Electronic Supplementary Information

Gas-free alkoxy carbonylation of aryl iodides in a phosphonium-based deep eutectic solvent with \(\text{Mo(CO)}_6 \) as a solid CO source

Francesco Messa,a Andrea Nicola Paparella,b Serena Perrone,a,* and Antonio Salomonec,*

a Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce (Italy).
b Dipartimento di Farmacia-Scienze del Farmaco, Università deli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S., Via Orabona, 4, I-70125 Bari, Italy.
c Dipartimento di Chimica, Consorzio C.I.N.M.P.I.S., Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari (Italy).

1 General Methods ... S2
2 Table S1: Supplementary Information about the Screening of the Reaction Conditions for the Alkoxy carbonylation of Iodobenzene \textbf{1a} with \(\text{Mo(CO)}_6 \) in EG-based Deep Eutectic Solventsa S3
3 Table S2: Screening of Different Bases for the Alkoxy carbonylation of Iodobenzene \textbf{1a} with \(\text{Mo(CO)}_6 \) in MTPBr/EG DESa .. S4
4 Graph S1: Investigation on CO Equivalents Released by \(\text{Mo(CO)}_6 \) .. S5
5 Experimental Procedure for the Alkoxy carbonylation Reaction of (Hetero)Aryl Iodide \textbf{1a-t} in MTPBr/EG or MTPBr/gly Eutectic Mixture .. S6
6 Characterization Data for Compounds \textbf{2a-t}, \textbf{2u-w} and \textbf{2u'-w'} .. S6
7 \(^1\text{H} \) NMR and \(^{13}\text{C} \) NMR Spectra for Compounds \textbf{2a-t}, \textbf{2u-w} and \textbf{2u'-w'} ... S13
8 References ... S59

1 General Methods

1H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer and chemical shifts are reported in parts per million (δ). Dimethyl sulfone has been used as the internal standard for yield determination by 1H NMR analysis of the crude reaction mixtures. The following abbreviations have been used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, quin = quintuplet, sext = sextet, sep = septet, br = broad. FT-IR spectra were recorded on a Perkin-Elmer 681 spectrometer. Analytical thin-layer chromatography (TLC) was carried out on pre-coated 0.25 mm thick plates of Kieselgel 60 F254; visualisation was accomplished by UV light (254 nm) or by spraying a solution of 5% (w/v) ammonium molybdate and 0.2% (w/v) cerium(III) sulfate in 100 mL 17.6% (w/v) aq. sulphuric acid and heating to 473 K until blue spots appeared. Chromatography was conducted by using silica gel 60 with a particle size distribution 40–63 μm and 230–400 ASTM. GC-MS analyses were performed on HP 5995C model. High-resolution mass spectrometry (HRMS) analyses were performed using a Bruker microTOF QII mass spectrometer equipped with an electrospray ion source (ESI). Melting points were determined with an Electrothermal melting point apparatus. Reagents and solvents, unless otherwise specified, were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) and TCI (Tokyo Chemical Industry, Europe, N. V.) and used without any further purification. Petroleum ether refers to the 40–60 °C boiling fraction. Deep Eutectic Solvents (DES) [MePh$_3$PBr (MTPBr)/ethylene glycol (EG) (1:5 mol/mol); MTPBr/glycerol (gly) (1:4 mol/mol); cholinium chloride (ChCl)/EG (1:2 mol/mol); tetrabutylammonium bromide (TBAB)/EG (1:4 mol/mol)] were prepared by heating under stirring at 60–80 °C for 10–30 min the corresponding individual components until a clear eutectic mixture was obtained. Full characterization data, including copies of 1H NMR and 13C NMR spectra, have been reported for all the synthesized compounds.
Table S1: Supplementary Information about the Screening of the Reaction Conditions for the Alkoxycarbonylation of Iodobenzene 1a with Mo(CO)$_6$ in EG-based Deep Eutectic Solventsa

![Chemical Structure](image)

Entry	DES (mL)	T (°C)	Pd-cat. (mol%)	Base (mmol)	1a Conv.b	2a Yieldb
1	MTPBr/EG (2.0 mL)	150	Pd(OAc)$_2$ (5.0)	PPR (3.0)	100%	>98%
2	MTPBr/EG (2.0 mL)	150	PdCl$_2$ (5.0)	PPR (3.0)	100%	78%
3	MTPBr/EG (2.0 mL)	120	Pd(OAc)$_2$ (5.0)	PPR (3.0)	100%	70%
4	MTPBr/EG (2.0 mL)	80	Pd(OAc)$_2$ (5.0)	PPR (3.0)	100%	71%
5	MTPBr/EG (2.0 mL)	80	Pd(OAc)$_2$ (5.0)	PPR (1.5)	100%	70%
6	MTPBr/EG (2.0 mL)	150	Pd(OAc)$_2$ (5.0)	-	100%	41%
7c	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (5.0)	PPR (1.5)	100%	>98%
8c	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (1.0)	PPR (1.5)	100%	>98%
9d	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	PPR (1.5)	100%	88%
10d	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	K$_3$PO$_4$ (1.5)	100%	35%
11d	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	K$_2$CO$_3$ (1.5)	100%	25%
12d	MTPBr/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	NaOAc (1.5)	100%	92%
13d	ChCl/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	NaOAc (1.5)	100%	41%
14d	TBAB/EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	NaOAc (1.5)	100%	51%
15d	EG (1.0 mL)	80	Pd(OAc)$_2$ (0.5)	NaOAc (1.5)	100%	60%

PPR = piperidine.a Reaction conditions: iodobenzene 1a (0.5 mmol), Mo(CO)$_6$ (1.0 mmol), Pd(OAc)$_2$ (0.5-5 mol%), base (1.5-3 mmol), DES (1.0-2.0 mL) at 80-150 °C for 2 h.b Calculated via 1H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone). c Reaction performed with 0.5 mmol of Mo(CO)$_6$. d Reaction performed with 0.25 mmol of Mo(CO)$_6$.

S3
Table S2: Screening of Different Bases for the Alkoxy carbonylation of Iodobenzene 1a with Mo(CO)$_6$ in MTPBr/EG DESa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base (mmol)</th>
<th>1a Conv.b</th>
<th>2a Yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMED (0.75)</td>
<td>64%</td>
<td>26%</td>
</tr>
<tr>
<td>2</td>
<td>DBU (1.5)</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>Et$_2$NH (1.5)</td>
<td>50%</td>
<td><5%</td>
</tr>
<tr>
<td>4</td>
<td>L-Arg (1.5)</td>
<td>100%</td>
<td>9%</td>
</tr>
</tbody>
</table>

TMED = N,N,N',N'-Tetramethylethylene diamine; DBU = 1,8-Diazabicyclo(5.4.0)undec-7-ene.

aReaction conditions: iodobenzene 1a (0.5 mmol), Pd(OAc)$_2$ (0.5 mol%), base, Mo(CO)$_6$ (0.25 mmol), MTPBr/EG (1.0 mL), 80 °C, 2 h. bCalculated via 1H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).
Graph S1: Investigation on CO Equivalents Released by Mo(CO)$_6$

![Chemical Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>1a (mmol)</th>
<th>Mo(CO)$_6$ (mmol)</th>
<th>2a Yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>34%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.2</td>
<td>69%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.3</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.4</td>
<td>82%</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
<td>91%</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.6</td>
<td>85%</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.7</td>
<td>86%</td>
</tr>
</tbody>
</table>

aReaction conditions: iodobenzene 1a (1.0 mmol), Pd(OAc)$_2$ (0.5 mol%), Mo(CO)$_6$ (0.1-0.7 mmol), MTPBr/EG (2.0 mL), 80 °C, 2 h. bCalculated via 1H NMR analysis of the crude reaction mixture using the internal standard technique (NMR internal standard: dimethyl sulfone).
5 Experimental Procedure for the Alkoxycarbonylation Reaction of (Hetero)Aryl Iodide 1a-t in MTPBr/EG or MTPBr/gly Eutectic Mixture

In a 10 mL round bottom flask, (hetero)aryl iodide (1a-r, 0.5 mmol), Mo(CO)$_6$ (66.0 mg, 0.25 mmol), NaOAc·3H$_2$O (204.0 mg, 1.5 mmol), Pd(OAc)$_2$ (trimeric, FW = 673.46, 0.5 mol%, 0.0025 mmol, 1.6 mg) and MTPBr/EG or MTPBr/gly DES (1.0 mL) were sequentially added. The reaction was stirred for 2 hours at 80 °C. After this time, the reaction mixture was cooled to room temperature and water (2.5 ml) and HCl solution (10% v/v) up to pH = 2 were sequentially added. The mixture was then extracted with AcOEt (5 ml x 3) and the reunited organic phases were washed with brine, dried over anhydrous Na$_2$SO$_4$, filtered through a celite pad and evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel (using as eluent petroleum ether/AcOEt 80/20 to pure AcOEt), obtaining the desired 2-hydroxyethyl esters as pure compounds 2a-r or the desired glycerol esters as mixture of isomers (2u-w, 2u’-w’).

When the diiodo arenes 1s-t were used as the substrates, the following procedure was employed: in a 10 mL round bottom flask, diiodo arene (1s-t, 0.5 mmol), Mo(CO)$_6$ (132.0 mg, 0.5 mmol), NaOAc·3H$_2$O (408.0 mg, 3.0 mmol), Pd(OAc)$_2$ (trimeric, FW = 673.46, 1.0 mol%, 0.005 mmol, 3.12 mg) and MTPBr/EG DES (2.0 mL). The reaction was stirred for 2 hours at 80 °C. The work-up procedure and purification process are similar to those ones described above for the substrates 1a-r.

6 Characterization Data for Compounds 2a-t, 2u-w and 2u’-w’

2-hydroxyethyl benzoate 2a: pale yellow oil, 92%. 1H NMR (400.12 MHz, CDCl$_3$): δ 8.07–8.04 (m, 2H), 7.58–7.54 (m, 1H), 7.45–7.41 (m, 2H), 4.46–4.44 (m, 2H), 3.96 – 3.93 (m, 2H), 2.42 (br s, 1H); 13C NMR (100.62 MHz, CDCl$_3$): δ 167.0, 133.2, 129.7, 128.4, 126.8, 66.6, 61.3; FT-IR (Film, cm$^{-1}$): 3430, 2951, 1719, 1602, 1455, 1120. GC/MS (70 eV) m/z (%): 166 (M$^+$, 5), 123 (90), 105 (100), 77 (85), 51 (40). HRMS (ESI) m/z calc. for [C$_9$H$_{10}$O$_3$ + Na]$^+$: 189.0522; found: 189.0525.
2-hydroxyethyl 4-methoxybenzoate 2b: pale yellow oil, 88%. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta\) 8.01–7.98 (m, 2H), 6.92–6.88 (m, 2H), 4.43–4.40 (m, 2H), 3.94–3.91 (m, 2H), 3.85 (s, 3H); \(^1^3\)C NMR (100.62 MHz, CDCl\(_3\)): \(\delta\) 166.7, 163.5, 131.7, 122.1, 113.6, 66.3, 61.3, 55.4; FT-IR (Film, cm\(^{-1}\)): 3440, 2936, 1719, 1599, 1455, 1110. GC/MS (70 eV) m/z (%): 196 (M\(^+\), 20), 152 (80), 135 (100), 92 (30), 77 (45), 51 (10). HRMS (ESI) m/z calc. for [C\(_{10}\)H\(_{12}\)O\(_4\) + Na]\(^+\): 219.0628; found: 219.0631.

2-hydroxyethyl 2-methylbenzoate 2c: orange oil, 88%. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta\) 7.92–7.90 (m, 1H), 7.38–7.34 (m, 1H), 7.21–7.17 (m, 2H), 4.39–4.36 (m, 2H), 3.90–3.88 (m, 2H), 3.03 (br s, 1H), 2.57 (s, 3H); \(^1^3\)C NMR (100.62 MHz, CDCl\(_3\)): \(\delta\) 167.9, 140.2, 132.1, 131.6, 130.6, 129.2, 125.6, 66.2, 61.0, 21.7; FT-IR (Film, cm\(^{-1}\)): 3319, 3008, 1718, 1602, 1568, 1379, 1261, 1120, 735. GC/MS (70 eV) m/z (%): 180 (M\(^+\), 26), 137 (19) 119 (100), 118 (98), 91 (77), 65 (41). HRMS (ESI) m/z calc. for [C\(_{10}\)H\(_{12}\)O\(_3\) + Na]\(^+\): 203.0679; found: 203.0677.

2-hydroxyethyl 4-hydroxybenzoate 2d: white crystal, m.p. 133-135 °C, 99%. \(^1\)H NMR (400.12 MHz, Acetone-d\(_6\)): \(\delta\) 9.15 (br s, 1H), 7.93–7.91 (m, 2H), 6.92–6.90 (m, 2H), 4.32–4.29 (m, 2H), 3.85–3.82 (m, 2H), 2.88 (br s, 1H); \(^1^3\)C NMR (100.62 MHz, Acetone-d\(_6\)): \(\delta\) 165.7, 161.6, 131.6, 121.7, 115.0, 66.0, 60.0; FT-IR (KBr, cm\(^{-1}\)): 3402, 2915, 1709, 1217, 809. GC/MS (70 eV) m/z (%): 182 (M\(^+\), 12), 133 (27), 132 (30), 121 (100), 93 (31), 65 (29). HRMS (ESI) m/z calc. for [C\(_9\)H\(_{10}\)O\(_4\) + Na]\(^+\): 205.0471; found: 205.0475.

2-hydroxyethyl 4-(trifluoromethyl)benzoate 2e: yellow oil, 99%. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta\) 8.18–8.15 (m, 2H), 7.71–7.69 (m, 2H), 4.51–4.48 (m, 2H), 3.99–3.97 (m, 2H), 2.55 (br s, 1H); \(^1^3\)C NMR (100.62 MHz, CDCl\(_3\)): \(\delta\) 165.6, 134.6 (q, \(J = 32.7\) Hz), 133.0 (q, \(J = 1.2\) Hz), 130.0, 125.4 (q, \(J = 3.8\) Hz) 123.5 (q, \(J = 272.7\)), 67.0, 61.1; FT-IR (Film, cm\(^{-1}\)): 3440, 1726, 1465, 1692, 1463, 1285, 775; GC/MS (70 eV) m/z (%): 234 (M\(^+\), 2), 215 (4), 191 (38), 173 (100), 145 (57), 95 (9), 77 (7), 51 (5). HRMS (ESI) m/z calc. for [C\(_{10}\)H\(_9\)F\(_3\)O\(_3\) + Na]\(^+\): 257.0396; found: 257.0399.

2-hydroxyethyl 4-acetylbenzoate 2f: pale yellow oil, 75%. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta\) 8.08–8.06 (m, 2H), 7.92–7.90 (m, 2H), 4.43–4.41 (m, 2H), 3.93–3.90 (m, 2H), 3.11 (br s, 1H), 2.58 (s, 3H); \(^1^3\)C NMR (100.62 MHz, CDCl\(_3\)): \(\delta\) 197.7, 165.9, 140.1, 133.6, 129.8, 128.1, 66.9, 60.8, 26.8;
FT-IR (Film, cm⁻¹): 3436, 2894, 1732, 1698, 1599, 1137. GC/MS (70 eV) m/z (%): 208 (M⁺, 2), 193 (55), 165 (90), 147 (100), 119 (20), 104 (20), 91 (20), 76 (15), 51 (40). HRMS (ESI) m/z calc. for [C₁₁H₁₂O₄ + Na]⁺: 231.0628; found: 231.0631.

4-((2-hydroxyethoxy)carbonyl)benzoic acid 2g: white solid, m.p. 180-182 °C, 76%. ¹H NMR (400 MHz, Acetone-d₆): δ 8.18–8.13 (m, 4H), 4.43–4.41 (m, 2H), 3.91–3.89 (m, 2H); ¹³C NMR (100 MHz, Acetone-d₆): δ 166.9, 166.2, 135.3, 135.1, 130.5, 130.4, 67.9, 60.8; FT-IR (KBr, cm⁻¹): 3431, 3050–2501 (multiple peak), 1715, 1686, 1275, 1120, 819. HRMS (ESI) m/z calc. for [C₁₀H₁₀O₅ + Na]⁺: 233.0420; found: 233.0423.

2-hydroxyethyl methyl terephthalate 2h: white solid, m.p. 80-82 °C, 94%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.13–8.07 (m, 4H), 4.49–4.47 (m, 2H), 3.98–3.96 (m, 2H), 3.94 (s, 3H), 2.25 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 166.2, 166.0, 134.0, 133.6, 129.6, 129.5, 66.9, 61.1, 52.4; FT-IR (KBr, cm⁻¹): 3453, 2961, 2883, 1715, 1695, 1580, 1432, 1275, 1106, 791. GC/MS (70 eV) m/z (%): 224 (M⁺, 4), 193 (27), 181 (88), 163 (100), 149 (28), 135 (36), 104 (21), 76 (20), 51 (8). HRMS (ESI) m/z calc. for [C₁₁H₁₂O₅ + Na]⁺: 247.0577; found: 247.0579.

2-hydroxyethyl 2-cyanobenzoate 2i: pale yellow oil, 76%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.18–8.16 (m, 1H), 7.77–7.75 (m, 1H), 7.70–7.63 (m, 2H), 4.48–4.46 (m, 2H), 3.97–3.95 (m, 2H), 2.90 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 163.9, 134.5, 132.9, 132.8, 132.4, 131.6, 118.6, 112.4, 68.0, 60.6; FT-IR (Film, cm⁻¹): 3430, 3012, 2966, 2226, 1724, 1256, 1069, 1012, 793, 759; GC/MS (70 eV) m/z (%): 191 (M⁺, 3), 161 (33), 148 (19), 130 (100), 103 (72), 76 (24), 51 (10). HRMS (ESI) m/z calc. for [C₁₀H₉NO₃ + Na]⁺: 214.0475; found: 214.0478.

2-hydroxyethyl 4-cyanobenzoate 2j: pale yellow oil, 84%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.16–8.13 (m, 2H), 7.72–7.70 (m, 2H), 4.48–4.45 (m, 2H), 3.96–3.93 (m, 2H), 2.47 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 165.1, 133.8, 132.2, 130.2, 117.9, 116.3, 67.2, 60.7; FT-IR (Film, cm⁻¹): 3433, 3012, 2967, 2228, 1723, 1258, 1070, 1013, 812, 759; GC/MS (70 eV) m/z (%): 191 (M⁺, 3), 160 (16), 148 (73), 130 (100), 102 (82), 75 (29), 51 (22). HRMS (ESI) m/z calc. for [C₁₀H₉NO₃ + Na]⁺: 214.0475; found: 214.0479.
2-hydroxyethyl 4-nitrobenzoate 2k: pale yellow wax, 53%. 1H NMR (400.12 MHz, CDCl$_3$): δ 8.27–8.20 (m, 4H), 4.50–4.48 (m, 2H), 3.98–3.96 (m, 2H); 13C NMR (100.62 MHz, CDCl$_3$): δ 164.9, 150.5, 135.2, 130.8, 123.5, 67.3, 60.8; FT-IR (KBr, cm$^{-1}$): 3334, 3115, 1724, 1530, 1461, 1361, 1285, 823. GC/MS (70 eV) m/z (%): 211 (M$^+$, 1), 181 (5), 168 (85), 164 (20), 150 (100), 104 (50), 76 (45), 50 (20). HRMS (ESI) m/z calc. for [C$_9$H$_9$NO$_5$ + Na]$^+$: 234.0373; found: 234.0378.

2-hydroxyethyl 4-fluoro-3-formylbenzoate 2l: pale red oil, 65%. 1H NMR (400.12 MHz, CDCl$_3$): δ 10.28 (s, 1H), 8.50–8.48 (m, 1H), 8.28–8.25 (m, 1H), 7.23–7.19 (m, 1H), 4.44–4.42 (m, 2H), 3.94–3.92 (m, 2H), 2.99 (br s, 1H); 13C NMR (100.62 MHz, CDCl$_3$): δ 186.4 (d, J = 6.0 Hz), 167.0 (d, J = 266.0 Hz), 164.9, 137.6 (d, J = 10.5 Hz), 130.9 (d, J = 3.0 Hz), 127.0 (d, J = 3.4 Hz), 123.9 (d, J = 9.0 Hz), 117.0 (d, J = 21.4 Hz), 67.1, 60.8; FT-IR (Film, cm$^{-1}$): 3454, 3066, 2957, 2876, 1709, 1672, 1609, 1265, 1218, 759; GC/MS (70 eV) m/z (%): 212 (M$^+$, 2), 169 (86), 151 (100), 123 (49) 95 (36), 75 (43); HRMS (ESI) m/z calc. for [C$_{10}$H$_9$FO$_4$ + Na]$^+$: 235.0377; found: 235.0380.

2-hydroxyethyl 3-chlorobenzoate 2m: pale yellow oil, 75%. 1H NMR (400.12 MHz, CDCl$_3$): δ 8.02–8.01 (m, 1H), 7.93–7.91 (m, 1H), 7.53–7.50 (m, 1H), 7.38–7.34 (m, 1H), 4.46–4.43 (m, 2H), 3.95–3.93 (m, 2H), 2.49 (br s, 1H); 13C NMR (100.62 MHz, CDCl$_3$): δ 165.7, 134.5, 133.1, 131.5, 129.7, 129.6, 127.8, 66.9, 61.0; FT-IR (Film, cm$^{-1}$): 3418, 3004, 2897, 1722, 1192, 1183, 782. GC/MS (70 eV) m/z (%): 202 (M$^+$+2, 2), 200 (M$^+$, 5), 169 (8) 157 (63), 139 (100), 111 (62), 75 (47), 51 (20). HRMS (ESI) m/z calc. for [C$_9$H$_9$ClO$_3$ + Na]$^+$: 223.0132; found: 223.0134.

2-hydroxyethyl 4-bromobenzoate 2n: yellow oil, 76%. 1H NMR (400.12 MHz, CDCl$_3$): δ 7.88–7.86 (m, 2H), 7.54–7.51 (m, 1H), 7.38–7.34 (m, 1H), 4.46–4.43 (m, 2H), 3.95–3.93 (m, 2H), 2.49 (br s, 1H); 13C NMR (100.62 MHz, CDCl$_3$): δ 166.1, 131.6, 131.1, 128.7, 128.2, 66.7, 60.8; FT-IR (Film, cm$^{-1}$): 3441, 3099, 1723, 1609, 1451, 1275, 757. GC/MS (70 eV) m/z (%): 246 (M$^+$+2, 2), 244 (M$^+$, 2), 201 (58), 183 (100), 157 (43), 104 (12), 76 (32), 51 (8). HRMS (ESI) m/z calc. for [C$_9$H$_9$BrO$_3$ + Na]$^+$: 266.9627; found: 266.9630.
2-hydroxyethyl 1-naphtoate 2o: yellow oil, 81%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.91–8.89 (m, 1H), 8.21–8.19 (m, 1H), 8.01–7.99 (m, 1H), 7.88–7.85 (m, 1H), 7.63–7.44 (m, 3H), 4.52–4.50 (m, 2H), 3.98–3.96 (m, 2H), 2.65 (s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 167.8, 133.8, 133.5, 131.2, 130.3, 128.5, 127.8, 126.7, 126.2, 125.6, 124.4, 66.6, 61.2; FT-IR (Film, cm⁻¹): 3499, 2978, 1710, 1601, 1518, 1118, 693. GC/MS (70 eV) m/z (%): 216 (M⁺, 50), 172 (75), 155 (100), 127 (90), 101 (10), 77 (15), 51 (10). HRMS (ESI) m/z calc. for [C₁₃H₁₂O₃ + Na]⁺: 239.0679; found: 239.0683.

2-hydroxyethyl nicotinate 2p: yellow oil, 63%. ¹H NMR (400.12 MHz, CDCl₃): δ 9.18–9.17 (m, 1H), 8.72–8.70 (m, 1H), 8.30–8.27 (m, 1H), 7.39–7.36 (m, 1H), 4.47–4.45 (m, 2H), 3.96–3.93 (m, 2H); ¹³C NMR (100.62 MHz, CDCl₃): δ 165.2, 152.9, 150.4, 137.5, 126.1, 123.5, 67.0, 60.6; FT-IR (Film, cm⁻¹): 3401, 1726, 1587, 1293, 1250, 1075, 801. GC/MS (70 eV) m/z (%): 167 (M⁺, 3), 136 (18), 124 (89), 106 (100), 78 (77), 51 (38). HRMS (ESI) m/z calc. for [C₈H₉NO₃ + Na]⁺: 190.0475; found: 190.0477.

2-hydroxyethyl 1-benzyl-1H-indole-5-carboxylate 2q: yellow oil, 64%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.45–8.44 (m, 1H), 7.91–7.88 (m, 1H), 7.33–7.27 (m, 4H), 7.19–7.18 (m, 1H), 7.10–7.08 (m, 2H), 6.66–6.65 (m, 1H), 5.34 (s, 2H), 4.49–4.46 (m, 2H), 3.98–3.95 (m, 2H), 2.36 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 168.0, 138.8, 136.8, 129.7, 128.8, 128.2, 127.8, 126.7, 124.2, 123.1, 121.2, 109.4, 103.3, 66.4, 61.6, 50.2; FT-IR (Film, cm⁻¹): 3234, 3033, 2957, 2880, 1696, 1609, 1275, 754; GC/MS (70 eV) m/z (%): 295 (M⁺, 2), 292 (100), 275 (6), 251 (11), 201 (28), 158 (76), 132 (19), 106 (36), 91 (92), 77 (15), 65 (22), 51 (12). HRMS (ESI) m/z calc. for [C₁₈H₁₇NO₃ + Na]⁺: 318.1101; found: 318.1104.

2-hydroxyethyl 1H-indole-5-carboxylate 2r: pale red oil, 55%. ¹H NMR (400.12 MHz, CDCl₃): δ 8.64 (br s, 1H), 8.43 (s, 1H), 7.91–7.89 (m, 1H), 7.40–7.38 (m, 1H), 7.27–7.26 (m, 1H), 6.64–6.63 (m, 1H), 4.49–4.47 (m, 2H), 3.99–3.97 (m, 2H), 2.40 (br s, 1H); ¹³C NMR (100.62 MHz, CDCl₃): δ 168.2, 138.6, 127.5, 125.7, 123.9, 123.4, 121.4, 110.8, 104.0, 66.4, 61.7; FT-IR (Film, cm⁻¹): 3401, 3267, 3100, 2971, 2928, 1662, 1237, 749; GC/MS (70 eV) m/z (%): 205 (M⁺, 9), 161 (56), 144 (100), 116 (62), 89 (34), 63 (13). HRMS (ESI) m/z calc. for [C₁₁H₁¹NO₃ + Na]⁺: 228.0631; found: 228.0634.
Bis(2-hydroxyethyl) [1,1'-biphenyl]-4,4'-dicarboxylate 2s: pale yellow solid, m.p. 115-116 °C, 99%. \(^1\)H NMR (400.12 MHz, Acetone-d\(_6\)): \(\delta 8.18-8.15\) (m, 4H), 7.90-7.87 (m, 4H), 4.42-4.40 (m, 4H), 3.92-3.88 (m, 4H); \(^{13}\)C NMR (100.62 MHz, Acetone-d\(_6\)): \(\delta 166.6, 144.9, 131.02, 130.98, 128.1, 67.6, 60.9\); FT-IR (Film, cm\(^{-1}\)): 3428, 2941, 2880, 1716, 1699, 1412, 1297, 1077, 875, 718. HRMS (ESI) \(m/z\) calc. for [C\(_{18}\)H\(_{18}\)O\(_6\) + Na\]^+: 353.0996; found: 353.0999.

Bis(2-hydroxyethyl) terephthalate 2t\(^8\): white solid, m.p. 106-109 °C, 93%. \(^1\)H NMR (400.12 MHz, DMSO-d\(_6\)): \(\delta 8.12\) (s, 4H), 4.98 (bs s, 2H), 4.33-4.30 (m, 4H), 3.73-3.71 (m, 4H); \(^{13}\)C NMR (100.62 MHz, DMSO-d\(_6\)): \(\delta 165.2, 133.8, 129.6, 67.1, 59.1\); FT-IR (Film, cm\(^{-1}\)): 3431, 2950, 2877, 1704, 1721, 1412, 1299, 1102, 851, 718; HRMS (ESI) \(m/z\) calc. for [C\(_{12}\)H\(_{14}\)O\(_6\) + Na\]^+: 277.0683; found: 277.0685.

Mixture of 2,3-dihydroxypropyl benzoate (2u)\(^9\) and 1,3-dihydroxypropan-2-yl benzoate (2u')\(^10\): 84%, \(2u:2u' = 88:12\), pale yellow liquid. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta 8.03-7.99\) (m, 2H \(2u\), 2H \(2u'\)), 7.55-7.50 (m, 1H \(2u\), 1H \(2u'\)), 7.42-7.37 (m, 2H \(2u\), 2H \(2u'\)), 5.14 (quin, \(J = 4.9\) Hz, 1H \(2u'\)), 4.36 (d, \(J = 5.5\) Hz, 2H \(2u\)), 4.08-4.02 (m, 1H \(2u\)), 3.92-3.90 (m, 4H \(2u'\)), 3.78 (br s, 1H \(2u\)), 3.77-3.73 (m, 1H \(2u\)), 3.68-3.63 (m, 1H \(2u\)), 3.42 (bs s, 1H \(2u\)), 2.66 (br s, 2H \(2u'\)). \(^{13}\)C NMR (100.62 MHz, CDCl\(_3\)): \(\delta 166.9\) (\(2u\)), 166.7 (\(2u'\)), 133.2\(_8\) (\(2u'\)), 133.2\(_5\) (\(2u\)), 129.7 (\(2u'\)), 129.6 (\(2u\), \(2u'\)), 129.4 (\(2u\)), 128.3\(_8\) (\(2u\)), 128.3\(_6\) (\(2u'\)), 75.6 (\(2u'\)), 70.2 (\(2u\)), 65.6 (\(2u\)), 63.4(\(2u\)), 61.8 (\(2u'\)). FT-IR (Film, cm\(^{-1}\)): 3415 (br), 3065, 2950, 2886, 1715, 1452, 1275, 1116, 1070, 710. HRMS (ESI) \(m/z\) calc. for [C\(_{10}\)H\(_{12}\)O\(_4\) + Na\]^+: 219.0628; found: 219.0631.

Mixture of 2,3-dihydroxypropyl 4-cyanobenzoate (2v) and 1,3-dihydroxypropan-2-yl 4-cyanobenzoate (2v'): 76%, \(2v:2v' = 86:14\), pale yellow waxy solid. \(^1\)H NMR (400.12 MHz, CDCl\(_3\)): \(\delta 8.18-8.13\) (m, 2H \(2v\), 2H \(2v'\)), 7.76-7.72 (m, 2H \(2v\), 2H \(2v'\)), 5.20 (quin, \(J = 4.8\) Hz, 1H \(2v'\)), 4.48-4.40 (m, 2H \(2v\)), 4.12-4.07 (m, 1H \(2v\)), 3.98 (d, \(J = 4.8\) Hz, 4H \(2v'\)), 3.81-3.77 (m, 1H \(2v\)), 3.71-3.67 (m, 1H \(2v\)), 2.93 (br s, 1H \(2v\)), 2.49 (br s, 1H \(2v\)), 1.88 (br s, 2H \(2v'\)). \(^{13}\)C NMR
(100.62 MHz, CDCl$_3$): δ 165.2 (2v), 164.9 (2v'), 133.6 (2v'), 133.4 (2v'), 132.25 (2v), 132.22 (2v'), 130.23 (2v), 130.16 (2v), 129.7 (2v'), 128.4 (2v'), 117.8 (2v), 116.6 (2v), 76.2 (2v'), 70.0 (2v), 66.3 (2v), 63.3 (2v), 62.2 (2v'). FT-IR (KBr, cm$^{-1}$): 3253 (br), 3045, 2940, 2887, 2238, 1716, 1271, 1118, 1046, 859, 766. HRMS (ESI) m/z calc. for [C$_{11}$H$_{11}$NO$_4$ + Na]$^+$: 244.0580; found: 244.0584.

Mixture of 2,3-dihydroxypropyl methyl terephthalate (2w) and 1,3-dihydroxypropan-2-yl methyl terephthalate (2w'): 71%, 2w:2w' = 87:13, white waxy solid. 1H NMR (400.12 MHz, CDCl$_3$): δ 8.13–8.07 (m, 4H 2w, 4H 2w'), 5.19 (quin, J = 4.7 Hz, 1H 2w'), 4.48–4.40 (m, 2H 2w), 4.13–4.40 (m, 1H 2w), 3.99 (d, J = 4.6 Hz, 4H 2w'), 3.95 (s, 3H 2w, 3H 2w'), 3.81–3.78 (m, 1H 2w), 3.72–3.68 (m, 1H 2w), 2.88 (br s, 1H 2w), 2.41 (br s, 1H 2w), 1.77 (br s, 2H 2w'). 13C NMR (100.62 MHz, CDCl$_3$): δ 166.2 (2w), 166.1 (2w), 165.8 (2C 2w'), 134.3 (2w), 133.5 (2C 2w'), 133.4 (2w), 129.74 (2w'), 129.70 (2w), 129.63 (2w), 129.60 (2w'), 76.1 (2w'), 70.3 (2w), 66.1 (2w), 63.4 (2w), 62.4 (2w'), 52.5 (2w, 2w'). FT-IR (KBr, cm$^{-1}$): 3368 (br), 2959, 2904, 1719, 1449, 1408, 1262, 1104, 1019, 802, 727. HRMS (ESI) m/z calc. for [C$_{12}$H$_{14}$O$_6$ + Na]$^+$: 277.0683; found: 277.0681.
7 1H NMR and 13C NMR Spectra for Compounds 2a-t, 2u-w and 2u'-w'

1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, Acetone-d_6
13C NMR 100.62 MHz, Acetone-d_3
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, Acetone-d$_6$
13C NMR 100.62 MHz, Acetone-d_6
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
$^{13}\text{C NMR}$ 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
\[^1\text{H} \text{NMR} \ 400.12 \text{ MHz}, \text{CDCl}_3\]
13C NMR 100.62 MHz, CDCl$_3$
$\text{H NMR 400.12 MHz, CDCl}_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, Acetone-d_6
$^{13}\text{C NMR 100.62 MHz, Acetone-d}_6$
1H NMR 400.12 MHz, DMSO-d$_6$
13C NMR 100.62 MHz, DMSO-d$_6$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
1H NMR 400.12 MHz, CDCl$_3$
13C NMR 100.62 MHz, CDCl$_3$
8 References