only obtain trace products. Intracyclic alkyl olefins, electron-rich group substituted olefins, conjugated diene and exocyclic alkyl olefins could not react (Scheme S1b).

8. Mechanistic Studies

8.1 Radical Inhibition Experiment

In the reaction of **1a** and **2a** in the presence of **QXPT-NPhCN** (5.0 mol%), different equivalents of free radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine oxide) and antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) were added, and the mixture was stirred for 13 hours under the irradiation of 18 W blue LED. When TEMPO is 1.0 eq., the **3a** is 9% yield and >19:1 d.r.. When TEMPO is 2.0 eq., the **3a** is 0% yield. When BHT was 2.0 eq., the **3a** is 5% yield and >19:1 d.r. When BHT is 2.0 eq., the desired product **3a** was not observed (Scheme S2). These two experiments indicate that the reaction is carried out through a free radical pathway.

Scheme S2. Radical inhibition experiment.

Under standard reaction conditions, *N*-cyclobutyl-*N*-methyl-4-trifluoromethylaniline (9) did not react with 2a (Scheme S3). This experiment shows that the N-H of trifluoromethylcyclobutanamine 1a may be essential for the generation of carbon radicals through the ring opening of cyclobutane.

Scheme S3. Study on the reactivity of tertiary arylcyclobutylamine.

8.2 Emission Quenching Experiments

Figure S2. Excitation and emission spectra of QXPT-NPhCN in DMF.

Emission intensities were recorded on a spectrofluorometer. The **QXPT-NPhCN** solution was excited at 414 nm and the emission intensity at 501 nm was observed (Figure S2). A solution of **QXPT-NPhCN** (5.0×10^{-4} M) in DMF was added to the appropriate amount of quencher in 10.0 mL volumetric flask under argon. Transfer 3.0 mL of this solution to a quartz cell and collect the emission spectrum of the sample (Figure S3-S5).

Figure S3. Stern–Volmer quenching experiment of QXPT-NPhCN and 1a.

Figure S4. Stern–Volmer quenching experiment of QXPT-NPhCN and 2a.

Figure S5. Stern–Volmer quenching experiment of QXPT-NPhCN and 4p.

It can be seen from the fluorescence quenching test that the substrate 4-trifluoromethylphenylcyclobutanamine (1a) can significantly quench the photocatalyst **QXPT-NPhCN**, showing a clear linear relationship: y = 5.75x + 1.00607, $R^2 = 0.99833$. Different types of olefins, such as acrylonitrile (2a) and *N*-benzyl acrylamide (4p), could not quench **QXPT-NPhCN**. Therefore, it was proved that substrate 1a preferentially reacted with the excited state of **QXPT-NPhCN** during the reaction (Figure S3-S5).

8.3 Cyclic Voltammetry Measurement

Cyclic voltammetry was performed on a Shanghai Chenhua T-660M electrochemical analyzer. CV measurements were performed with the three-electrode CHI660E potentiostation by using a glassy carbon working electrode, a platinum wire counter electrode, saturated KCI Ag/AgCI as a reference electrode. The voltammograms were taken in a dry MeCN solution ([*n*-Bu₄NBF₄] = 0.1 M, [substrate] = 1 mM in MeCN), each measurement was conducted at 0.1 V/s at room temperature under nitrogen atmosphere without stirring. The obtained potentials were calibrated to the saturated calomel electrode (SCE) scale with a ferrocene/ferrocenium ion couple.¹⁰ The obtained potential is half of the sum of the potentials of the adjacent peaks and troughs of the cyclic voltammetry curve (half-wave potential).¹¹ The polishing material is deer skin, the Al_2O_3 powder (particle size 0.3 µm) is placed on the deer skin wetted by distilled water, the surface of the glassy carbon electrode and the platinum wire electrode is polished, and then washed with distilled water, followed by ultrasonic cleaning with acetone and ethanol for 10 min, and finally washed with distilled water.

Figure S6. Cyclic voltammogram of Ferrocene in MeCN (IUPAC). CV conditions: Ferrocene (1 mM) in *n*-Bu₄NBF₄ (0.1 M in MeCN). *n*-Bu₄NBF₄ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated KCI Ag/AgCI reference electrode. Starting point: (1.2 V, 3.32E-05 A). Initial scan direction: negative. Initial potential = 1.2 V, Scan rate = 0.1 V/s.

Figure S7. Cyclic voltammogram of **1a** in MeCN (IUPAC). CV conditions: **1a** (1 mM) in n-Bu₄NBF₄ (0.1 M in MeCN). n-Bu₄NBF₄ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated KCI Ag/AgCI reference electrode. Starting point (P⁺/P): (2.0 V, 7.49E-05 A), Initial scan direction: negative. Initial potential = 2.0 V, Scan rate = 0.1 V/s.

Figure S8. Cyclic voltammogram of **QXPT-NPhCN** in MeCN (IUPAC). CV conditions: **QXPT-NPhCN** (1 mM) in *n*-Bu₄NBF₄ (0.1 M in MeCN). *n*-Bu₄NBF₄ was used as the supporting electrolyte, glassy carbon working electrode, platinum wire counter electrode, saturated KCI Ag/AgCI reference electrode. Starting point (P/P⁻): (-1.0 V, 4.399E-06 A), Initial scan direction: negative. Starting point (P⁺/P): (1.7 V,1.823E-05 A), Initial scan direction: negative. Initial potential (P/P⁻) = -1.0 V, Scan rate = 0.1 V/s. Initial potential (P⁺/P) = 1.7 V, Scan rate = 0.1 V/s.

The oxidation peak potential of **1a** was measured to be 1.21 V vs. SCE, which was more positive than the reduction potential of photoexcited **QXPT-NPhCN** ($E_{1/2}^{(P^+/P^-)} = + 0.85$ V vs. SCE). Although thermodynamically unfavorable, such SET processes have been reported as long as there is an overlap between the oxidation (or reduction) peak potential of **1a** and the redox potential of the excited state of the photocatalyst.¹² In addition, the SET process is more likely to be completed if it is followed by an irreversible chemical reaction.¹²

Table S7. Redox potential and photophysical properties of common visible light photocatalysts

Photocatalyst	Emission $\lambda_{max}(nm)^{b}$	E _{S1} (V) ^c	E _{1/2} (P*/P-)(V) ^{c,e,g}	E _{1/2} ^(P/P-) (V) ^d	E _{1/2} (P+/P*)(V) ^{c,f,g}	$E_{1/2} \stackrel{(P+/P)}{=} (V)^d$
QXPT-NPhCN	501	2.48	(+0.85)	-1.63	(-1.25)	+1.23
4CzIPN ¹³	535	2.32	+1.35 (+1.11)	-1.21	-1.04 (-0.80)	+1.52
[lr(dtbbpy)(ppy)2]PF6 ¹⁴	581	2.13	+0.66 (+0.62)	-1.51	-0.96 (-0.92)	+1.21
Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ ¹⁴	470	2.64	+1.21 (+1.21)	-1.37	-0.89 (-0.95)	+1.69
[Ru(bpz) ₃](PF ₆) ₂ ¹⁴	591	2.10	+1.45 (+1.30)	-0.80	-0.26 (-0.24)	+1.86

^aUV-vis.absorption spectra obtained in DMF; ^bEmission wavelength measured using fluorescence spectroscopy in DMF; ^cSinglet energy is estimated by the maximum wavelength emitted, E_s=1240/λ; ^dCyclic voltammetry, Ar atmosphere, voltammetry obtained in dry MeCN solution

 $([n-Bu_4NBF_4] = 0.1 \text{ M}, [photocatalyst] = 1 \text{ mM} in MeCN, withKCI Ag/AgCl as the reference electrode); eSinglet energy (estimated from the maximum emission wavelength) and E_{1/2} to calculate the singlet excited state reduction potential (E*_{1/2}^{P/P-}=E_{1/2}^{P/P-}+E_{S1}); ¹Calculate the singlet excited oxidation potential (E*_{1/2}^{P/P-}=E_{1/2}^{P/P-}+E_{S1}), using singlet energy (estimated from the maximum emission wavelength) and E_{1/2}. ^gIn parentheses is the estimated value.$

As can be seen from Table S7, compared with other common visible light photocatalysts, **QXPT-NPhCN** has the lowest oxidation potential in the excited state ($E_{1/2}^{(P+/P^*)} = -1.25 \text{ V vs. SCE}$), which means that in the excited state, the free radical anion **QXPT-NPhCN**⁻ is very easy to lose electrons back to the ground state. Therefore, this may be an important reason why **QXPT-NPhCN** is superior to other photocatalysts in this reaction system.

Figure S9. Cyclic voltammetric curves of mixture of QXPT-NPhCN and K₃PO₄ (1:1.5, in MeCN) (IUPAC).

In the cyclic voltammogram of the mixture of photocatalyst **QXPT-NPhCN** and K_3PO_4 (1:1.5), no new local maximum was observed except for the peak of **QXPT-NPhCN**, and the addition of K_3PO_4 had no significant effect on the potential of the original oxidation peak and reduction peak of **QXPT-NPhCN**. This experiment shows that there is no interaction between **QXPT-NPhCN** and K_3PO_4 in the mixture (Figure S9).

Note: Due to the particularly poor solubility of potassium phosphate, we employed ultrasonic vibration and agitation to promote its micro-dissolution.

9. Synthetic applications

Scheme S4. Product derivatizations.

Compound **5g** (500 mg, 1.33 mmol, 1.0 equiv) was placed in 13.3 mL ethanol, and *N*, *N*-dimethylformamide dimethyl acetal (DMF-DMA) (485 μ L, 7.98 mmol, 6.0 equiv) was added under stirring at room temperature. When **5g** completely disappeared, the reaction solution was concentrated under reduced pressure, slowly added water to quench the reaction, and extracted with DCM (20 mL x 3).

The organic phase was collected, washed with saturated salt water, and dried with anhydrous Na_2SO_4 . The organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE : EtOAc = 1 : 1) to obtain a pair of diastereomers (93%, 2.6 : 1 dr), and the main product was **6a** (288 mg, 67% yield).

Compound **6a** (100 mg, 0.31 mmol, 1.0 equiv) was placed in 10 mL MeCN, and then compound **7a**¹⁵ (122 mg, 0.47 mmol, 1.5 equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) (72 μ L, 0.47 mmol, 1.5 equiv) were added, protected by argon, stirred at room temperature, and monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE: EtOAc = 1:100) to obtain white solid compound **8a** (124 mg, 82 % yield).

Compound **6a** (100 mg, 0.31 mmol, 1.0 equiv) was placed in 10 mL MeCN, and then compound **7b**¹⁵ (129 mg, 0.47 mmol, 1.5 equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) (72 μ L, 0.47 mmol, 1.5 equiv) were added. The reaction was monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE: EtOAc = 1:100) to obtain white solid compound **8b** (119 mg, 76 % yield).

Compound **6a** (100 mg, 0.31 mmol, 1.0 equiv) was placed in 10 mL MeCN, followed by the addition of sodium salt **7c**¹⁵ (133mg, 0.47 mmol, 1.5 equiv) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) (72 μ L, 0.47 mmol, 1.5 equiv) were added. The reaction was monitored by TLC. After 10 h of reaction, the organic solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography (PE: EtOAc = 1:100) to obtain light yellow solid compound **8c** (144 mg, 95 % yield).

Data for **6a**: Reddish-brown oil (288 mg, 67 % yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.36 (d, *J* = 8.3 Hz, 2H), 6.77 (s, 2H), 6.74 (d, *J* = 8.9 Hz, 2H), 6.27 (d, *J* = 8.2 Hz, 1H), 3.83 (dq, *J* = 8.6, 5.6, 4.1 Hz, 1H), 2.99 (td, *J* = 7.4, 4.6 Hz, 1H), 2.07 (ddt, *J* = 18.1, 13.7, 5.6 Hz, 2H), 1.76 (m, 2H), 1.71 – 1.62 (m, 1H), 1.45 – 1.36 (m, 2H), 1.34 – 1.26 (m, 1H). ¹³C NMR (101 MHz, (CD₃)₂SO) δ 150.3, 126.2 (q, *J* = 3.0 Hz), 124.0, 115.6 (q, *J* = 31.3 Hz), 112.0, 63.0, 49.4, 29.6, 24.6, 22.6, 22.0. ¹⁹F NMR (376 MHz, (CD₃)₂SO) δ -58.98. HRMS (ESI, *m/z*) calcd for C₁₃H₁₈F₃N₂O₂S [M+H]⁺: 323.1041, found: 323.1038.

Data for **8a**: White solid (124 mg, 82 % yield), m.p.: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.59 (s, 1H), 8.00 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.45 (d, *J* = 8.3 Hz, 2H), 6.03 (s, 1H), 4.12 (d, *J* = 9.6 Hz, 1H), 3.85 (s, 1H), 3.83 – 3.76 (m, 1H), 3.71 (s, 3H), 2.44 (d, *J* = 13.4 Hz, 1H), 2.12 (d, *J* = 20.5 Hz, 1H), 2.04 (s, 3H), 1.88 (d, *J* = 10.6 Hz, 1H), 1.73 (d, *J* = 9.5 Hz, 2H), 1.32 (d, *J* = 14.7 Hz, 1H), 1.29 – 1.22 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 151.0, 149.2, 126.4 (q, *J* = 4.0 Hz), 126.1, 123.4, 118.9 (q, *J* = 32.3 Hz), 112.0, 111.8, 101.8, 64.3, 54.2, 52.0, 34.1, 25.6, 24.6, 23.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.21. HRMS (ESI, *m/z*) calcd for C₂₀H₂₅F₃N₅O₄S [M+H]⁺: 488.1579, found: 488.1574.

Data for **8b**: White solid (119 mg, 76 % yield), m.p.: 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.22 (d, J = 5.2 Hz, 1H), 7.61 (s, 1H), 7.29 – 7.22 (m, 1H), 7.16 (d, J = 8.3 Hz, 1H), 6.96 – 6.83 (m, 1H), 6.54 (dd, J = 16.0, 8.3 Hz, 2H), 5.61 (s, 1H), 4.09 (d, J = 9.5 Hz, 1H), 3.95 – 3.84 (m, 1H), 3.83 – 3.58 (m, 6H), 2.55 – 2.47 (m, 1H), 2.15 (d, J = 13.7 Hz, 1H), 1.95 (d, J = 10.8 Hz, 1H), 1.81 (m, 2H), 1.58 (d, J = 8.3 Hz, 1H), 1.35 (dd, J = 23.4, 12.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 150.5, 148.9, 141.6, 129.8, 126.6 (q, J = 4.0 Hz), 120.7, 119.4 (q, J = 31.3 Hz), 115.5, 111.8, 85.2, 64.5, 54.6, 51.9, 48.7, 34.2, 25.7, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.26. HRMS (ESI, m/z) calcd for C₂₀H₂₄F₃N₅NaO₅S [M+Na]⁺: 526.1348, found: 526.1342.

Data for **8c**: Light yellow solid (144 mg, 95 % yield), m.p.: 161-163 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.02 (s, 1H), 8.36 (s, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 6.57 (d, *J* = 8.4 Hz, 2H), 4.13 (dd, *J* = 8.1, 5.5 Hz, 1H), 3.92 (s, 3H), 3.86 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.78 (td, *J* = 11.3, 10.5, 3.8 Hz, 1H), 2.50 (dd, *J* = 13.6, 3.7 Hz, 1H), 2.28 (s, 3H), 2.17 – 2.10 (m, 1H), 2.00 – 1.93 (m, 1H), 1.89 – 1.78 (m, 2H), 1.48 – 1.38 (m, 1H), 1.38 – 1.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 150.2, 149.2, 126.6 (q, *J* = 4.0 Hz), 126.0, 123.3, 119.3 (q, *J* = 33.3 Hz), 112.1, 64.5, 55.6, 52.2, 34.3, 25.4, 25.1, 24.6, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.35. HRMS (ESI, *m/z*) calcd for C₁₉H₂₄F₃N₆O₄S [M+H]⁺: 489.1532, found: 489.1530.

10. X-ray Crystallographic Details

10.1 Compound 3f

The preparation of crystal **3f**: A light yellow sheet-shaped crystal of **3f** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **3f** in a 25 mL round bottom flask with the solvent of dichlorometan and *n*-hexane (V:V = 3:1) at room temperature. The X-ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of **3f** are given in Figure S10 and Table S8.

Figure S10. The Crystal parameters of 3f wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2236343).

Identification code	3f
Empirical formula	$C_{12}H_{15}N_3$
Formula weight	201.27
Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pbca
a/Å	8.2123(4)
b/Å	8.7897(3)
c/Å	30.3416(12)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2190.17(16)
Z	8
pcalcg/cm ³	1.221
µ/mm ⁻¹	0.075
F (000)	864.0
Crystal size/mm ³	0.13 × 0.11 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.37 to 54.994
Index ranges	$-10 \le h \le 9, -11 \le k \le 11, -33 \le l \le 39$
Reflections collected	18586
Independent reflections	2511 [R_{int} = 0.0629, R_{sigma} = 0.0390]
Data/restraints/parameters	2511/0/136

Table S8. C	Crystal data	and structure	refinement for 3	f
-------------	--------------	---------------	------------------	---

Goodness-of-fit on F ²	1.154
Final R indexes [I>=2σ (I)]	$R_1 = 0.0684, wR_2 = 0.1396$
Final R indexes [all data]	R ₁ = 0.0975, wR ₂ = 0.1531
Largest diff. peak/hole / e Å ⁻³	0.22/-0.19

10.2 Compound 5p

The preparation of crystal **5p**: A light yellow sheet-shaped crystal of **5p** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **5p** in a 25 mL round bottom flask with the solvent of dichlorometan and *n*-hexane (V:V = 4:1) at room temperature. The X-ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of **5p** are given in Figure S11 and Table S9.

Figure S11. The Crystal parameters of 5p wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2236344).

Table S9.	Crystal da	ta and structure	e refinement for 5p
-----------	------------	------------------	----------------------------

Identification code	5р
Empirical formula	$C_{21}H_{23}F_3N_2O$
Formula weight	376.41
Temperature/K	192.90
Crystal system	monoclinic
Space group	P21/c
a/Å	11.3145(15)
b/Å	4.9401(6)
c/Å	33.363(4)
α/°	90
β/°	92.022(4)
γ/°	90
Volume/Å ³	1863.6(4)
Z	4
pcalcg/cm ³	1.342
µ/mm ⁻¹	0.103

F (000)	792.0
Crystal size/mm ³	0.13 × 0.11 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.28 to 55.358
Index ranges	-8 ≤ h ≤ 14, -6 ≤ k ≤ 6, -43 ≤ l ≤ 43
Reflections collected	12894
Independent reflections	4357 [$R_{int} = 0.0651, R_{sigma} = 0.0768$]
Data/restraints/parameters	4357/0/244
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0670, wR_2 = 0.1408$
Final R indexes [all data]	$R_1 = 0.1407, wR_2 = 0.1758$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.33

10.3 Compound 5w

The preparation of crystal **5w**: A light yellow sheet-shaped crystal of **5w** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **5w** in a 25 mL round bottom flask with the solvent of dichlorometan and *n*-hexane (V:V = 4:1) at room temperature. The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer (Mo). The details of the structure and crystal data details of **5w** are given in Figure S12 and Table S10.

Figure S4. The Crystal parameters of 5w wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2234700).

Table S10. Crystal data and structure refinement for 5w

Identification code	5w
Empirical formula	$C_{19}H_{22}F_3NO$

Formula weight	337.37
Temperature/K	113.15
Crystal system	tetragonal
Space group	I-4
a/Å	13.5660(3)
b/Å	13.5660(3)
c/Å	18.1175(6)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3334.28(18)
Z	8
pcalcg/cm ³	1.344
µ/mm ⁻¹	0.105
F (000)	1424.0
Crystal size/mm ³	0.48 × 0.26 × 0.22
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.75 to 57.382
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -23 \le l \le 24$
Reflections collected	21324
Independent reflections	4313 [$R_{int} = 0.0485$, $R_{sigma} = 0.0333$]
Data/restraints/parameters	4313/0/222
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2σ (I)]	$R_1 = 0.0368, wR_2 = 0.0830$
Final R indexes [all data]	$R_1 = 0.0405, wR_2 = 0.0859$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.15
Flack parameter	0.2(3)

10.4 Compound 8a

The preparation of crystal **8a**: A light yellow sheet-shaped crystal of **8a** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **8a** in a 25 mL round bottom flask with the solvent of ethyl acetate at room temperature. The X-ray intensity data was measured on a Bruker D8 Venture single crystal diffractometer (Mo). The details of the structure and crystal data details of **8a** are given in Figure S13 and Table S11.

Figure S5. The Crystal parameters of 8a wherein thermal ellipsoid is drawn at 50% probability (CCDC No. 2236522).

Identification code	8a	
Empirical formula	$C_{20}H_{24}F_{3}N_{5}O_{4}S$	
Formula weight	487.1501	
Temperature/K	193.00	
Crystal system	triclinic	
Space group	P-1	
a/Å	11.1319(6)	
b/Å	12.1324(6)	
c/Å	124463(2)	
α/°	68.619(2)	
β/°	81.912(2)	
γ/°	65.651(2)	
Volume/Å ³	1425.95(13)	
Z	2	
pcalcg/cm ³	1.341	
µ/mm ⁻¹	0.179	
F (000)	604.0	
Crystal size/mm ³	0.13 × 0.11 × 0.1	
Radiation	ΜοΚα (λ = 0.71073)	
2Θ range for data collection/°	3.514 to 55.04	

Table S11. Crystal data and structure refinement for 8a

Index ranges	$-14 \le h \le 11$, $-15 \le k \le 14$, $-16 \le l \le 16$
Reflections collected	13282
Independent reflections	6477 [$R_{int} = 0.0531, R_{sigma} = 0.0817$]
Data/restraints/parameters	6477/0/356
Goodness-of-fit on F ²	1.040
Final R indexes [I>=2σ (I)]	$R_1 = 0.0715$, $wR_2 = 0.1884$
Final R indexes [all data]	$R_1 = 0.1261, wR_2 = 0.2266$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.35

11. References

- (1) (a) C. O. Okafor, J. Heterocycl. Chem., 1981, 18, 405-407; (b) R. Podsiadły and R. Strzelczyk, Dyes Pigments, 2013, 97, 462-468; (c) Z. Luo, B. Cao, T. Song, Z. Xing, J. Ren and Z. Wang, J. Org. Chem., 2022, 87, 15511-15529.
- (2) K. Joshi, P. Chand and A. Dandia, Indian J. Chem. Sect. B, 1984, 15, 28.
- (3) N. Edayadulla and Y. R. Lee, RSC Adv., 2014, 4, 11459-11468.
- (4) J. Wang and N. Zheng, Angew. Chem. Int. Ed., 2015, 54, 11424-11427.
- (5) D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5, 2453-2455.
- (6) N. Purkait, G. Kervefors, E. Linde and B. Olofsson, Angew. Chem. Int. Ed., 2018, 130, 11597-11601.
- (7) X. He and F. Xue, *Tetrahedron Lett.*, 2014, **55**, 1956-1958.
- (8) M. V. Riofski, J. P. John, M. M. Zheng, J. Kirshner and D. A. Colby, *J. Org. Chem.*, 2011, **76**, 3676-3683
- (9) D. Crich, C. Chen, J.-T. Hwang, H. Yuan, A. Papadatos and R. I. Walter, J. Am. Chem. Soc., 1994, 116, 8937-8951.
- (10) H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett, 2016, 27, 714-723.
- (11) P. Given, Nature, 1958, 181, 1001-1002.
- (12) (a) Y. Yasu, T. Koike and M. Akita, *Adv. Synth. Catal.*, 2012, **354**, 3414-3420; (b) D. N. Primer, I. Karakaya, J. C. Tellis and G. A. Molander, *J. Am. Chem. Soc.*, 2015, **137**, 2195-2198.
- (13) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.
- (14) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
- (15) L. Wu, Y.-C. Gu, Y.-H. Li, S. Zhou, Z.-W. Wang and Z.-M. Li, *Molecules*, 2022, 27, 2362.

12. NMR Spectra of New Compounds

S38

S59

 O_2N

3c-*cis* ¹H NMR (400 MHz, CDCl₃)

S75

9 1222222 888888 00 h-9 2 -- 12 9688 0 6 4.6.6.6.6.4.4.4.88 4. ÷ 4 $\int \int$ NC' 3f

¹H NMR (400 MHz, CDCl₃)

Ċ**,**∕N ΗN. NC'

3g-*trans* ¹H NMR (400 MHz, CDCl₃)

S100

S120

S139

512233230 E 23 PhO H F₃C 5I-trans ¹H NMR (400 MHz, CDCl₃)

S171

S186

S206

S213

