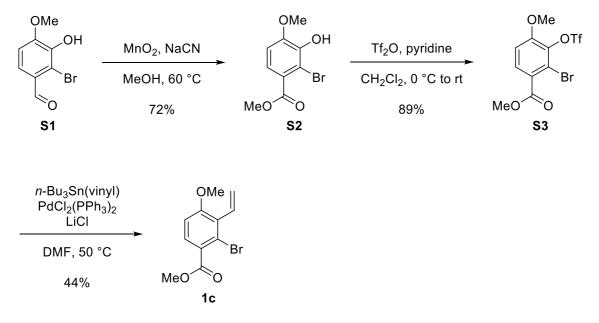
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Construction of the Tetracyclic Ring System of Diterpene Alkaloids via Cationic [5+2] Cycloaddition

Kosuke Mizuno, Yoshitake Nishiyama, and Satoshi Yokoshima*

Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan *E-mail: yokosima@ps.nagoya-u.ac.jp


Table of Contents

General Remarks	S2
Experimental Procedure for Compounds	S3
Procedure for Calculations	S29
Spectra for Compounds ·····	S32

General Remarks

Nuclear magnetic resonance (NMR) spectra were determined on a JEOL-ECS400 or JEOL-ECZ400 instrument. Chemical shifts for ¹H NMR are reported in parts per million (ppm) downfields from tetramethylsilane as the internal standard, and coupling constants are in hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, m = multiplet. Chemical shifts for ¹³C NMR are reported in ppm relative to the center line of a triplet at 77.0 ppm for deuteriochloroform. Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 Fourier Transform Infrared Spectrophotometer and are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were obtained on a Bruker Daltonics compact in positive electrospray ionization (ESI) method, using ESI tuning mix as the internal standard. Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F254. Preparative TLC separations were performed on Merck analytical plates (0.25 or 0.50 mm thick) precoated with silica gel 60 F254. Flash chromatography separations were performed on KANTO CHEMICAL Silica Gel 60 (spherical, 40-100 mesh) or on KANTO CHEMICAL Silica Gel 60 (spherical, NH2, 40-50 mesh). Reagents were commercial grades and were used without any purification. Dehydrated tetrahydrofuran and dichloromethane were purchased from FUJIFILM Wako Pure Chemical Corporation. Dehydrated ethanol and acetonitrile were purchased from FUJIFILM Wako Pure Chemical Industries and stored over activated MS3A. All reactions sensitive to oxygen or moisture were conducted under an argon atmosphere. $S1^1$, $S6^2$, $S8^3$, 2^4 , and $1b^5$ were prepared according to the literature.

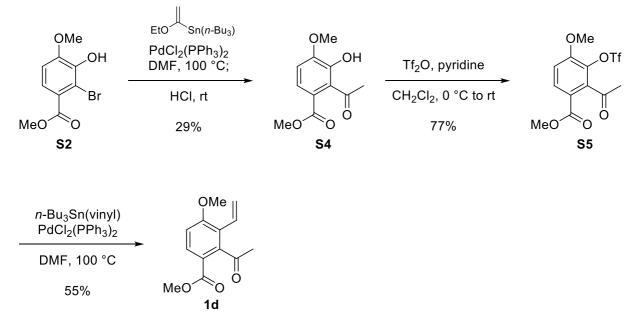
Synthesis of styrene 1c

To a stirred solution of **S1** (78.8 mg, 0.341 mmol) in MeOH (1.7 mL) were added NaCN (50.1 mg, 1.02 mmol) and MnO_2 (208 mg, 2.39 mmol) at rt. After stirring for 24 h at 60 °C, the resulting mixture was filtered through a pad of celite, and the filter cake was washed with CH_2Cl_2 and 1N HCl. The resulting mixture was extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-40% ethyl acetate/hexane) to give **S2** (63.8 mg, 0.245 mmol, 72.0 %) as a yellow solid.

¹**H** NMR (CDCl₃): 7.50 (d, J = 8.7 Hz, 1H), 6.84 (d, J = 8.7 Hz, 1H), 3.96 (s, 3H), 3.91 (s, 3H) ¹³C NMR (CDCl₃): 166.1 (C), 149.7 (C), 143.6 (C), 124.1 (C), 123.7 (CH), 108.9 (C), 108.7 (CH), 56.4 (CH₃), 52.2 (CH₃) **IR** (film, cm⁻¹): 2924, 1720, 1596, 1489, 1436, 1285, 1220, 1139, 1030, 622 **HRMS** (ESI-QTOF) calcd for C₉H₉BrNaO₄⁺ [M+Na⁺] 282.9576, found 282.9577 mp: 156-160 °C

To a stirred solution of **S2** (104 mg, 0.398 mmol) in CH_2Cl_2 (4.0 mL) were added pyridine (96 μ L, 1.2 mmol) and Tf_2O (114 μ l, 0.797 mmol) at 0 °C. After stirring for 1 h at rt, the resulting mixture was quenched with 1N HCl at the same temperature and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-40% ethyl acetate/hexane) to give **S3** (138 mg, 0.353 mmol, 88.6%) as a yellow oil.

¹H NMR (CDCl₃): 7.90 (d, J = 8.9 Hz, 1H), 7.02 (d, J = 8.9 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H) ¹³C NMR (CDCl₃): 165.0 (C), 154.7 (C), 137.7 (C), 131.8 (CH), 125.1 (C), 118.5 (CF₃, q, J = 319.4 Hz), 118.2 (C), 110.9 (CH), 56.6 (CH₃), 52.6 (CH₃) IR (film, cm⁻¹): 2952, 1731, 1598, 1489, 1030, 999, 913, 849, 748, 592 HRMS (ESI-QTOF) calcd for C₁₀H₈BrF₃NaO₆S⁺ [M+Na⁺] 414.9069, found 414.9055 To a stirred solution of **S3** (87.8 mg, 0.223 mmol) in DMF (1.5 mL) were added tributylvinyltin (72.1 μ L, 0.246 mmol), LiCl (28.4 mg, 0.670 mmol), and PdCl₂(PPh₃)₂ (7.8 mg, 0.011 mmol) at rt. After stirring for 12 h at 50 °C, the resulting mixture was quenched with H₂O at rt and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel and K₂CO₃ (5% w/w) (10-20% ethyl acetate/hexane) to give **1c** (26.5 mg, 43.8 %) as a clear oil.


¹H NMR (CDCl₃): 7.63 (d, J = 8.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 6.77 (dd, J = 17.9, 11.7 Hz, 1H), 5.81 (dd, J = 17.9, 1.8 Hz, 1H), 5.64 (dd, J = 11.7, 1.8 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H)

¹³C NMR (CDCl₃): 167.2 (C), 160.1 (C), 131.8 (CH), 130.5 (CH), 128.5 (C), 125.8 (C), 123.8 (C), 122.0 (CH₂), 109.2 (CH), 56.0 (CH₃), 52.3 (CH₃)

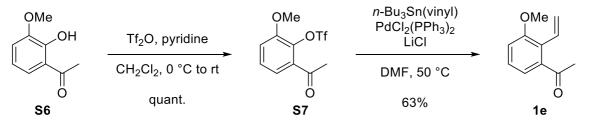
IR (film, cm⁻¹): 2922, 1728, 1579, 1433, 1362, 1263, 1189, 1139, 1029, 818

HRMS (ESI-QTOF) calcd for C₁₁H₁₁BrNaO₃⁺ [M+Na⁺] 292.9784, found 292.9786

Synthesis of styrene 1d

To a stirred solution of **S2** (127 mg, 0.486 mmol) in DMF (2.0 mL) were added (1-ethoxyvinyl)tri-*n*-butylstannane (181 μ L, 0.535 mmol) and PdCl₂(PPh₃)₂ (34.0 mg, 0.0486 mmol) at rt. After stirring for 12 h at 100 °C, 2 M HCl (2 mL) was added to the reaction solution at rt. After stirring for 1 h at rt, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel and K₂CO₃ (5% w/w) (20-35% ethyl acetate/hexane) to give **S4** (31.3 mg, 0.140 mmol, 28.7%) as an orange solid.

¹H NMR (CDCl₃): 7.52 (d, J = 8.2 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.67 (s, 1H), 3.96 (s, 3H), 3.85 (s, 3H), 2.56 (s, 3H) ¹³C NMR (CDCl₃): 203.2 (C), 166.4 (C), 150.4 (C), 142.9 (C), 129.3 (C), 123.0 (CH), 120.8 (C), 110.2 (CH), 56.3 (CH₃), 52.3 (CH₃), 31.3 (CH₃) IR (film, cm⁻¹): 3397, 2361, 1710, 1606, 1437, 1349, 1282, 1133, 1042, 846 HRMS (ESI-QTOF) calcd for C₁₁H₁₂NaO₅⁺ [M+Na⁺] 247.0577, found 247.0583 mp: 93-98 °C


To a stirred solution of **S4** (22.8 mg, 0.102 mmol) in CH_2Cl_2 (1.0 mL) were added pyridine (16.4 µL, 0.203 mmol) and Tf_2O (21.8 µL, 0.153 mmol) at 0 °C. After stirring for 15 h at rt, the resulting mixture was quenched with 1N HCl at the same temperature and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-40% ethylacetate/hexane) to give **S5** (28.0 mg, 0.0786 mmol, 77.1%) as a yellow oil.

¹H NMR (CDCl₃): 8.02 (d, J = 8.7 Hz, 1H), 7.07 (d, J = 8.7 Hz, 1H), 4.00 (s, 3H), 3.88 (s, 3H), 2.58 (s, 3H)
¹³C NMR (CDCl₃): 198.7 (C), 164.7 (C), 154.6 (C), 139.3 (C), 133.9 (C), 131.7 (CH), 120.0 (C), 118.6 (CF₃, q, J = 319.4 Hz), 112.2 (CH), 56.6 (CH₃), 52.6 (CH₃), 31.6 (CH₃)
IR (film, cm⁻¹): 1720, 1606, 1421, 1285, 1225, 1131, 990, 915, 861, 602

To a stirred solution of **S5** (14.1 mg, 0.0396 mmol) in DMF (200 μ L) were added tributylvinyltin (12.8 μ L, 0.0435 mmol) and PdCl₂(PPh₃)₂ (2.8 mg, 0.0040 mmol) at rt. After stirring for 12 h at 100 °C, the resulting mixture was quenched with H₂O at rt and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel and K₂CO₃ (5% w/w) (15-30% ethyl acetate/hexane) to give **1d** (5.1 mg, 0.022 mmol, 55%) as a pale yellow oil.

¹H NMR (CDCl₃): 7.93 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 6.64 (dd, J = 17.8, 11.8 Hz, 1H), 5.67 (dd, J = 17.8, 1.6 Hz, 1H), 5.51 (dd, J = 11.8, 1.6 Hz, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 2.49 (s, 3H) ¹³C NMR (CDCl₃): 205.6 (C), 166.1 (C), 160.8 (C), 145.4 (C), 131.4 (CH), 129.2 (CH), 123.3 (C), 122.3 (CH₂), 118.9 (C), 109.7 (CH), 55.9 (CH₃), 52.2 (CH₃), 31.9 (CH₃) **IR** (film, cm⁻¹): 2923, 2362, 1713, 1573, 1435, 1269, 1196, 1149, 1041, 986 **HRMS** (ESI-QTOF) calcd for C₁₃H₁₄NaO₄ [M+Na⁺] 257.0784, found 257.0788

Synthesis of styrene 1e

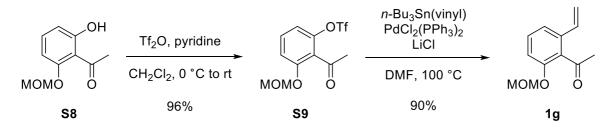
To a stirred solution of **S6** (93.4 mg, 0.562 mmol) in CH_2Cl_2 (5.6 mL) were added pyridine (90.5 μ L, 1.12 mmol) and Tf_2O (120 μ L, 0.844 mmol) at 0 °C. After stirring for 150 min at rt, the resulting mixture was quenched with 1N HCl at the same temperature and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-35% ethyl acetate/hexane) to give **S7** (175 mg, quant.) as a yellow oil.

¹H NMR (CDCl₃): 7.40 (dd, J = 8.4, 7.8 Hz, 1H), 7.27 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 8.4, 1.5Hz, 1H), 3.93 (s, 3H), 2.61 (s, 3H)
¹³C NMR (CDCl₃): 197.2 (C), 151.8 (C), 135.8 (C), 133.8 (C), 128.8 (CH), 121.0 (CH), 118.6 (CF₃, q, J = 318.5 Hz), 116.2 (CH), 56.4 (CH₃), 29.6 (CH₃)

IR (film, cm⁻¹): 1698, 1577, 1420, 1286, 1204, 1134, 1044, 885, 784, 598

HRMS (ESI-QTOF) calcd for $C_{10}H_9F_3NaO_5S^+$ [M+Na⁺] 321.0015, found 321.0029

To a stirred solution of **S7** (18.6 mg, 0.0624 mmol) in DMF (250 μ I) were added tributylvinyltin (22.0 μ I, 0.0748 mmol), LiCl (7.9 mg, 0.187 mmol), and PdCl₂(PPh₃)₂ (4.4 mg, 0.0063 mmol) at rt. After stirring for 13 h at 50 °C, the resulting mixture was quenched with H₂O at rt and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel and K₂CO₃ (5% w/w) (10-25% ethyl acetate/hexane) to give **1e** (6.9 mg, 0.039 mmol, 63%) as a pale yellow oil.


¹H NMR (CDCl₃): 7.28 (dd, J = 7.6, 7.1 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.1 Hz, 1H), 6.96 (dd, J = 17.4, 11.8 Hz, 1H), 5.48 (dd, J = 11.8, 1.5 Hz, 1H), 5.45 (dd, J = 17.4, 1.5 Hz, 1H), 3.86 (s, 3H), 2.46 (s, 3H)

¹³C NMR (CDCl₃): 205.3 (C), 157.2 (C), 142.3 (C), 131.1 (CH), 128.4 (CH), 125.4 (C), 121.1 (CH₂), 119.2 (CH), 112.3 (CH), 55.8 (CH₃), 31.0 (CH₃)

IR (film, cm⁻¹): 2925, 2360, 1691, 1575, 1458, 1353, 1264, 1047, 924, 754

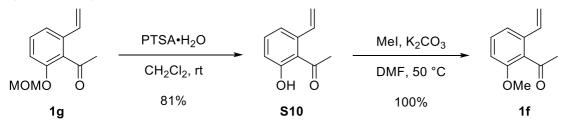
HRMS (ESI-QTOF) calcd for $C_{11}H_{12}NaO_2^+$ [M+Na⁺] 199.0730, found 199.0730

Synthesis of styrene 1g

To a stirred solution of **S8** (6.04 g, 30.8 mmol) in CH_2CI_2 (92 mL) were added pyridine (4.96 mL, 61.6 mmol) and Tf_2O (6.20 mL, 37.0 mmol) at 0 °C. After stirring for 2 h at rt, the resulting mixture was quenched with 1N HCl at the same temperature and extracted three times with CH_2CI_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (10-20% ethyl acetate/hexane) to give **S9** (9.72 g, 29.6 mmol, 96.1 %) as a yellow oil.

¹H NMR (CDCl₃): 7.40 (dd, J = 8.7, 8.2 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 8.7 Hz, 1H), 5.24 (s, 2H), 3.49 (s, 3H), 2.59 (s, 3H) ¹³C NMR (CDCl₃): 198.2 (C), 155.4 (C), 145.3 (C), 131.5 (CH), 125.6 (C), 118.4 (CF₃, q, J = 318.5 Hz), 114.9 (CH), 114.5 (CH), 94.6 (CH₂), 56.6 (CH₃), 32.0 (CH₃) **IR** (film, cm⁻¹): 1707, 1608, 1425, 1216, 1145, 1026, 926, 831, 741, 596 **HRMS** (ESI-QTOF) calcd for C₁₁H₁₁F₃NaO₆S⁺ [M+Na⁺] 351.0121, found 351.0125

To a stirred solution of **S9** (9.70 g, 29.6 mmol) in DMF (90 mL) were added tri-*n*-butylvinyltin (8.69 mL, 29.6 mmol), LiCl (3.14 g, 74.1 mmol) and PdCl₂(PPh₃)₂ (415 mg, 0.593 mmol) at rt. After stirring for 1 h at 100 °C, the resulting mixture was quenched with H₂O at rt and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on a mixture of silica gel and K₂CO₃ (5% w/w) (5-30% ethyl acetate/hexane) to give **1g** (5.50 g, 26.7 mmol, 90.1 %) as a yellow oil.

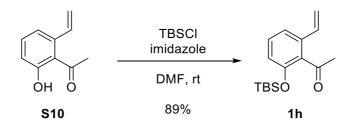

¹**H NMR** (CDCl₃): 7.28 (dd, *J* = 8.2, 7.3 Hz, 1H), 7.22 (dd, *J* = 7.3, 0.9 Hz, 1H), 7.05 (dd, *J* = 8.2, 0.9 Hz, 1H), 6.65 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.70 (dd, *J* = 17.4, 0.9 Hz, 1H), 5.31 (dd, *J* = 11.0, 0.9 Hz, 1H), 5.18 (s, 2H), 3.46 (s, 3H), 2.52 (s, 3H)

¹³C NMR (CDCl₃): 205.0 (C), 153.4 (C), 135.4 (C), 133.2 (CH), 131.2 (C), 129.9 (CH), 119.1 (CH), 117.2 (CH₂), 113.5 (CH), 94.5 (CH₂), 56.2 (CH₃), 32.6 (CH₃)

IR (film, cm⁻¹): 2912, 1700, 1568, 1464, 1353, 1249, 1155, 995, 920, 802

HRMS (ESI-QTOF) calcd for $C_{12}H_{14}NaO_{3}^{+}$ [M + Na⁺] 229.0835, found 229.0844

Synthesis of styrene 1f


To a stirred solution of **1g** (5.50 g, 26.7 mmol) in CH_2Cl_2 (107 mL) was added PTSA·H₂O (1.02 g, 5.35 mmol) at rt. After stirring for 2 h at rt, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (5-15% ethyl acetate/hexane) to give **S10** (3.50 g, 21.6 mmol, 80.8 %) as a yellow oil.

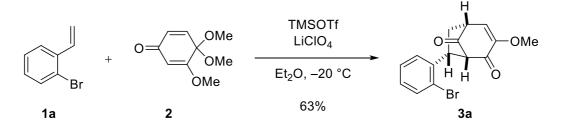
¹**H NMR** (CDCl₃): 12.09 (s, 1H), 7.37 (dd, J = 8.4, 7.8 Hz, 1H), 7.04 (dd, J = 17.1, 10.9 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.57 (dd, J = 17.1, 0.9 Hz, 1H), 5.41 (dd, J = 10.9, 0.9 Hz, 1H), 2.60 (s, 3H) ¹³**C NMR** (CDCl₃): 206.1 (C), 161.8 (C), 141.5 (C), 138.1 (CH), 134.7 (CH), 120.2 (CH), 119.9 (C), 118.1 (CH₂), 117.7 (CH), 33.0 (CH₃) **IR** (film, cm⁻¹): 2920, 1627, 1444, 1331, 1248, 1215, 1007, 930, 806, 742 **HRMS** (ESI-QTOF) calcd for C₁₀H₁₀NaO₂⁺ [M + Na⁺] 185.0573 , found 185.0574

To a stirred solution of **S10** (37.2 mg, 0.229 mmol) in DMF (1.1 mL) were added K_2CO_3 (95.1 mg, 0.688 mmol) and MeI (21.4 μ L, 0.344 mmol) at rt. After stirring for 2 h at 50 °C, the resulting mixture was quenched with H_2O at rt and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (10-20% ethyl acetate/hexane) to give **1f** (40.2 mg, 0.228 mmol, 99.6%) as a pale yellow oil.

¹**H NMR** (CDCl₃): 7.30 (dd, J = 8.3, 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.66 (dd, J = 17.4, 11.0 Hz, 1H), 5.70 (d, J = 17.4 Hz, 1H), 5.30 (d, J = 11.0 Hz, 1H), 3.83 (s, 3H), 2.50 (s, 3H) ¹³**C NMR** (CDCl₃): 205.3 (C), 156.0 (C), 135.4 (C), 133.3 (CH), 130.5 (C), 130.0 (CH), 118.0 (CH), 117.2 (CH₂), 109.9 (CH), 55.7 (CH₃), 32.5 (CH₃) **IR** (film, cm⁻¹): 2923, 1698, 1568, 1465, 1351, 1262, 1071, 919, 798, 744 **HRMS** (ESI-QTOF) calcd for C₁₁H₁₂NaO₂⁺ [M+Na⁺] 199.0730, found 199.0736

Synthesis of styrene 1h

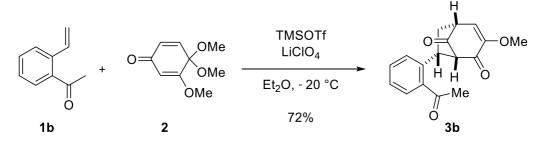
To a stirred solution of **\$10** (3.40 g, 21.0 mmol) in DMF (63 mL) were added imidazole (2.85 g, 41.9 mmol) and TBSCI (3.79 g, 25.2 mmol) at rt. After stirring for 4 h at rt, the resulting mixture was quenched with H_2O at the same temperature and extracted three times with a 1:1 mixture of ethyl acetate and hexane. The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (0-15% ethyl acetate/hexane) to give **1h** (5.16 g, 18.7 mmol, 89.0 %) as a pale yellow oil.


¹**H NMR** (CDCl₃): 7.20 (dd, *J* = 7.9, 7.6 Hz, 1H), 7.16 (dd, *J* = 7.9, 1.6 Hz, 1H), 6.75 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.63 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.68 (dd, *J* = 17.4, 0.9 Hz, 1H), 5.28 (dd, *J* = 10.8, 0.9 Hz, 1H), 2.49 (s, 3H), 0.96 (s, 9H), 0.21 (s, 6H)

¹³C NMR (CDCl₃): 205.4 (C), 151.8 (C), 135.6 (C), 133.4 (CH), 133.2 (C), 129.6 (CH), 118.4 (CH), 118.1 (CH), 116.9 (CH), 32.6 (CH₃), 25.6 (CH₃), 18.1 (C), -4.3 (CH₃)

IR (film, cm⁻¹): 2934, 2860, 1705, 1569, 1465, 1354, 1278, 977, 838, 745

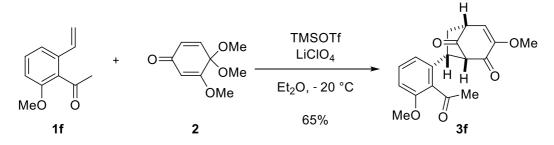
HRMS (ESI-QTOF) calcd for $C_{16}H_{24}NaO_2Si^{+}[M + Na^{+}]$ 299.1438, found 299.1437


Synthesis of compound 3a

To a stirred solution of **1a** (70.5 mg, 0.385 mmol) in Et₂O (1.0 mL) were added **2** (35.4 mg, 0.193 mmol), LiClO₄ (307 mg, 2.89 mmol), and TMSOTf (38 μ L, 0.21 mmol) at -20 °C. After stirring for 10 min at -20 °C, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted four times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel twice (30-60% ethyl acetate/hexane) (100% CH₂Cl₂) to give **3a** (39.2 mg, 0.122 mmol, 63.2%) as an orange foam.

¹H NMR (CDCl₃): 7.55 (d, *J* = 8.0 Hz, 1H), 7.21 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.07 (dd, *J* = 8.0, 7.8 Hz, 1H), 6.93 (7.8 Hz, 1H), 6.48 (d, *J* = 8.4 Hz, 1H), 4.35 (ddd, *J* = 10.7, 7.1, 4.6 Hz, 1H), 3.98 (dd, *J* = 7.1, 2.1 Hz, 1H), 3.70 (s, 3H), 3.44 (ddd, *J* = 8.4, 6.3, 2.1 Hz, 1H), 2.72 (ddd, *J* = 13.5, 10.7, 6.3 Hz, 1H), 2.24 (dd, *J* = 13.5, 4.6 Hz, 1H)
¹³C NMR (CDCl₃): 200.3 (C), 198.6 (C), 155.2 (C), 137.6 (C), 133.2 (CH), 128.9 (CH), 128.0 (CH), 127.7 (CH), 126.1 (C), 118.0 (CH), 66.8 (CH), 55.8 (CH₃), 46.5 (CH), 38.3 (CH), 32.6 (CH₃)
IR (film, cm⁻¹): 2936, 1764, 1688, 1605, 1465, 1362, 1217, 1122, 1023, 756
HRMS (ESI-QTOF) calcd for C₁₅H₁₃BrNaO₃⁺ [M+Na⁺] 342.9940, found 342.9936

Synthesis of compound 3b



To a stirred solution of **1b** (90.6 mg, 0.620 mmol) in Et₂O (1.6 mL) were added **2** (57.0 mg, 0.310 mmol), LiClO₄ (485 mg, 4.65 mmol), and TMSOTf (61.6 μ L, 0.341 mmol) at -20 °C. After stirring for 10 min at -20 °C, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted four times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (40-60% ethyl acetate/hexane) to give **3b** (63.6 mg, 0.224 mmol, 72.2%) as a red foam.

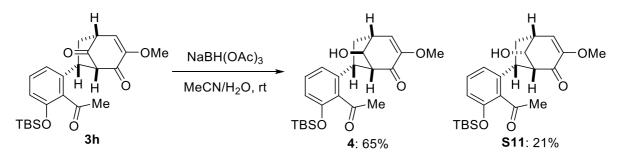
¹**H NMR** (CDCl₃): 7.68 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.39 (ddd, *J* = 7.7, 7.6, 1.4 Hz, 1H), 7.30 (ddd, *J* = 7.7, 7.7, 1.1 Hz, 1H), 7.08 (dd, *J* = 7.6, 1.1 Hz, 1H), 6.47 (d, *J* = 8.2 Hz, 1H), 4.74 (ddd, *J* = 10.9, 6.9, 6.2 Hz, 1H), 3.96 (dd, *J* = 6.9, 1.9 Hz, 1H), 3.71 (s, 3H), 3.42 (ddd, *J* = 8.2, 6.4, 1.9 Hz, 1H), 2.69 (ddd, *J* = 13.7, 10.9, 6.4 Hz, 1H), 2.63 (s, 3H), 2.26 (dd, *J* = 13.7, 6.2 Hz, 1H)

¹³C NMR (CDCl₃): 202.3 (C), 200.6 (C), 190.1 (C), 155.3 (C), 138.9 (C), 138.2 (C), 131.7 (CH), 129.6 (CH), 128.0 (CH), 127.1 (CH), 118.1 (CH), 68.7 (CH), 55.8 (CH₃), 46.8 (CH), 34.7 (CH), 33.1 (CH₂), 30.0 (CH₃)
IR (film, cm⁻¹): 2360, 1764, 1685, 1604, 1456, 1360, 1248, 1122, 760, 675
HRMS (ESI-QTOF) calcd for C₁₇H₁₆NaO₄⁺ [M+Na⁺] 307.0941, found 307.0951


Synthesis of compound 3f

To a stirred solution of **1f** (33.2 mg, 0.188 mmol) in Et₂O (470 μ L) were added **2** (17.3 mg, 0.0942 mmol), LiClO₄ (150 mg, 1.41 mmol), and TMSOTf (18.7 μ L, 0.104 mmol) at -20 °C. After stirring for 10 min at -20 °C, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted four times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (30-60% ethyl acetate/hexane) to give **3f** (19.2 mg, 0.0611 mmol, 64.8%) as an orange foam.

¹**H NMR** (CDCl₃): 7.24 (dd, J = 8.3, 8.2 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 3.97 (ddd, J = 10.7, 6.8, 6.1 Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.69 (dd, J = 6.8, 1.8 Hz, 1H), 3.38 (ddd, J = 8.3, 6.4, 1.8 Hz, 1H), 2.68 (ddd, J = 13.7, 10.7, 6.4 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 13.7, 6.1 Hz, 1H) ¹³C **NMR** (CDCl₃): 205.8 (C), 200.1 (C), 189.8 (C), 156.4 (C), 155.3 (C), 136,2 (C), 132.2 (C), 130.5 (CH), 119.2 (CH), 118.0 (CH), 110.0 (CH), 68.8 (CH), 55.8 (CH₃), 55.6 (CH₃), 46.4 (CH), 34.8 (CH), 33.2 (CH₂), 32.5 (CH₃) **IR** (film, cm⁻¹): 2943, 1763, 1689, 1602, 1466, 1358, 1264, 1078, 1002, 749 **HRMS** (ESI-QTOF) calcd for C₁₈H₁₈NaO₅⁺ [M+Na⁺] 337.1046, found 337.1043

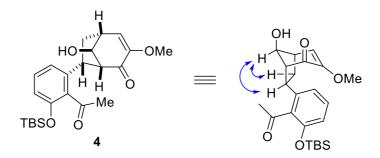

Synthesis of compound 3h

To a stirred solution of **1h** (5.26 g, 19.0 mmol) in Et_2O (48 mL) were added **2** (1.75 g, 9.52 mmol), LiClO₄ (15.2 g, 143 mmol) and TMSOTf (1.89 mL, 10.5 mmol) at -20 °C. After stirring for 10 min at -20 °C, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted four times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (30-60% ethyl acetate/hexane) to give **3h** (2.69 g, 6.49 mmol, 68.2 %) as a red foam.

¹H NMR (CDCl₃): 7.13 (dd, J = 8.2, 8.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.54 (d, J = 8.0 Hz, 1H), 6.43 (d, 8.2 Hz, 1H), 3.93 (ddd, J = 10.8, 7.3, 5.5 Hz, 1H), 3.71 (s, 3H), 3.67 (dd, J = 7.3, 1.8 Hz, 1H), 3.38 (ddd, J = 8.2, 6.4, 1.8 Hz, 1H), 2.67 (ddd, J = 13.6, 10.8, 6.4 Hz, 1H), 2.54 (s, 3H), 2.20 (dd, J = 13.6, 5.5 Hz, 1H), 0.97 (s, 9H), 0.21 (s, 6H) ¹³C NMR (CDCl₃): 206.2 (C), 200.2 (C), 189.7 (C), 155.3 (C), 152.4 (C), 136.3 (C), 135.0 (C), 130.0 (CH), 119.7 (CH), 118.2 (CH), 117.9 (CH), 68.8 (CH), 55.8 (CH₃), 46.5 (CH), 34.8 (CH), 33.2 (CH₂), 32.8 (CH₃), 25.6 (CH₃), 18.1 (C), -4.2 (CH₃), -4.4 (CH₃) **IR** (film, cm⁻¹): 2934, 2360, 1765, 1692, 1601, 1463, 1259, 1126, 889, 834 **HRMS** (ESI-QTOF) calcd for C₂₃H₃₀NaO₅Si⁺ [M + Na⁺] 437.1755, found 437.1743

Synthesis of alcohols 4 and S11

To a stirred solution of **3h** (2.68 g, 6.46 mmol) in MeCN (123.5 mL) and H₂O (6.5 mL) was added NaBH(OAc)₃ (4.11 g, 19.4 mmol) at rt. After stirring for 12 h at rt, the resulting mixture was quenched with H₂O at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (50-70% ethyl acetate/hexane) to give **4** (1.75 g, 4.20 mmol, 65.0 %) as a pink foam and its diastereomer **S11** (573 mg, 1.37 mmol, 21.3%) as a pink foam, respectively.


Data for alcohol 4

¹**H NMR** (CDCl₃): 7.08 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 5.98 (dd *J* = 7.3, 1.1 Hz, 1H), 4.35 (ddd, *J* = 6.6, 4.5, 1.1 Hz, 1H), 3.81 (ddd, *J* = 10.5, 5.0, 4.8 Hz, 1H), 3.68 (s, 3H), 3.16 (ddd, *J* = 6.6, 4.8, 1.4 Hz, 1H), 3.06 (dddd, *J* = 7.3, 5.9, 4.5, 1.4 Hz, 1H), 2.59 (s, 3H), 2.49 (ddd, *J* = 13.7, 10.5, 5.9 Hz, 1H), 2.08 (dd, *J* = 13.7, 5.0 Hz, 1H), 0.95 (s, 9H), 0.20 (s, 3H), 0.16 (s, 3H)

¹³C NMR (CDCl₃): 207.0 (C), 193.2 (C), 154.1 (C), 152.0 (C), 137.4 (C), 134.5 (C), 129.7 (CH), 119.7 (CH), 117.5 (CH), 114.8 (CH), 79.7 (CH), 62.2 (CH), 55.1 (CH₃), 40.6 (CH), 36.5 (CH), 34.2 (CH₂), 32.9 (CH₃), 25.6 (CH₃), 18.1 (C), -4.2 (CH₃), -4.4 (CH₃)

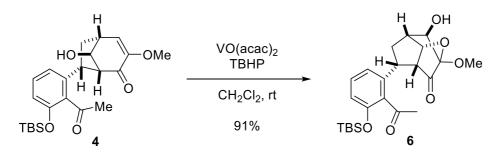
IR (film, cm⁻¹): 3445, 2954, 2361, 1691, 1577, 1464, 1259, 1128, 897, 838

HRMS (ESI-QTOF) calcd for $C_{23}H_{32}NaO_5Si^{+}$ [M + Na⁺] 439.1911, found 439.1905

Selected NOESY correlation of 4

Data for alcohol **S11**

¹H NMR (CDCl₃): 7.06 (dd, J = 8.2, 7.8 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 6.53 (d, J = 7.8 Hz, 1H), 6.21 (d, J = 7.8 Hz, 1H), 4.14 (m, 1H), 4.00 (ddd, J = 10.5, 6.7, 4.4 Hz, 1H), 3.64 (s, 3H), 3.21 (d, J = 6.7 Hz, 1H), 2.98 (dd, J = 7.8, 6.1 Hz, 1H), 2.71 (ddd, J = 13.2, 10.5, 6.1 Hz, 1H), 2.59 (s, 3H), 2.49 (br, 1H), 2.00 (dd, J = 13.2, 4.4 Hz, 1H), 0.95 (s, 9H),

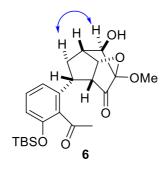

0.19 (s, 3H), 0.18 (s, 3H)

¹³C NMR (CDCl₃): 206.8 (C), 194.3 (C), 154.3 (C), 151.9 (C), 137.6 (C), 134.8 (C), 129.6 (CH), 120.1 (CH), 119.8 (CH), 117.2 (CH), 79.0 (CH), 65.2 (CH), 55.3 (CH₃), 42.9 (CH), 38.1 (CH), 34.2 (CH₂), 32.9 (CH₃), 25.6 (CH₃), 18.1 (C), -4.3 (CH₃), -4.4 (CH₃)

IR (film, cm⁻¹): 3449, 2954, 1691, 1615, 1463, 1257, 1126, 1057, 896, 835

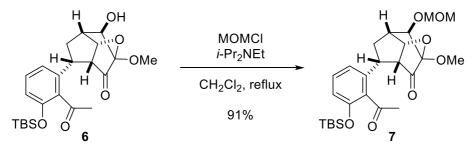
HRMS (ESI-QTOF) calcd for $C_{23}H_{32}NaO_5Si^+$ [M+Na⁺] 439.1911, found 439.1926

Synthesis of alcohol 6



To a stirred solution of **4** (1.69 g, 4.06 mmol) in CH_2CI_2 (41 mL) were added $VO(acac)_2$ (108 mg, 0.406 mmol) and 70% TBHP solution in H_2O (783 mL, 6.09 mmol) at rt. After stirring for 3 h at rt, the resulting mixture was quenched with aqueous $Na_2S_2O_3$ at the same temperature and extracted three times with CH_2CI_2 . The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (40-60% ethyl acetate/hexane) to give **6** (1.60 g, 3.70 mmol, 91.1 %) as a yellow foam.

¹**H NMR** (CDCl₃): 7.20 (dd, *J* = 8.2, 8.0 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 5.15 (dd, *J* = 6.2, 5.5 Hz, 1H), 3.73 (d, *J* = 3.2 Hz, 1H), 3.51 (s, 3H), 3.43 (ddd, *J* = 10.9, 8.4, 7.4 Hz, 1H), 2.77 (dd *J* = 7.4, 5.5 Hz, 1H), 2.72 (dd, *J* = 8.3, 6.2 Hz, 1H), 2.52 (s, 3H), 2.47 (m, 1H), 2.26 (d, *J* = 3.2 Hz, 1H), 2.11 (dd, *J* = 14.7, 8.4 Hz, 1H), 0.96 (s, 9H), 0.22 (s, 3H), 0.21 (s, 3H)

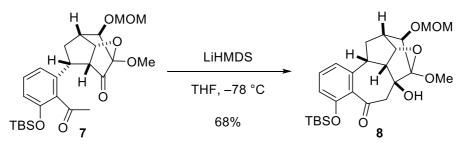

¹³C NMR (CDCl₃): 208.3 (C), 206.5 (C), 152.0 (C), 136.3 (C), 134.2 (C), 129.3 (CH), 120.3 (CH), 117.7 (CH), 108.2 (C), 80.2 (CH), 77.2 (CH), 55.4 (CH), 54.6 (CH₃), 49.5 (CH), 41.4 (CH), 33.8 (CH₂), 32.8 (CH₃), 25.6 (CH₃), 18.1 (C), -4.3 (CH₃)

IR (film, cm⁻¹): 2954, 2360, 1766, 1696, 1578, 1464, 1278, 1154, 995, 834 HRMS (ESI-QTOF) calcd for $C_{23}H_{32}NaO_6Si^+$ [M + Na⁺] 455.1860, found 455.1860

Selected NOESY correlation of 6

Synthesis of MOM ether 7

To a stirred solution of **6** (1.56 g, 3.61 mmol) in CH_2Cl_2 (14.5 mL) were added *i*-Pr₂NEt (1.26 mL, 7.21 mmol) and MOMCI (411 µL, 5.41 mmol) at rt. After stirring for 8 h at reflux, the resulting mixture was quenched with H₂O at rt and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-50% ethyl acetate/hexane) to give **7** (1.56 g, 3.27 mmol, 90.7 %) as a yellow foam.


¹**H NMR** (CDCl₃): 7.21 (dd, *J* = 8.5, 8.0 Hz, 1H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 5.16 (dd, *J* = 6.2, 5.7 Hz, 1H), 4.85 (d, *J* = 6.7 Hz, 1H), 4.72 (d, *J* = 6.7 Hz, 1H), 3.72 (s, 1H), 3.48 (s, 3H), 3.46 (m, 1H), 3.41 (s, 3H), 2.77 (dd, *J* = 8.7, 6.2 Hz, 1H), 2.72 (dd, *J* = 7.3, 5.7 Hz, 1H), 2.51 (s, 3H), 2.49 (m, 1H), 2.13 (dd, *J* = 14.9, 8.9 Hz, 1H), 0.96 (s, 9H), 0.22 (s, 6H)

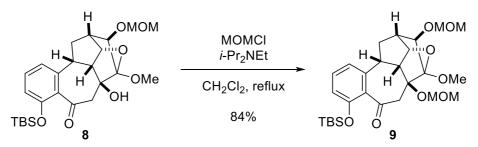
¹³C NMR (CDCI₃): 208.9 (C), 206.5 (C), 152.0 (C), 136.3 (C), 134.1 (C), 129.4 (CH), 120.4 (CH), 117.7 (CH), 108.7 (C), 95.9 (CH₂), 80.1 (CH), 79.9 (CH), 55.7 (CH₃), 55.3 (CH), 54.5 (CH₃), 48.9 (CH), 41.7 (CH), 34.0 (CH₂), 32.8 (CH₃), 25.6 (CH₃), 18.1 (C), -4.3 (CH₃)

IR (film, cm⁻¹): 2952, 1767, 1697, 1577, 1464, 1279, 1152, 1103, 1029, 834

HRMS (ESI-QTOF) calcd for $C_{25}H_{36}NaO_7Si^+$ [M + Na⁺] 499.2123, found 499.2108

Synthesis of β-hydroxyketone 8

To a stirred solution of **7** (273 mg, 0.573 mmol) in THF (5.7 mL) was added LiHMDS (0.72 M in THF, 2.39 mL, 1.72 mmol) at -78 °C. After stirring for 12 h at -78 °C, the resulting mixture was quenched with aqueous NH₄Cl at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (40-60% ethyl acetate/hexane) to give **8** (186 mg, 0.390 mmol, 68.1 %) as a yellow foam.


¹**H NMR** (CDCl₃): 7.17 (dd, *J* = 8.2, 7.8 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 4.86 (dd, *J* = 5.5, 5.0 Hz, 1H), 4.74 (d, *J* = 6.9 Hz, 1H), 4.68 (d, *J* = 6.9 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 1H), 3.48 (ddd, *J* = 11.1, 9.9, 5.5 Hz, 1H), 3.38 (s, 3H), 3.17 (d, *J* = 11.5 Hz, 1H), 2.79 (s, 1H), 2.72 (dd, *J* = 5.5, 5.0 Hz, 1H), 2.65 (d, *J* = 11.5 Hz, 1H), 2.62-2.51 (m, 2H), 1.85 (dd, *J* = 13.5, 11.1 Hz), 0.96 (s, 9H), 0.26 (s, 3H), 0.18 (s, 3H)

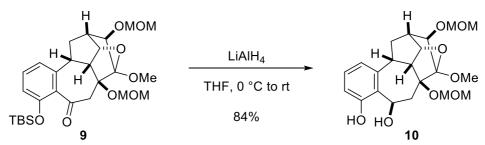
¹³C NMR (CDCl₃): 197.4 (C), 153.4 (C), 141.4 (C), 131.3 (CH), 130.6 (C), 123.1 (CH), 118.8 (CH), 110.4 (C), 95.1 (CH₂), 82.8 (CH), 80.1 (CH), 78.0 (C), 56.0 (CH₃), 55.7 (CH), 55.6 (CH₃), 49.3 (CH₂), 47.9 (CH), 44.9 (CH), 36.7 (CH₂), 25.7 (CH₃), 18.2 (C), -4.4 (CH₃), -4.4 (CH₃)

IR (film, cm⁻¹): 2952, 1695, 1583, 1457, 1285, 1151, 1034, 890, 837, 785

HRMS (ESI-QTOF) calcd for $C_{25}H_{37}NaO_7Si^+$ [M + Na⁺] 499.2123, found 499.2105

Synthesis of MOM ether 9

To a stirred solution of **8** (130 mg, 0.273 mmol) in CH_2Cl_2 (2.4 mL) were added MOMCl (83.0 µL, 1.09 mmol) and *i*-Pr₂NEt (190 µL, 1.09 mmol) at rt. After stirring for 14 h at reflux, the resulting mixture was quenched with H₂O at rt and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (30-40% ethyl acetate/hexane) to give **9** (120 mg, 0.230 mmol, 84.4 %) as a yellow foam.

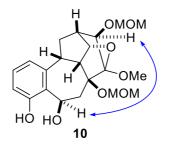

¹**H NMR** (CDCl₃): 7.17 (dd, *J* = 8.1, 7.5 Hz, 1H), 6.75 (dd, *J* = 8.1, 0.9 Hz, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 5.17 (d, *J* = 7.3 Hz, 1H), 4.85 (dd, *J* = 5.5, 5.5 Hz, 1H), 4.80 (d, *J* = 7.3 Hz, 1H), 4.77 (d, *J* = 6.8 Hz, 1H), 4.67 (d, *J* = 6.8 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 1H), 3.49 (ddd, *J* = 10.1, 5.5, 5.5 Hz, 1H), 3.37 (s, 3H), 3.35 (s, 3H), 3.22 (dd, *J* = 5.5, 5.5 Hz, 1H), 3.12 (d, *J* = 12.1 Hz, 1H), 3.01 (d, *J* = 12.1 Hz, 1H), 2.58-2.46 (m, 2H), 1.81 (dd, *J* = 13.7, 10.1 Hz, 1H), 0.98 (s, 9H), 0.22 (s, 3H), 0.18 (s, 3H)

¹³C NMR (CDCl₃): 197.0 (C), 153.3 (C), 141.1 (C), 131.1 (CH), 131.1 (C), 123.1 (CH), 119.3 (CH), 112.3 (C), 95.6 (CH₂), 92.9 (CH₂), 82.6 (C), 82.5 (CH), 80.1 (CH), 55.8 (CH₃), 55.6 (CH₃), 55.2 (CH₃), 52.4 (CH), 48.2 (CH), 47.9 (CH₂), 45.7 (CH), 36.9 (CH₂), 25.7 (CH₃), 18.2 (C), -4.3 (CH₃), -4.4 (CH₃)

IR (film, cm⁻¹): 2951, 1696, 1584, 1464, 1286, 1152, 1027, 891, 837, 785

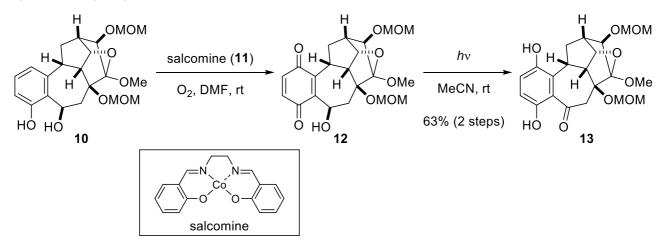
HRMS (ESI-QTOF) calcd for $C_{27}H_{40}NaO_8Si^+$ [M + Na⁺] 543.2385, found 543.2373

Synthesis of alcohol 10


To a stirred solution of **9** (694 mg, 1.33 mmol) in THF (13.3 mL) was added LiAlH₄ (101 mg, 2.67 mmol) at 0 °C. After stirring for 90 min at rt, the resulting mixture was quenched with aqueous Rochel salt at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (40-70% ethyl acetate/hexane) to give **10** (456 mg, 1.12 mmol, 83.9 %) as a pale yellow foam.

¹**H NMR** (CDCl₃): 7.46 (s, 1H), 7.09 (dd, *J* = 8.1, 7.6 Hz, 1H), 6.83 (dd, *J* = 8.1, 1.1 Hz, 1H), 6.60 (d, *J* = 7.6 Hz, 1H), 5.19 (m, 1H), 5.17 (d, *J* = 6.7 Hz, 1H), 5.09 (d, *J* = 8.2 Hz, 1H), 4.96 (d, *J* = 6.7 Hz, 1H), 4.80 (dd, *J* = 5.5, 5.5 Hz, 1H), 4.74 (d, *J* = 6.9 Hz, 1H), 4.68 (d, *J* = 6.9 Hz, 1H), 3.85 (s, 1H), 3.79 (s, 3H), 3.40 (s, 3H), 3.38 (s, 3H), 3.34 (m, 1H), 3.16 (dd, *J* = 5.5, 5.0 Hz, 1H), 2.66 (dd, *J* = 15.6, 5.0 Hz, 1H), 2.56-2.46 (m, 2H), 2.29 (dd, *J* = 15.6, 2.7 Hz, 1H), 1.80 (dd, *J* = 12.8, 10.0 Hz, 1H)

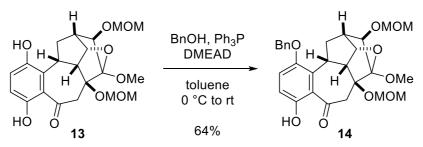
¹³C NMR (CDCl₃):157.7 (C), 137.6 (C), 128.7 (CH), 126.9 (C), 123.7 (CH), 115.3 (CH), 111.6 (C), 94.9 (CH₂), 92.9 (CH₂), 84.5 (C), 82.8 (CH), 79.3 (CH), 68.1 (CH), 56.5 (CH₃), 55.7 (CH₃), 55.0 (CH₃), 53.9 (CH), 47.4 (CH), 45.1 (CH), 35.7 (CH₂), 33.2 (CH₂)


IR (film, cm⁻¹): 3415, 2950, 2361, 1585, 1459, 1281, 1151, 1018, 921, 753

HRMS (ESI-QTOF) calcd for $C_{21}H_{28}NaO_8^+$ [M + Na⁺] 431.1676, found 431.1663

Selected NOESY correlation of 10

Synthesis of hydroquinone 13

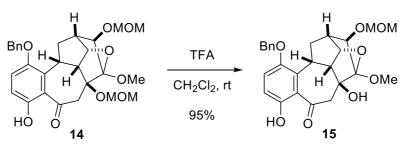

To a stirred solution of **10** (1.14 g, 2.79 mmol) in DMF (14 mL) was added salcomine **11** (227 mg, 0.698 mmol) and then oxygen gas was purged at rt. After stirring for 13 h at rt, the resulting mixture was quenched with H_2O at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated to give the crude product of **12**. This was used for the next reaction without further purification.

A solution of the residue in MeCN (280 mL) was irradiated with a Hg lamp at rt. After stirring for 3 h, the solution was concentrated. The residue was purified by flash column chromatography on silica gel (40-70% ethyl acetate/hexane) to give **13** (744 mg, 1.76 mmol, 63.1 %) as a yellow foam.

¹H NMR (CDCl₃): 12.01 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 1H), 6.77 (d, *J* = 8.7 Hz, 1H), 5.28 (d, *J* = 6.9 Hz, 1H), 5.22 (br, 1H),
4.82 (dd, *J* = 6.4, 5.5 Hz, 1H), 4.77 (d, *J* = 6.9 Hz, 1H), 4.77 (d, *J* = 6.9 Hz, 1H), 3.82 (ddd, *J* = 11.6, 10.8, 4.6 Hz, 1H),
3.78 (s, 3H), 3.70 (s, 1H), 3.41 (s, 3H), 3.31 (s, 3H), 3.22 (dd, *J* = 5.5, 4.6 Hz, 1H), 3.03 (d, *J* = 12.2 Hz, 1H), 2.95 (d, *J* = 12.2 Hz, 1H), 2.81 (ddd, *J* = 14.1, 11.6, 9.1 Hz, 1H), 2.54 (dd, *J* = 6.4, 9.1 Hz, 1H), 1.71 (dd, *J* = 14.1, 10.8 Hz, 1H)
¹³C NMR (CDCl₃): 202.7 (C), 156.3 (C), 146.6 (C), 127.9 (C), 123.3 (CH), 120.5 (C), 117.2 (CH), 111.7 (C), 95.0 (CH₂),
92.7 (CH₂), 83.0 (C), 82.8 (CH), 79.3 (CH), 55.7 (CH₃), 55.7 (CH₃), 55.2 (CH₃), 52.2 (CH), 47.6 (CH₂), 47.6 (CH), 38.6 (CH), 33.4 (CH₂)
IR (film, cm⁻¹): 3363, 2953, 1637, 1462, 1291, 1205, 1150, 1025, 919, 756

HRMS (ESI-QTOF) calcd for $C_{21}H_{26}NaO_{9}^{+}$ [M + Na⁺] 445.1469, found 445.1451

Synthesis of benzyl ether 14



To a stirred solution of **13** (440 mg, 1.04 mmol) in toluene (10.5 mL) were added BnOH (130 μ L, 1.25 mmol), PPh₃ (328 mg, 1.25 mmol) and DMEAD (293 mg, 1.25 mmol) at 0 °C. After stirring for 1.5 h at rt, the resulting mixture was quenched with H₂O at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (20-50% ethyl acetate/hexane) to give **14** (340 mg, 0.663 mmol, 63.7 %) as a yellow foam.

¹H NMR (CDCl₃): 12.03 (s, 1H), 7.43-7.34 (m, 5H), 7.10 (d, *J* = 9.2 Hz, 1H), 6.85 (d, *J* = 9.2 Hz, 1H), 5.28 (d, *J* = 7.3 Hz, 1H), 5.08 (d, *J* = 11.7 Hz, 1H), 4.99 (d, *J* = 11.7 Hz, 1H), 4.80 (dd, *J* = 6.7, 5.5 Hz, 1H), 4.77 (d, *J* = 6.9 Hz, 1H), 4.75 (d, *J* = 7.3 Hz, 1H), 4.67 (d, *J* = 6.9 Hz, 1H), 3.93 (ddd, *J* = 11.6, 10.5, 5.6 Hz, 1H), 3.77 (s, 3H), 3.72 (s, 1H), 3.38 (s, 3H), 3.29 (s, 3H), 3.22 (dd, *J* = 5.6, 5.5 Hz, 1H), 3.13 (d, *J* = 11.9 Hz, 1H), 2.99 (d, *J* = 11.9 Hz, 1H), 2.79 (ddd, *J* = 14.3, 11.6, 8.8 Hz, 1H), 2.52 (dd, *J* = 8.8, 6.7 Hz, 1H), 1.79 (dd, *J* = 14.3, 10.5 Hz, 1H)
¹³C NMR (CDCl₃): 203.0 (C), 156.3 (C), 149.6 (C), 136.8 (C), 130.9 (CH), 128.7 (CH), 128.1 (CH), 127.3 (CH), 120.8 (C), 120.7 (CH), 116.9 (CH), 111.8 (C), 95.2 (CH₂), 92.8 (CH₂), 82.8 (C), 82.7 (CH), 79.2 (CH), 71.4 (CH₂), 55.6 (CH₃), 55.6 (CH₃), 55.3 (CH₃), 52.3 (CH), 47.7 (CH), 47.7 (CH₂), 38.7 (CH), 33.6 (CH₂)
IR (film, cm⁻¹): 2952, 1640, 1457, 1380, 1290, 1214, 1150, 1027, 916, 750

HRMS (ESI-QTOF) calcd for $C_{28}H_{32}NaO_9^+$ [M + Na⁺] 535.1939, found 535.1935

Synthesis of alcohol 15

To a stirred solution of **14** (307 mg, 0.599 mmol) in CH_2Cl_2 (5.7 mL) was added TFA (300 µL) at rt. After stirring for 30 min, the resulting mixture was quenched with aqueous NaHCO₃ at the same temperature and extracted three times with CH_2Cl_2 . The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (30-60% ethyl acetate/hexane) to give **15** (266 mg, 0.568 mmol, 94.8 %) as a yellow foam.

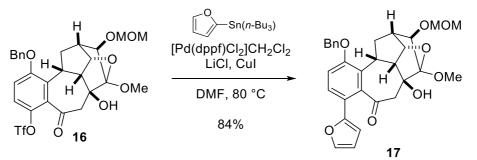
¹**H NMR** (CDCl₃): 11.79 (s, 1H), 7.43-7.34 (m, 5H), 7.10 (d, *J* = 9.1 Hz, 1H), 6.85 (d, *J* = 9.1 Hz, 1H), 5.07 (d, *J* = 11.7 Hz, 1H), 4.99 (d, *J* = 11.7 Hz, 1H), 4.83 (dd, *J* = 6.9, 5.0 Hz, 1H), 4.72 (d, *J* = 6.8 Hz, 1H), 4.70 (d, *J* = 6.8 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 1H), 3.81 (m, 1H), 3.40 (s, 3H), 3.21 (d, *J* = 11.7 Hz, 1H), 2.81 (ddd, *J* = 14.5, 11.4, 8.9 Hz, 1H), 2.76 (s, 1H), 2.71 (d, *J* = 11.7 Hz, 1H), 2.62 (dd, *J* = 5.0, 5.0 Hz, 1H), 2.56 (dd, *J* = 8.9, 6.9 Hz, 1H), 1.79 (dd, *J* = 14.5, 10.3 Hz, 1H)

¹³C NMR (CDCl₃): 203.0 (C), 155.9 (C), 149.6 (C), 136.8 (C), 130.7 (C), 128.7 (C), 128.2 (CH), 127.3 (CH), 121.0 (C), 120.7 (CH), 117.0 (CH), 109.9 (C), 94.7 (CH₂), 82.9 (CH), 79.5 (CH), 78.3 (C), 71.5 (CH₂), 56.0 (CH₃), 55.7 (CH₃), 55.5 (CH), 49.4 (CH₂), 47.7 (CH), 38.1 (CH), 33.3 (CH₂)

IR (film, cm⁻¹): 3489, 2952, 1640, 1457, 1288, 1217, 1145, 1029, 749, 547

HRMS (ESI-QTOF) calcd for $C_{26}H_{28}NaO_8^+$ [M + Na⁺] 491.1676, found 491.1670

Synthesis of triflate 16

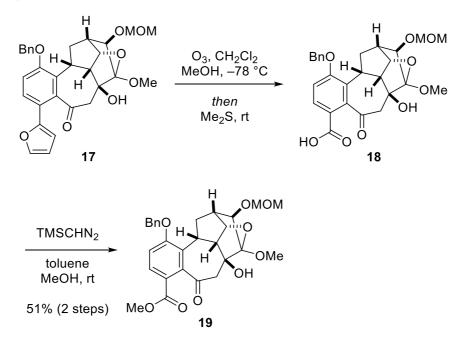


To a stirred solution of **15** (243 mg, 0.517 mmol) in THF (5.2 mL) were added PhNTf₂ (278 mg 0.778 mmol) and NaH (55%, dispersion in paraffin liquid, 27.2 mg, 0.622 mmol) at rt. After stirring for 2 h at rt, the resulting mixture was quenched with 1N HCl at the same temperature and extracted three times with ethyl acetate. The combined organic layer was dried over Na_2SO_4 , filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel (30-60% ethyl acetate/hexane) to give **16** (267 mg, 0.445 mmol, 86.0 %) as a pale yellow foam.

¹H NMR (CDCl₃): 7.46-7.36 (m, 5H), 7.13 (d, *J* = 9.2 Hz, 1H), 7.00 (d, *J* = 9.2 Hz, 1H), 5.13 (d, *J* = 11.9 Hz, 1H), 5.08 (d, *J* = 11.9 Hz, 1H), 4.87 (dd, *J* = 6.8, 5.0 Hz, 1H), 4.72 (d, *J* = 6.9 Hz, 1H), 4.69 (d, *J* = 6.9 Hz, 1H), 3.87 (m, 1H), 3.84 (s, 3H), 3.81 (s, 1H), 3.39 (s, 3H), 3.21 (d, *J* = 11.2 Hz, 1H), 2.83 (ddd, *J* = 14.2, 11.3, 9.2 Hz, 1H), 2.74-2.69 (m, 2H), 2.72 (d, 11.2 Hz, 1H), 2.54 (dd, *J* = 9.2, 6.8 Hz, 1H), 1.71 (dd, *J* = 14.2, 10.7 Hz, 1H)
¹³C NMR (CDCl₃): 195.1 (C), 155.9 (C), 139.2 (C), 135.6 (C), 132.9 (C), 131.6 (C), 128.9 (CH), 128.6 (CH), 127.4 (CH), 121.7 (CH),118.6 (CF₃, q, *J* = 318.5 Hz) 114.1 (CH), 110.1 (C), 94.8 (CH₂), 82.7 (CH), 79.8 (CH), 78.2 (C), 71.1 (CH₂), 56.0 (CH₃), 55.7 (CH₃), 55.3 (CH), 48.9 (CH₂), 47.7 (CH), 38.0 (CH), 33.8 (CH₂)
IR (film, cm⁻¹): 2953, 1703, 1597, 1423, 1213, 1142, 1030, 873, 753, 591

HRMS (ESI-QTOF) calcd for $C_{27}H_{27}F_3NaO_{10}^+$ [M + Na⁺] 623.1169, found 623.1144

Synthesis of furan 17



To a stirred solution of **16** (245 mg, 0.408 mmol) in DMF (2.1 mL) were added tributyl(2-furyl)tin (190 μ L, 0.612 mmol), LiCl (52.0 mg, 1.22 mmol), Cul (117 mg, 0.612 mmol) and [Pd(dppf)Cl₂]CH₂Cl₂ (66.6 mg, 0.0816 mmol) at rt. After stirring for 1 h at 80 °C, the resulting mixture was quenched with H₂O at rt and extracted three times with ethyl acetate. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash column chromatography on silica gel and K₂CO₃ (40-70% ethyl acetate/hexane) to give **17** (179 mg, 0.344 mmol, 84.4 %) as an orange foam.

¹**H NMR** (CDCl₃): 7.44-7.33 (m, 7H), 6.98 (d, *J* = 8.7 Hz, 1H), 6.41-6.38 (m, 2H), 5.13 (d, *J* = 11.9 Hz, 1H), 5.09 (d, *J* = 11.9 H, 1H), 4.86 (dd, *J* = 6.4, 5.3 Hz, 1H), 4.74 (d, *J* = 6.6 Hz, 1H), 4.69 (d, *J* = 6.6 Hz, 1H), 3.94 (ddd, *J* = 11.3, 10.5, 5.7 Hz, 1H), 3.86 (s, 1H), 3.84 (s, 3H), 3.40 (d, *J* = 11.2 Hz, 1H), 3.38 (s, 3H), 2.87 (s, 1H), 2.82 (d, *J* = 11.2 Hz, 1H), 2.77 (ddd, *J* = 14.3, 11.3, 9.0 Hz, 1H), 2.65 (dd, *J* = 5.7, 5.3 Hz, 1H), 2.52 (dd, *J* = 9.0, 6.4 Hz, 1H), 1.69 (dd, *J* = 14.3, 10.5 Hz, 1H)

¹³C NMR (CDCl₃): 201.2 (C), 156.0 (C), 153.1 (C), 141.9 (CH), 139.0 (C), 126.3 (C), 129.2 (CH), 128.8 (C), 128.8 (CH), 128.2 (CH), 127.3 (CH), 122.2 (C), 113.2 (CH), 111.2 (CH), 110.5 (C), 107.1 (CH), 95.0 (CH₂), 82.7 (CH), 80.0 (CH), 78.1 (C), 70.7 (CH₂), 56.2 (CH), 56.0 (CH₃), 55.6 (CH₃), 48.2 (CH₂), 48.0 (CH), 37.2 (CH), 34.4 (CH₂)
IR (film, cm⁻¹): 2952, 1699, 1573, 1450, 1284, 1150, 1030, 914, 815, 749
HRMS (ESI-QTOF) calcd for C₃₀H₃₀NaO₈⁺ [M + Na⁺] 541.1833, found 541.1823

Synthesis of methyl ester 19

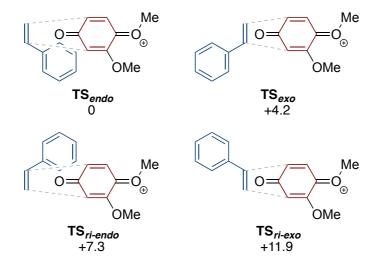
A stirred solution of **17** (28.8 mg, 0.0555 mmol) in CH_2CI_2 (420 µL) and MeOH (140 µL) was bubbled with ozone gas at -78 °C. After the starting material was consumed completely, argon gas was then passed through the mixture until the disappearance of the blue color. Then the reaction mixture was added to Me₂S (20.5 µL, 0.278 mmol) at -78 °C. After stirring for 1 h at rt, the resulting mixture was concentrated to give the crude product of **18**. This was used for the next reaction without further purification.

To a stirred solution of the residue in toluene (330 μ L) and MeOH (220 μ L) was added TMSCHN₂ (0.6 M in hexane, 185 μ L, 0.111 mmol) at rt. After stirring for 40 min at rt, the resulting mixture was quenched with AcOH at the same temperature and concentrated. The residue was purified by pTLC (60% ethyl acetate/hexane) to give **19** (14.4 mg, 0.0282 mmol, 50.8%) as a yellow foam.

¹**H NMR** (CDCl₃): 7.49 (d, *J* = 8.3 Hz, 1H), 7.44-7.36 (m, 5H), 6.96 (d, *J* = 8.3 Hz, 1H), 5.14 (d, *J* = 11.9 Hz, 1H), 5.09 (d, *J* = 11.9 Hz, 1H), 4.86 (dd, *J* = 6.2, 5.5 Hz, 1H), 4.73 (d, *J* = 6.9 Hz, 1H), 4.69 (d, *J* = 6.9 Hz, 1H), 3.90 (m, 1H), 3.87 (s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.39 (s, 3H), 3.37 (d, *J* = 11.4 Hz, 1H), 2.81 (d, *J* = 11.4 Hz, 1H), 2.81 (s, 1H), 2.74 (ddd, *J* = 14.1, 11.6, 9.0 Hz, 1H), 2.64 (dd, *J* = 5.5, 5.0 Hz, 1H), 2.53 (dd, *J* = 9.0, 6.2 Hz, 1H), 1.69 (dd, *J* = 14.1, 10.5 Hz, 1H)

¹³C NMR (CDCl₃): 199.6 (C), 160.1 (C), 158.0 (C), 140.7 (C), 135.8 (C), 129.2 (C), 128.9 (CH), 128.8 (CH), 128.4 (CH), 127.4 (CH), 124.9 (C), 112.6 (CH), 110.4 (C), 94.9 (CH₂), 82.7 (CH), 79.9 (CH), 77.9 (C), 70.8 (CH₂), 56.0 (CH₃), 56.0 (CH), 55.7 (CH₃), 52.5 (CH₃), 48.0 (CH), 47.8 (CH₂), 37.0 (CH), 34.1 (CH₂)
IR (film, cm⁻¹): 2951, 2361, 1724, 1579, 1457, 1236, 1146, 1031, 914, 751

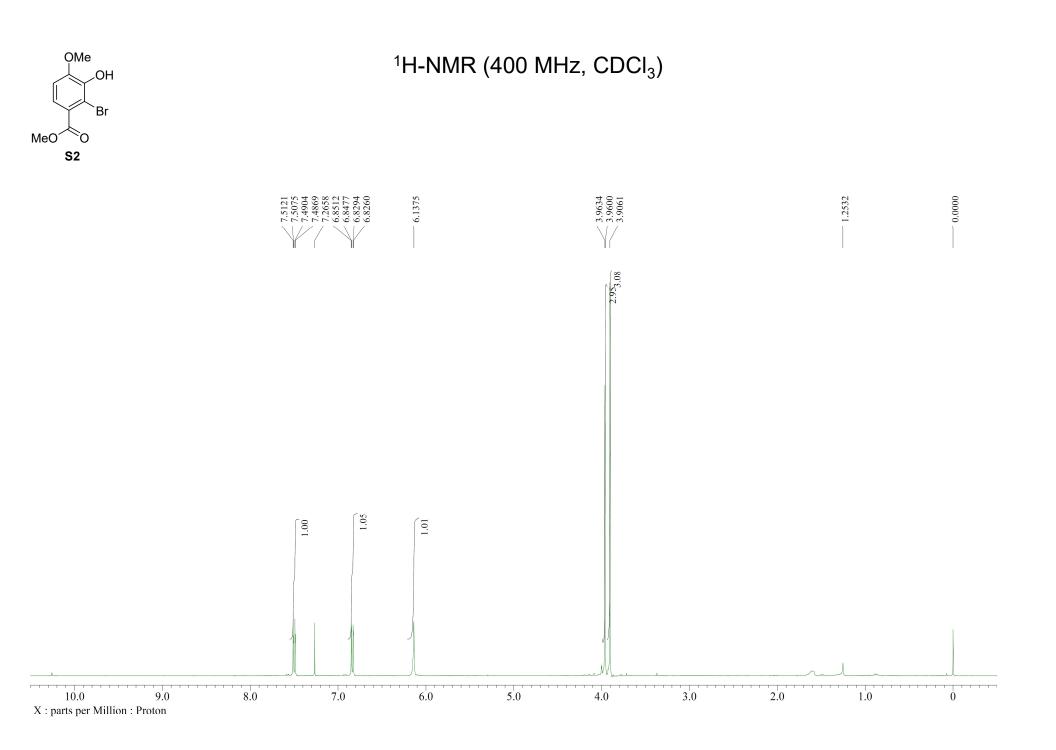
HRMS (ESI-QTOF) calcd for $C_{28}H_{30}NaO_9^+$ [M + Na⁺] 533.1782, found 533.1771

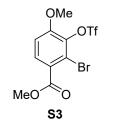

References for Supporting Information

- 1. Cheng, B.; Zhang, S.; Zhu, L.; Zhang, J.; Li, Q.; Shan, A.; He, L. Synthesis 2009, 15, 2501.
- 2. Phan, J.; Ruser, S.; Zeitler, K.; Rehbein, J. Eur. J. Org. Chem. 2019, 557.
- 3. Kagawa, H.; Shigemitsu, A.; Ohta, S.; Harigaya, Y. Chem. Pharm. Bull. 2005, 53, 547.
- 4. Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987, 17, 3927.
- 5. Jarrige, L.; Carboni, A.; Dagousset, G.; Levitre, G,; Magnier, E,; Masson, G. Org. Lett. 2016, 18, 2906.

Procedure for calculations. The geometries of the stationary points and transition states were optimized using ω B97X-D and the 6-31G(d) basis set with Spartan '16. The vibrational frequencies were calculated at the same level of theory. Intrinsic reaction coordinate (IRC) calculations from the transition state were performed at the same level of theory.

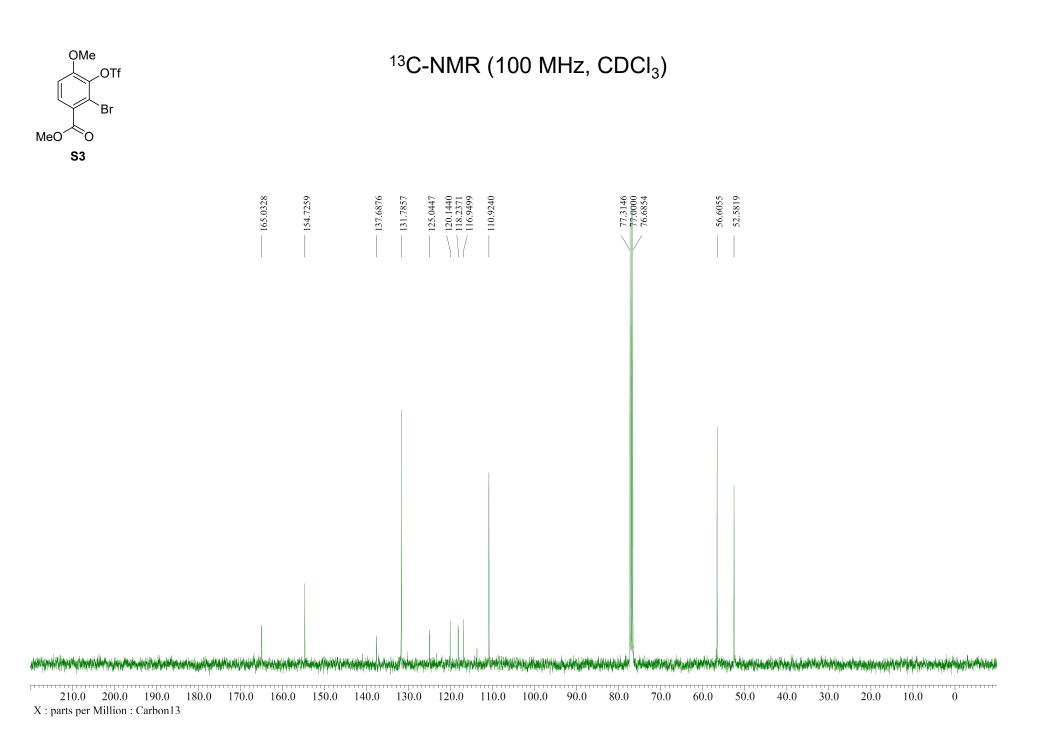
Structure	Gibbs free energy / au (298.15 K)	Number of imaginary frequency		
TS _{endo}	-844.756214	1		
TS _{exo}	-844.749535	1		
TS _{ri-endo}	-844.744644	1		
TS _{ri-exo}	-844.737279	1		

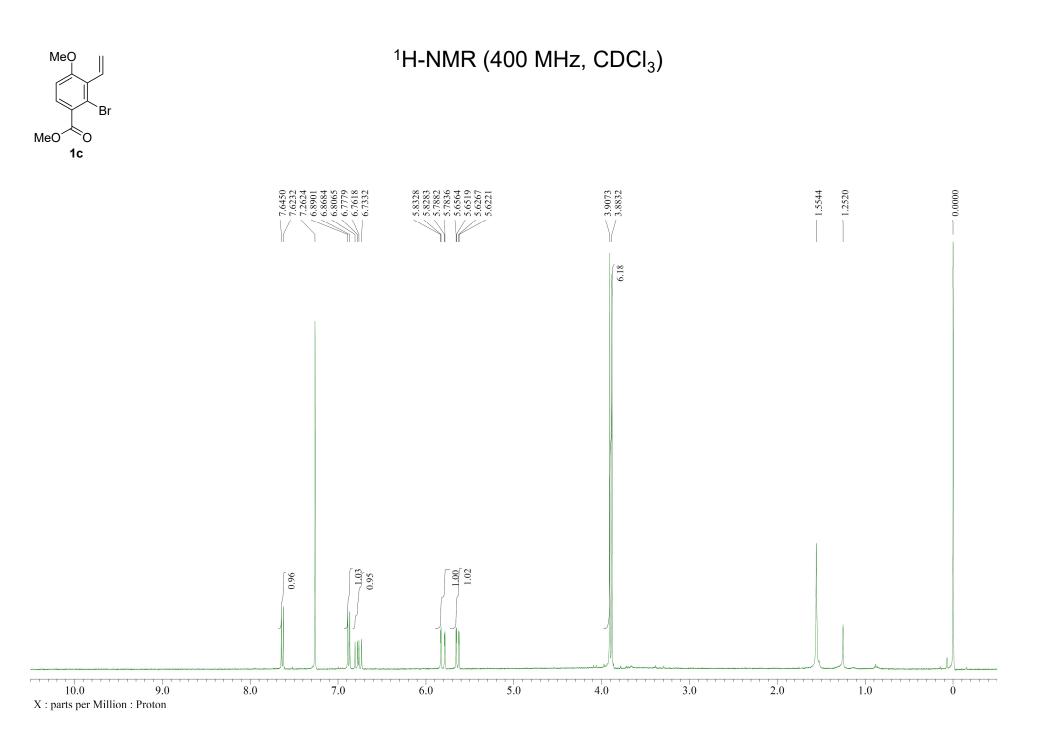

Figure S1. Relative Gibbs free energies of transition states at 298.15 K (kcal/mol). ri = regioisomeric.

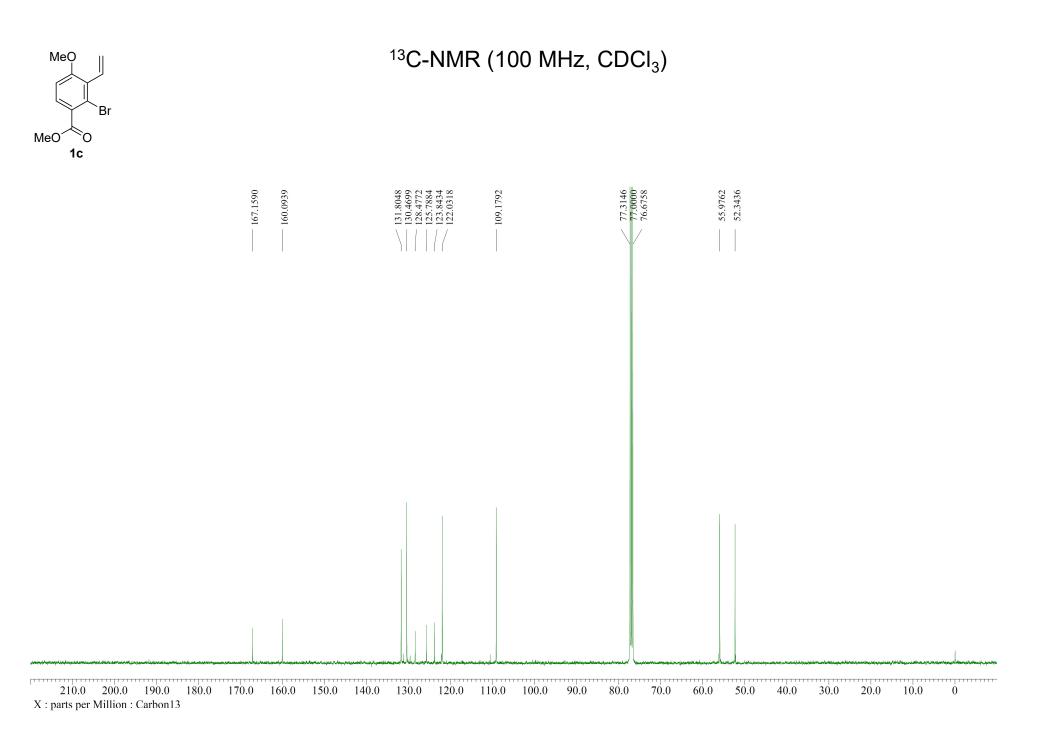

Cartesian coordinates

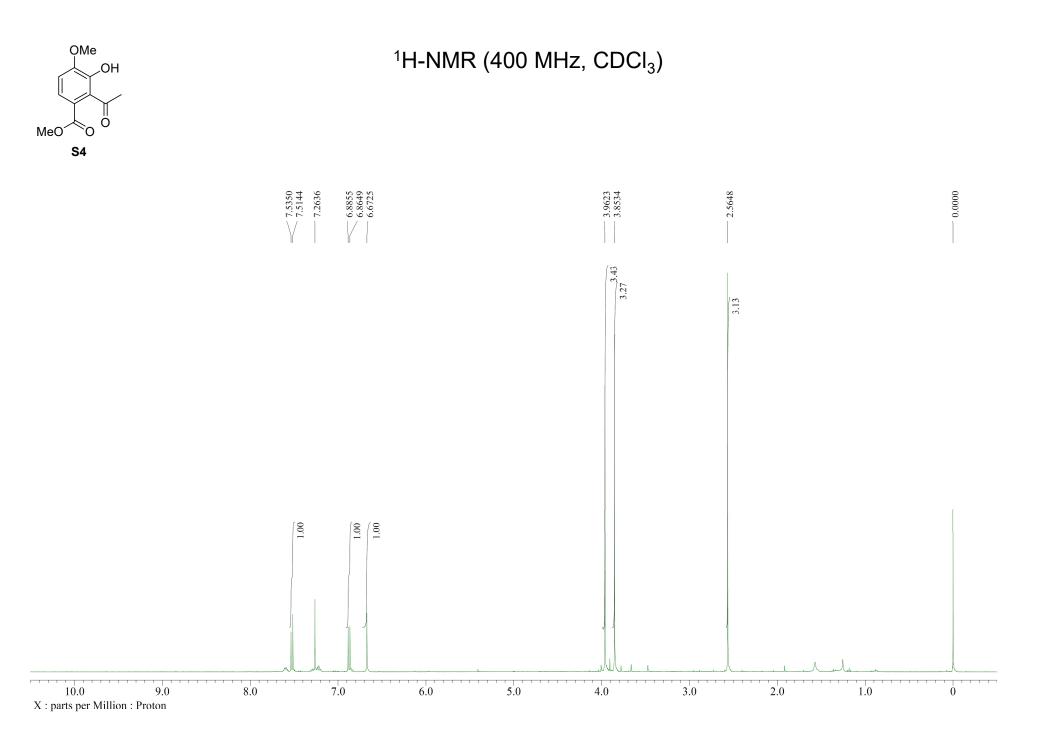
TS _{endo}				TS _{exo}			
Н	0.107939	2.317740	-3.115774	Н	-1.412883	1.480500	-2.466513
С	-0.466300	1.877884	-2.306558	С	-1.752291	1.164973	-1.484621
Н	-1.459687	1.522751	-2.561811	н	-2.750619	0.745465	-1.426680
С	-0.091989	2.102765	-1.009556	С	-1.108117	1.547599	-0.346422
Н	0.845510	2.627948	-0.837824	С	0.917076	-0.931923	-0.101600
С	2.232602	-0.085556	-0.838068	Н	1.851634	-0.489851	0.219988
Н	3.222513	0.274314	-0.586118	С	-0.873275	-1.088214	-1.867453
С	0.358601	-0.226617	-2.523774	Н	-1.156525	-0.896541	-2.896790
Н	0.085645	-0.153886	-3.572018	С	-1.565351	-2.001958	-1.102832
С	-0.350278	-1.061949	-1.675032	Н	-2.488816	-2.435034	-1.466418
Н	-1.295971	-1.485701	-1.988558	С	-1.065821	-2.348087	0.160219
С	0.155011	-1.325589	-0.399771	С	0.178182	-1.747783	0.687557
С	1.469006	-0.792390	0.029460	С	0.493993	-0.631709	-1.468004
С	1.778784	0.160640	-2.207546	0	1.196337	-0.035438	-2.263231
0	2.479854	0.661171	-3.062813	0	-1.614257	-3.198200	0.969338
0	-0.403570	-2.094120	0.487296	0	0.435724	-2.109981	1.935275
0	1.760200	-1.107978	1.282284	С	-2.824303	-3.890438	0.613306
С	-1.632881	-2.770356	0.190491	Н	-3.633914	-3.172464	0.462547
н	-2.416918	-2.042225	-0.029299	Н	-3.041541	-4.531275	1.464249
н	-1.876228	-3.326311	1.092887	Н	-2.657671	-4.491966	-0.283163
Н	-1.486840	-3.455441	-0.648488	С	1.616996	-1.592140	2.545105
С	3.012929	-0.675081	1.805083	Н	2.506159	-1.930242	2.003422
Н	3.839155	-1.110504	1.233807	Н	1.622309	-1.990966	3.557319
н	3.041718	-1.033911	2.832246	Н	1.584825	-0.497463	2.570372
н	3.078516	0.418604	1.786612	С	0.134065	2.288169	-0.241029
С	-0.768302	1.603345	0.160370	С	2.572749	3.621702	0.074839
С	-1.926529	0.512947	2.465462	С	0.657533	2.533191	1.042826
С	-2.029113	0.973374	0.101944	С	0.854637	2.734513	-1.363602
С	-0.115047	1.688733	1.408268	С	2.066408	3.393078	-1.201501
С	-0.681069	1.140864	2.544720	С	1.863803	3.194319	1.200446
С	-2.604668	0.445645	1.250076	н	0.100542	2.204357	1.916997
Н	-2.580777	0.940191	-0.832281	н	0.470672	2.574484	-2.364758
Н	0.851070	2.183214	1.465465	н	2.615279	3.730874	-2.073843
н	-0.165052	1.206506	3.496326	н	2.254337	3.385933	2.194532
н	-3.590093	-0.007100	1.202459	н	3.517672	4.141521	0.196865
н	-2.377739	0.096080	3.360032	н	-1.565514	1.269754	0.602779

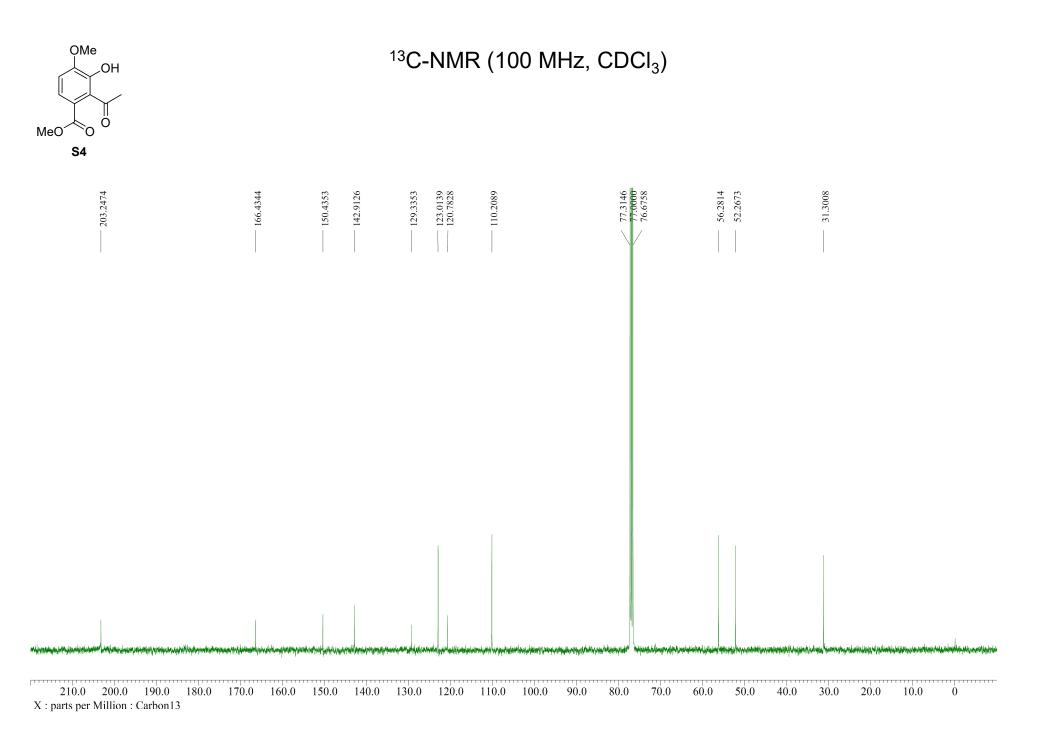

TS _{ri-endo}				TS _{ri-exo}			
H	0.423858	2.181414	-2.091463	C	-0.880421	1.293665	-0.205508
С	0.219746	1.959474	-1.045879	н	-1.851494	0.803743	-0.215189
С	1.201575	2.255419	-0.115637	С	-0.182065	1.296852	0.999451
н	2.077494	2.808008	-0.441742	н	0.625931	2.007284	1.143832
Н	0.942206	2.365284	0.932992	н	-0.710687	1.006987	1.900269
С	2.249298	0.425392	0.255980	С	1.191077	-0.378989	1.067797
н	3.045416	0.925770	0.798062	н	2.040178	0.176598	1.450929
С	1.516503	-0.552193	-1.942670	С	0.008299	-1.269244	-0.948260
Н	1.595207	-0.577440	-3.024036	н	-0.189191	-1.210262	-2.013055
С	0.616794	-1.301736	-1.271044	С	-0.636554	-2.148889	-0.139441
Н	-0.083386	-1.922061	-1.817876	Н	-1.402912	-2.795140	-0.552508
С	0.555954	-1.303520	0.172461	С	-0.330069	-2.250618	1.257246
С	1.389182	-0.443101	0.929488	С	0.579498	-1.352507	1.862534
С	2.537446	0.216094	-1.200446	С	1.147837	-0.498402	-0.419281
0	3.527900	0.675604	-1.722668	0	1.976297	0.034284	-1.127882
0	-0.206555	-2.115091	0.863145	0	-0.877921	-3.131889	2.062942
0	1.212462	-0.482356	2.255346	0	0.705538	-1.462621	3.186736
С	-1.079987	-3.042815	0.206619	С	-1.757250	-4.144474	1.561924
Н	-1.812157	-2.506692	-0.402754	Н	-2.674079	-3.697523	1.166827
Н	-1.583966	-3.572500	1.012466	Н	-1.993877	-4.764271	2.424128
Н	-0.504265	-3.749277	-0.397396	Н	-1.256026	-4.745163	0.797914
С	2.178133	0.151101	3.091123	С	1.708621	-0.695616	3.844827
Н	3.181010	-0.241556	2.893455	Н	2.702235	-0.928663	3.447037
Н	1.883945	-0.092057	4.110458	Н	1.656455	-0.986977	4.892179
Н	2.166984	1.238610	2.960591	Н	1.507802	0.377871	3.755885
С	-1.046589	1.354879	-0.743392	С	-0.491087	1.954528	-1.423549
С	-3.489690	0.075323	-0.250357	С	0.176205	3.193388	-3.839588
С	-1.955857	1.101933	-1.796841	С	0.746916	2.613122	-1.573571
С	-1.392882	0.942912	0.560187	С	-1.383487	1.927886	-2.516443
С	-2.605221	0.303444	0.798795	С	-1.055698	2.546049	-3.709120
С	-3.162981	0.477058	-1.552579	С	1.073771	3.223682	-2.774749
Н	-1.698152	1.412539	-2.805853	Н	1.456152	2.649618	-0.754198
Н	-0.733827	1.137825	1.399470	Н	-2.341044	1.424386	-2.410847
н	-2.862021	-0.001857	1.807546	н	-1.751786	2.528476	-4.540903
Н	-3.860502	0.303996	-2.365706	Н	2.029335	3.725096	-2.882258
Н	-4.443072	-0.407825	-0.059845	Н	0.433503	3.677734	-4.776106

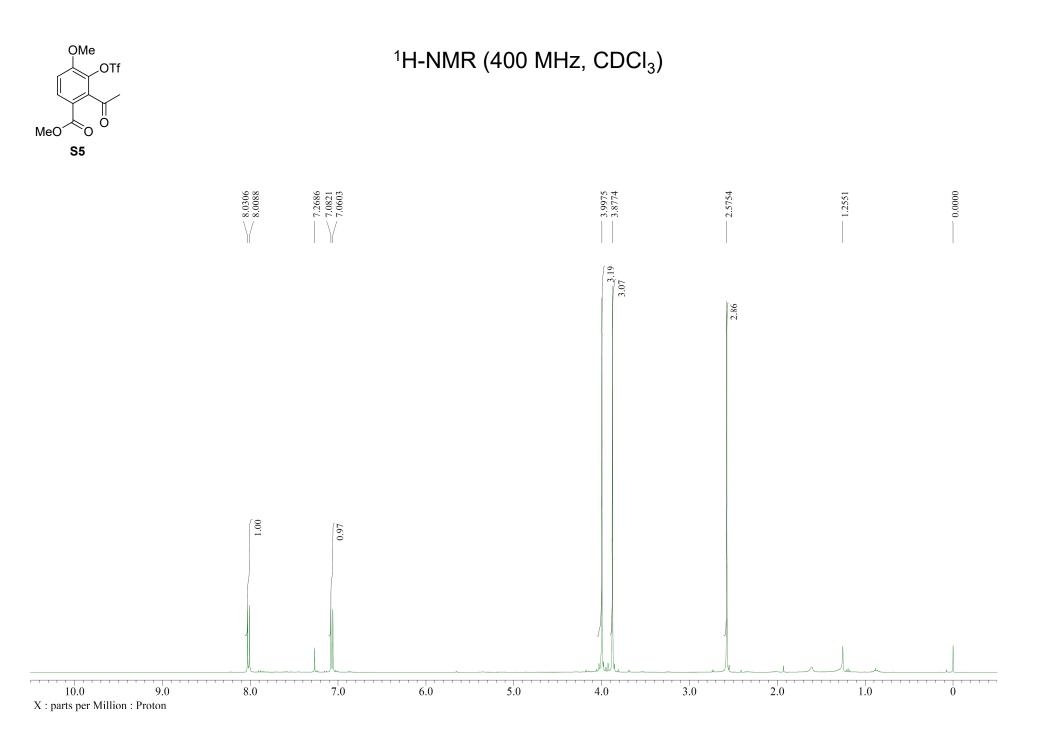


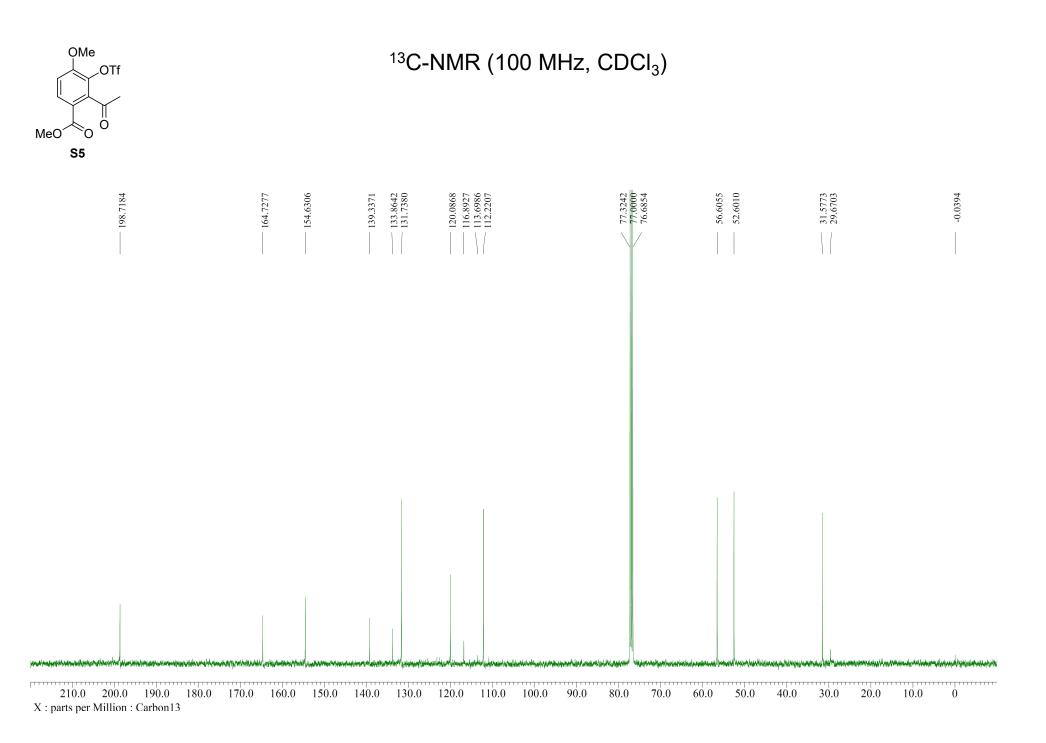


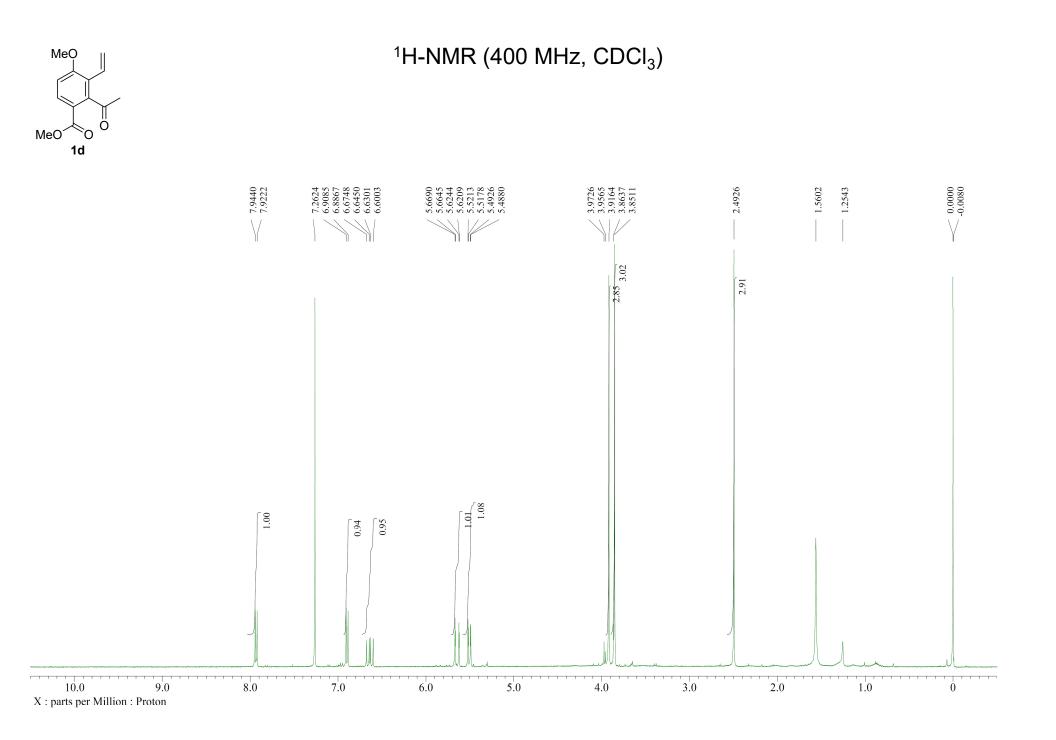


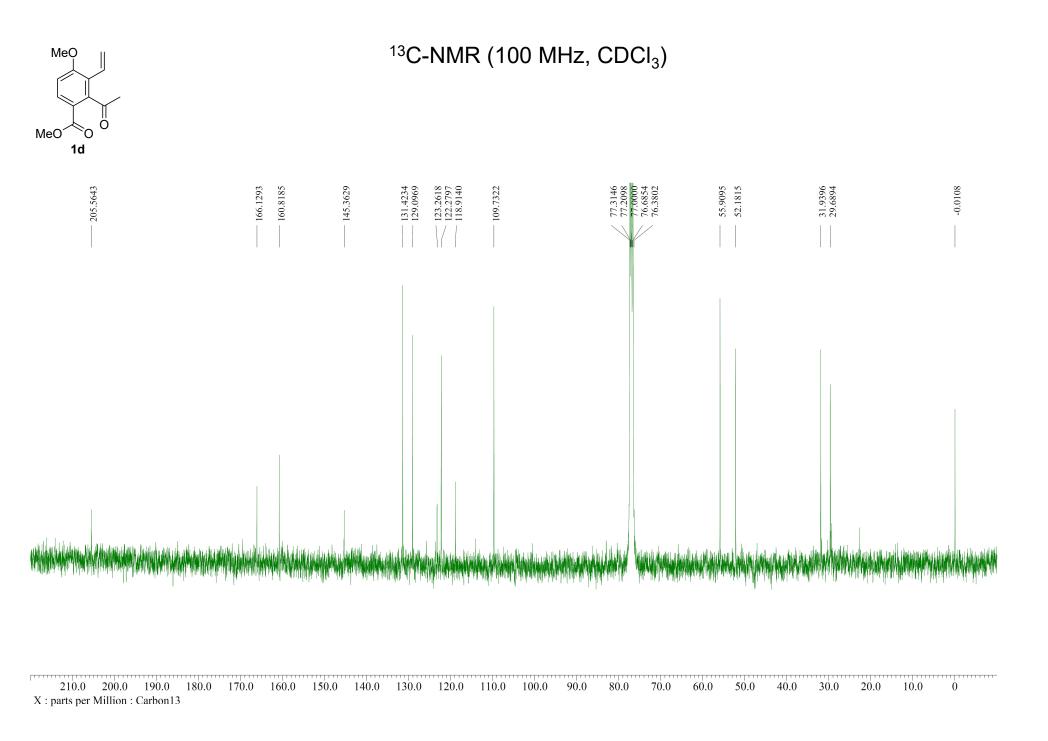

¹H-NMR (400 MHz, CDCl₃)

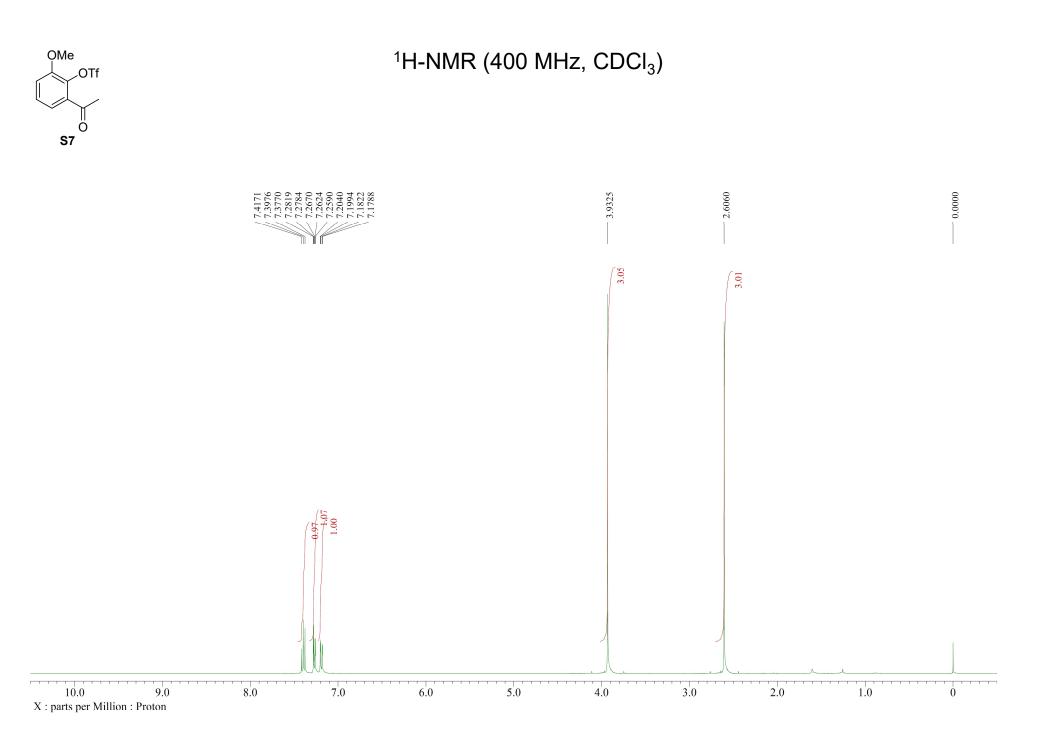


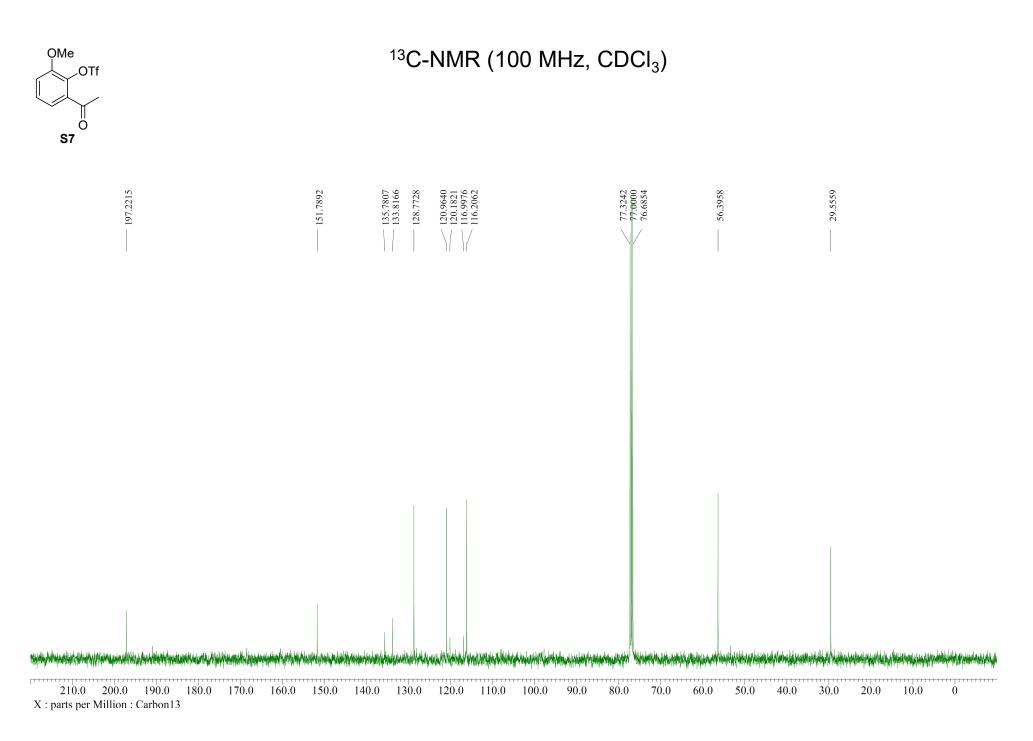


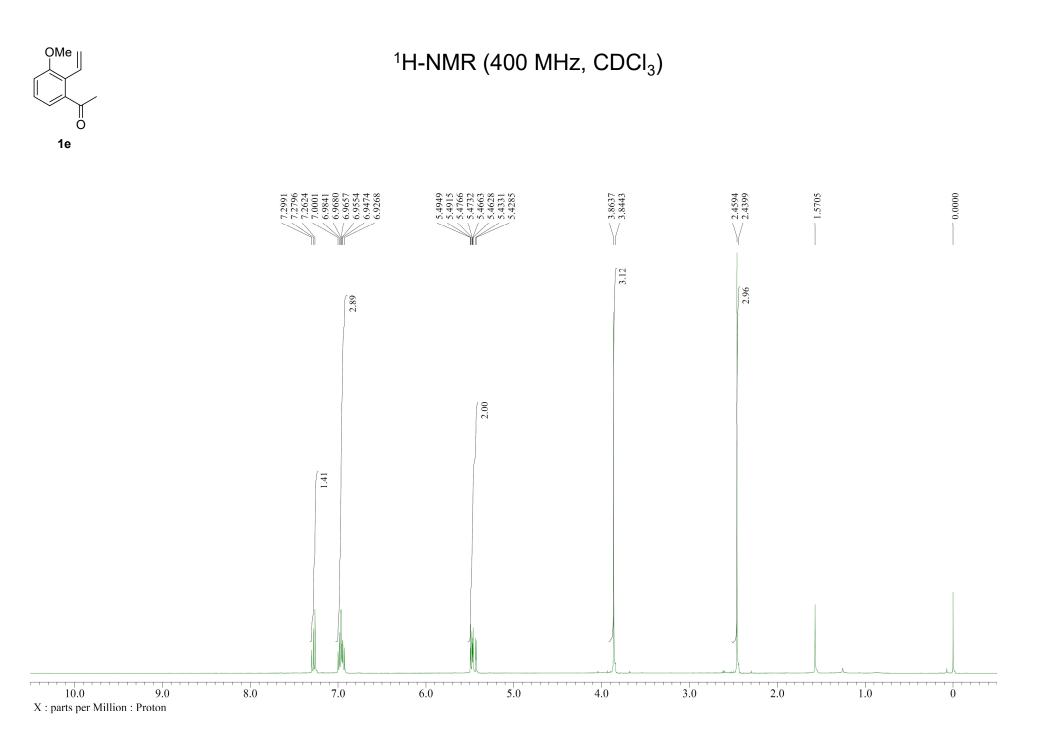


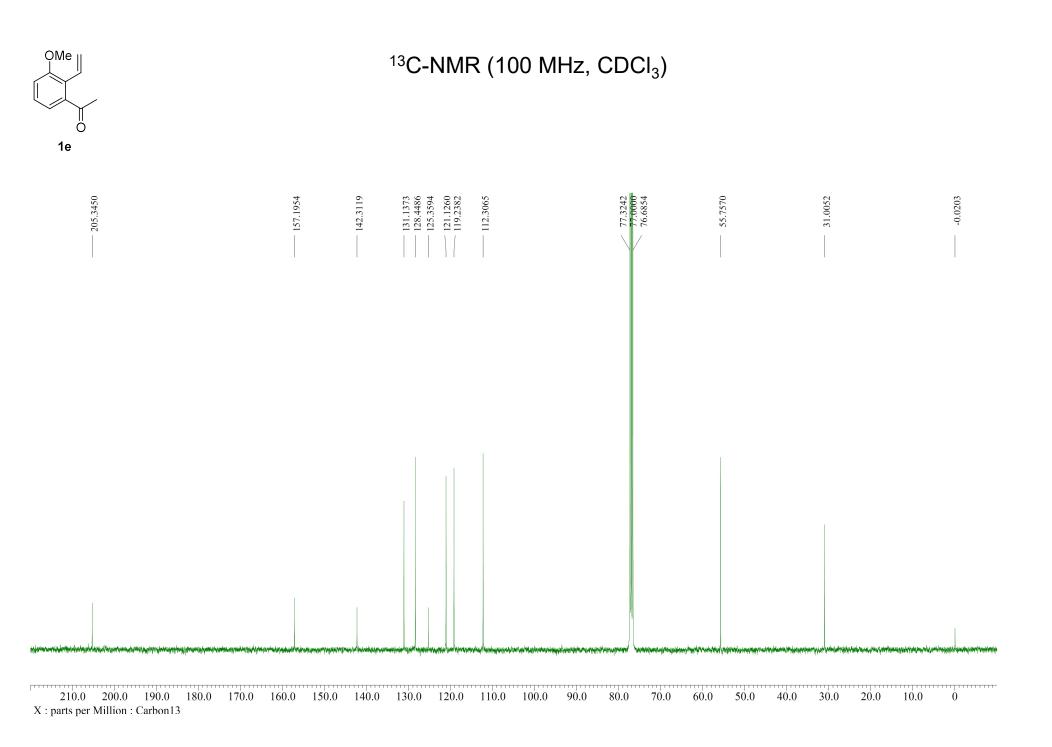


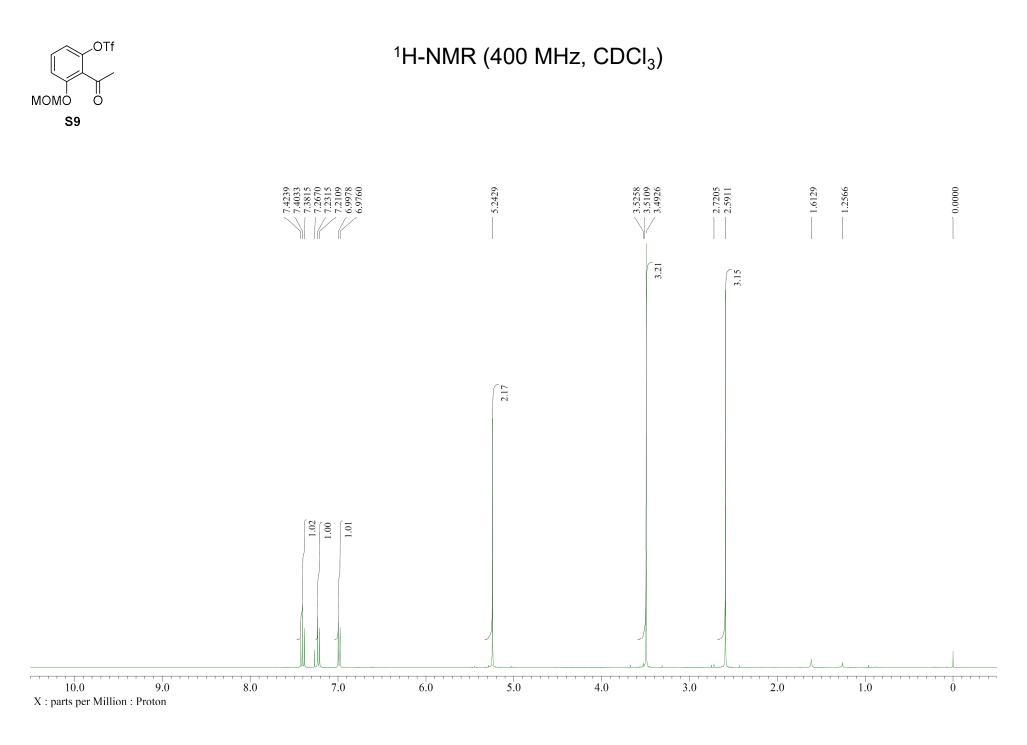


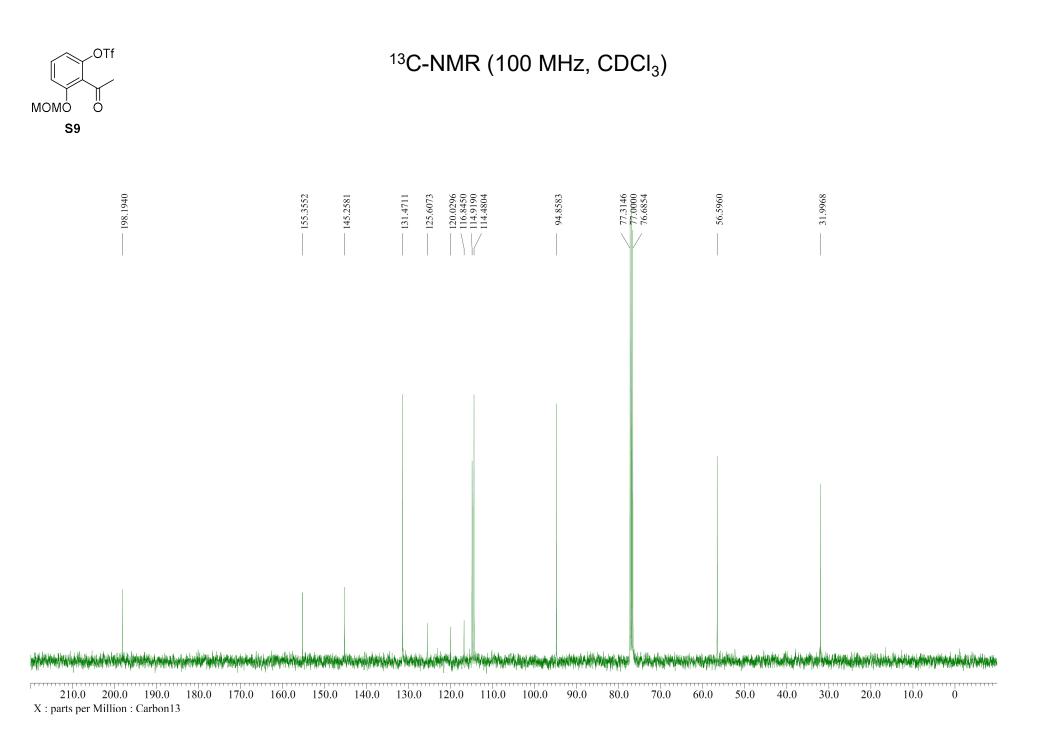


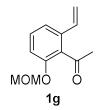


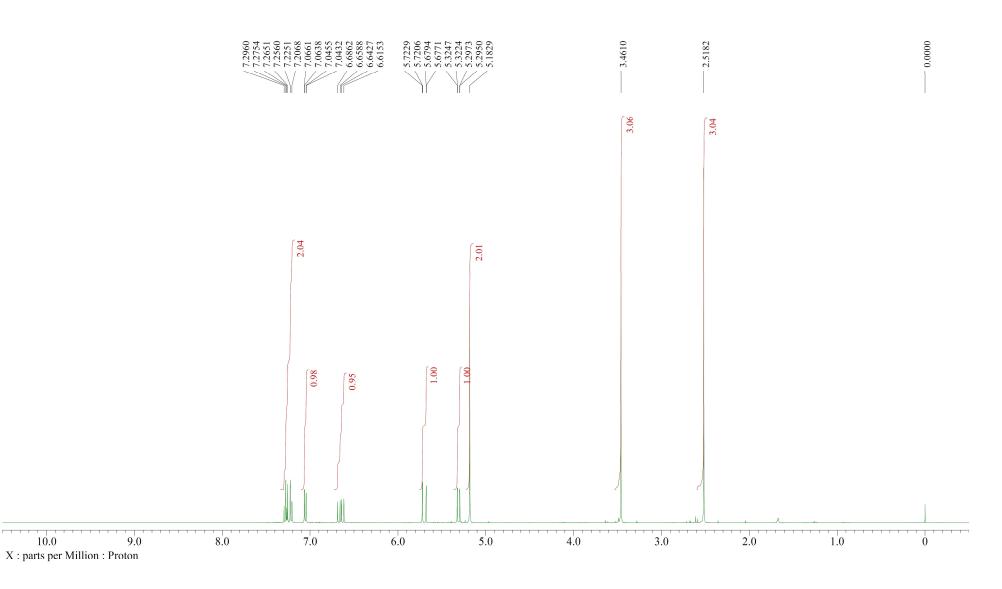


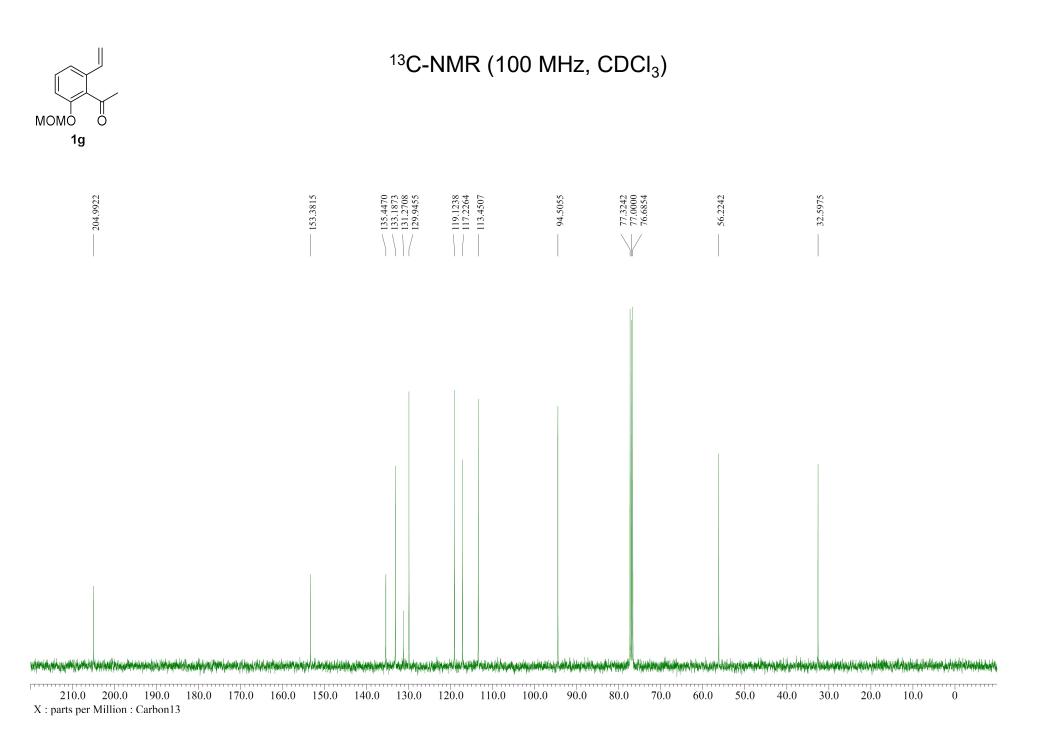


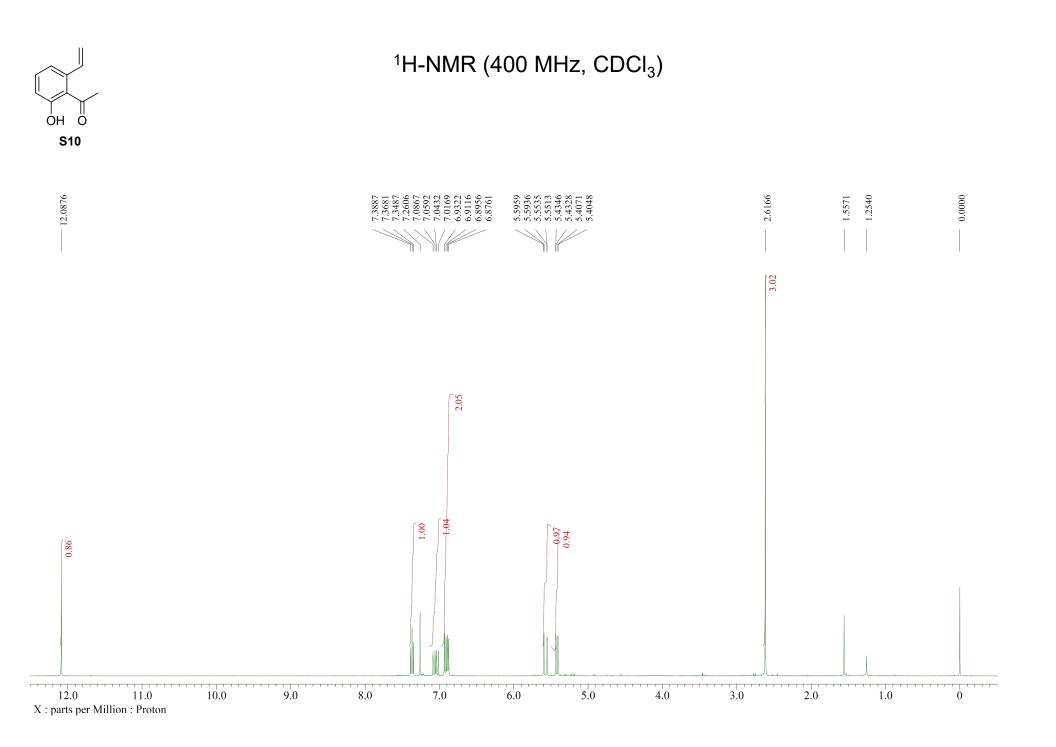


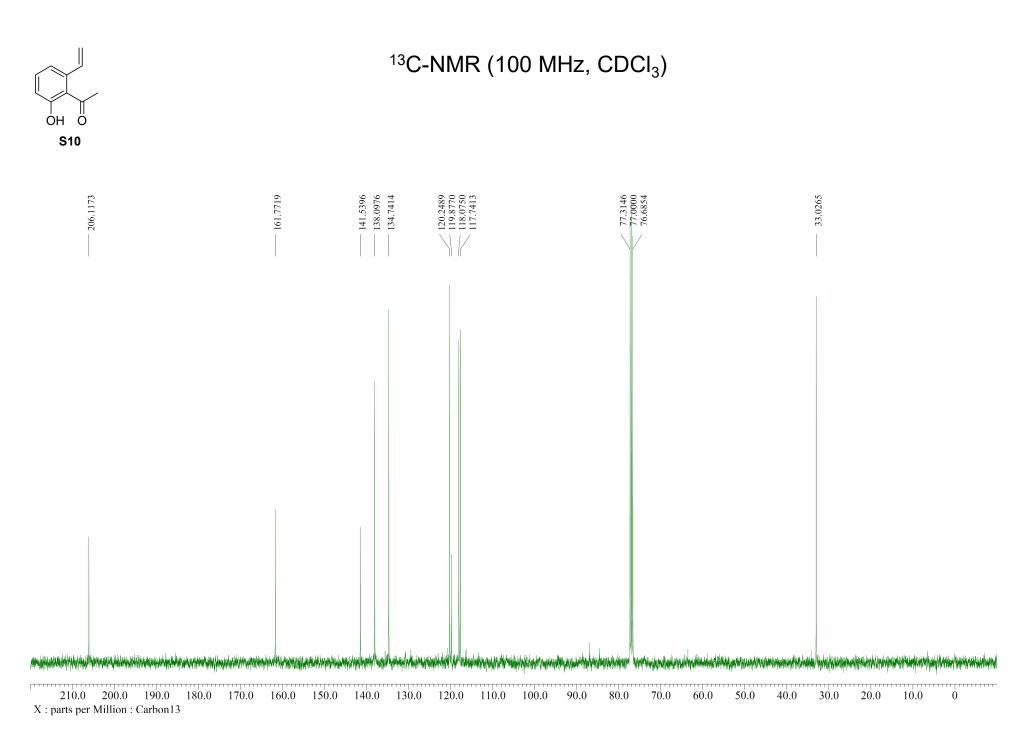


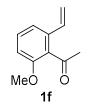


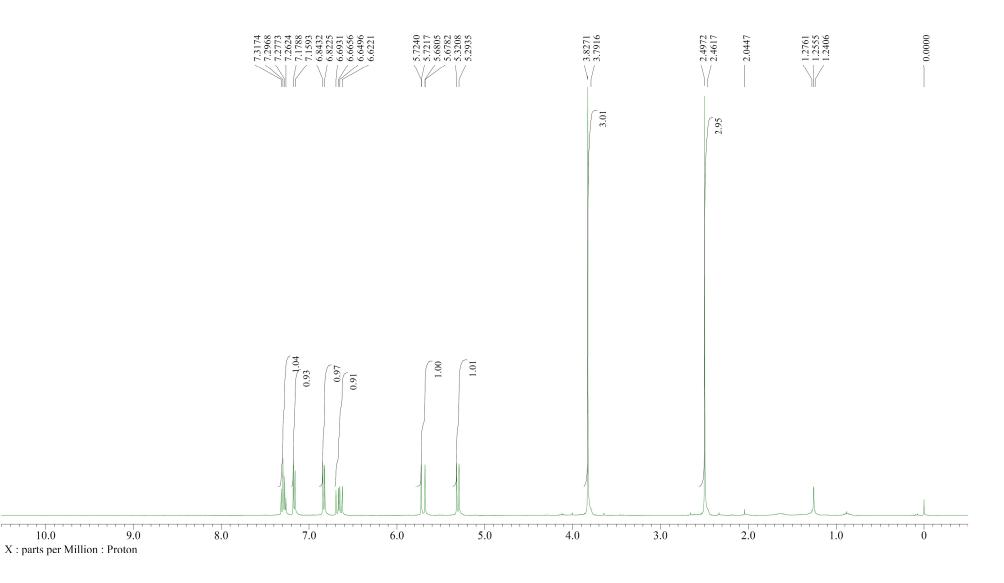


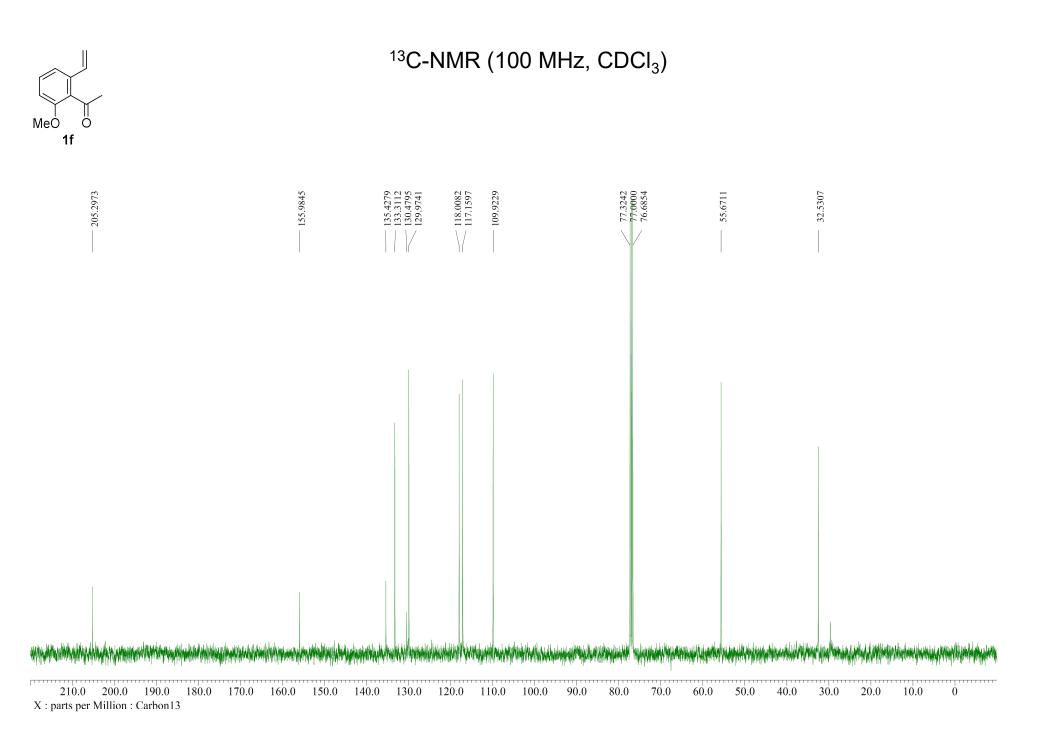


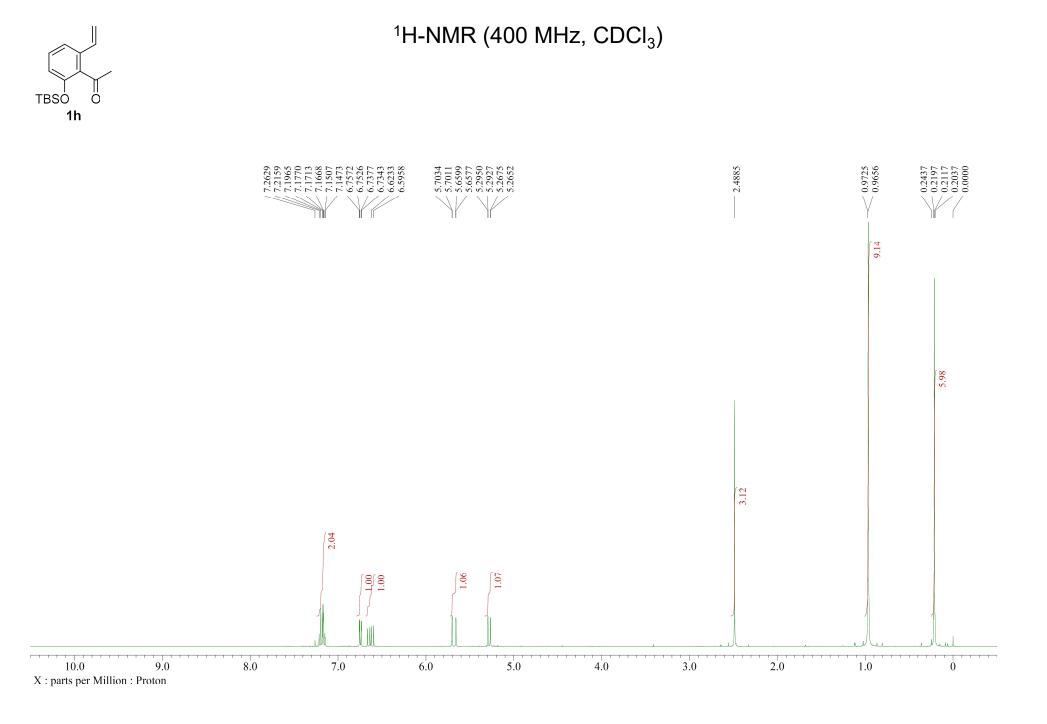


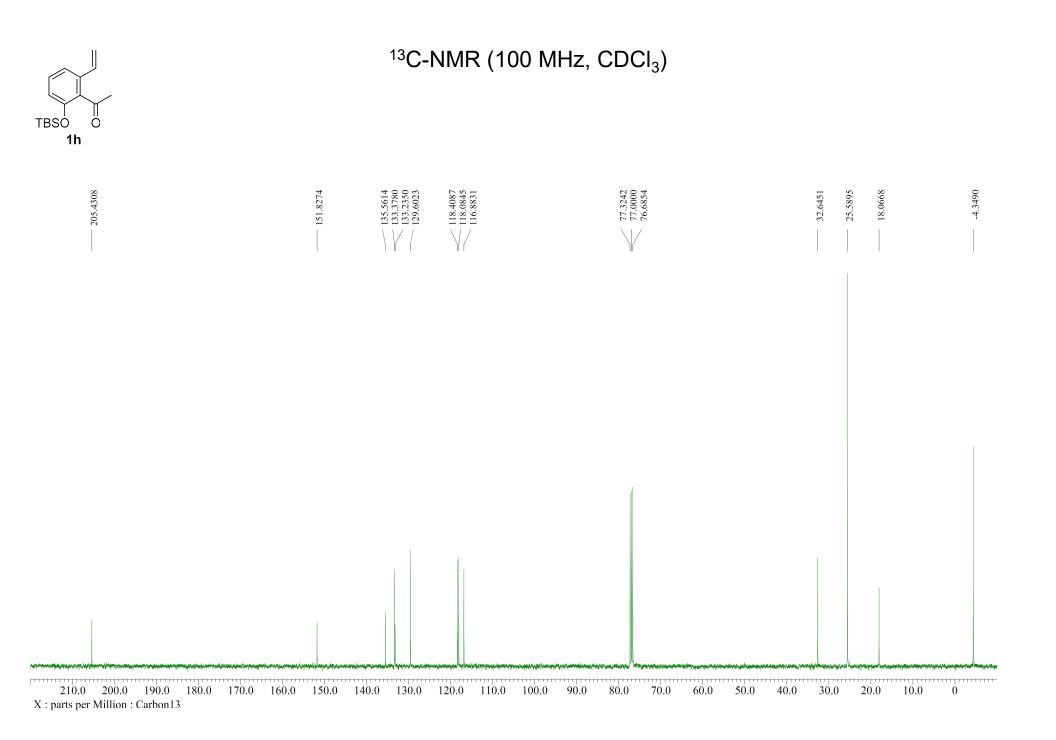


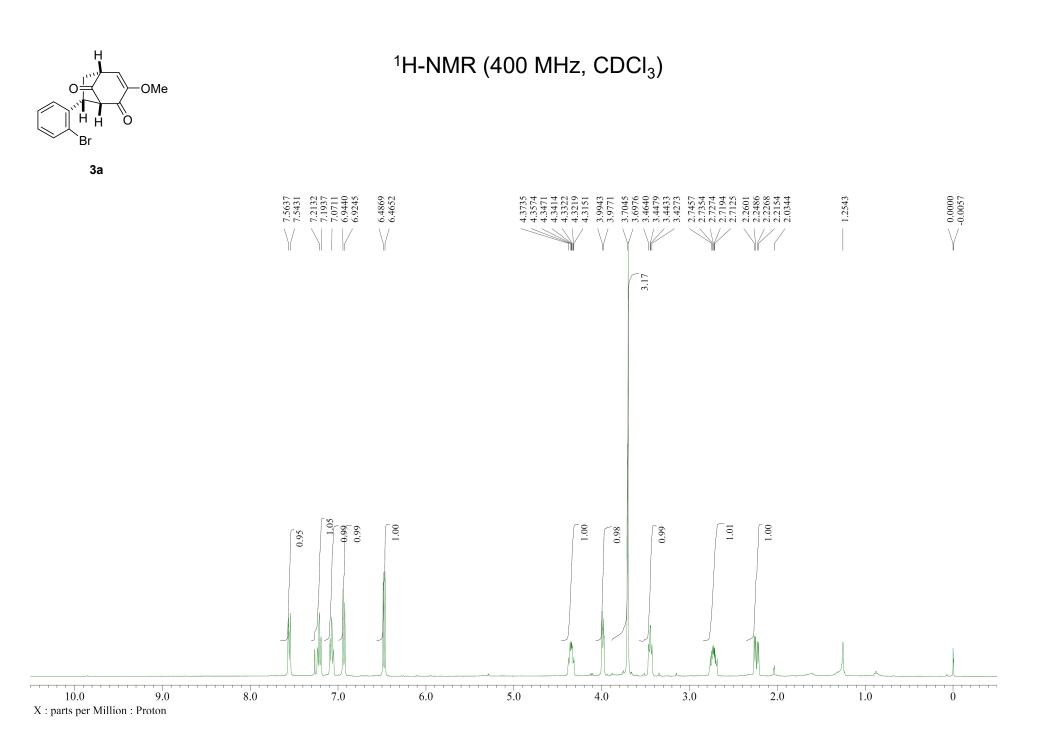


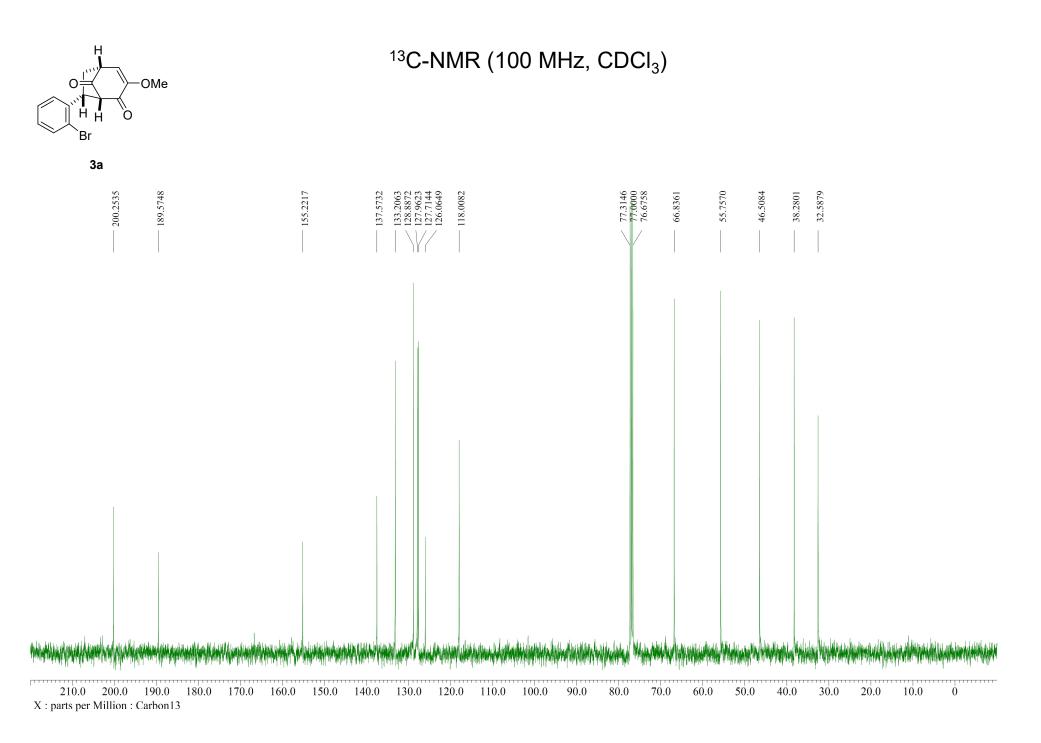


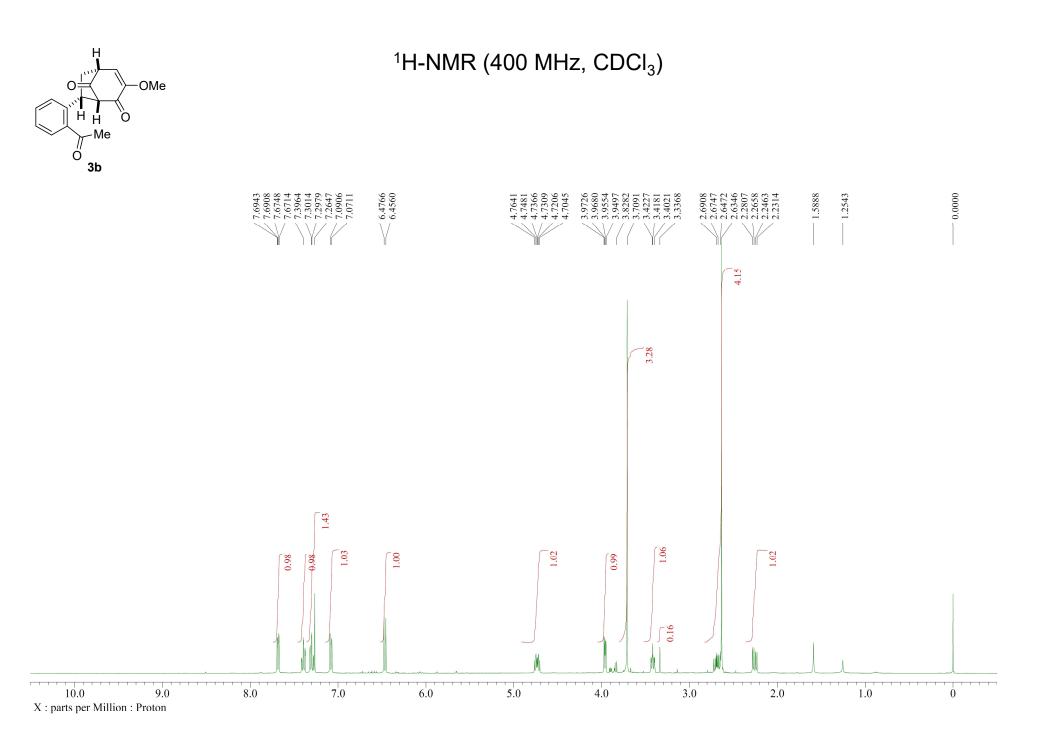


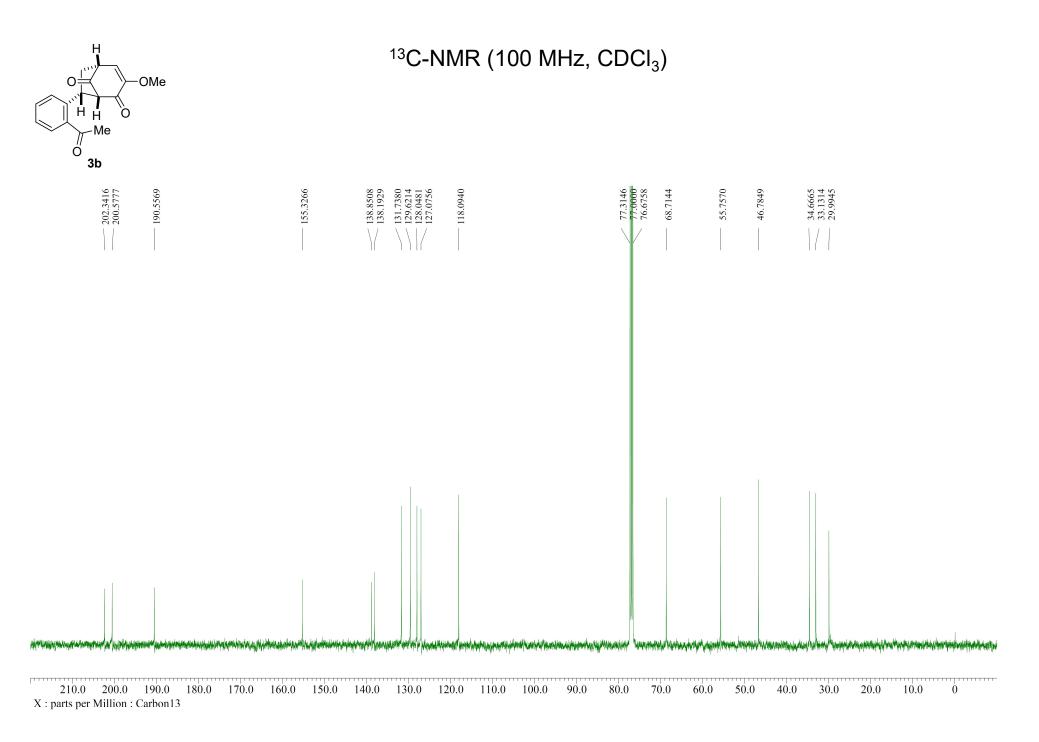


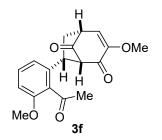


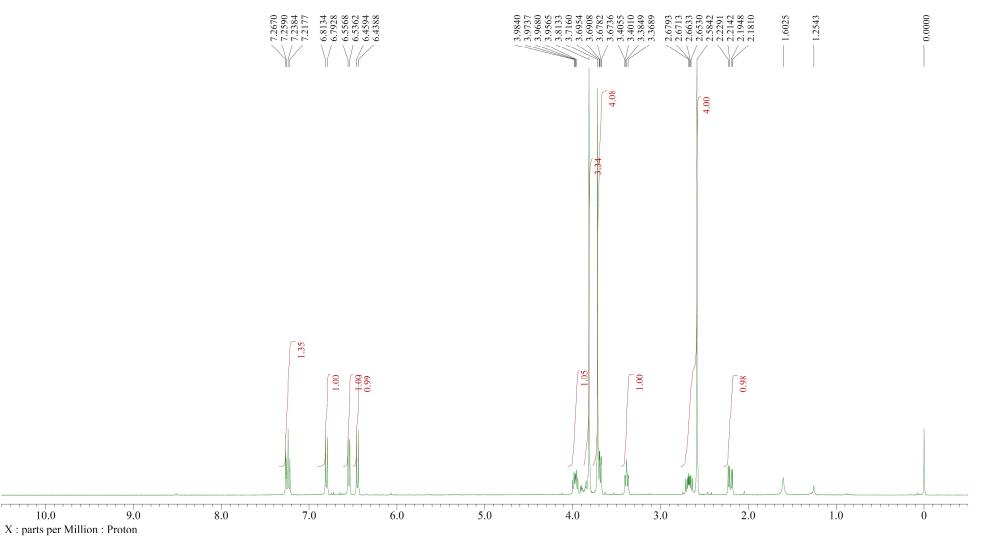


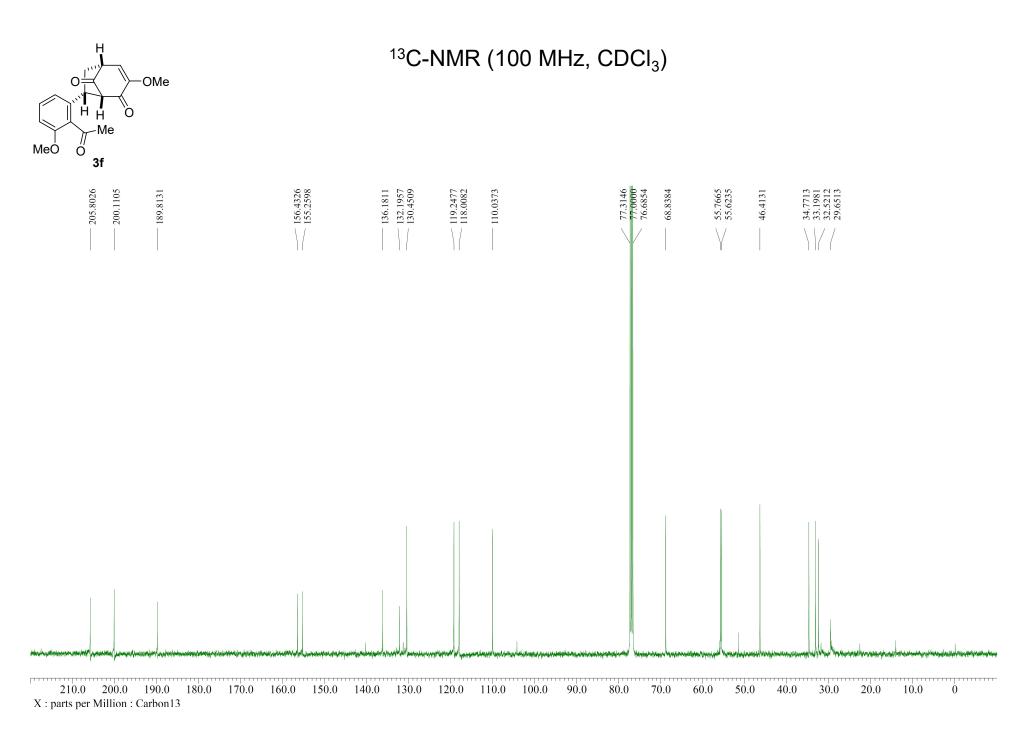


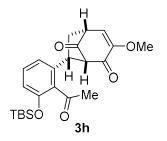


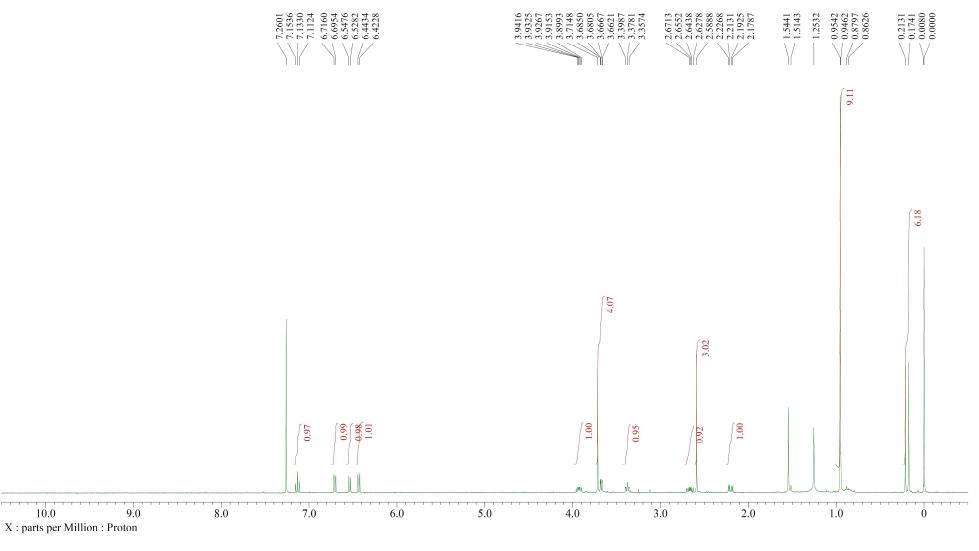


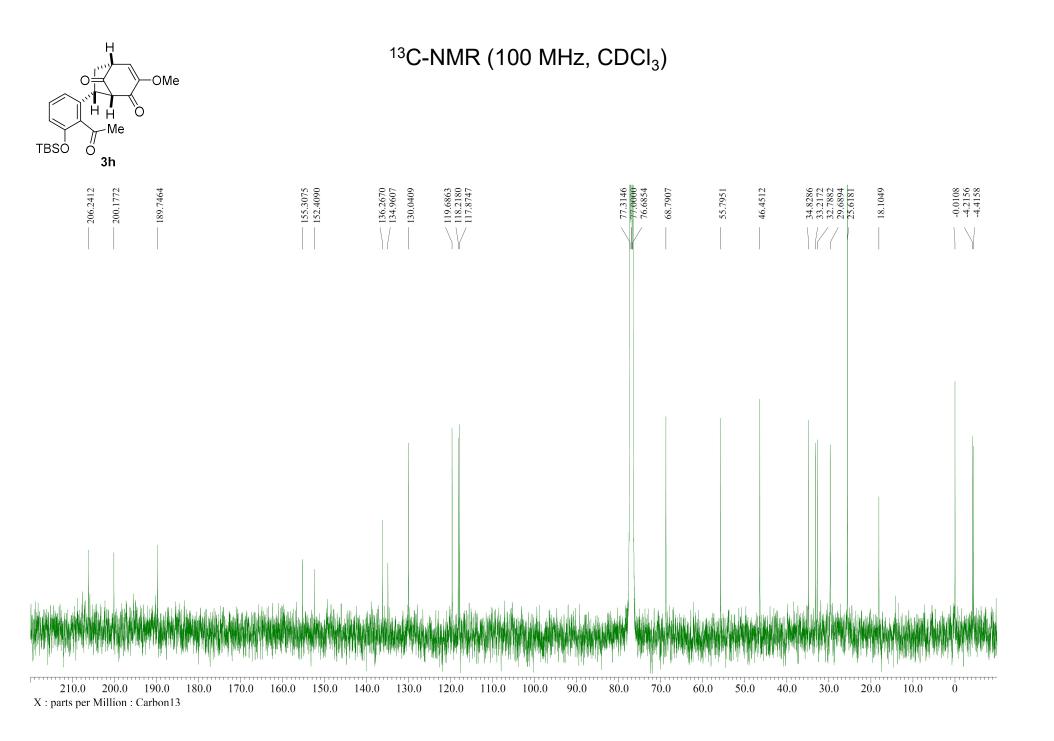


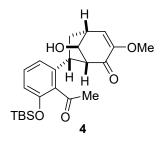


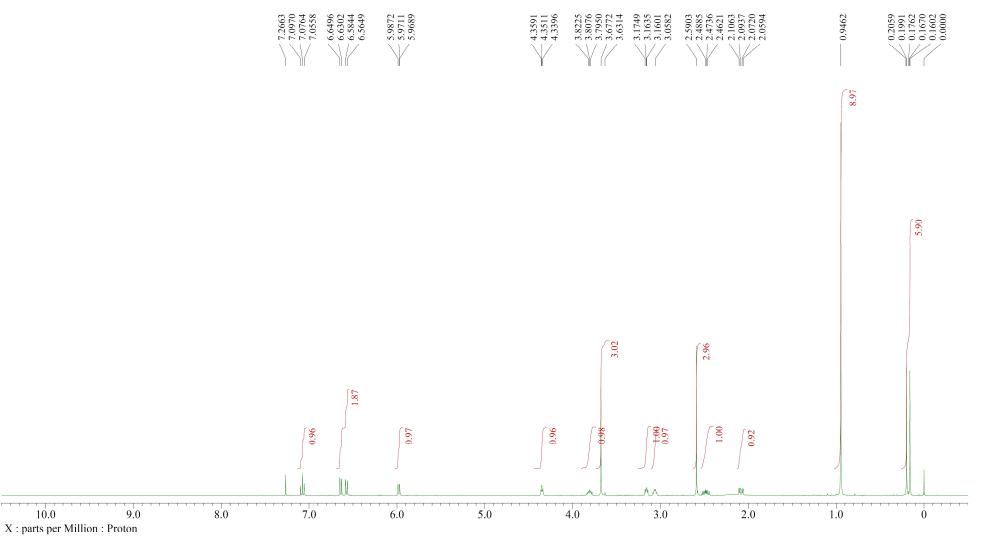


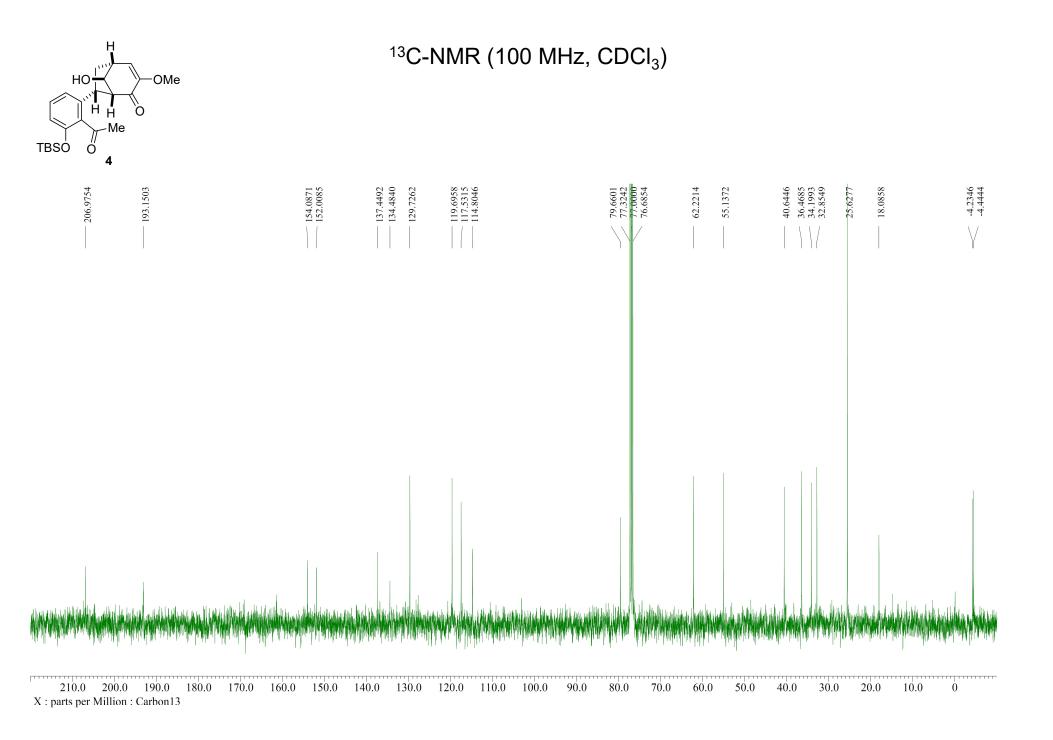


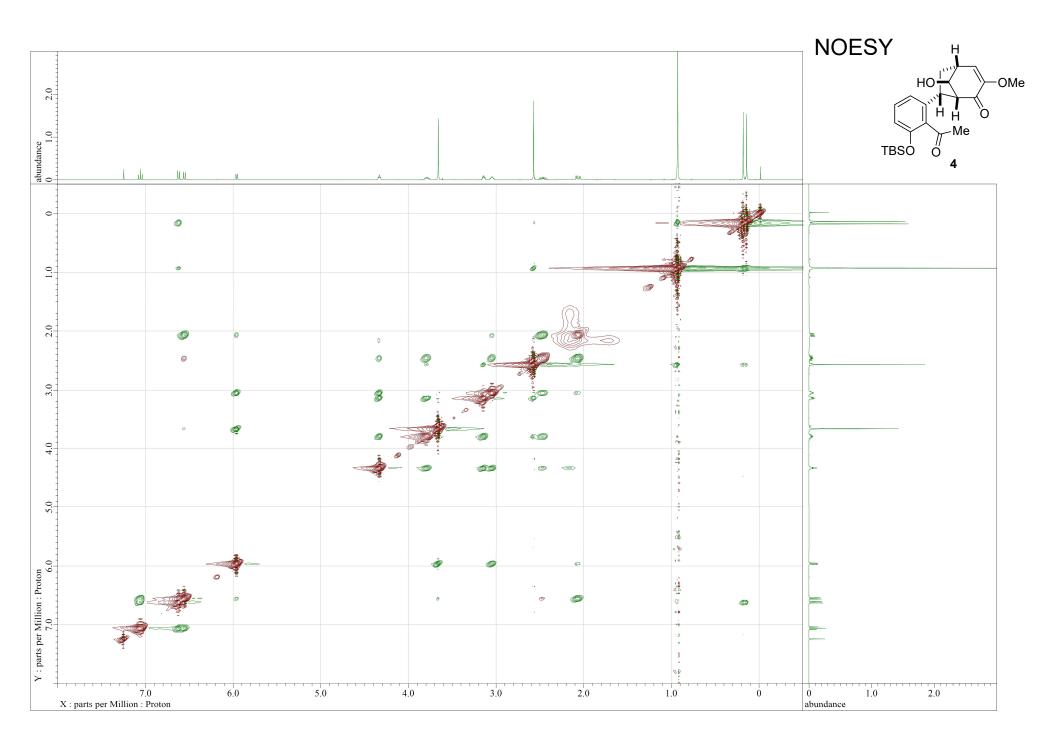


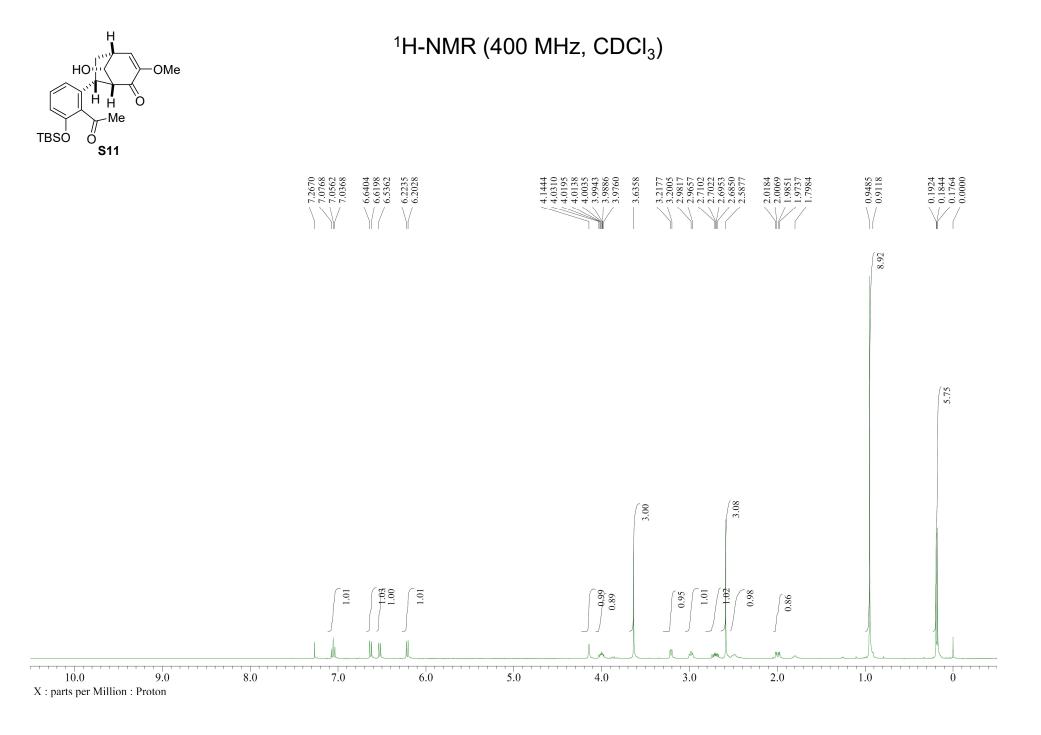


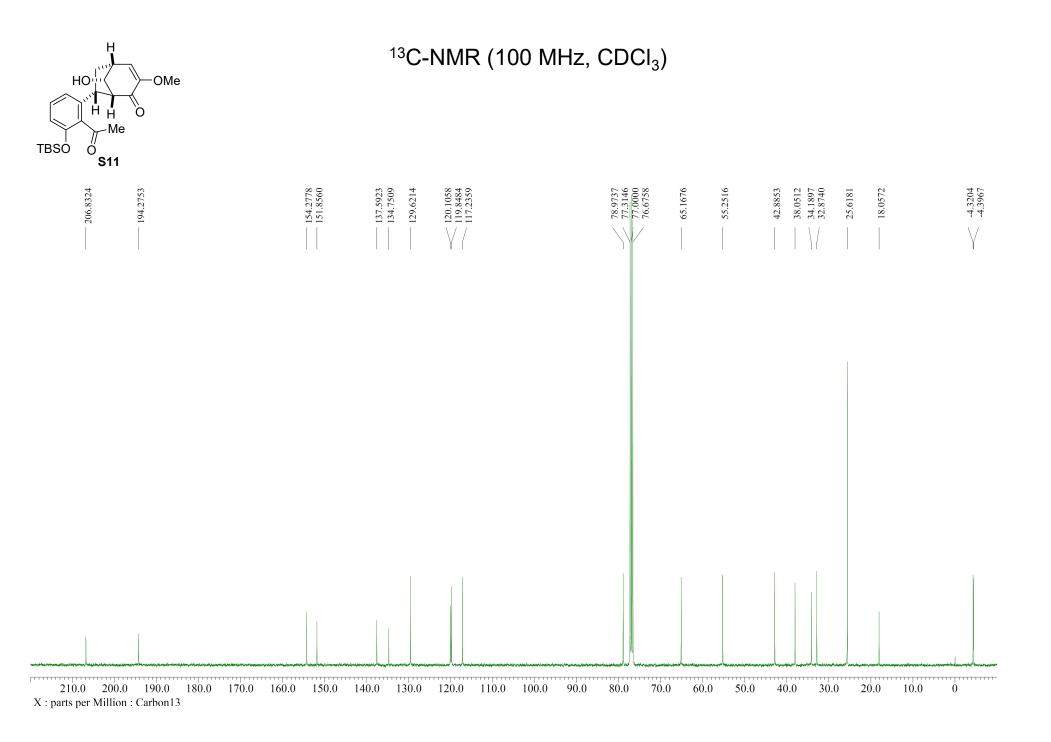


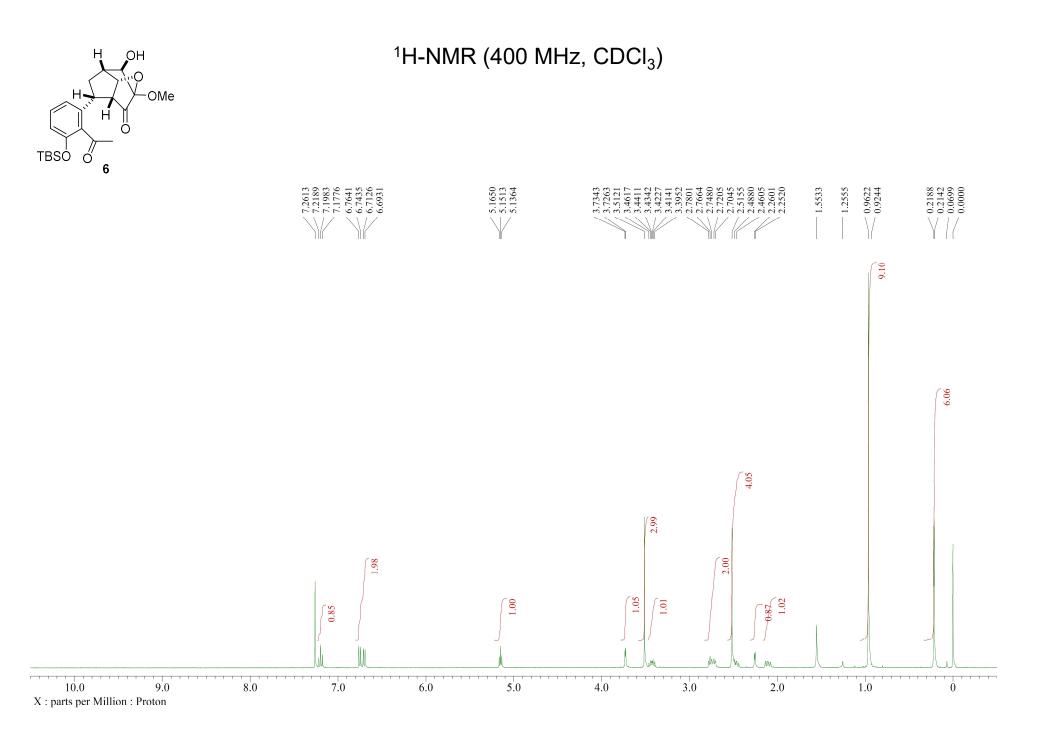


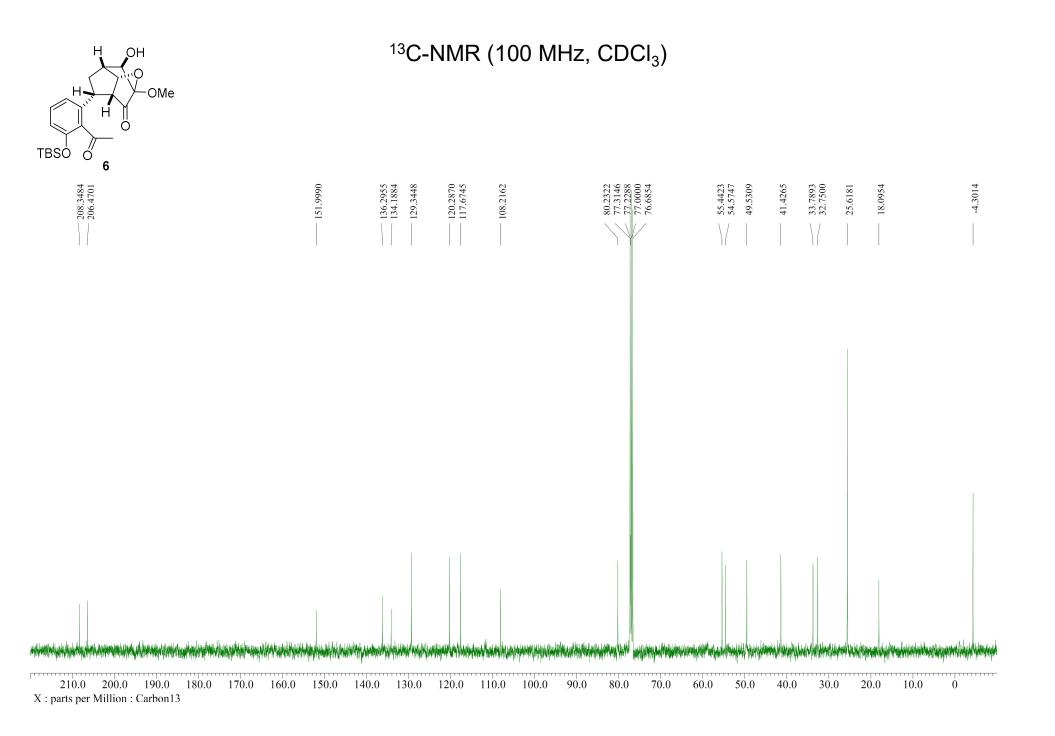


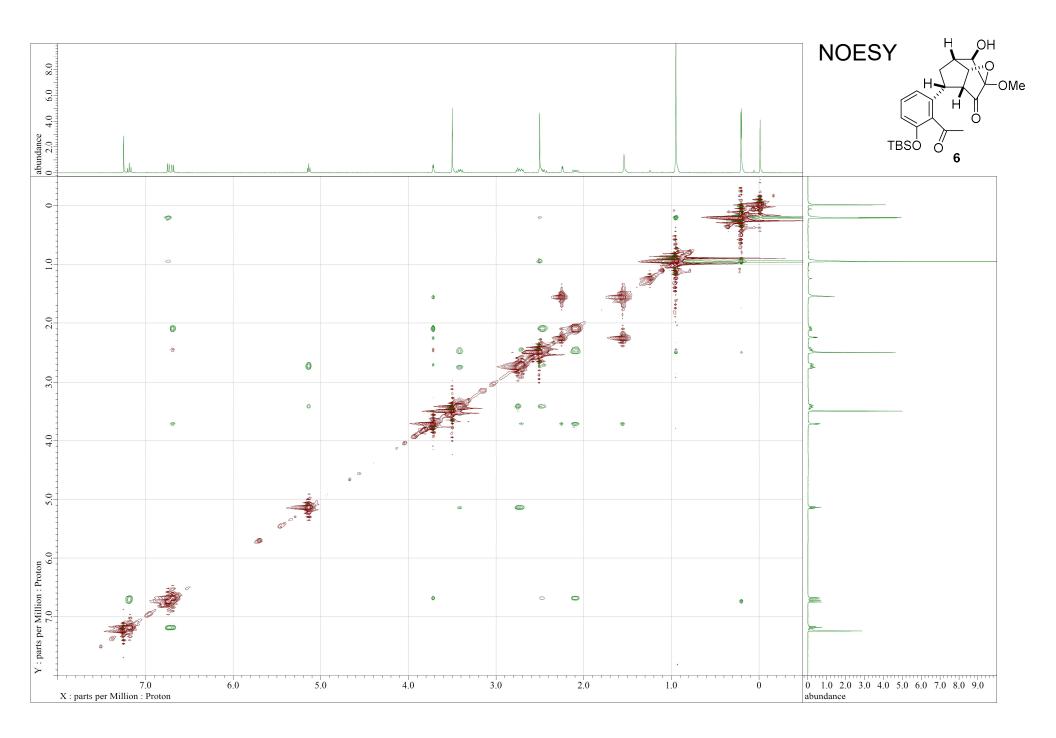


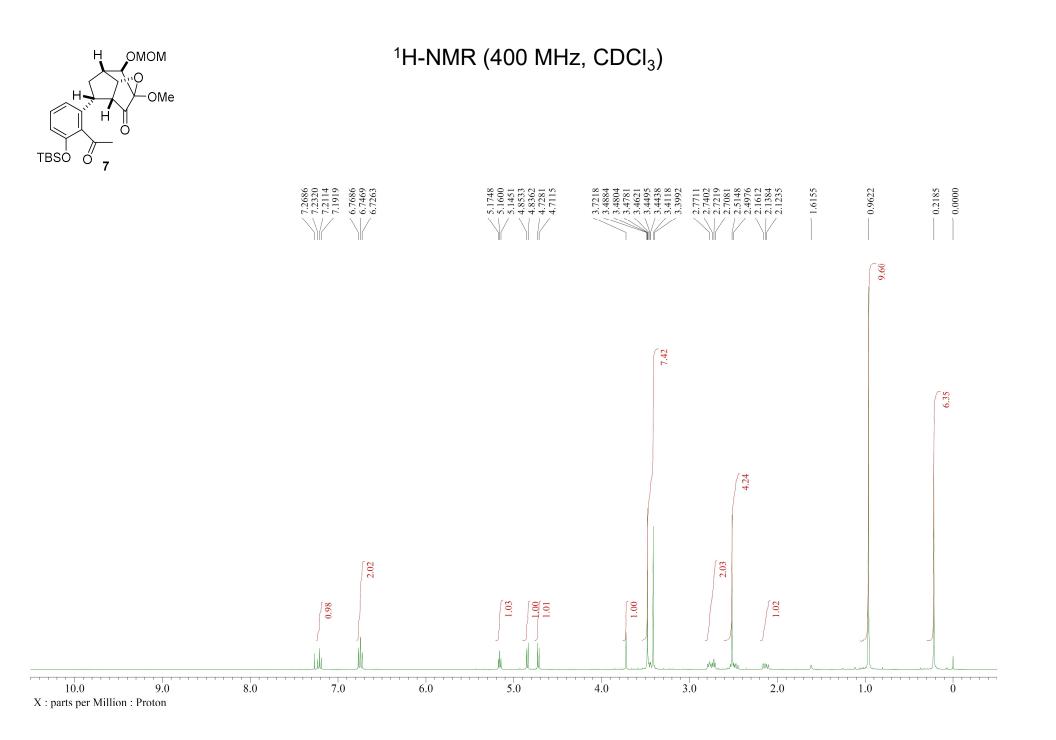


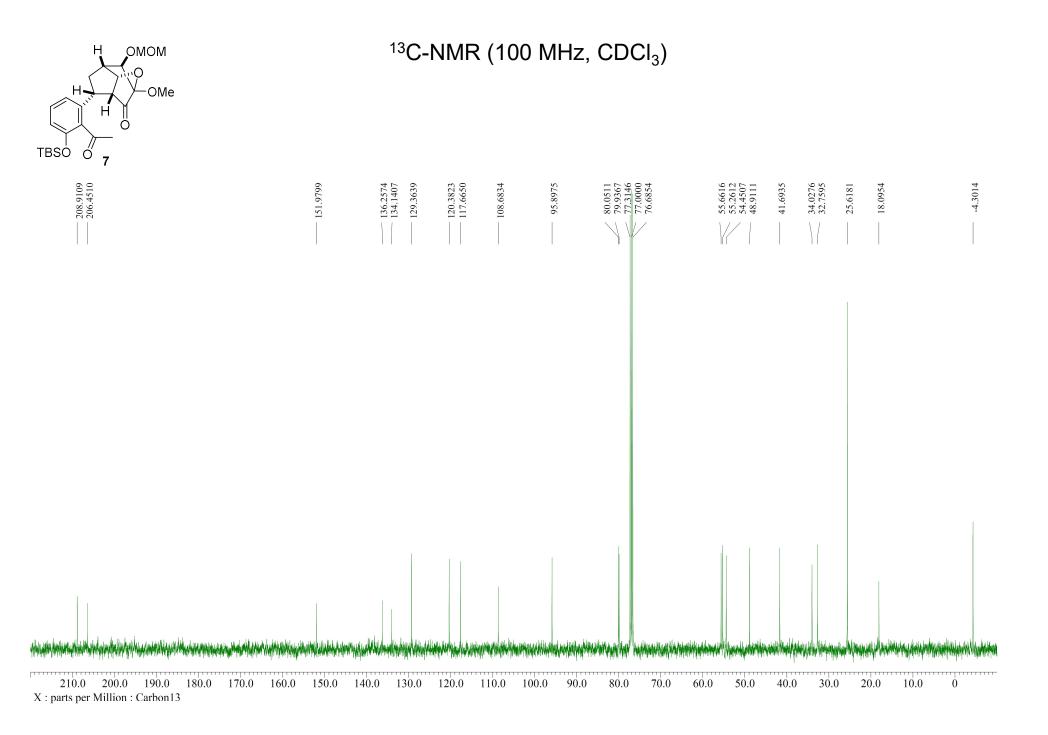


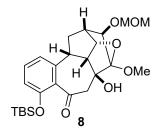




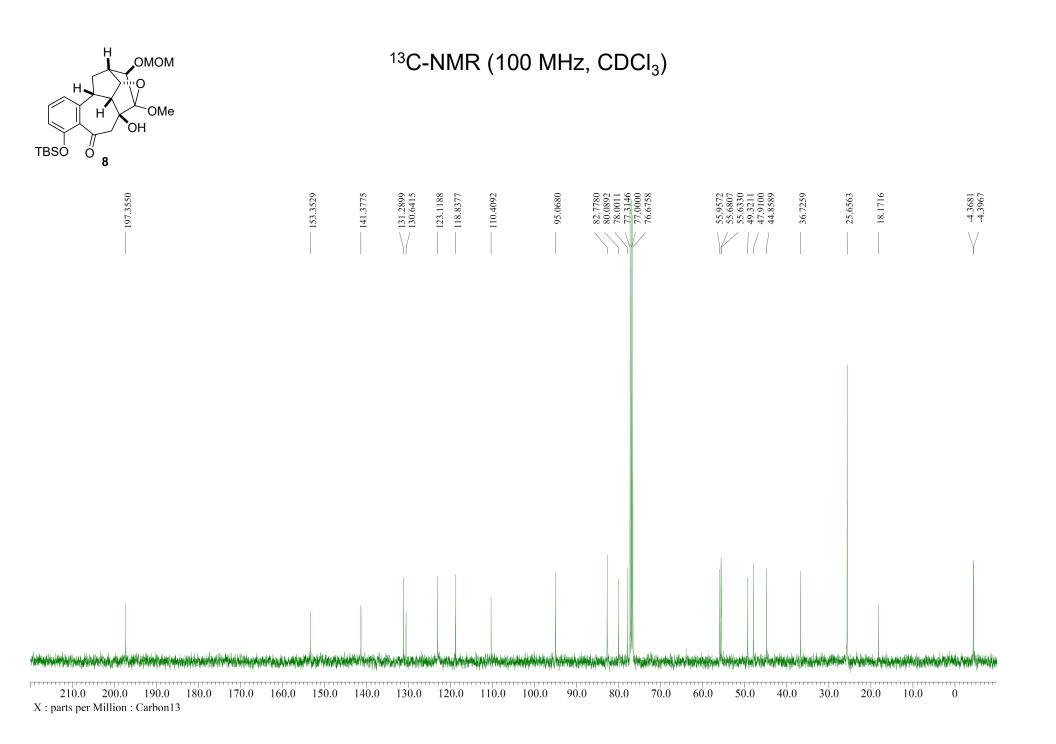


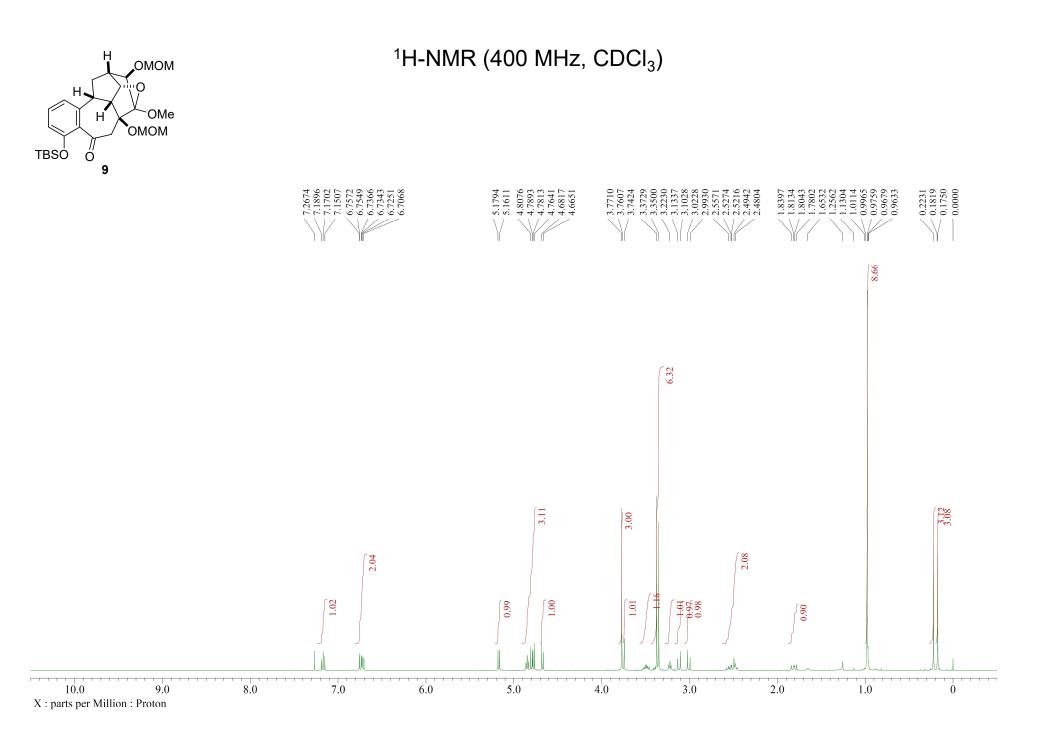


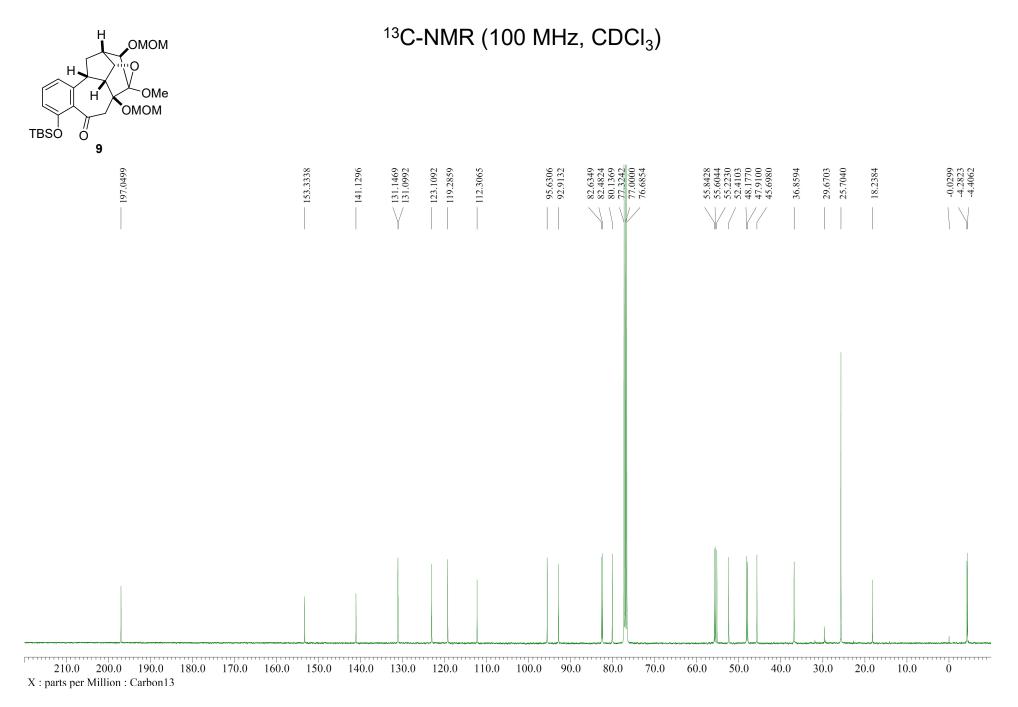


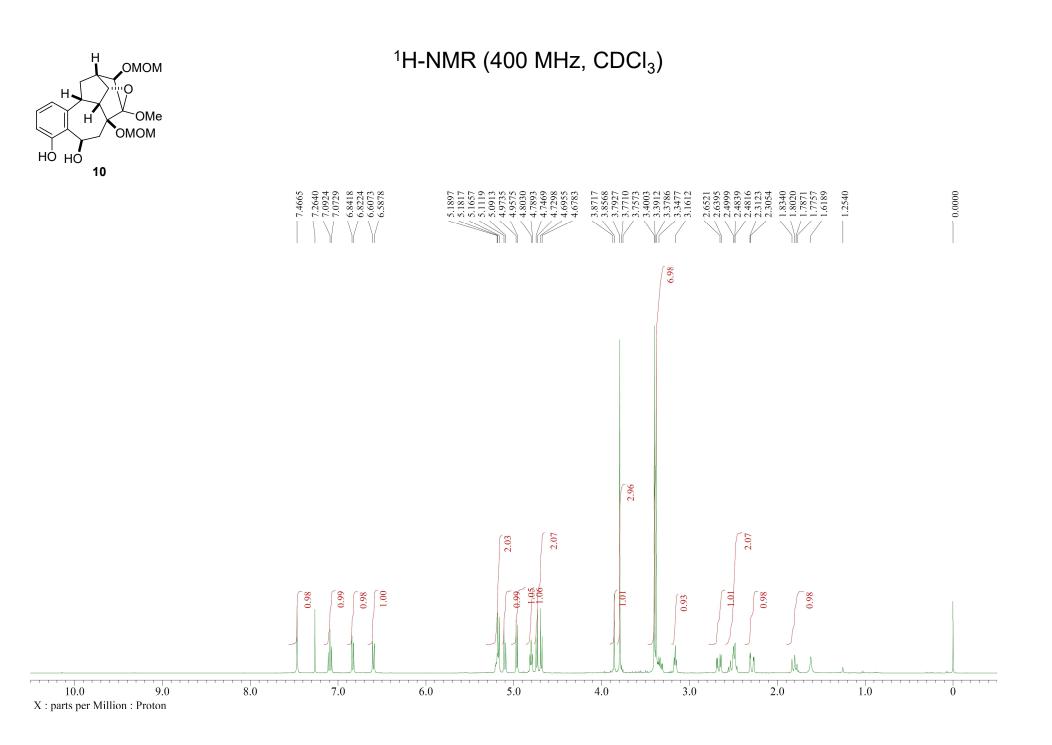











¹H-NMR (400 MHz, CDCl₃)

