Supporting Information

Rh-Catalyzed Ring-Opening Coupling of Cyclic Vinyl Ethers with Organometallic Reagents

Long Yin,,${ }^{\text {a,b,\# }}$ Wanjiang Zhu, ${ }^{\text {b,\# }}$ Yang Xu, ${ }^{\text {b }}$ Junhao Xing, ${ }^{\text {b,* }}$ and Xiaowei Dou ${ }^{\mathrm{b}, *}$
${ }^{a}$ Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
${ }^{b}$ Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China

Contents

1. General information 2
2. Materials 2
3. A general procedure for Table 1 3
4. Procedures for Scheme 2 3
5. A general procedure for Table 2 4
6. Procedures for Scheme 3 4
7. Procedures for Scheme 4 5
8. Characterization of the products 5
9. References 10
10. NMR spectra of products 11

1. General information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. NMR spectra were recorded on Bruker AVANCE AV-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or Bruker AVANCE AV-300 spectrometer (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts were reported in $\delta(\mathrm{ppm})$ referenced to the residual solvent peak of $\mathrm{CDCl}_{3}(\delta 7.26)$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(\delta 77.0)$ for ${ }^{13} \mathrm{C}$ NMR, the residual solvent peak of DMSO- $d_{6}(\delta 2.50)$ for ${ }^{1} \mathrm{H}$ NMR and DMSO- $d_{6}(\delta 40.0)$ for ${ }^{13} \mathrm{C}$ NMR. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Coupling constants were reported in Hertz (Hz). High resolution mass spectra (HRMS) were obtained on Waters XEVO G2-S TOF (ESI). For thin layer chromatography (TLC), Yantai pre-coated TLC plates (HSGF 254) were used, and compounds were visualized with a UV light at 254 nm . Further visualization was achieved by staining with KMnO_{4} followed by heating. Column chromatography separations were performed on silica gel (300400 mesh). Unless otherwise noted, all commercialized reagents were used as received without further purification.

2. Materials

Toluene, 1,4-dioxane, THF, EtOAc, $t \mathrm{BuOH}$ and EtOH were purchased from commercial supplier and degassed with N_{2} before use. Purified water was deoxygenated by bubbling with argon before use. $[\mathrm{Rh}(\mathrm{OH})(\operatorname{cod})]_{2}$ was prepared according to the reported procedures ${ }^{[1]}$. 2,3Dihydrofuran and benzofuran were purchased from Energy Chemical. All the organoboronic acids and Grignard reagents were purchased from commercial suppliers.

3. A general procedure for Table 1

The synthesis of \boldsymbol{E}-3a and Z-3a: Rhodium catalyst ($5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Rh}$), 1a (14.0 $\mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{2 a}(0.30 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. Solvent (1.0 mL) was added and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with $\operatorname{EtOAc}(5 \mathrm{~mL})$ and water (3 mL). The layers were separated and the aqueous layer was extracted again with EtOAc for two more times ($5 \mathrm{~mL} \times 2$). The combined organic layers were then concentrated in vacuo, and the residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc to give $\boldsymbol{E}-\mathbf{3 a}$ and $\mathbf{Z - 3 a}$.

4. Procedures for Scheme 2

The synthesis of Z-3: $[\mathrm{Rh}(\mathrm{OH})(\operatorname{cod})]_{2}(2.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Rh}), \mathbf{1 a}(14.0 \mathrm{mg}$, 0.20 mmol) and $2(0.10 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube (25 mL) under nitrogen. Anhydrous toluene (1.0 mL) was added and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ and water (3 mL). The layers were separated and the aqueous layer was extracted again with EtOAc for two more times ($5 \mathrm{~mL} \times 2$). The combined organic layers were then concentrated in vacuo, and the residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc to give Z-3.

5. A general procedure for Table 2

The synthesis of 5a: Rhodium catalysts ($5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Rh}$), $\mathbf{4 a}(23.6 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ and $\mathbf{P h}-\mathbf{M}(0.40 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. THF (1.0 mL) was added and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with EtOAc (5 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted again with EtOAc for two more times $(5 \mathrm{~mL} \times 2)$. The combined organic layers was then concentrated in vacuo, and the residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc to give 5a.

6. Procedures for Scheme 3

The synthesis of 5: $[\mathrm{RhCl}(\operatorname{cod})]_{2}(2.5 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \% \mathrm{Rh}), 4(0.20 \mathrm{mmol})$ and $\mathbf{R M g B r}$ (0.40 mmol) were placed in an oven-dried Schlenk tube under nitrogen. THF $(1.0 \mathrm{~mL})$ was added and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with EtOAc (5 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted again with EtOAc for two more times $(5 \mathrm{~mL} \times 2)$. The combined organic layers was then concentrated in vacuo, and the residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc to give 5

7. Procedures for Scheme 4

The isomerization from Z-3a to $\boldsymbol{E}-\mathbf{3 a}$: $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}(2.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$ Rh), 1a ($14.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), 2a ($36.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathbf{Z - 3 a}(14.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube (25 mL) under nitrogen. PhMe (1.0 mL) and $\mathrm{H}_{2} \mathrm{O}\left(6 \mathrm{mmol}, 30\right.$ equiv) were added and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with EtOAc (5 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted again with EtOAc for two more times ($5 \mathrm{~mL} \times 2$). The combined organic layers were then concentrated in vacuo, and the residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc to give \boldsymbol{E}-3a.

8. Characterization of the products

(Z)-4-phenylbut-3-en-1-ol (\boldsymbol{Z}-3a)

Colorless oil, 25.5 mg at 0.20 mmol scale, 86% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{dt}, J=11.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.65(\mathrm{qd}, J=6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,131.8,128.9,128.4$, 126.9, 62.6, 32.1. HRMS-ESI (m/z): calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$149.0961, found 149.0965.

(Z)-4-(p-tolyl)but-3-en-1-ol (Z-3b)

Colorless oil, 29.5 mg at 0.20 mmol scale, 91% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.55$ (dt, $J=11.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dt}, J=11.6,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{qd}, J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,134.4,131.7,129.1,128.8,127.6$, 62.7, 32.2, 21.3. HRMS-ESI (m/z): calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$163.1117, found 163.1136.

Yellowish oil, 41.8 mg at 0.20 mmol scale, 92% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H})$, $6.50(\mathrm{dt}, J=11.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{qd}, J=6.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.2, 131. 5, 130.6, 130.5, 129.3, 120.8, 62.5, 32.0. HRMS-ESI (m/z): calcd for $\mathrm{C}_{10} \mathrm{H}_{12}{ }^{79} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$227.0066, found 227.0080.

(Z)-4-(4-hydroxybut-1-en-1-yl)phenyl acetate ($\boldsymbol{Z}-\mathbf{3 d}$)

Yellowish oil, 33.8 mg at 0.20 mmol scale, 82% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dt}, J=11.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dt, $J=11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{qd}, J=6.5,1.8 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,142.0,130.9,130.7,129.7,128.8,128.5$, 62.5, 52.2, 32.2. HRMS-ESI (m/z): calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$207.1016, found 207.1021.

(Z)-4-(3-chlorophenyl)but-3-en-1-ol (Z-3e)

 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dt}, J=11.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=$ $11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{qd}, J=6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 139.1,134.2,130.4,129.9,129.6,128.8,127.0,62.5,32.1$. HRMS-ESI (m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClOK}^{+}[\mathrm{M}+\mathrm{K}]^{+}$221.0130, found 221.0111.

(Z)-4-(3-methoxyphenyl)but-3-en-1-ol (\boldsymbol{Z}-3f)

Colorless oil, 30.6 mg at 0.20 mmol scale, 86% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.57$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=11.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{qd}, J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.6, 138.7, 131.7, 129.3, 128.7, 121.4, 114.5, 112.4, 62.6, 55.4, 32.2. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$179.1067, found 179.1069.

Colorless oil, 30.1 mg at 0.20 mmol scale, 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{dt}, J=11.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{qd}, J=6.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4,136.4$, 131.1, 130.0, 129.1, 128.2, 127.2, 125.5, 62.6, 32.0, 20.0. HRMS-ESI (m/z): calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$185.0937, found 185.0931.

(Z)-4-(naphthalen-1-yl)but-3-en-1-ol (\boldsymbol{Z}-3h)

Yellowish oil, 36.8 mg at 0.20 mmol scale, 93% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.76$ (m, 2H), $7.51-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (dt, $J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{qd}, J=6.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4,133.6,132.0,130.1,130.1,128.5,127.6,126.5,126.1$, 125.9, 125.4, 125.0, 62.6, 32.3. HRMS-ESI (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 199.1117, found 199.1128.

(Z)-4-(cyclohex-1-en-1-yl)but-3-en-1-ol (\boldsymbol{Z}-3i)

Yellowish oil, 25.3 mg at 0.20 mmol scale, 83% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.26$ (dt, $J=11.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{qd}, J=$ $6.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.3,134.9,128.2,124.5,62.9,32.5,29.1,25.7,23.0,22.2$. HRMS-ESI (m/z): calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$153.1274, found 153.1287 .

(E)-2-styrylphenol (5a)

Pale yellow solid, 33.4 mg at 0.20 mmol scale, 85% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30$ - $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.83-$ $6.81(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.1,137.7,130.3,128.8$, 127.7, 127.4, 126.7, 124.8, 123.1, 121.3, 116.1. HRMS-ESI (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 219.0780$, found 219.0796.

(E)-2-(4-methoxystyryl)phenol (5b)

Yellow brown solid, 39.8 mg at 0.20 mmol scale, 88% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.20-6.79(\mathrm{~m}$, $7 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,152.9,130.5,129.9,128.4,127.9,127.2,125.1,121.3,120.9,116.0,114.2,55.5$. HRMS-ESI (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$227.1067, found 227.1077.

(E)-2-(4-fluorostyryl)phenol (5c)

White solid, 35.1 mg at 0.20 mmol scale, 82% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.12-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.76-6.73(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4(\mathrm{~d}, J=245.6 \mathrm{~Hz}), 153.1,133.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.0,128.8$, 128.1 (d, $J=7.9 \mathrm{~Hz}), 127.3,124.7,122.9(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 121.3,116.0(\mathrm{~d}, J=14.2 \mathrm{~Hz})$, 115.6. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.33$. HRMS-ESI (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 215.0867$, found 215.0885 .

(E)-2-(3-methylstyryl)phenol (5d)

Pale yellow solid, 40.0 mg at 0.20 mmol scale, 95% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.85$ - $6.82(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.0,138.3,137.6,130.4,128.7,128.7,128.6,127.3,124.9,123.9,122.8$, 121.3, 116.0, 21.6. HRMS-ESI (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$211.1117, found 211.1128.

(E)-2-(2-methylstyryl)phenol (5e)

 Yellow brown solid, 37.0 mg at 0.20 mmol scale, 88% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H})$, $6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.1$, 136.7, 135.9, 130.5, 128.8, 128.4, 127.7, 127.6, 126.3, 125.6, 125.1, 124.4, 121.3, 116.1, 20.1. HRMS-ESI (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$211.1117, found 211.1126.

(E)-2-(prop-1-en-1-yl)phenol (5f)

Yellowish oil, 24.4 mg at 0.20 mmol scale, 91% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}$, $1 \mathrm{H}), 6.79-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.15(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 154.0,127.6,126.1,126.0$, 124.6, $124.2,119.0,115.5$, 18.7. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 135.0804 , found 135.0805 .

(E)-2-(3-(trimethylsilyl)prop-1-en-1-yl)phenol (5g)

Yellowish oil, 34.2 mg at 0.20 mmol scale, 84% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.8 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.40-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,130.7,127.6,127.2,125.8,122.4,121.0,115.7,24.5,-1.7$. HRMS-ESI (m/z): calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$207.1200, found 207.1186.

(E)-2-(2-cyclopropylvinyl)phenol (5h)

Brown oil, 27.9 mg at 0.20 mmol scale, 87% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.7 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ $(\mathrm{dd}, J=15.8 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 2 \mathrm{H})$, $0.57-0.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,137.7,127.9,127.2,125.1$, $121.5,121.0,115.8,15.1,7.5$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 161.0961$, found 161.0976 .

(E)-2-(3,3-dimethylbut-1-en-1-yl)phenol (5i)

Yellowish oil, 17.6 mg at 0.20 mmol scale, 50% yield. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.6,144.5,128.1,127.4,125.2,121.0,118.8,115.8,33.9,29.7$. HRMS-ESI (m/z): calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$199.1093, found 199.1107.

(E)-2-bromo-4-methyl-6-styrylphenol (5i)

White solid, 49.2 mg at 0.20 mmol scale, 85% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.20$ $-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.5,137.6,131.2,130.4,128.8,127.8,126.84,126.78,125.4,123.1,111.0$, 20.5. HRMS-ESI (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{14}{ }^{79} \mathrm{BrO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$289.0223, found 289.0235 .

(E)-4-bromo-2-styrylphenol (5k)

(s, 1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,137.2,131.3,131.2,129.7,128.8,128.1$, 127.0, 126.8, 121.7, 117.7, 113.4. HRMS-ESI (m/z): calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{BrONa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 296.9885$, found 296.9906.

(E)-2-(1-phenylprop-1-en-2-yl)phenol (51)

Yellowish solid, 40.4 mg at 0.20 mmol scale, 96% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,137.8,137.6,132.3,129.2,128.9,128.4$, 128.22, 128.16, 126.4, 119.0, 115.6, 18.8. HRMS-ESI (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OK}^{+}$ $[\mathrm{M}+\mathrm{K}]^{+}$249.0676, found 249.0678.

9. References

[1] R. Uson, L. A. Oro and J. A. Cabeza, Inorganic Syntheses. 1985, 23, 126.
10. NMR spectra of products

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

[^0]

131.4541
-130.5931
130.4803
129.2710
120.8315
$-77.1600 \mathrm{CDCl} 3$
-62.4533
£ \angle ZO Z ® $_{-}$
${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

Z-3i
${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

$\left\{_{77.5831}^{77.7364} \mathrm{CDCl} 3\right.$
-55.4783

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 282 \mathrm{MHz}$

5d
${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

-153.0457
$\int_{138.3362}^{137.5882}$
130.3937
128.7205
128.6816
128.5928
127.3232
124.8648
123.8978
122.8011
121.2742
116.0422

5d
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

$5 f$
${ }^{1} \mathrm{H}$ NMR, DMSO- $d_{6}, 400 \mathrm{MHz}$

$5 f$
${ }^{13} \mathrm{C}$ NMR, DMSO-d $\mathrm{d}_{6}, 101 \mathrm{MHz}$

00	190	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppa}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-10

$5 i$
${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

$5 i$
${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^0]:

