Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Regio- and Stereocontrolled Synthesis of Borylated *E*-Enynes, *Z*-Enediynes and Derivatives from Alkenyl-1,2-Bis-(boronates)

Malavath Ratanlal,^a Jayaram Vankudoth,^a Gangavaram V. M. Sharma,^a Maruti A. Mali,^a Bertrand Carboni,^b Fabienne Berrée^{, *b} Subhash Ghosh^{*a}

^a Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.

^b Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.

subhash@iict.res.in ; fabienne.berree@univ-rennes.fr

Table of Contents

I.	General information	S2
II.	Synthesis and characterization of compounds 3 to 10	S2
III.	. NMR spectra of new compounds	S13

I. General information.

Unless otherwise noted, all solvents and all commercially available chemicals were used without further purification. Air- and water-sensitive reactions were performed in flame-dried glassware under an argon atmosphere. Anhydrous tetrahydrofuran was obtained after distillation over sodium/benzophenone and anhydrous dichloromethane after distillation over calcium hydride. For oxygen-sensitive reaction, when specified, the solvent was degassed prior to use by slow bubbling of argon. ¹H NMR (300, 400 or 500 MHz), ¹³C NMR (101 or 126 MHz), ¹¹B (128 MHz), and ¹⁹F (376 MHz) spectra were recorded on Bruker AC 300, AC 400 and AC 500 spectrometers. Chemical shifts δ are given in ppm, and coupling constants *J* in Hertz. Multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, hex = hexuplet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were recorded on Q TOF (Agilent) using positive-ion electron-spray ionization techniques (ESI⁺). The compounds were purified by column chromatography on 0.060–0.200 mm, 60 Å silica. Analytical thin-layer chromatography was performed on Merck silica gel 60 F254 plates. The ethereal solution of CH₂N₂ was generated from *N*-nitroso-*N*-methylurea according to the literature.¹

II. Synthesis and characterization of compounds 3 to 10.

(E)-2-(5-(4-(Benzyloxy)-3-methoxyphenyl)-1-cyclohexylpent-2-en-4-yn-2-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (3a). Prepared according to the general procedure **A** as described in main text in 52% (0.126 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; $R_f = 0.5$) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.28 (m, 5H), 6.99-6.93 (m, 2H), 6.82 (dd, J = 13.3, 5.2 Hz, 1H), 6.09 (s, 1H), 5.15 (s, 2H), 3.86 (s, 3H), 2.14 (dd, J = 7.0, 0.9 Hz, 2H), 1.73-1.63 (m, 5H), 1.45-1.35 (m, 1H), 1.32 (s, 12H), 1.21-1.11 (m, 3H), 0.92-0.83 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.3, 148.5, 137.0, 128.7, 128.0, 127.4, 124.7, 121.0, 117.0, 114.8, 113.7, 91.6, 87.9, 83.7, 71.0, 56.1, 44.8, 38.4, 33.4, 26.7, 26.5, 25.0, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 33.0; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₃₁H₄₀¹¹BO₄ 487.3020; Found 487.3009.

¹ Because of its explosiveness and toxicity, diazomethane was directly generated in diethyl ether and used without further purification after simple decantation, see: Ernst Redemann, C.; Rice, F. O.; Roberts, R.; Ward H. P. *Org. Synth.* 1945, **25**, 28.

(E)-3-(5-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-1-yn-1-

yl)benzonitrile (3b). Prepared according to the general procedure **A** as described in main text in 55% (0.110 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, J = 1.3 Hz, 1H), 7.63-7.61 (m, 1H), 7.56-7.53 (m, 1H), 7.41 (t, J = 7.8 Hz, 1H), 6.09 (s, 1H), 2.17 (dd, J = 7.0, 0.8 Hz, 2H), 1.71-1.67 (m, 5H), 1.44-1.37 (m, 1H), 1.32 (s, 12H), 1.18-1.11 (m, 3H), 0.93-0.87 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.4, 134.8, 131.1, 129.3, 125.9, 120.0, 118.3, 112.8, 91.7, 88.9, 83.9, 44.9, 38.4, 33.4, 26.6, 26.5, 25.0, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 30.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₄H₃₁¹¹BNO₂ 376.2448; Found 376.2448.

(*E*)-2-(1-Cyclohexyl-5-(3,4,5-trimethoxyphenyl)pent-2-en-4-yn-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (3c). Prepared according to the general procedure **A** as described in main text in 55% (0.121 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 2H), 6.08 (s, 1H), 3.85 (s, 3H), 3.83 (s, 6H), 2.15 (dd, J = 7.0, 0.9 Hz, 2H), 1.73-1.67 (m, 5H), 1.41-1.35 (m, 1H), 1.32 (s, 12H), 1.22-1.15 (m, 3H), 0.94-0.84 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1, 138.7, 120.7, 119.2, 108.7, 91.4, 88.2, 83.7, 61.1, 56.2 (2C), 44.8, 38.4, 33.4, 26.6, 26.5, 25.0, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 31.1; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₆H₃₈¹¹BO₅ 441.2812; Found 441.2820.

(*E*)-4-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)oct-3-en-1-yn-1-yl) benzonitrile (3d). Prepared according to the general procedure **A** as described in main text in 58% (0.097 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 6.15 (s, 1H), 2.29-2.26 (m, 2H), 1.44-1.39 (m, 2H), 1.32 (s, 12H), 1.27-1.24 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 132.1, 131.9, 129.2, 119.1, 118.8, 111.1, 93.8, 89.8, 83.9, 36.7, 31.6, 25.0, 22.5, 14.1, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 30.3; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₁H₂₇¹¹BNO₂ 336.2135; Found 336.2129.

(*E*)-4,4,5,5-*Tetramethyl-2-(1-(3,4,5-trimethoxyphenyl)oct-3-en-1-yn-4-yl)-1,3,2-dioxaborolane* (*3e*). Prepared according to the general procedure **A** as described in main text in 54% (0.121 g) yield, (0.216 g) on a 1 mmol scale. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 6.68 (s, 2H), 6.13 (s, 1H), 3.85 (s, 3H), 3.83 (s, 6H), 2.27-2.24 (m, 2H), 1.41-1.37 (m, 2H), 1.32 (s, 12H), 1.27-1.24 ((m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 153.1, 138.7, 119.8, 119.2, 108.7, 91.6, 88.3, 83.7, 61.1, 56.2 (2C), 36.6, 31.8, 29.8, 25.1, 22.5, 14.1, the carbon α to boron was not found; ¹¹B {¹H} NMR (128 MHz, CDCl₃) δ 30.4; HRMS (ESI) m/z: [M+NH4]⁺ Calculated for C₂₃H₃₇¹¹BNO₅ 418.2765; Found 418.2753.

(*E*)-*Trimethyl*(*1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(3,4,5-trimethoxyphenyl) but-<i>1-en-3-yn-1-yl) silane (3f)*. Prepared according to the general procedure **A** as described in main text in 62% (0.129 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.67 (s, 2H), 6.51 (s, 1H), 3.85 (s, 3H), 3.82 (s, 6H), 1.33 (s, 12H), 0.14 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.3, 140.1, 130.7, 119.9, 110.0, 93.5, 90.4, 84.8, 62.3, 57.3 (2C), 26.3, 0.02; the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 32.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₂H₃₄¹¹BO₅Si 417.2269; Found 417.2273.

(E)-3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trimethylsilyl)but-3-en-1-yn-1-

yl)benzonitrile (3g). Prepared according to the general procedure **A** as described in main text in 56% (0.098 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.56 (m, 3H), 7.42 (t, J = 7.8 Hz, 1H), 6.50 (s, 1H), 1.31 (s, 12H), 0.15 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.6, 134.9, 131.4, 129.4, 128.8, 125.4, 118.2, 113.0, 92.3, 89.4, 83.8, 25.1, -1.3, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 33.4; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₇¹¹BNO₂Si 352.1904; Found 352.1898.

(E)-2-(4-Ethyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-5-yn-3-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (3h). Prepared according to the general procedure A as described in main text in 55% (0.116 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 2H), 3.85 (s, 3H), 3.84 (s, 6H), 2.36-2.23 (m, 4H), 1.31 (s, 12H), 1.16 (t, J = 7.5 Hz, 3H), 1.00 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1, 138.5, 133.7, 119.5, 108.8, 90.8, 90.3, 83.5, 61.1, 56.2 (2C), 25.9, 25.1, 24.1, 14.4, 13.5, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 33.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₃H₃₄¹¹BO₅ 401.2499; Found 401.2510.

(E)-3-(4-Cyclopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)

pyridine (3i). Prepared according to the general procedure **A** as described in main text in 57% (0.84 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (dd, J = 2.1, 0.8 Hz, 1H), 8.47 (dd, J = 4.9, 1.7 Hz, 1H), 7.67 (dt, J = 7.9, 1.9 Hz, 1H), 7.22 (ddd, J = 7.9, 4.9, 0.9 Hz, 1H), 6.09 (s, 1H), 1.65-1.61 (m, 1H), 1.30 (s, 12H), 0.82-0.77 (m, 2H), 0.71-0.66 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.1, 148.1, 138.2, 123.1, 121.4, 115.4, 92.6, 87.8, 84.0, 25.0, 17.8, 8.2, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 32.6; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃¹¹BNO₂ 296.1822; Found 296.1827.

(*E*)-3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)non-3-en-1-yn-1-yl) pyridine (3j). Prepared according to the general procedure **A** as described in main text in 55% (0.090 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 1.4 Hz, 1H), 8.49 (dd, J = 4.9, 1.6 Hz, 1H), 7.70 (dt, J = 7.9, 1.9 Hz, 1H), 7.23 (ddd, J = 7.9, 4.9, 0.8 Hz, 1H), 6.14 (s, 1H), 2.26 (td, J = 7.8, 1.3 Hz, 2H), 1.49-1.40 (m, 2H), 1.32 (s, 12H), 1.31-1.23 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 152.2, 148.2, 138.3, 123.1, 121.4, 119.2, 92.5, 88.0, 83.9, 37.0, 31.6, 29.2, 25.0, 22.6, 14.1; ¹¹B {¹H} NMR (128 MHz, CDCl₃) δ 33.0, the carbon α to boron was not found; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₉¹¹BNO₂ 326.2291; Found 326.2286.

(E)-4,4,5,5-Tetramethyl-2-(1-phenyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-5-yn-3-yl)-1,3,2-

dioxaborolane (3k). Prepared according to the general procedure A as described in main text in 59% (0.132 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.22-7.18 (m, 3H), 6.69 (s, 2H), 6.15 (s, 1H), 3.86 (s, 3H), 3.84 (s, 6H), 2.78-2.71 (m, 2H), 2.60-2.54 (m, 2H), 1.34 (s, 12H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1, 141.9, 138.8, 128.6, 128.4, 126.0, 120.9, 119.1, 108.8, 92.2, 88.1, 83.8, 61.1, 56.2 (2C), 38.9, 36.1, 25.1, the carbon α to boron was not found; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 30.2; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₇H₃₄¹¹BO5 449.2499; Found 449.2500.

(Z)-5,5'-(3-(Cyclohexylmethyl)hexa-3-en-1,5-diyne-1,6-diyl) bis-(1,2,3-trimethoxybenzene) (4a). Prepared according to the general procedure **B** as described in main text in 63% (0.158 g) yield. It was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 2H), 6.71 (s, 2H), 5.85 (s, 1H), 3.84 (s, 3H), 3.84 (s, 3H), 3.78 (s, 6H), 3.76 (s, 6H), 2.20 (d, J = 6.5 Hz, 2H), 1.81-1.65 (m, 6H), 1.30-1.18 (m, 3H), 1.02-0.88 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.2, 153.2, 139.3, 139.1, 135.1, 118.7, 118.4, 115.7, 109.8, 109.2, 108.9, 97.1, 95.0, 88.5, 87.6, 61.1, 56.3, 56.2, 44.8, 37.1, 33.1, 26.6, 26.3; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₃₁H₃₇O₆ 505.2590; Found 505.2561.

(*Z*)-5,5'-(3-Butylhexa-3-en-1,5-diyne-1,6-diyl)bis-(1,2,3-trimethoxybenzene) (4b). Prepared according to the general procedure **B** as described in main text in 64% (0.148 g) yield. It was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 2H), 6.71 (s, 2H), 5.90 (t, J = 1.1 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.77 (s, 6H), 3.76 (s, 6H), 2.35-2.31 (m, 2H), 1.65-1.60 (m, 2H), 1.43-1.37 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 153.2, 139.3, 139.1, 136.3, 118.7, 118.4, 116.7, 114.7, 109.8, 109.1, 108.9, 97.2, 95.0, 88.2, 87.5, 61.1, 56.3, 56.2, 36.6, 30.8, 22.2, 14.0; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₈H₃₃O₆ 465.2277; Found 465.2269.

(Z)-3,3'-(3-(Trimethylsilyl)hexa-3-en-1,5-diyne-1,6-diyl)dibenzonitrile (4c). Prepared according

to the general procedure **B** as described in main text in 60% (0.105 g) yield. It was purified by column chromatography (10% EtOAc/Hexanes; Rf = 0.6) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 3.1, 1.5 Hz, 2H), 7.68 (ddd, J = 7.8, 2.7, 1.3 Hz, 2H), 7.63 -7.58 (m, 2H), 7.51-7.44 (m, 2H), 6.29 (s, 1H), 0.28 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 139.5, 136.6, 135.7, 135.5, 135.0, 134.9, 132.7, 131.9, 131.6, 129.6, 125.3, 124.8, 118.1, 118.0, 113.2, 113.1, 99.7, 94.8, 91.9, 90.6, -1.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₃H₁₉N₂Si 351.1390; Found 351.1381.

(Z)-1,2,3-Trimethoxy-5-(3-(4-methoxybenzylidene)hept-1-yn-1-yl) benzene (4d). Prepared according to the general procedure **B** as described in main text in 66 % (0.125 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 1.5 Hz, 1H), 7.28-7.27 (m, 2H), 6.85-6.81 (m, 1H), 6.74 (s, 2H), 6.59 (s, 1H), 3.88 (s, 9H), 3.80 (s, 3H), 2.40 (td, J = 7.5, 1.0 Hz, 2H), 1.76-1.63 (m, 2H), 1.43 (hex, J = 7.3 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 159.6, 153.3, 138.4, 134.3, 129.2, 122.9, 121.7, 118.7, 113.5, 113.4, 108.8, 96.2, 89.1, 61.1, 56.2 (2C), 55.3, 39.0, 31.1, 22.2, 14.1; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₄H₂₉O₄ 381.2066; Found 381.2058.

(Z)-3-(4-((3,4,5-Trimethoxyphenyl)ethynyl)non-3-en-1-yn-1-yl)pyridine (4e). Prepared according to the general procedure **B** as described in main text in 62 % (0.121 g) yield. It was purified by column chromatography (40% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.50 (s, 1H), 7.74 (dt, J = 7.9, 1.8 Hz, 1H), 7.23 (dd, J = 7.8, 4.9 Hz, 1H), 6.72 (s, 2H), 5.91 (s, 1H), 3.86 (s, 3H), 3.82 (s, 6H), 2.38-2.32 (m, 2H), 1.67-1.60 (m, 2H), 1.39-1.33 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 153.3, 152.2, 148.6, 139.4, 138.3, 137.6, 123.2, 121.0, 118.1, 113.9, 109.0, 97.9, 91.6, 91.1, 87.8, 61.1, 56.2, 37.1, 31.2, 28.3, 22.6, 14.2; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₅H₂₈NO₃ 390.2069; Found 390.2068.

(Z)-4-(3-(3-(Pyridin-3-yl)prop-2-yn-1-ylidene)oct-1-yn-1-yl)benzonitrile (4f). Prepared according to the general procedure **B** as described in main text in 58 % (0.093 g) yield. It was

purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.53 (d, J = 4.0 Hz, 1H), 7.72 (dt, J = 7.9, 1.8 Hz, 1H), 7.64-7.60 (m, 2H), 7.58-7.54 (m, 2H), 7.29-7.24 (m, 1H), 5.99 (t, J = 1.2 Hz, 1H), 2.35 (td, J = 7.0, 1.3 Hz, 2H), 1.68-1.59 (m, 2H), 1.38-1.32 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.2, 148.8, 138.3, 136.3, 132.3, 132.2, 128.0, 123.3, 120.6, 118.5, 115.7, 112.0, 95.4, 92.6, 92.0, 90.9, 36.9, 31.2, 28.2, 22.5, 14.1; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₃H₂₁N₂ 325.1705; Found 325.1699.

(Z)-3-(4-((2-(Trifluoromethyl)phenyl)ethynyl)non-3-en-1-yn-1-yl) pyridine (4g). Prepared according to the general procedure **B** as described in main text in 60 % (0.110 g) yield. It was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 1.4 Hz, 1H), 8.51 (dd, J = 4.9, 1.6 Hz, 1H), 7.75 (dt, J = 7.9, 1.9 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.25 (ddd, J = 7.9, 4.9, 0.7 Hz, 1H), 5.97 (t, J = 1.1 Hz, 1H), 2.38 (td, J = 7.7, 1.1 Hz, 2H), 1.72-1.61 (m, 2H), 1.38-1.32 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 152.3, 148.6, 138.4, 136.7, 134.3, 131.6, 131.5 (q, J = 27.6 Hz), 128.5, 126.1 (q, J = 5.0 Hz), 123.6 (q, J = 273.4 Hz), 123.2, 121.3, 120.8, 114.9, 93.7, 93.2, 91.5, 90.9, 37.3, 31.2, 28.0, 22.6, 14.1; ¹⁹F {¹H} NMR (377 MHz, CDCl₃) δ -62.0; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₃H₂₁¹⁹F₃N 368.1626; Found 368.1619.

(Z)-3-(4-Cyclopropyl-6-(3,4,5-trimethoxyphenyl)hexa-3-en-1,5-diyn-1-yl)pyridine (4h). Prepared according to the general procedure **B** as described in main text in 62 % (0.111 g) yield. It was purified by column chromatography (40% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (brs, 1H), 8.50 (brs, 1H), 7.72 (d, J = 7.8 Hz, 1H), 6.68 (s, 3H), 6.03 (s, 1H), 3.86 (s, 3H), 3.81 (s, 6H), 1.78-1.68 (m, 1H), 0.98-0.84 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.3 (2C), 140.2, 139.5, 138.2, 117.8, 111.6, 109.0 (2C), 108.6, 97.9, 91.8, 91.1, 84.2, 61.1, 56.3 (2C), 17.0, 7.6; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₃H₂₂NO₃ 360.1600; Found 360.1597.

(Z)-2,2'-(3-Pentylhexa-3-en-1,5-diyne-1,6-diyl)bis-((trifluoromethyl)benzene) (4i). Prepared

according to the general procedure **C** as described in main text in 65 % (0.141 g) yield. It was purified by column chromatography (5% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.72-7.62 (m, 4 H), 7.54-7.46 (m, 2H), 7.44-7.34 (m, 2H), 6.01 (s, 1H), 2.37 (td, J = 7.7, 1.2 Hz, 2H), 1.70-1.62 (m, 2H), 1.40-1.32 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.5, 134.2, 134.1, 131.6, 131.5 (q, J = 30.6 Hz), 131.3 (q, J = 30.6 Hz), 131.0, 128.2, 127.9, 126.1 (q, J = 4.8 Hz), 123.7 (q, J = 273.5 Hz), 121.8, 121.4, 114.8, 93.6, 93.0 (2C), 90.7, 37.4, 31.2, 27.9, 22.46, 14.0; ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -66.9, -66.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₅H₂₁¹⁹F₆ 435.1547; Found 435.1551.

(Z)-4,4'-(3-Propylhexa-3-en-1,5-diyne-1,6-diyl)dibenzonitrile (4j). Prepared according to the general procedure C as described in main text in 59% (0.101 g) yield. It was purified by column chromatography (10% EtOAc/Hexanes; Rf = 0.6) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.58 (m, 4H), 7.58-7.51 (m, 4H), 6.00 (s, 1H), 2.37 (td, J = 7.6, 1.1 Hz, 2H), 1.71-1.64 (hex, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 137.0, 132.3, 132.2, 132.0, 128.3, 128.0, 118.5, 118.5, 115.6, 112.2, 111.8, 95.7, 93.7, 92.5, 92.0, 39.1, 21.8, 13.6; HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₂₃H₁₆N₂Na 343.1211; Found 343.1216.

(Z)-5,5'-(3-Benzylhexa-3-en-1,5-diyne-1,6-diyl)bis-(1,2,3-trimethoxybenzene (4k). Prepared according to the general procedure **C** as described in main text in 62% (0.154 g) yield. It was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.25 (m, 5H), 6.70 (s, 2H), 6.65 (s, 2H), 5.89 (t, J = 1.2 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.76 (s, 12H), 3.66 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1 (2C), 139.2, 139.0, 137.9, 134.6, 129.1, 128.5, 126.7, 118.4, 118.1, 115.5, 109.0, 108.8, 97.7, 95.7, 88.1, 87.2, 60.9 (2C), 56.1 (2C), 56.1 (2C), 42.8; HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₃₁H₃₀NaO₆ 521.1940; Found 521.1949.

(Z)-4-(4-Methoxyphenyl)-1-(1-(3,4,5-trimethoxyphenyl)oct-3-en-1-yn-4-yl)-1H-1,2,3-triazole
(5). To a stirred solution of boronic ester 3e (200 mg, 0.5 mmol) in MeOH (2 mL), sodium azide

(78 mg, 1.2 mmol) and copper sulfate (80 mg, 0.5 mmol) were added at room temperature and stirred for 6 h. To this reaction mixture, sodium ascorbate (59 mg, 0.3 mmol) and 4-methoxyphenylacetylene (66 μ L, 0.5 mmol) were added, and the reaction mixture was stirred for 12 h. The solvent was evaporated under reduced pressure, the residue diluted with water and extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/Hexanes; R*f* = 0.5) to give 68% (0.150 g) yield of compound **5** as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.82 (dt, *J* = 9.6, 2.8 Hz, 2H), 6.95 (dt, *J* = 9.6, 2.7 Hz, 2H), 6.56 (s, 2H), 5.68 (s, 1H), 3.84 (s, 3H), 3.84 (s, 3H), 3.72 (s, 6H), 2.95 (t, *J* = 7.5 Hz, 2H), 1.61-1.53 (m, 2H), 1.45-1.35 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 159.9, 153.4, 146.5, 146.0, 139.5, 127.2, 123.1, 119.4, 117.6, 114.5, 108.6, 98.9, 96.6, 84.1, 61.1, 56.1 (2C), 55.5, 34.4, 29.9, 22.3, 13.9; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₆H₃₀N₃O₄ 448.2236; Found 448.2227.

(Z)-4-(4-Methoxyphenyl)-1-(2-((3,4,5-trimethoxyphenyl)ethynyl)hex-1-en-1-yl)-1H-1,2,3-

triazole (7). To a stirred solution of boronic ester **1b** (168 mg, 0.5 mmol) in MeOH (2 mL), tetramethylsilylazide (79 µL, 0.6 mmol) and copper sulfate (80 mg, 0.5 mmol) were added at room temperature and stirred for 12 h. To this reaction mixture, sodium ascorbate (59 mg, 0.3 mmol) and 4-methoxyphenylacetylene (66 µL, 0.5 mmol) were added, and the reaction mixture was stirred for another 12 h. The solvent was evaporated under reduced pressure, diluted with water and extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to give 72% (138 mg) yield of compound² **6** as a colorless oil. This compound **6**, was then engaged in a Suzuki coupling reaction with 5-(bromoethynyl)-1,2,3-trimethoxybenzene (135 mg, 0.5 mmol) following the general procedure **A** as described in main text to give 65% (0.150 g) yield of compound **7**. It was purified by column chromatography (30% EtOAc/Hexanes; Rf = 0.5) to afford a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.81-7.76 (m, 2H), 7.52 (s, 1H), 6.97-6.92 (m, 2H), 6.70 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.83 (s, 6H), 2.43 (t, J = 7.1 Hz, 2H), 1.76-1.67 (m, 2H), 1.51-1.43 (m, 2H), ² Mali, M.; Jayaram, V.; Sharma, G. V. M.; Ghosh, S.; Berrée, F.; Dorcet, V.; Carboni, B. *J. Org. Chem.*, 2020, **85**, 15104–15115.

0.99 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.9, 153.5, 147.0, 139.8, 127.2, 127.1, 123.1, 117.3, 117.1, 114.5, 114.4, 108.8, 99.3, 85.4, 61.2, 56.3, 55.5, 35.3, 30.7, 22.1, 14.0; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₆H₃₀N₃O₄ 448.2236; Found 448.2224.

Methyl (*Z*)-2-morpholino-3-(3-(3,4,5-trimethoxyphenyl) prop-2-yn-1-ylidene) heptanoate (8). Glyoxylic acid monohydrate (51 mg, 0.5 mmol) and morpholine (44 µL, 0.5 mmol) were added to a stirred solution of boronic ester **3e** (200 mg, 0.5 mmol) in 1,1,1,3,3,3-hexafluoropropan-2-ol (1 mL) under argon atmosphere at room temperature. The reaction mixture was stirred for 72 h. The solvent was removed under reduced pressure to give a residue which was directly used for further esterification reaction. To a solution of the crude acid in diethyl ether (5 mL) at 0 °C, a solution of CH₂N₂ in diethylether¹ was added until the persistence of yellow color. After 2 hours at room temperature, the solvent was evaporated and residue was purified by column chromatography (40% EtOAc/Hexanes; R*f* = 0.5) to give 56% (0.120 g) yield of compound **8** as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.67 (s, 2H), 5.81 (s, 1H), 4.34 (s, 1H), 3.85 (s, 6H), 3.84 (s, 3H), 3.80-3.71 (m, 4H), 3.71 (s, 3H), 2.67-2.55 (m, 2H), 2.53-2.37 (m, 2H), 2.28-2.15 (m, 2H), 1.51-1.39 (m, 2H), 1.39-1.29 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.7, 153.2, 148.4, 139.1, 118.5, 111.1, 108.7, 95.4, 85.2, 71.8, 66.9 (2C), 61.1, 56.3 (2C), 52.2, 51.7 (2C), 31.2, 30.0, 22.6, 14.1; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₄H₃₄NO₆ 432.2386; Found 432.2377.

2-(1-Butyl-2-((3,4,5-trimethoxyphenyl)ethynyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (10). To freshly distilled dichloromethane (2 mL) was added Et₂Zn (1 mL, 1 M in Hexane, 1 mmol) at 0 °C under argon. To this solution was added very slowly trifluoroacetic acid (114 mg, 76 μ L, 1 mmol). Once the addition was complete (5 min), the reaction mixture was stirred for 30 min at 0 °C. Then, diiodomethane (267 mg, 80 μ L, 1 mmol) was added in 5 min, and the resulting reaction mixture was stirred for an additional 20 min at 0 °C. To this solution was added the bis-boronate **1b** (168 mg, 0.5 mmol) in CH₂Cl₂ (1 mL). After 18 h at rt, the reaction was terminated by addition of saturated aqueous NH₄Cl (0.5 mL) and diluted with EtOAc (10 mL). Extraction of the aqueous phase was carried out with EtOAc (3 × 10 mL). The combined organic layers were dried on magnesium sulfate and filtered. Concentration in vacuo

gave oil that was purified by column chromatography on silica gel to give the corresponding cyclopropane derivative **9**³ (67 %). This compound was then engaged in a Suzuki reaction with 5-(bromoethynyl)-1,2,3-trimethoxybenzene following the general procedure **A** as described in main text. Purification by flash chromatography (20% EtOAc/Hexanes; Rf = 0.5) afforded 114 mg (55 %) of compound **10** as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.59 (s, 2H), 3.82 (s, 3H), 3.80 (s, 6H), 1.97-1.80 (m, 1H), 1.44-1.34 (m, 2H), 1.33-1.26 (m, 2H), 1.25 (s, 6H), 1.22 (s, 6H), 1.22-1.16 (m, 2H), 0.88 (t, *J* = 7.1 Hz, 3H), 0.84-0.76 (m, 1H), 0.79-0.70 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0 (2C), 138.1, 119.5, 108.9, 91.1, 83.6, 61.1, 56.2 (2C), 36.9, 31.3, 25.5, 24.8, 23.0, 20.2, 14.3, 13.3, the carbon α to boron was not found; HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₄H₃₆¹¹BO₅ 415.2656; Found 415.2663.

³ Mali, M.; Sharma, G. V. M.; Ghosh, S.; Roisnel, T.; Carboni, B.; Berrée, F. Simmons-Smith Cyclopropanation of Alkenyl 1,2-Bis-(Boronates): Stereoselective Access to Functionalized Cyclopropyl Derivatives. *J. Org. Chem.*, 2022, **87**, 7649–7657.

III. NMR spectra of new compounds

¹³C{¹H} NMR Spectrum of compound 3a (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3a (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3b (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3b (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3c (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3c (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3d (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3d (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3e (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3e (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3f (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3f (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3g (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3g (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3h (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3h (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3i (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3i (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3j (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3j (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 3k (101 MHz, CDCl₃)

¹¹B{¹H} NMR Spectrum of compound 3k (128 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4a (101 MHz, CDCl₃)

100 90 f1 (ppm)

S36

ò

-10

¹³C{¹H} NMR Spectrum of compound 4c (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4d (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4e (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4f (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4g (101 MHz, CDCl₃)

¹⁹F{¹H} NMR Spectrum of compound 4g (377 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4h (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4i (101 MHz, CDCl₃)

¹⁹F{¹H} NMR Spectrum of compound 4i (377 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 4k (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 5 (126 MHz, CDCl₃)

¹H NMR Spectrum of compound 7 (400 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 7 (126 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 8 (101 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of compound 10 (101 MHz, CDCl₃)