Supporting Information

Regio- and Stereocontrolled Synthesis of Borylated E-Enynes, Z-Enediynes and Derivatives from Alkenyl-1,2-Bis-(boronates)
Malavath Ratanlal, ${ }^{a}$ Jayaram Vankudoth, ${ }^{a}$ Gangavaram V. M. Sharma, ${ }^{\text {a }}$ Maruti A. Mali, ${ }^{a}$ Bertrand Carboni, ${ }^{\text {b }}$ Fabienne Berrée, *b Subhash Ghosh*a
a Department of Organic Synthesis \& Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
${ }^{\text {b }}$ Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
subhash@iict.res.in ; fabienne.berree@univ-rennes.fr

Table of Contents

I. General information S2
II. Synthesis and characterization of compounds $\mathbf{3}$ to $\mathbf{1 0}$ S2
III. NMR spectra of new compounds S13

I. General information.

Unless otherwise noted, all solvents and all commercially available chemicals were used without further purification. Air- and water-sensitive reactions were performed in flame-dried glassware under an argon atmosphere. Anhydrous tetrahydrofuran was obtained after distillation over sodium/benzophenone and anhydrous dichloromethane after distillation over calcium hydride. For oxygen-sensitive reaction, when specified, the solvent was degassed prior to use by slow bubbling of argon. ${ }^{1} \mathrm{H}$ NMR (300, 400 or 500 MHz), ${ }^{13} \mathrm{C}$ NMR (101 or 126 MHz), ${ }^{11} \mathrm{~B}$ (128 MHz), and ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ spectra were recorded on Bruker AC 300, AC 400 and AC 500 spectrometers. Chemical shifts δ are given in ppm, and coupling constants J in Hertz. Multiplicities are presented as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, hex $=$ hexuplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. High-resolution mass spectra (HRMS) were recorded on Q TOF (Agilent) using positive-ion electron-spray ionization techniques (ESI ${ }^{+}$). The compounds were purified by column chromatography on $0.060-0.200 \mathrm{~mm}, 60 \AA$ silica. Analytical thin-layer chromatography was performed on Merck silica gel 60 F254 plates. The ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was generated from N -nitroso- N -methylurea according to the literature. ${ }^{1}$

II. Synthesis and characterization of compounds 3 to 10.

(E)-2-(5-(4-(Benzyloxy)-3-methoxyphenyl)-1-cyclohexylpent-2-en-4-yn-2-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (3a). Prepared according to the general procedure \mathbf{A} as described in main text in 52% (0.126 g) yield. It was purified by column chromatography (20% EtOAc/Hexanes; $\mathrm{R}_{f}=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.28(\mathrm{~m}$, $5 \mathrm{H}), ~ 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=13.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{dd}, J=7.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.21-1.11$ (m, 3H), 0.92-0.83 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) δ 149.3, 148.5, 137.0, 128.7, $128.0,127.4,124.7,121.0,117.0,114.8,113.7,91.6,87.9,83.7,71.0,56.1,44.8,38.4,33.4$, 26.7, 26.5, 25.0, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.0$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{31} \mathrm{H}_{40}{ }^{11} \mathrm{BO}_{4} 487.3020$; Found 487.3009.

[^0]
(E)-3-(5-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-1-yn-1-

$\boldsymbol{y l}$)benzonitrile (3b). Prepared according to the general procedure \mathbf{A} as described in main text in $55 \%(0.110 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=7.0,0.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.4,134.8,131.1,129.3,125.9,120.0,118.3,112.8,91.7$, 88.9, 83.9, 44.9, 38.4, 33.4, 26.6, 26.5, 25.0, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.9$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{31}{ }^{11} \mathrm{BNO}_{2}$ 376.2448; Found 376.2448.

(E)-2-(1-Cyclohexyl-5-(3,4,5-trimethoxyphenyl)pent-2-en-4-yn-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (3c). Prepared according to the general procedure \mathbf{A} as described in main text in $55 \%(0.121 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{~s}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.83 (s, 6H), 2.15 (dd, $J=7.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$, 1.22-1.15 (m, 3H), 0.94-0.84 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.1, 138.7, 120.7, $119.2,108.7,91.4,88.2,83.7,61.1,56.2$ (2C), 44.8, 38.4, 33.4, 26.6, 26.5, 25.0, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{38}{ }^{11} \mathrm{BO}_{5} 441.2812$; Found 441.2820.

(E)-4-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)oct-3-en-1-yn-1-yl) benzonitrile (3d).

Prepared according to the general procedure \mathbf{A} as described in main text in $58 \%(0.097 \mathrm{~g})$ yield. It was purified by column chromatography $(20 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5)$ to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.15$ (s, $1 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 132.1,131.9,129.2,119.1,118.8,111.1,93.8,89.8$, 83.9, 36.7, 31.6, 25.0, 22.5, 14.1, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.3$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{27}{ }^{11} \mathrm{BNO}_{2} 336.2135$; Found

(E)-4,4,5,5-Tetramethyl-2-(1-(3,4,5-trimethoxyphenyl)oct-3-en-1-yn-4-yl)-1,3,2-dioxaborolane

 (3e). Prepared according to the general procedure \mathbf{A} as described in main text in $54 \%(0.121 \mathrm{~g})$ yield, (0.216 g) on a 1 mmol scale. It was purified by column chromatography (20% EtOAc/Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.68(\mathrm{~s}, 2 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$, 1.27-1.24 ((m, 2H), $0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 153.1, 138.7, $119.8,119.2,108.7,91.6,88.3,83.7,61.1,56.2$ (2C), $36.6,31.8,29.8,25.1,22.5,14.1$, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.4$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{NH} 4]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{37}{ }^{11} \mathrm{BNO}_{5} 418.2765$; Found 418.2753.
(E)-Trimethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(3,4,5-trimethoxyphenyl) but-

 1-en-3-yn-1-yl) silane (3f). Prepared according to the general procedure \mathbf{A} as described in main text in $62 \%(0.129 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5)$ to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{~s}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.85$ (s, 3H), 3.82 (s, 6H), 1.33 (s, 12H), 0.14 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3$, $140.1,130.7,119.9,110.0,93.5,90.4,84.8,62.3,57.3$ (2C), 26.3, 0.02 ; the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.9$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{22} \mathrm{H}_{34}{ }^{11} \mathrm{BO}_{5} \mathrm{Si} 417.2269$; Found 417.2273.
(E)-3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trimethylsilyl)but-3-en-1-yn-1-

$\boldsymbol{y l}$)benzonitrile (3g). Prepared according to the general procedure \mathbf{A} as described in main text in $56 \%(0.098 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 135.6, 134.9, $131.4,129.4,128.8,125.4,118.2,113.0,92.3,89.4,83.8,25.1,-1.3$, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz, CDCl_{3}) $\delta 33.4$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{20} \mathrm{H}_{27}{ }^{11} \mathrm{BNO}_{2} \mathrm{Si}$ 352.1904; Found 352.1898.

(E)-2-(4-Ethyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-5-yn-3-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (3h). Prepared according to the general procedure \mathbf{A} as described in main text in $55 \%(0.116 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.68(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H})$, 2.36-2.23 (m, 4H), $1.31(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 153.1,138.5,133.7,119.5,108.8,90.8,90.3,83.5,61.1,56.2$ (2C), 25.9, 25.1, 24.1, 14.4, 13.5, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz , CDCl_{3}) δ 33.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{34}{ }^{11} \mathrm{BO}_{5} 401.2499$; Found 401.2510 .

(E)-3-(4-Cyclopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)

pyridine (3i). Prepared according to the general procedure A as described in main text in 57\% $(0.84 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{dd}, J=2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=$ $4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dt}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=7.9,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$, 1.65-1.61 (m, 1H), $1.30(\mathrm{~s}, 12 \mathrm{H}), 0.82-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,148.1,138.2,123.1,121.4,115.4,92.6,87.8,84.0,25.0,17.8,8.2$, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.6$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{11} \mathrm{BNO}_{2}$ 296.1822; Found 296.1827.
(E)-3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)non-3-en-1-yn-1-yl) pyridine (3j). Prepared according to the general procedure \mathbf{A} as described in main text in $55 \%(0.090 \mathrm{~g})$ yield. It was purified by column chromatography $(20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5)$ to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dt, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, $J=7.9,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (s, 1H), 2.26 (td, $J=7.8,1.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 152.2,148.2,138.3,123.1,121.4,119.2,92.5,88.0,83.9,37.0,31.6$, 29.2, 25.0, 22.6, 14.1; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.0$, the carbon α to boron was not found; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{20} \mathrm{H}_{29}{ }^{11} \mathrm{BNO}_{2}$ 326.2291; Found 326.2286.

(E)-4,4,5,5-Tetramethyl-2-(1-phenyl-6-(3,4,5-trimethoxyphenyl)hex-3-en-5-yn-3-yl)-1,3,2-

dioxaborolane (3k). Prepared according to the general procedure \mathbf{A} as described in main text in $59 \%(0.132 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H})$, $6.69(\mathrm{~s}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (s, 12 H$) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.1,141.9,138.8,128.6,128.4,126.0,120.9$, $119.1,108.8,92.2,88.1,83.8,61.1,56.2$ (2C), 38.9, 36.1, 25.1, the carbon α to boron was not found; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{27} \mathrm{H}_{34}{ }^{11} \mathrm{BO} 5449.2499$; Found 449.2500.

(Z)-5,5'-(3-(Cyclohexylmethyl)hexa-3-en-1,5-diyne-1,6-diyl) bis-(1,2,3-trimethoxybenzene)

(4a). Prepared according to the general procedure B as described in main text in $63 \%(0.158 \mathrm{~g})$ yield. It was purified by column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.18$ (m, 3H), 1.02-0.88 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) δ 153.2, 153.2, 139.3, 139.1, $135.1,118.7,118.4,115.7,109.8,109.2,108.9,97.1,95.0,88.5,87.6,61.1,56.3,56.2,44.8$, 37.1, 33.1, 26.6, 26.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{6} 505.2590$; Found 505.2561 .
(Z)-5,5'-(3-Butylhexa-3-en-1,5-diyne-1,6-diyl)bis-(1,2,3-trimethoxybenzene) (4b). Prepared according to the general procedure \mathbf{B} as described in main text in $64 \%(0.148 \mathrm{~g})$ yield. It was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.2,139.3,139.1,136.3,118.7,118.4$, 116.7, 114.7, 109.8, 109.1, 108.9, 97.2, 95.0, 88.2, 87.5, 61.1, 56.3, 56.2, 36.6, 30.8, 22.2, 14.0; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{6} 465.2277$; Found 465.2269.
(Z)-3,3'-(3-(Trimethylsilyl)hexa-3-en-1,5-diyne-1,6-diyl)dibenzonitrile (4c). Prepared according
to the general procedure \mathbf{B} as described in main text in $60 \%(0.105 \mathrm{~g})$ yield. It was purified by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.6$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{dd}, J=3.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (ddd, $J=7.8,2.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.63-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.5,136.6,135.7,135.5,135.0,134.9,132.7,131.9,131.6,129.6,125.3,124.8,118.1,118.0$, 113.2, 113.1, 99.7, 94.8, 91.9, 90.6, -1.9; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{Si}$ 351.1390; Found 351.1381.
(Z)-1,2,3-Trimethoxy-5-(3-(4-methoxybenzylidene)hept-1-yn-1-yl) benzene (4d). Prepared according to the general procedure \mathbf{B} as described in main text in $66 \%(0.125 \mathrm{~g})$ yield. It was purified by column chromatography ($20 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.74$ ($\mathrm{s}, 2 \mathrm{H}$), $6.59(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 9 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 2 \mathrm{H})$, 1.43 (hex, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6$, $153.3,138.4,134.3,129.2,122.9,121.7,118.7,113.5,113.4,108.8,96.2,89.1,61.1,56.2$ (2C), 55.3, 39.0, 31.1, 22.2, 14.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4}$ 381.2066; Found 381.2058.
(Z)-3-(4-((3,4,5-Trimethoxyphenyl)ethynyl)non-3-en-1-yn-1-yl)pyridine (4e). Prepared according to the general procedure \mathbf{B} as described in main text in $62 \%(0.121 \mathrm{~g})$ yield. It was purified by column chromatography (40% EtOAc/Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=$ $7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $153.3,152.2,148.6,139.4,138.3,137.6,123.2,121.0,118.1,113.9,109.0,97.9,91.6,91.1,87.8$, 61.1, 56.2, 37.1, 31.2, 28.3, 22.6, 14.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{3}$ 390.2069; Found 390.2068.
(4f). Prepared according to the general procedure \mathbf{B} as described in main text in $58 \%(0.093 \mathrm{~g})$ yield. It was
purified by column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.64-7.60 (m, 2H), 7.58-7.54 (m, 2H), 7.29-7.24 (m, 1H), $5.99(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{td}, J=$ $7.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 152.2,148.8,138.3,136.3,132.3,132.2,128.0,123.3,120.6,118.5,115.7$, 112.0, 95.4, 92.6, 92.0, 90.9, 36.9, 31.2, 28.2, 22.5, 14.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} 325.1705$; Found 325.1699.
(Z)-3-(4-((2-(Trifluoromethyl)phenyl)ethynyl)non-3-en-1-yn-1-yl) pyridine (4g). Prepared according to the general procedure \mathbf{B} as described in main text in $60 \%(0.110 \mathrm{~g})$ yield. It was purified by column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (dt, $J=$ $7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (ddd, $J=7.9,4.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{td}, J=7.7$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,148.6,138.4,136.7,134.3,131.6,131.5(\mathrm{q}, J=27.6 \mathrm{~Hz}), 128.5,126.1(\mathrm{q}$, $J=5.0 \mathrm{~Hz}), 123.6(\mathrm{q}, ~ J=273.4 \mathrm{~Hz}), 123.2,121.3,120.8,114.9,93.7,93.2,91.5,90.9,37.3$, 31.2, 28.0, 22.6, 14.1; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.0$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calculated for $\mathrm{C}_{23} \mathrm{H}_{21}{ }^{19} \mathrm{~F}_{3} \mathrm{~N}$ 368.1626; Found 368.1619.

(Z)-3-(4-Cyclopropyl-6-(3,4,5-trimethoxyphenyl)hexa-3-en-1,5-diyn-1-yl)pyridine

Prepared according to the general procedure \mathbf{B} as described in main text in $62 \%(0.111 \mathrm{~g})$ yield. It was purified by column chromatography $(40 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5)$ to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73$ (brs, 1 H), 8.50 (brs, 1 H), 7.72 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 $(\mathrm{s}, 3 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 153.3$ (2C), 140.2, 139.5, 138.2, 117.8, 111.6, 109.0 (2C), 108.6, 97.9, 91.8, 91.1, 84.2, 61.1, 56.3 (2C), 17.0, 7.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{3} 360.1600$; Found 360.1597.
according to the general procedure \mathbf{C} as described in main text in $65 \%(0.141 \mathrm{~g})$ yield. It was purified by column chromatography ($5 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 2.37(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.5,134.2,134.1,131.6,131.5(\mathrm{q}, J=30.6 \mathrm{~Hz}$), $131.3(\mathrm{q}, J=30.6 \mathrm{~Hz}), 131.0,128.2,127.9,126.1(\mathrm{q}, J=4.8 \mathrm{~Hz}), 123.7(\mathrm{q}, J=273.5 \mathrm{~Hz}), 121.8$, $121.4,114.8,93.6,93.0$ (2C), 90.7, 37.4, 31.2, 27.9, 22.46, 14.0; ${ }^{19} \mathrm{~F}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR (377 MHz, CDCl_{3}) δ-66.9, -66.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{21}{ }^{19} \mathrm{~F}_{6}$ 435.1547; Found 435.1551 .
(Z)-4,4'-(3-Propylhexa-3-en-1,5-diyne-1,6-diyl)dibenzonitrile (4j). Prepared according to the general procedure \mathbf{C} as described in main text in $59 \%(0.101 \mathrm{~g})$ yield. It was purified by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.6$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.68-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-$ 1.64 (hex, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0$, $132.3,132.3,132.2,132.0,128.3,128.0,118.5,118.5,115.6,112.2,111.8,95.7,93.7,92.5,92.0$, 39.1, 21.8, 13.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na} 343.1211$; Found 343.1216 .
(Z)-5,5'-(3-Benzylhexa-3-en-1,5-diyne-1,6-diyl)bis-(1,2,3-trimethoxybenzene (4k). Prepared according to the general procedure \mathbf{C} as described in main text in $62 \%(0.154 \mathrm{~g})$ yield. It was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{t}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 12 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.1 (2C), 139.2, 139.0, 137.9, 134.6, 129.1, 128.5, 126.7, 118.4, 118.1, 115.5, 109.0, 108.8, 97.7, 95.7, 88.1, 87.2, 60.9 (2C), 56.1 (2C), 56.1 (2C), 42.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NaO}_{6}$ 521.1940; Found 521.1949.

(Z)-4-(4-Methoxyphenyl)-1-(1-(3,4,5-trimethoxyphenyl)oct-3-en-1-yn-4-yl)-1H-1,2,3-triazole

(5). To a stirred solution of boronic ester $\mathbf{3 e}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, sodium azide
($78 \mathrm{mg}, 1.2 \mathrm{mmol}$) and copper sulfate $(80 \mathrm{mg}, 0.5 \mathrm{mmol})$ were added at room temperature and stirred for 6 h . To this reaction mixture, sodium ascorbate ($59 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4 methoxyphenylacetylene ($66 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) were added, and the reaction mixture was stirred for 12 h . The solvent was evaporated under reduced pressure, the residue diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated under reduced pressure. The residue was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to give $68 \%(0.150 \mathrm{~g})$ yield of compound 5 as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dt}, J=9.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (dt, $J=9.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.95$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,153.4,146.5,146.0,139.5,127.2,123.1,119.4,117.6,114.5$, 108.6, 98.9, 96.6, 84.1, 61.1, 56.1 (2C), 55.5, 34.4, 29.9, 22.3, 13.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} 448.2236$; Found 448.2227.

(Z)-4-(4-Methoxyphenyl)-1-(2-((3,4,5-trimethoxyphenyl)ethynyl)hex-1-en-1-yl)-1H-1,2,3-

triazole (7). To a stirred solution of boronic ester $\mathbf{1 b}(168 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, tetramethylsilylazide ($79 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and copper sulfate ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$) were added at room temperature and stirred for 12 h . To this reaction mixture, sodium ascorbate ($59 \mathrm{mg}, 0.3$ mmol) and 4-methoxyphenylacetylene ($66 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) were added, and the reaction mixture was stirred for another 12 h . The solvent was evaporated under reduced pressure, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated under reduced pressure. The residue was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes; $\mathrm{R} f=0.5$) to give $72 \%(138 \mathrm{mg})$ yield of compound ${ }^{2} \mathbf{6}$ as a colorless oil. This compound 6, was then engaged in a Suzuki coupling reaction with 5-(bromoethynyl)-1,2,3-trimethoxybenzene ($135 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general procedure \mathbf{A} as described in main text to give $65 \%(0.150 \mathrm{~g})$ yield of compound 7. It was purified by column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to afford a colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 384(\mathrm{~s}, 3 \mathrm{H}), 383(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 2 \mathrm{H})$, ${ }^{2}$ Mali, M.; Jayaram, V.; Sharma, G. V. M.; Ghosh, S.; Berrée, F.; Dorcet, V.; Carboni, B. J. Org. Chem., 2020, 85, 15104-15115.
$0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,153.5,147.0,139.8,127.2$, $127.1,123.1,117.3,117.1,114.5,114.4,108.8,99.3,85.4,61.2,56.3,55.5,35.3,30.7,22.1$, 14.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} 448.2236$; Found 448.2224.

Methyl (Z)-2-morpholino-3-(3-(3,4,5-trimethoxyphenyl) prop-2-yn-1-ylidene) heptanoate (8).

Glyoxylic acid monohydrate ($51 \mathrm{mg}, 0.5 \mathrm{mmol}$) and morpholine ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) were added to a stirred solution of boronic ester $\mathbf{3 e}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 1,1,1,3,3,3-hexafluoropropan-2-ol $(1 \mathrm{~mL})$ under argon atmosphere at room temperature. The reaction mixture was stirred for 72 h . The solvent was removed under reduced pressure to give a residue which was directly used for further esterification reaction. To a solution of the crude acid in diethyl ether $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in diethylether ${ }^{1}$ was added until the persistence of yellow color. After 2 hours at room temperature, the solvent was evaporated and residue was purified by column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) to give $56 \%(0.120 \mathrm{~g})$ yield of compound $\mathbf{8}$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{~s}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.28-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,153.2,148.4,139.1,118.5,111.1,108.7,95.4,85.2,71.8,66.9$ (2C), 61.1, 56.3 (2C), 52.2, 51.7 (2C), 31.2, 30.0, 22.6, 14.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{6} 432.2386$; Found 432.2377.

2-(1-Butyl-2-((3,4,5-trimethoxyphenyl)ethynyl) cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (10). To freshly distilled dichloromethane (2 mL) was added $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{~mL}, 1 \mathrm{M}$ in Hexane, 1 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon. To this solution was added very slowly trifluoroacetic $\operatorname{acid}(114 \mathrm{mg}, 76 \mu \mathrm{~L}, 1 \mathrm{mmol})$. Once the addition was complete (5 min), the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. Then, diiodomethane ($267 \mathrm{mg}, 80 \mu \mathrm{~L}, 1 \mathrm{mmol}$) was added in 5 min , and the resulting reaction mixture was stirred for an additional 20 min at $0^{\circ} \mathrm{C}$. To this solution was added the bis-boronate $\mathbf{1 b}(168 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After 18 h at rt , the reaction was terminated by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and diluted with EtOAc (10 mL). Extraction of the aqueous phase was carried out with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried on magnesium sulfate and filtered. Concentration in vacuo
gave oil that was purified by column chromatography on silica gel to give the corresponding cyclopropane derivative 9^{3} (67%). This compound was then engaged in a Suzuki reaction with 5-(bromoethynyl)-1,2,3-trimethoxybenzene following the general procedure \mathbf{A} as described in main text. Purification by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes} ; \mathrm{R} f=0.5$) afforded 114 $\mathrm{mg}(55 \%)$ of compound 10 as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.22$ (s, 6H), 1.22-1.16 (m, 2H), 0.88 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-0.76$ (m, 1H), 0.79-0.70 (m, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 153.0$ (2C), 138.1, 119.5, 108.9, 91.1, 83.6, 61.1, 56.2 (2C), $36.9,31.3,25.5,24.8,23.0,20.2,14.3,13.3$, the carbon α to boron was not found; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{36}{ }^{11} \mathrm{BO}_{5} 415.2656$; Found 415.2663.

[^1]III. NMR spectra of new compounds

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $3 \mathrm{a}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound 3a(101 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $3 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR Spectrum of compound $\mathbf{3 c}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{c}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\stackrel{n}{i}$

H NMR Spectrum of compound 3d (500 MHz, $\mathbf{C D C l}_{\mathbf{3}}$)

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{~d}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $\left.\mathbf{3 e} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{e}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{f}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $\mathbf{3 g}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $3 \mathrm{~g}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{~h}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ Spectrum of compound $\mathbf{3 h}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $3 \mathrm{i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{j}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{j}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $3 \mathrm{k}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $3 \mathrm{k}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $4 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $\mathbf{4 b}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $\mathbf{4 c}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $\mathbf{4 c}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $\mathbf{4 d}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $4 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-8.8

${ }^{1} \mathrm{H}$ NMR Spectrum of compound $4 \mathrm{f}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

200
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $4 \mathrm{f}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $\mathbf{4 g}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum of compound $\mathbf{4 g}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of compound $4 \mathrm{~h}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

朗 解

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $4 \mathrm{i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $4 \mathrm{i}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum of compound $4 \mathrm{j}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum of compound $5\left(126 \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR Spectrum of compound $8\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR Spectrum of compound $10\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{1}$ Because of its explosiveness and toxicity, diazomethane was directly generated in diethyl ether and used without further purification after simple decantation, see: Ernst Redemann, C.; Rice, F. O.; Roberts, R.; Ward H. P. Org. Synth. 1945, 25, 28.

[^1]: ${ }^{3}$ Mali, M.; Sharma, G. V. M.; Ghosh, S.; Roisnel, T.; Carboni, B.; Berrée, F. Simmons-Smith Cyclopropanation of Alkenyl 1,2-Bis-(Boronates): Stereoselective Access to Functionalized Cyclopropyl Derivatives. J. Org. Chem., 2022, 87, 7649-7657.

