Transition Metal-free [2,3]-sigmatropic rearrangement in the reaction of sulfur ylides with allenoates

Miguel García-Castro,* Federico Moya-Utrera and Francisco Sarabia

Prof. Dr. Miguel García-Castro
Department of Organic Chemistry
Faculty of Sciences, University of Málaga 29071, Campus de Teatinos s/n. Málaga (Spain) Corresponding autor. E-mail: mgcastro@uma.es Tel: +34 952131669

SUPPORTING INFORMATION

Contents
General Techniques SI-2
List of Synthesized Allenoates SI-3
Syntheses of Sulfonium salts 1 SI-4
Experimental Procedures for all compounds and spectroscopic data SI-4-22
X-Ray diffraction data SI-23-26
Selected GC-MS spectra SI-27-33
Selected examples of Isolera Prime Biotage ${ }^{\circledR}$ Purifications SI-34-35
NMR spectra SI-36-79
Reference 13: Non reproducible experiments employing another bases SI-80
Mechanistic studies SI-81-85

General Techniques. All reactions were carried out under non special conditions, opened flask and did not require anhydrous conditions, unless otherwise noted. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}-\mathrm{NMR}$) homogeneous materials, unless otherwise stated. All solutions used in workup procedures were saturated unless otherwise noted. All reagents were purchased at sigma-aldrich at ACS Reagent quality. Tert-butanol was purchased at sigma-aldrich (ACS Reagent $\geq 99 \%$) and did not require further distillation. Allenoates were freshly prepared according to reported procedures in literature. All reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica gel plates (60F-254) using UV light as visualizing agent and potassium permanganate solution and heat as developing agents. Silica gel (60, particle size 0.0400.063 mm) was used for flash column chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on $0.25,0.50$ or 1 mm silica gel plates ($60 \mathrm{~F}-254$). Many products were purified using a Biotage ${ }^{\circledR}$ equipment (Isolera prime) and commercial silica-gel cartridge SFAR-DUO 10 g ($60 \mu \mathrm{M}$ particle size). Many products were purified using flash column chromatography, using silica gel 60 (0.0400.063 mm), 230-400 mesh ASTM.

NMR spectra were recorded on a Bruker 500 MHz or 400 MHz instruments and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; band, several overlapping signals; b, broad. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ assignments were undertaken based on bidimentional NMR experiments of COSY, HSQC, HMBC and NOESY experiments. High resolution mass spectra (HRMS) were recorded on a mass spectrometer under fast atom bombardment (FAB) conditions. For crystal-structure determination, all measurements were made on a Rigaku Oxford Diffraction SuperNova area-detector diffractometer using $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54184 \AA$) from a micro-focus X-ray source and an Oxford Instruments Cryojet XL cooler.

List of Synthesized Allenoates:

Freshly prepared allenoates were synthesized following procedures described in literature. ${ }^{1}$

$3 i$

5c

$5 f$

5g

5h

Syntheses of Stabilized Sulfonium Salts: Sulfonium salts were prepared using reported procedures, ${ }^{2}$ consisting typically in mixing the corresponding sulfide (excess) to dimethylchloroacetamide and allowing to crystallize over a period of several days at room

[^0]temperature. Finally, white crystals were filtered and dried at high vacuum. With exception of sulfonium salt $\mathbf{1 c}$, which reaction required previous work-up using extraction with water and ulterior lyophilization process.

1a

1b

1c

1d

Spectroscopic data of new sulfonium salts 1 .

1c

Colorless liquid. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNOS}$; Elemental Analysis: 63.296 \%C, $5.511 \% \mathrm{H}, 2.532 \% \mathrm{~N}$, $13.775 \% \mathrm{~S}, 10.024 \% \mathrm{O} ; 4.862 \% \mathrm{Cl} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 2.93(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 3.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 4.02 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{SCH}_{2}$), 7.18 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ph}$), 7.23 (m, 4H, Ph), 7.27 (m, 2H, Ph); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 36.0\left(\mathrm{NCH}_{3}\right), 37.7\left(\mathrm{NCH}_{3}\right), 41.0$ $\left(\mathrm{SCH}_{2}\right), 127.0(\mathrm{Ph}), 129.2(\mathrm{Ph}), 131.0(\mathrm{Ph}), 135.8(\mathrm{Ph}), 166.8(\mathrm{C}=\mathrm{O})$.

Hygroscopic white solid. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{D}_{6} \mathrm{ClNOS}$; Elemental Analysis: 36.583 \%C, $8.757 \% \mathrm{H}$, 6.967 \%N, $13.370 \% \mathrm{~S}, 17.009 \% \mathrm{O} ; 17.314 \% \mathrm{Cl} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):$ $2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.57\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{SCH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 35.7\left(\mathrm{NCH}_{3}\right), 37.9\left(\mathrm{NCH}_{3}\right), 41.2\left(\mathrm{SCH}_{2}\right), 48.9\left(\mathrm{SCD}_{3}\right), 163.4(\mathrm{C}=\mathrm{O})$.

General Procedure for syntheses of compounds 4.

Sulfonium salt 1a (scale of $100-400 \mathrm{mg}, 1.0$ equiv.) was solved in tert-butanol ($10-40$ mL , respectively). Then, a 1.0 molar solution of potassium tert-butoxide (1.0 equiv.) in ${ }^{t} \mathrm{BuOH}$ was added. Reaction was stirred at room temperature for 1 hour. Then, allenoate 3 (1.0 equiv.) was added and reaction was stirred between 1 hour (for most compounds) and 12 hours. Reactions were monitored by TLC. To work-up, a saturated solution of ammonium chloride was added and ethyl acetate was added for extraction (three times). Organic layers were sequentially washed with distilled water and a saturated solution of sodium chloride and then dried over anhydrous magnesium sulfate, filtered and evaporated in rotavapor to afford slightly yellow oils. Purification was done by flash column chromatography or using Isolera Prime Biotage ${ }^{\circledR}$ equipment using different gradient of ethyl acetate and hexanes.

Compounds 4a/4a':

4a

4a'

Following the general procedure with: Sulfonium salt $\mathbf{1 a}$ ($204 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.0 \mathrm{eq}$.), allenoate 3 a ($125 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{\dagger} \mathrm{BuOK}(1.11 \mathrm{~mL}, 1.11$ $\mathrm{mmol}, 1.0 \mathrm{eq}$. .) in 18 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$ flash chromatography, 70 mg of compound $\mathbf{4 a}$ as a colorless oil and 130 mg of compound $\mathbf{4 a}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{6 9 \%}$.

Compound 4a: $\mathrm{R}_{\mathrm{f}}=0.22$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 260.13107; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S} 260.13204 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $1.26(\mathrm{t}, J=$ $7.17 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right.$), 2.54-2.61 (m, 2H, CH2 $\mathrm{C}=\mathrm{CH}$), 2.63-2.72 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{SCH}_{2}$), $2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 4.13$ $\left(\mathrm{q}, J=7.17 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.87\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} \mathrm{Ct}_{2}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 15.6\left(\mathrm{SCH}_{3}\right), 31.9\left(\mathrm{SCH}_{2}\right), 35.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.5\left(\mathrm{NCH}_{3}\right)$, $37.4\left(\mathrm{NCH}_{3}\right), 38.3\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 59.9 \quad\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.6\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 155.0$ $\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.2(\mathrm{C}=\mathrm{O}), 169.6(C=\mathrm{O})$.

Compound 4a': $\mathrm{R}_{\mathrm{f}}=0.14$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 260.134434; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S} 260.13204 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.25(\mathrm{t}, J=$ $\left.7.17 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right)$, 2.62-2.70 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$), $2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.13(\mathrm{q}$, $\left.J=7.17 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.08(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 15.4\left(\mathrm{SCH}_{3}\right), 31.8\left(\mathrm{SCH}_{2}\right), 32.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 35.6\left(\mathrm{NCH}_{3}\right)$, $37.8\left(\mathrm{NCH}_{3}\right), 43.7\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 59.9\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $119.4(=C H C O N M e 2), 154.6$ ($\mathrm{C}=\mathrm{CHCONMe}_{2}$), $165.7(\mathrm{C}=\mathrm{O}), 169.1(\mathrm{C}=\mathrm{O})$.

Compounds 4b/4b':

4b

4b

Following the general procedure with: Sulfonium salt 1 a ($103 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.0 \mathrm{eq}$.), allenoate $\mathbf{3 b}$ ($71 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{\dagger} \mathrm{BuOK}(0.56 \mathrm{~mL}, 0.56 \mathrm{mmol}$, 1.0 eq.) in 10 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column chromatography using a gradient of eluent (20% to 50% of AcOEt in hexanes), 47 mg of compound $\mathbf{4 b}$ as a colorless oil and 55 mg of compound $\mathbf{4} \mathbf{b}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{6 8 \%}$.

Compound 4b: $\mathrm{R}_{\mathrm{f}}=0.17$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 274.14714; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 274.14769 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.15(\mathrm{~d}, J=$ $\left.6.81 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.19\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH} H_{3}\right), 2.41$ $\left(\mathrm{dd}, J_{1}=12.80 \mathrm{~Hz} ; J_{2}=8.17 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.54\left(\mathrm{tq}, J_{1}=8.17 \mathrm{~Hz} ; J_{2}=6.81 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\left.\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.67\left(\mathrm{dd}, J_{I}=12.80 \mathrm{~Hz} ; J_{2}=5.62 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}\right)_{2}\right), 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.68\left(\mathrm{~d}, J=15.33 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.78(\mathrm{~d}, J=15.33 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 4.05\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.80(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et})$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 16.1\left(\mathrm{SCH}_{3}\right), 18.7\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $35.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.4\left(\mathrm{CHCH}_{3}\right), 37.4\left(\mathrm{SCH}_{2}\right), 40.2\left(\mathrm{NCH}_{3}\right), 41.3\left(\mathrm{NCH}_{3}\right), 59.8(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 117.4\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 160.3\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.5(\mathrm{C}=\mathrm{O}), 169.7(\mathrm{C}=\mathrm{O})$.

Compound 4b': $\mathrm{R}_{\mathrm{f}}=0.11$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 274.14706; [M + H] ${ }^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 274.14769 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.13(\mathrm{~d}, J=$ $6.63 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}$), $1.18\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.40-$ $2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} . \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.62\left(\mathrm{dd}, J_{1}=11.68 \mathrm{~Hz} ; J_{2}=4.91 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} . \mathrm{CHCH}_{2} \mathrm{~S}\right)$, $2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.94(\mathrm{~d}, J=10.51 \mathrm{~Hz}, 1 \mathrm{H}), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.41(\mathrm{~d}, J=2.15 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $4.06\left(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.01(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 16.3\left(\mathrm{SCH}_{3}\right), 18.6\left(\mathrm{CH}_{3} \mathrm{CH}\right), 34.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right)$, $36.0\left(\mathrm{CHCH}_{3}\right), 37.7\left(\mathrm{SCH}_{2}\right), 40.1\left(\mathrm{NCH}_{3}\right), 41.1\left(\mathrm{NCH}_{3}\right), 60.7\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 121.1$ $\left(=C \mathrm{HCONMe}_{2}\right), 147.9\left(C=\mathrm{CHCONMe}_{2}\right)$, $167.7(C=\mathrm{O}), 170.9(C=\mathrm{O})$.

Compounds $4 c / 4 c^{\prime}$:

Following the general procedure with: Sulfonium salt 1a ($154 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $3 \mathbf{c}\left(118 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.84 \mathrm{~mL}, 0.84$ mmol, 1.0 eq.) in 10 mL of ${ }^{\dagger} \mathrm{BuOH}$, affording, after purification through flash column chromatography, 76 mg of compound $\mathbf{4 c}$ as a colorless oil and 80 mg of compound $\mathbf{4 \mathbf { c } ^ { \prime }}$ as a colorless oil. Overall yield: $\mathbf{6 5 \%}$.

Compound 4c: $\mathrm{R}_{\mathrm{f}}=0.35$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 288.16272; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 288.16334 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.84$ (t, $J=$ $7.39 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.20\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 1.49 (sept, $J=7.34 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 1.64\left(\mathrm{dq}, J_{I}=7.40 \mathrm{~Hz}, J_{2}=1.82 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 2.03(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{3}\right), 2.36\left(\mathrm{q}, J=6.89 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 2.49\left(\mathrm{dd}, J_{1}=13.04 \mathrm{~Hz} ; J_{2}=7.42 \mathrm{~Hz} ; 1 \mathrm{H}\right.$, $\left.\mathrm{SCH}_{2}\right), 2.63\left(\mathrm{dd}, J_{I}=13.03 \mathrm{~Hz} ; J_{2}=6.61 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.66\left(\mathrm{~d}, J=15.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right.$), $3.73(\mathrm{~d}, J=15.20 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 4.06\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.77\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO}{ }_{2} \mathrm{Et}\right) ;{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $11.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.2\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.1\left(\mathrm{SCH}_{3}\right), 25.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 35.6\left(\mathrm{NCH}_{3}\right), 36.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 37.4\left(\mathrm{NCH}_{3}\right), 38.3\left(\mathrm{SCH}_{2}\right), 48.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 59.8\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.4\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 158.5\left(\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, 166.3 ($\mathrm{C}=\mathrm{O}$), $169.7(\mathrm{C}=\mathrm{O})$.

Compound $\mathbf{4 \mathbf { c } ^ { \prime }}: \mathrm{R}_{\mathrm{f}}=0.21$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 288.16132; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 288.16334 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): $0.83(\mathrm{t}, J=$ $\left.7.39 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.18\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.42\left(\mathrm{dq}, J_{1}=6.72 \mathrm{~Hz}, J_{2}\right.$ $\left.=1.26 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 1.59\left(\mathrm{dq}, J_{1}=7.41 \mathrm{~Hz}, J_{2}=2.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 2.02$ (s, $\left.3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.18-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 2.48\left(\mathrm{dd}, J_{I}=13.01 \mathrm{~Hz} ; J_{2}=6.86 \mathrm{~Hz} ; 1 \mathrm{H}\right.$, $\left.\mathrm{SCH}_{2}\right), 2.56\left(\mathrm{dd}, J_{1}=12.98 \mathrm{~Hz} ; J_{2}=7.12 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.38\left(\mathrm{~d}, J=2.68 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.04(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.00(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 11.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.1\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{SCH}_{3}\right), 25.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 34.8\left(\mathrm{NCH}_{3}\right), 35.6$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 37.6\left(\mathrm{NCH}_{3}\right), 38.1\left(\mathrm{SCH}_{2}\right), 49.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 60.6\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.4$ $\left(=\mathrm{CHCONMe}_{2}\right), 146.0\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right)$, $167.5(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O})$.

Compounds 4d/4d':

Following the general procedure with: Sulfonium salt 1a ($152 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 d}$ ($128 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.91 \mathrm{~mL}, 0.91$ $\mathrm{mmol}, 1.0$ eq.) in 12 mL of ${ }^{\mathrm{t}} \mathrm{BuOH}$, affording after purification through flash column chromatography, 95 mg of compound $\mathbf{4 d}$ as a colorless oil and 66 mg of compound $\mathbf{4 d}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{6 7 \%}$.

Compound 4d: $\mathrm{R}_{\mathrm{f}}=0.45$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 302.17822; [M + H] ${ }^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 302.17899 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.86(\mathrm{t}, J=$ $7.30 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.22\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24-1.32(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.40-1.48 (m, $1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $1.50-1.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.38-2.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.50\left(\mathrm{dd}, J_{1}=11.98 \mathrm{~Hz} ; J_{2}=\right.$ $7.30 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}$), $\left.2.67\left(\mathrm{dd}, J_{1}=11.68 \mathrm{~Hz} ; J_{2}=5.40 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}\right)_{2}\right), 2.89(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 4.08(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.81(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $14.2\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $16.1\left(\mathrm{SCH}_{3}\right), 20.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{CH}\right), 35.6\left(\mathrm{NCH}_{3}\right)$, $36.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right)$, $37.4\left(\mathrm{NCH}_{3}\right), 38.7\left(\mathrm{SCH}_{2}\right), 46.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $59.8\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $118.3\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 158.8\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.3(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$.

Compound $\mathbf{4 d}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.36$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 302.17844; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 302.17899$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.86(\mathrm{t}, J=$ $7.27 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.21\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 1.21-1.34 (m, 2 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.48-1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.05$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.22-2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.50\left(\mathrm{dd}, J_{I}=12.93 \mathrm{~Hz} ; J_{2}=6.77 \mathrm{~Hz}\right.$; $\left.\left.1 \mathrm{H}, \mathrm{SCH} H_{2}\right), 2.60\left(\mathrm{dd}, J_{1}=12.92 \mathrm{~Hz} ; J_{2}=7.21 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH})_{3}\right), 3.03$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.07\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.03$ (s, $1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.1(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $16.3\left(\mathrm{SCH}_{3}\right), 20.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2} \mathrm{CH}\right), 34.8\left(\mathrm{NCH}_{3}\right), 35.5$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 37.6\left(\mathrm{NCH}_{3}\right), 38.5\left(\mathrm{SCH}_{2}\right), 47.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 60.7\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $122.4(=C H C O N M e ~ 2), ~ 146.2\left(C=\mathrm{CHCONMe}_{2}\right), 167.6(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O})$.

Compounds 4e/4e':

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(185 \mathrm{mg}, 1.01 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $3 \mathrm{e}\left(171 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(1.11 \mathrm{~mL}, 1.11$ $\mathrm{mmol}, 1.1 \mathrm{eq}$.) in 15 mL of ${ }^{\mathrm{t}} \mathrm{BuOH}$, affording, after purification through flash column chromatography, 89 mg of compound $\mathbf{4 e}$ as a colorless oil and 73 mg of compound $\mathbf{4 e}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{5 4 \%}$.

Compound 4e: $\mathrm{R}_{\mathrm{f}}=0.25$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 302.17844; [M + H] ${ }^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 302.17899$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$:): $0.88(\mathrm{~d}, ~ J$ $\left.=2.12 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.90\left(\mathrm{~d}, J=2.08 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.22(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.86\left(\mathrm{sext}, J=6.81 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.30(\mathrm{dd}$, $\left.J_{1}=13.63 \mathrm{~Hz} ; J_{2}=7.53 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.64\left(\mathrm{~d}, J=3.24 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.66(\mathrm{~d}, J=$ $1.33 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{CH}), 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.50(\mathrm{~d}, J=15.05 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), 3.89 (d, $J=15.05 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), 4.08 ($\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.78(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{SCH}_{3}\right), 19.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 20.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 30.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 35.5$ $\left(\mathrm{NCH}_{3}\right), 35.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 37.5\left(\mathrm{NCH}_{3}\right), 37.6\left(\mathrm{SCH}_{2}\right), 52.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\right), 59.8(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.9\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 157.5\left(\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.3(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$.

Compound $4 \mathbf{e}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.19$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 302.17831; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 302.17899 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.88(\mathrm{~d}, J=$ $\left.6.68 \mathrm{~Hz}, 3 \mathrm{H},(\mathrm{CH})_{2} \mathrm{CH}\right), 0.91\left(\mathrm{~d}, J=6.66 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.20(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}$, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.77 (sext, $\left.\left.J=6.93 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH})_{3}\right), 2.00-2.15(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{C}=\mathrm{CH}), 2.56\left(\mathrm{dd}, J_{I}=12.82 \mathrm{~Hz} ; J_{2}=9.56 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.68\left(\mathrm{dd}, J_{I}=12.82\right.$ $\left.\mathrm{Hz} ; J_{2}=4.57 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH} H_{2}\right), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.37(\mathrm{~d}, J=15.70$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.45\left(\mathrm{~d}, J=15.67 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.06(\mathrm{q}, J=7.15 \mathrm{~Hz}$, $2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.99(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2$ $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.8\left(\mathrm{SCH}_{3}\right), 20.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 21.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 30.0\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 34.8$ $\left(\mathrm{NCH}_{3}\right), 35.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.8\left(\mathrm{NCH}_{3}\right), 38.4\left(\mathrm{SCH}_{2}\right), 54.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\right), 61.2(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 123.6\left(=\mathrm{CHCONMe}_{2}\right), 144.9\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right), 167.5(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O})$.

Compounds 4f/4f':

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(210 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $\mathbf{3 f}(192 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 1 \mathrm{M}$ solution of ${ }^{t} \mathrm{BuOK}(1.14 \mathrm{~mL}, 1.14$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.) in 20 mL of ${ }^{\epsilon} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$ chromatography, 80 mg of compound $\mathbf{4 f}$ as white brilliant monocrystals and 116 mg of compound $\mathbf{4} f^{\prime}$ as a colorless oil. Overall yield: $\mathbf{5 4 \%}$.

Compound 4f: $\mathrm{R}_{\mathrm{f}}=0.45$ (AcOEt-Hex, 2:3). Elemental Analysis: $60.818 \% \mathrm{C}, 9.069 \% \mathrm{H}$, 4.159 \%N, $9.994 \% \mathrm{~S}, 17.161$ \%O; HRMS (ESI) m/z: 316.19403; [M + H $]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S} 316.19464 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.91\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.21$ ($\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.46-2.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}, \mathrm{CHC}=)$, 2.60-2.70 (m, 1H, SCH $)$, $2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.11(\mathrm{~d}, J=14.65 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $4.07\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.45(\mathrm{~d}, J=14.00 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $5.77(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.1\left(\mathrm{SCH}_{3}\right), 28.1\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 35.0\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 35.7\left(\mathrm{NCH}_{3}\right), 37.6\left(\mathrm{NCH}_{3}\right)$, $39.3(C H C=), 39.4\left(\mathrm{SCH}_{2}\right), 59.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 119.6\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 157.4\left(\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $166.2(\mathrm{C}=\mathrm{O}), 169.3(\mathrm{C}=\mathrm{O})$.

Compound $\mathbf{4 f}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.28$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 316.19412; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S} 316.19464 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.17\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.19(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHC}=$), $2.56\left(\mathrm{t}, J=12.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.68\left(\mathrm{~d}, J=12.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.88(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20\left(\mathrm{~d}, J=15.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.66(\mathrm{~d}, J=$ $\left.15.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.02\left(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.94(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $16.2\left(\mathrm{SCH}_{3}\right)$, $28.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 34.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 34.7\left(\mathrm{NCH}_{3}\right), 37.5\left(\mathrm{NCH}_{3}\right), 57.3(\mathrm{CHC}=), 60.5$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 124.7\left(=C \mathrm{HCONMe}_{2}\right), 144.3\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right), 167.8(\mathrm{C}=\mathrm{O}), 170.3(\mathrm{C}=\mathrm{O})$.

Compounds $\mathbf{4 g} / \mathbf{4 g} \mathbf{g}^{\prime}$:

4 g

$4 g^{\prime}$

Following the general procedure with: Sulfonium salt 1a ($123 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 g}$ ($104 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.74 \mathrm{~mL}, 0.74$ mmol, 1.0 eq.) in 10 mL of ${ }^{t} \mathrm{BuOH}$, affording, after flash column chromatography, 110 $\mathbf{m g}$ of compound $\mathbf{4 g} \mathbf{g}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{5 7 \%}$. (No traces of the other isomer 4 g were detected).

Compound $\mathbf{4 g}^{\prime}$: $\mathrm{R}_{\mathrm{f}}=0.11$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 288.16257; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 288.16334$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.14$ (s, 6 H , $\left.2 \times \mathrm{CH} \mathrm{H}_{3} \mathrm{C}\right), 1.19\left(\mathrm{t}, \mathrm{J}=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.05(\mathrm{q}, J=7.15$ $\left.\mathrm{Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.09(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.8\left(\mathrm{SCH}_{3}\right), 26.01\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 33.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 34.7\left(\mathrm{NCH}_{3}\right), 37.6$
 $148.6\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right), 168.3(\mathrm{C}=\mathrm{O}), 171.0(\mathrm{C}=\mathrm{O})$.

Compounds 4h/4h':

Following the general procedure with: Sulfonium salt 1a ($159 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 h}\left(164 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.87 \mathrm{~mL}, 0.87$ $\mathrm{mmol}, 1.0 \mathrm{eq}$. .) in 14 mL of ${ }^{\mathrm{t}} \mathrm{BuOH}$, affording, after flash column chromatography, 80 mg of compound $\mathbf{4 h}$ as a colorless oil and 35 mg of compound $\mathbf{4 h}^{\prime}$ as a colorless oil. Overall yield: 40\%.

Compound 4h: $\mathrm{R}_{\mathrm{f}}=0.27$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 336.16279; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 336.16334 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.21$ (t, $J=$ $7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $2.94\left(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.02\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 2.98-3.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{SCH}_{2}$), $3.07\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 3.82\left(\mathrm{dd}, J_{1}=9.11 \mathrm{~Hz}, J_{2}=5.87\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHPh}), 4.07\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.95\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO}{ }_{2} \mathrm{Et}\right), 7.10-$ 7.22 (m, 3H, Ph), 7.19-7.32 (m, 2H, Ph); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{SCH}_{3}\right), 35.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.3\left(\mathrm{NCH}_{3}\right), 37.3\left(\mathrm{NCH}_{3}\right), 38.5(\mathrm{CHPh})$, $52.5\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 117.9\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 127.4(\mathrm{Ph}), 128.6(\mathrm{Ph}), 140.1$ (Ph), $157.8\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.4(\mathrm{C}=\mathrm{O}), 169.8(\mathrm{C}=\mathrm{O})$.

Compound $\mathbf{4 h}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.14$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 336.16254; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 336.16334 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $1.12(\mathrm{t}, J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.83\left(\mathrm{dd}, J_{1}=12.92 \mathrm{~Hz}, J_{2}=7.88 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{SCH}_{2}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.98\left(\mathrm{dd}, J_{1}=12.91 \mathrm{~Hz}, J_{2}=7.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.06\left(\mathrm{~d}, J=16.07 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.47(\mathrm{~d}, J=16.07 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.66(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ph}), 3.97\left(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $6.13(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2), 7.10-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.18-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{SCH}_{3}\right), 34.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.7$ $\left(\mathrm{NCH}_{3}\right), 37.8\left(\mathrm{NCH}_{3}\right), 38.3(\mathrm{CHPh}), 51.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.4$ $\left(=C \mathrm{HCONMe}_{2}\right), 127.3(\mathrm{Ph}), 128.4(\mathrm{Ph}), 128.6(\mathrm{Ph}), 140.3(\mathrm{Ph}), 145.0\left(C=\mathrm{CHCONMe}_{2}\right)$, $167.6(\mathrm{C}=\mathrm{O}), 170.6(\mathrm{C}=\mathrm{O})$.

Compounds 4i/4i':

Following the general procedure with: Sulfonium salt 1a ($199 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 i}$ ($240 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0$ eq.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(1.08 \mathrm{~mL}, 1.08$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.) in 20 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$, 80 mg of compound $\mathbf{4 i}$ as a colorless oil and 170 mg of compound $\mathbf{4 i}^{\prime}$ as a colorless oil. Overall yield: $\mathbf{6 3 \%}$.

Compound 4i: $\mathrm{R}_{\mathrm{f}}=0.30$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 370.12382; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClNO}_{3} \mathrm{~S} 370.12437 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.21(\mathrm{t}, J$ $\left.=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.78-.2.99 (m, 2H, CH2S), $3.02\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right.$), 3.08 (d, $J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), 3.81 (dd, $\left.J_{l}=9.11 \mathrm{~Hz}, J_{2}=5.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{PhCl}\right), 4.06(\mathrm{q}, J=7.14$ $\left.\mathrm{Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.91(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et}), 7.13(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{ClPh}), 7.23$ (d, $J=8.43 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{ClPh}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $16.3\left(\mathrm{SCH}_{3}\right), 35.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.2\left(\mathrm{NCH}_{3}\right), 37.3\left(\mathrm{NCH}_{3}\right), 38.4(\mathrm{CHPh}), 51.8$ $\left(\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 60.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.2\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 128.7(\mathrm{Ph}), 130.0(\mathrm{Ph}), 133.2$ (Ph), $138.6(\mathrm{Ph}), 157.4\left(\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.2(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$.

Compound 4i': $\mathrm{R}_{\mathrm{f}}=0.10$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 370.12314; [M + H] ${ }^{+}$ calculated for; $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClNO}_{3} \mathrm{~S} 370.12437$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.13(\mathrm{t}, J$ $\left.=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.78\left(\mathrm{dd}, J_{1}=12.91 \mathrm{~Hz}, J_{2}=8.18 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{SCH})_{2}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.96\left(\mathrm{dd}, J_{I}=12.90 \mathrm{~Hz}, J_{2}=6.81 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.99$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.06\left(\mathrm{~d}, J=16.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.45(\mathrm{~d}, J=16.14 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.64(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ph}), 3.98\left(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 6.10 (s, 1H, =CHCONMe 2), 7.11 (d, $J=8.37 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCl}), 7.22(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{PhCl}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{SCH}_{3}\right), 34.9$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.7\left(\mathrm{NCH}_{3}\right), 37.8\left(\mathrm{NCH}_{3}\right), 38.2(\mathrm{CHPh}), 51.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.8(=C H C O N M e ~ 2), 128.8(\mathrm{Ph}), 129.8(\mathrm{Ph}), 133.2(\mathrm{Ph}), 138.7(\mathrm{Ph}), 144.6$ $\left(C=\mathrm{CHCONMe}_{2}\right), 167.4(\mathrm{C}=\mathrm{O}), 170.6(\mathrm{C}=\mathrm{O})$.

Compounds $4 \mathrm{j} / 4 \mathrm{j}^{\prime}$:

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(180 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $\mathbf{3 j}$ ($261 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.0$ eq.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(1.00 \mathrm{~mL}, 1.00$ mmol, 1.02 eq.) in 25 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}, 102 \mathrm{mg}$ of compound $\mathbf{4 j}$ as a yellow oil and 56 mg of compound $\mathbf{4 j}$ ' as a yellow oil. Overall yield: 40\%.

Compound 4j: $\mathrm{R}_{\mathrm{f}}=0.30$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 414.07330; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrNO}_{3} \mathrm{~S} 414.07385$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.22(\mathrm{t}, J$ $\left.\left.=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH})_{3}\right), 2.87$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 2.98-3.12(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $3.81\left(\mathrm{dd}, J_{1}=9.11 \mathrm{~Hz}, J_{2}=5.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{PhBr}\right), 4.09(\mathrm{q}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.93(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO} 2 \mathrm{Et}), 7.00-7.20(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{BrPh}), 7.21-7.40(\mathrm{~m}, 3 \mathrm{H}$, m-BrPh); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{SCH}_{3}\right), 29.7$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 35.5\left(\mathrm{NCH}_{3}\right), 36.2\left(\mathrm{NCH}_{3}\right), 37.3(\mathrm{CHPhBr}), 38.3,52.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.4(=\mathrm{CHCONMe} 2), 122.8(\mathrm{BrPh}), 130.1(\mathrm{BrPh}), 130.5(\mathrm{BrPh}), 131.4$ (BrPh), 142.6 (BrPh), $157.0\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right.$), $166.2(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$.

Compound $\mathbf{4 j}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.16$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 414.07315; [M+H]+ calculated for; $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrNO}_{3} \mathrm{~S} 414.07385 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.22(\mathrm{t}$, $\left.J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.48-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.87-2.98 (m, 2H, CH H_{2} S), $3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.12\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $3.48\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.57\left(\mathrm{dd}, J_{l}=9.11 \mathrm{~Hz}, J_{2}=5.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{PhBr}\right)$, $3.99\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.25\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{NMe}_{2}\right), 7.05-7.26(\mathrm{~m}, 2 \mathrm{H}, m-$ $\mathrm{BrPh})$, 7.21-7.40 (m, $3 \mathrm{H}, m-\mathrm{BrPh}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{SCH}_{3}\right), 34.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.7\left(\mathrm{NCH}_{3}\right), 37.8\left(\mathrm{NCH}_{3}\right), 38.1(\mathrm{CHPhBr})$, $51.5\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.9(=\mathrm{CHCONMe} 2), 127.1(\mathrm{BrPh}), 130.2(\mathrm{BrPh})$, 130.5 (BrPh), 131.4 (BrPh), 142.7 (BrPh), 144.4 ($C=\mathrm{CHCONMe}_{2}$), 167.3 (C=O), 170.5 ($\mathrm{C}=\mathrm{O}$).

Compounds $4 k / 4 k^{\prime}$:

Following the general procedure with: Sulfonium salt 1a ($156 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 k}$ ($185 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.85 \mathrm{~mL}, 0.85$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.) in 15 mL of ${ }^{\dagger} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$, 56 mg of compound $\mathbf{4 k}$ as a colorless oil and 115 mg of compound $\mathbf{4} \mathbf{k}^{\prime}$ as a colorless oil. Overall yield: 55\%

Compound 4k: $\mathrm{R}_{\mathrm{f}}=0.20$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 366.17336; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S} 366.17390 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.21$ (t, $J=$ $7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.79-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.83(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $2.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.87-2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.03(\mathrm{~d}, J=16.11 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.80(\mathrm{dd}, 1 \mathrm{H}), 4.04-4.12\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.95$ $\left(\mathrm{s}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{Et}\right), 6.68-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhOMe}), 6.81-6.90(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 1 \mathrm{H}$, PhOMe); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{SCH}_{3}\right), 35.5$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.1\left(\mathrm{NCH}_{3}\right), 37.2\left(\mathrm{NCH}_{3}\right), 38.4(\mathrm{CHPhOMe}), 52.5\left(\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 55.2$ $\left(\mathrm{OCH}_{3}\right), 60.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 112.3(\mathrm{MeOPh}), 114.7(\mathrm{MeOPh}), 117.8,121.0(\mathrm{MeOPh})$, 129.0 (MeOPh), 141.8 (MeOPh), 159.7 ($\mathrm{MeOC=}$), 166.3 (C=O), 169.7 (C=O).

Compound $\mathbf{4} \mathbf{k}^{\prime}: \mathrm{R}_{\mathrm{f}}=0.14$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 366.17303; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for; $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S} 366.17390$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): 1.13 (t, $J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.82\left(\mathrm{dd}, J_{1}=12.83 \mathrm{~Hz}, J_{2}=7.84 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{SCH}_{2}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.97\left(\mathrm{dd}, J_{1}=12.96 \mathrm{~Hz}, J_{2}=7.10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.06\left(\mathrm{~d}, J=16.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.48(\mathrm{~d}, J=16.11 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.63(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{PhOMe}), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.98(\mathrm{q}, J=7.15$ $\left.\mathrm{Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.13(\mathrm{~s}, 1 \mathrm{H},=\mathrm{C} H \mathrm{CONMe} 2), 6.71(\mathrm{~d}, J=9.79 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhOMe})$, $6.75(\mathrm{~d}, J=7.57 \mathrm{~Hz}, 1 \mathrm{H}, P h \mathrm{OMe}), 7.16(\mathrm{t}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhOMe}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.4\left(\mathrm{SCH}_{3}\right), 34.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.7\left(\mathrm{NCH}_{3}\right)$, $37.8\left(\mathrm{NCH}_{3}\right), 38.2(\mathrm{CHPhOMe}), 51.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $55.2\left(\mathrm{OCH}_{3}\right), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 112.4$ (MeOPh), $114.4(\mathrm{MeOPh}), 120.7(\mathrm{MeOPh}), 122.3\left(=C \mathrm{HCONMe}_{2}\right), 129.6(\mathrm{MeOPh})$, $141.9(\mathrm{MeOPh}), 145.0\left(C=\mathrm{CHCONMe}_{2}\right), 159.8(\mathrm{MeOC}=)$, $167.6(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O})$.

Compounds 41/41':

41

41°

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(205 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $31(226 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 1 \mathrm{M}$ solution of ${ }^{t} \mathrm{BuOK}(1.12 \mathrm{~mL}, 1.12$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.) in 20 mL of ${ }^{\dagger} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$, 67 mg of compound $\mathbf{4 I}$ as a colorless oil and 212 mg of compound $4 \mathbf{I}^{\prime}$ as a colorless oil. Overall yield: 71\%

Compound 41: $\mathrm{R}_{\mathrm{f}}=0.21$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 350.17828; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 350.17899$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $1.20(\mathrm{t}, J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.48-2.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SCH}\right.$), $2.64\left(\mathrm{dd}, J_{1}=\right.$ $\left.13.22 \mathrm{~Hz}, J_{2}=6.51 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.75-2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.79-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.82$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.88-2.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.58(\mathrm{~d}, J=15.20 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.74\left(\mathrm{~d}, J=15.21 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.06(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.81(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2), 7.08-7.14(\mathrm{~m}, 3 \mathrm{H}, P h), 7.20(\mathrm{t}, J=7.61 \mathrm{~Hz}, 2 \mathrm{H}$, Ph); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{SCH}_{3}\right), 35.6$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right)$, $37.3\left(\mathrm{NCH}_{3}\right), 37.6\left(\mathrm{NCH}_{3}\right), 38.2\left(\mathrm{SCH}_{2}\right), 39.6(\mathrm{CHC}=), 48.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 59.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.5\left(=\mathrm{CHCO}_{2} \mathrm{Et}\right), 126.3(\mathrm{Ph}), 128.3(\mathrm{Ph}), 129.2(\mathrm{Ph}), 139.5(\mathrm{Ph}), 158.7$ $\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.4(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$.

Compound $41^{\prime}: \mathrm{R}_{\mathrm{f}}=0.17$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 350.17828; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for; $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 350.17899$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): 1.16 (t, $J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.50\left(\mathrm{dd}, J_{1}=12.63 \mathrm{~Hz}, J_{2}=6.51 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\left.\mathrm{SCH}_{2}\right), 2.60\left(\mathrm{dd}, J_{1}=12.68 \mathrm{~Hz}, J_{2}=6.57 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}\right)_{2}\right), 2.64(\mathrm{t}, J=6.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=)$, $2.73\left(\mathrm{dd}, J_{1}=13.83 \mathrm{~Hz}, J_{2}=7.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}$), $2.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NC} H_{3}\right), 2.86\left(\mathrm{dd}, J_{1}=13.76 \mathrm{~Hz}, J_{2}=6.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.30(\mathrm{~d}, J=15.89 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}$), $3.43\left(\mathrm{~d}, J=15.90 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CONMe}_{2}\right), 4.04(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}$, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.85(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2), 6.95-7.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.19(\mathrm{t}, J=7.61 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{SCH}_{3}\right), 34.8$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 36.3\left(\mathrm{NCH}_{3}\right), 37.4\left(\mathrm{NCH}_{3}\right), 37.4\left(\mathrm{SCH}_{2}\right), 38.7(\mathrm{CHC}=), 48.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 60.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.9(=\mathrm{CHCONMe} 2), 126.2(\mathrm{Ph}), 128.3(\mathrm{Ph}), 129.2(\mathrm{Ph}), 139.4(\mathrm{Ph}), 145.4$ ($C=\mathrm{CHCONMe}_{2}$), $167.3(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O})$.

Compound 4m:

4m
Following the general procedure with: Sulfonium salt 1b ($234 \mathrm{mg}, 1.022 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate 3a ($115 \mathrm{mg}, 1.022 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{\dagger} \mathrm{BuOK}(1.02 \mathrm{~mL}, 1.02$
$\mathrm{mmol}, 1.0 \mathrm{eq}$.) in 25 mL of ${ }^{\dagger} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}$, 80 mg of compound $\mathbf{4 m}$ as a yellow oil. Yield: $\mathbf{3 0 \%}$

Compound 4m: $\mathrm{R}_{\mathrm{f}}=0.81$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 261.11548; [M + H] ${ }^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S} 261.11605 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.26(\mathrm{t}, J=$ $\left.7.17 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, J=7.17 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.48-$ $2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{OEt}\right), 4.06-4.24(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{x}-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.87\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{Et}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right)$, $14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right)$, $15.6\left(\mathrm{SCH}_{3}\right), 31.7\left(\mathrm{SCH}_{2}\right), 37.3\left(\mathrm{CH}_{2} \mathrm{C}=\right), 38.5$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 60.0\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.9\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 119.7\left(=C \mathrm{CHCO}_{2} \mathrm{Et}\right), \quad 152.1$ $\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 165.9(\mathrm{C}=\mathrm{O}), 170.2(\mathrm{C}=\mathrm{O})$.

Compound 4n:

Following the general procedure with: Sulfonium salt 1b ($151 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 f}(111 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 1 \mathrm{M}$ solution of ${ }^{t} \mathrm{BuOK}(0.66 \mathrm{~mL}, 0.66$ $\mathrm{mmol}, 1.0$ eq.) in 18 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Prime Isolera Biotage ${ }^{\circledR}$, a quite major product (43 mg of a colorless oil) was isolated. Yield: $\mathbf{2 1 \%}$

Compound $\mathbf{4 n}: \mathrm{R}_{\mathrm{f}}=0.42$ (AcOEt-Hex, 1:9). HRMS (ESI) m/z: 317.17810; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S} 317.17866 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.90(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.19\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.22\left(\mathrm{dd}, J_{1}=11.15 \mathrm{~Hz}, J_{2}=3.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H^{\prime} \mathrm{Bu}\right), 2.55(\mathrm{dd}$, $\left.J_{I}=12.87 \mathrm{~Hz}, J_{2}=11.21 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.71\left(\mathrm{dd}, J_{I}=12.94 \mathrm{~Hz}, J_{2}=3.68 \mathrm{~Hz}, 1 \mathrm{H}\right.$, SCH_{2}), $3.24\left(\mathrm{~d}, J=16.23 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.85\left(\mathrm{~d}, J=16.04 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $4.07\left(\mathrm{q}, \quad J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.08\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.80(\mathrm{~s}$, $\left.1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{Et}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 14.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 16.2\left(\mathrm{SCH}_{3}\right), 28.3\left({ }^{\mathrm{H}} \mathrm{Bu}\right) 34.8\left(\mathrm{SCH}_{2}\right), 38.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 58.6\left(\mathrm{CH}^{\prime} \mathrm{Bu}\right), 59.9$ $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.7\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 122.3\left(=C \mathrm{HCO}_{2} \mathrm{Et}\right), 153.8\left(\mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 165.9(\mathrm{C}=\mathrm{O})$, $169.8(\mathrm{C}=\mathrm{O})$.

Compound 4o:

Following the general procedure with: Sulfonium salt 1b ($350 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{3 h}\left(288 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.0\right.$ eq.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(1.53 \mathrm{~mL}, 1.53$ mmol, 1.0 eq.) in 35 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column chromatography, 144 mg of compound $\mathbf{4 o}$ as a colorless oil. Overall yield: $\mathbf{2 8 \%}$

Compound 40: $\mathrm{R}_{\mathrm{f}}=0.78$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 337.14741; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S} 337.14735$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): 1.13 (t, $J=$ $\left.7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.84$ (dd, $\left.J_{l}=12.89 \mathrm{~Hz}, J_{2}=8.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SC} H_{2}\right), 2.98\left(\mathrm{dd}, J_{1}=12.89 \mathrm{~Hz}, J_{2}=6.22 \mathrm{~Hz}, 1 \mathrm{H}\right.$, SCH_{2}), $3.16\left(\mathrm{~d}, J=16.27 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.65\left(\mathrm{dd}, J_{1}=8.24 \mathrm{~Hz}, J_{2}=6.71 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{C}^{t} \mathrm{Ph}\right), 3.79\left(\mathrm{~d}, J=16.27 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.99\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.09\left(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.97\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{Et}\right), 7.00-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 7.18-7.32 (m, 2H, Ph); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 14.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right)$, $16.4\left(\mathrm{SCH}_{3}\right), 37.0\left(\mathrm{SCH}_{2}\right), 38.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 53.3(\mathrm{CHPh}), 60.2(-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.8\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 119.2\left(=C \mathrm{CHCO}_{2} \mathrm{Et}\right), 127.6(\mathrm{Ph}), 128.5(\mathrm{Ph}), 128.7(\mathrm{Ph})$, $139.4(\mathrm{Ph}), 154.4\left(C=\mathrm{CHCO}_{2} \mathrm{Et}\right), 166.1(\mathrm{C}=\mathrm{O}), 170.1(\mathrm{C}=\mathrm{O})$.

Compounds 6a:

Following the general procedure with: Sulfonium salt 1a ($153 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate 5 a ($165 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.83 \mathrm{~mL}, 0.83$ $\mathrm{mmol}, 1.0$ eq.) in 20 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column chromatography, 184 mg of compound $\mathbf{6 a}$ as mixture of isomers. Yield: $\mathbf{6 4 \%}$

Compound 6a: $\mathrm{R}_{\mathrm{f}}=0.16$ (AcOEt-Hex, 1:1). HRMS (ESI) m/z: 346.16797; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S} 346.16882$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.19$ (t, $J=$ $7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.22\left(\mathrm{t}, \mathrm{J}=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), $1.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH} 3$), 2.05 (bs, 1 H), 2.50-2.66 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$), 2.84-2.90 (m, $2 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}$), $2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $2.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.94-3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.03-4.18\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.98$
($\mathrm{s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.0,14.2,17.4,32.4,33.3$, $35.0,37.0,38.2,54.4,60.7,61.5,118.9,149.6168 .1,170.8,172.3$

Compounds 7b/6b:

7b

6b

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(230 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $\mathbf{5 b}$ ($300 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(1.25 \mathrm{~mL}, 1.25$ mmol, 1.0 eq.) in 30 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Isolera Prime Biotage ${ }^{\circledR}, 188 \mathrm{mg}$ of compound $\mathbf{7 b}$ as a yellow oil and 116 mg of compound $\mathbf{6 b}$ (mixture of diastereoisomers) as a yellow oil. Overall yield: 63\%

Compound 7b: $\mathrm{R}_{\mathrm{f}}=0.19$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 326.19681; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{5} 326.19675$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.82(\mathrm{t}, J=$ $7.37 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.16\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.17(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.37 (sext, $J=7.32 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.05-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right)$, $2.62\left(\mathrm{~d}, J=17.83 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.88\left(\mathrm{dd}, J_{l}=18.80 \mathrm{~Hz}, J_{2}=\right.$ $1.61 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONMe}_{2}$), 3.11 (d, $J=17.79 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), $3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.34(\mathrm{~d}, J=1.61 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCONMe} 2), 4.00-4.07\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.12(\mathrm{q}, J=7.15$ $\mathrm{Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.90\left(\mathrm{dt}, J_{I}=7.09 \mathrm{~Hz}, J_{2}=1.88 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHC}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 13.7, 14.1, 14.2, 22.0, 27.9, 30.6, 32.5, 33.2, 35.8, 37.8, 60.5 , 61.4, 122.5, 124.7, 167.7, 170.8, 171.5

Compound 6b: $\mathrm{R}_{\mathrm{f}}=0.14$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 388.21484; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for; $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S} 388.21577 ; 1 \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right.$): $0.82(\mathrm{t}$, $\left.J=7.32 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.16\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18(\mathrm{t}, J=7.15 \mathrm{~Hz}$, $3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.21-1.33 (m, 2H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.36-1.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.49-1.57$ (m, 1H, CH $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.58-1.66 (m, 1H), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.32(\mathrm{sext}, J=6.86 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.41\left(\mathrm{dd}, J_{I}=13.06 \mathrm{~Hz} ; J_{2}=7.76 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.48\left(\mathrm{dd}, J_{I}=13.00\right.$ $\left.\mathrm{Hz} ; J_{2}=9.39 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 2.60\left(\mathrm{dd}, J_{1}=13.00 \mathrm{~Hz} ; J_{2}=6.93 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.15\left(\mathrm{dd}, J_{1}=17.00 \mathrm{~Hz}, J_{2}=10.37 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.98-4.10\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.96(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.0,14.1,14.2,16.5,20.4,35.4,35.9,37.7,39.5,42.6,44.5,60.6$, $60.9,121.9,149.3,167.2,171.8,172.0,172.1$.

Compounds 7e/6c:

7c

6c

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(120 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $\mathbf{5 c}\left(156 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.65 \mathrm{~mL}, 0.72$ mmol, 1.0 eq.) in 20 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column chromatography using as eluent 20% of AcOEt in hexanes, 76 mg of compound 7 c as a yellow oil and 64 mg of compound $\mathbf{6 c}$ as a yellow oil. Overall yield: $\mathbf{6 1 \%}$

Compound 7c: $\mathrm{R}_{\mathrm{f}}=0.24$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 326.19747; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{5} 326.19675$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.94$ (d, $J=$ $\left.6.72 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.97\left(\mathrm{~d}, J=6.72 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.17(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.85(\mathrm{sept}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-$ $2.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 3.29 (bs, 1H, CHCONMe 2), 4.01-4.15 (m, 4H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.87\left(\mathrm{dd}, J_{1}=6.92 \mathrm{~Hz}, J_{2}=\right.$ $\left.2.06 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CHC}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.1,14.2,21.9$, $22.3,27.0,30.7,30.9,32.9,60.4,61.4,122.5,128.9,167.7,170.9,171.4 ;$

Compound 6c: $\mathrm{R}_{\mathrm{f}}=0.16$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 388.21518; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for; $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S} 388.21577$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.86(\mathrm{~d}, J$ $\left.=6.72 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.89\left(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.17(\mathrm{t}, J=7.15 \mathrm{~Hz}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.75(\mathrm{sept}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{CH}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.54\left(\mathrm{dd}, J_{I}\right.$ $\left.\left.=12.85 \mathrm{~Hz} ; J_{2}=9.56 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.64\left(\mathrm{dd}, J_{1}=12.82 \mathrm{~Hz} ; J_{2}=4.63 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{SCH}\right)_{2}\right)$, $2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.35\left(\mathrm{~d}, J=15.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.43$ (d, $\left.J=15.66 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.02\left(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.05(\mathrm{q}, J=$ $7.15 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.96\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 14.1, 16.4, 20.2, 21.2, 29.9, 35.5, 36.1, 54.4, 60.7, 123.4, 145.0, 167.7, 170.7;

Compound 7d:

Following the general procedure with: Sulfonium salt $\mathbf{1 a}(148 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.0 \mathrm{eq})$, allenoate $\mathbf{5 d}$ ($222 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{t} \mathrm{BuOK}(0.81 \mathrm{~mL}, 0.81$ $\mathrm{mmol}, 1.0$ eq.) in 20 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column chromatography, 159 mg of compound $\mathbf{7 d}$ as a yellow oil. Yield: $\mathbf{5 5 \%}$

Compound 7d: $\mathrm{R}_{\mathrm{f}}=0.35$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 360.18562; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5} 360.18110 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}): 1.22(\mathrm{t}, J=7.09 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.24\left(\mathrm{t}, J=7.05 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.66(\mathrm{~d}, J=17.91 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.42(\mathrm{~d}, J=17.96 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=2.05 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-$ $4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.18-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.87(\mathrm{~d}, J=2.10 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}=\mathrm{C}$), 7.23-7.26 (m, 2H, Ph), 7.31-7.32 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}): 14.2,26.4$, $31.6,32.0,35.8,37.9,60.6,61.8,121.9,125.4,127.4,128.0,128.7,135.3,167.4,170.0$, 171.3

Compounds 6e:

Following the general procedure with: Sulfonium salt 1a ($190 \mathrm{mg}, 1.03 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate $\mathbf{5 e}(157 \mathrm{mg}, 1.03 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 1 \mathrm{M}$ solution of ${ }^{t} \mathrm{BuOK}(1.03 \mathrm{~mL}, 1.03$ mmol, 1.0 eq.) in 18 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through flash column
chromatography, 49 mg of compound $\mathbf{6 e}$ as a colorless oil and 104 mg of a non defined compound as a colorless oil. Overall yield: 50\%

Compound 6e: $\mathrm{R}_{\mathrm{f}}=0.14$ (AcOEt-Hex, 1:1). HRMS (ESI) m/z: 300.16348; [M + H] ${ }^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 300.16334 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.17(\mathrm{t}, J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.25-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.88$ (d, $J=11.16 \mathrm{~Hz}, 1 \mathrm{H}), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.03-4.09(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.94\left(\mathrm{dd}, J_{1}=10.18 \mathrm{~Hz}, J_{2}=1.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.02 (ddt, 1 H , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.64-5.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.95(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 15.6\left(\mathrm{SCH}_{3}\right), 32.0,32.4,34.1,34.8,37.8$ $\left(\mathrm{NCH}_{3}\right), 47.2,60.7\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 116.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 122.3(=C H C O N M e 2), 135.3$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 145.6\left(\mathrm{C}=\mathrm{CHCONMe}_{2}\right), 167.5(\mathrm{C}=\mathrm{O}), 172.5(\mathrm{C}=\mathrm{O})$.

Compound 6g:

Following the general procedure with: Sulfonium salt 1a ($120 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.0 \mathrm{eq}$), allenoate 5 g ($98 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 1 M solution of ${ }^{\mathrm{H}} \mathrm{BuOK}(0.65 \mathrm{~mL}, 0.65 \mathrm{mmol}$, 1.0 eq.) in 15 mL of ${ }^{t} \mathrm{BuOH}$, affording, after purification through Isolera Biotage ${ }^{\circledR}, 110$ mg of compound $\mathbf{6 g}$ as a colorless oil and inseparable mixture of Z / E isomers (ratio: 71/29). Overall yield: 57\%

Compound 6g: $\mathrm{R}_{\mathrm{f}}=0.32$ (AcOEt-Hex, 2:3). HRMS (ESI) m/z: 298.14782; $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 298.14769$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $1.18(\mathrm{t}, J=$ $\left.7.15 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.89\left(\mathrm{t}, J=2.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 1.93-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.06$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.39\left(\mathrm{dd}, J_{1}=4.63 \mathrm{~Hz}, J_{2}=2.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.54-2.63(\mathrm{~m}, 3 \mathrm{H})$, $2.90(\mathrm{~d}, J=8.51 \mathrm{~Hz}, 1 \mathrm{H}), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.94(\mathrm{~d}, J=8.51 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 4.07-4.13 (m, 2H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.04(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHCONMe} 2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\right), 15.7\left(\mathrm{SCH}_{3}\right), 19.8\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 32.5\left(\mathrm{CH}_{2} \mathrm{C}=\right)$, $33.1\left(\mathrm{SCH}_{2}\right), 34.9\left(\mathrm{NCH}_{3}\right), 37.9\left(\mathrm{NCH}_{3}\right), 46.6\left(\mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 61.2\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.9$ $(\mathrm{C} \equiv C \mathrm{H}), 81.4(\mathrm{C} \equiv \mathrm{CH}), 122.7(=C H C O N M e 2), 145.5\left(C=\mathrm{CHCONMe}_{2}\right), 167.1(\mathrm{C}=\mathrm{O})$, $171.5(\mathrm{C}=\mathrm{O})$.

X-RAY CRYSTAL STRUCTURE REPORT

Compound 4f

Figure Captions

1. $O R T E P^{1}$ representation of the molecule (50% probability ellipsoids; H-atoms given arbitrary displacement parameters for clarity)

Definition of Terms

Function minimized: $\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$

$$
\begin{array}{ll}
\text { where } & w=\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]^{-1} \text { and } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& F_{\mathrm{o}}^{2}=\mathrm{S}(\mathrm{C}-\mathrm{RB}) / \mathrm{Lp} \\
\text { and } & \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)=\mathrm{S}^{2}\left(\mathrm{C}+\mathrm{R}^{2} \mathrm{~B}\right) / \mathrm{Lp}^{2}
\end{array}
$$

$\mathrm{S}=$ Scan rate
C $=$ Total integrated peak count
$\mathrm{R}=$ Ratio of scan time to background counting time
B = Total background count
$\mathrm{Lp}=$ Lorentz-polarization factor

R-factors: $\quad R_{\text {int }}=\Sigma\left|<F_{0}{ }^{2}>-F_{0}{ }^{2}\right| / \Sigma F_{0}{ }^{2}$ summed only over reflections for which more
than one symmetry equivalent was measured.

$$
\begin{aligned}
& R(F)=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / / \Sigma\right| F_{\mathrm{o}} \mid \quad \text { summed over all observed reflections. } \\
& w R\left(F^{2}\right)=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2} \quad \text { summed over all reflections. }
\end{aligned}
$$

Standard deviation of an observation of unit weight (goodness of fit):

$$
\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{1 / 2}
$$

where $N_{\mathrm{o}}=$ number of observations; $N_{\mathrm{v}}=$ number of variables

NOTES

The structure of $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ (compound $\mathbf{4 f ^ { \prime }}$) has been solved and refined successfully with no unusual features. Since the space group is centrosymmetric, the compound in the crystal is racemic. The crystal was cut from a large irregular lump, but was not of very high quality and consequently the overall quality of the data and results is slightly suboptimal.

EXPERIMENTAL

Crystal-Structure Determination. - A crystal of $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$, obtained from EtOAc / CHCl_{3}, was mounted on a cryo-loop and used for a low-temperature X-ray structure determination. All measurements were made on a Rigaku Oxford Diffraction SuperNova area-detector diffractometer ${ }^{2}$ using Cu K α radiation $(\lambda=1.54184 \AA$) from a micro-focus X-ray source and an Oxford Instruments Cryojet XL cooler. The unit cell constants and an orientation matrix for data collection were obtained from a leastsquares refinement of the setting angles of 8196 reflections in the range $6^{\circ}<2 \theta<146^{\circ}$. A total of 2554 frames were collected using ω scans with κ offsets, 3.5-15.0 seconds exposure time and a rotation angle of 1.0° per frame, and a crystal-detector distance of 55.0 mm .

Data reduction was performed with CrysAlisPro ${ }^{2}$. The intensities were corrected for Lorentz and polarization effects, and a numerical absorption correction ${ }^{3}$ was applied. The space group was determined from packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure. Equivalent reflections were merged. The data collection and refinement parameters are given in Table 1. A view of the molecule is shown in the Figure.

The structure was solved by dual space methods using SHELXT-20184, which revealed the positions of all non-hydrogen atoms. The non-hydrogen atoms were refined anisotropically. All of the Hatoms were placed in geometrically calculated positions and refined by using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2 U_{\text {eq }}$ of its parent atom ($1.5 U_{\mathrm{eq}}$ for the methyl groups). The refinement of the structure was carried out on F^{2} by using full-
matrix least-squares procedures, which minimised the function $\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. Plots of $\Sigma w\left(F_{0}{ }^{2}-\right.$ $\left.F_{\mathrm{c}}^{2}\right)^{2}$ versus $F_{\mathrm{c}} / F_{\mathrm{c}}(\max)$ and resolution showed no unusual trends. A correction for secondary extinction was not applied. Three reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement.

Neutral atom scattering factors for non-hydrogen atoms were taken from Maslen, Fox and O^{\prime} Keefe $^{5 a}$, and the scattering factors for H-atoms were taken from Stewart, Davidson and Simpson ${ }^{6}$. Anomalous dispersion effects were included in $F_{\mathrm{c}}{ }^{7}$; the values for f^{\prime} and $f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{5 b}$. The values of the mass attenuation coefficients are those of Creagh and Hubbel ${ }^{5 \mathrm{c}}$. The SHELXL-2018 program ${ }^{8}$ was used for all calculations.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) NV2222
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: NV2222

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0031 \mathrm{~A}$	Wavelength=1.54184	
Cell:	$a=7.4240$ (3)	$\mathrm{b}=8.9236$ (4)	$\mathrm{c}=14.0704(6)$
	alpha=104.564 (4)	beta=99.048(3)	gamma=94.974 (4)
Temperature:	160 K		
	Calculated	Report	
Volume	883.16 (7)	883.16	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C16 H29 N O3 S	C16 H2	N O3 S
Sum formula	C16 H29 N O3 S	C16 H2	N O3 S
Mr	315.46	315.46	
Dx, g cm-3	1.186	1.186	
Z	2	2	
Mu (mm-1)	1.701	1.701	
F000	344.0	344.0	
F000'	345.56		
h, k, 1 max	9,11,17	9,10,1	
Nref	3533	3448	
Tmin, Tmax	$0.767,0.934$	0.637 ,	000
Tmin'	0.724		
Correction method $=\#$ Reported T Limits: Tmin=0.637 Tmax $=1.000$			
Data completeness $=0.976$		Theta $(\max)=73.140$	
$\mathrm{R}($ reflections $)=0.0653(3058)$		$\begin{aligned} & \text { wR2 }(\text { reflections })= \\ & 0.1783(3445) \end{aligned}$	
$S=1.080$	Npar= 197		

CIF Structure of compound 4 f

Selected GC-MS spectra

Gas Chromatography-Mass Spectrometry of compound $\mathbf{4 b}$

Gas Chromatography-Mass Spectrometry of compound 4d

Gas Chromatography-Mass Spectrometry of compound $4 \mathbf{e}^{\prime}$

Gas Chromatography-Mass Spectrometry of compound $\mathbf{4 f}$

Gas Chromatography-Mass Spectrometry of compound $\mathbf{4 k}$

Gas Chromatography-Mass Spectrometry of compound $\mathbf{4 g}$

Gas Chromatography-Mass Spectrometry of compound $\mathbf{6 b}^{\mathbf{}}$

Selected examples of Isolera Prime Biotage ${ }^{\circledR}$ Purifications

Biotage
Isolera ${ }^{\text {TM }}$ Prime Archive Report - 2022-Feb-24 17.39

Effective separation of compounds $4 d / 4 d^{\prime}$

Effective separation of compounds $4 \mathrm{ff} / \mathbf{4 f}{ }^{\prime}$

Biotage Isolera ${ }^{\text {TM }}$ Prime Archive Report - MGC_49

User	Chemist		
Sample Name	MGC_49		
Date	2021-Dec-22 11.44		
Method			
Cartridge	Sfar HC Duo 10 g	Detection Mode	UV1+UV2
Flowrate	$40 \mathrm{ml} / \mathrm{min}$	UV1 (Collection)	254 nm (Red)
Solvent A	n-Hexane	UV2 (Collection)	280 nm (Black)
Solvent B	Ethyl acetate	Start Threshold	40 mAU
Rack Type	13x100 mm	Solvent Condition	40\%
Max Fraction Volume	8 ml	Rf Product	0.18
Dispense Order	z	Rf Impurity 1	0.25
		Rf Impurity 2	

Effective separation of compounds $4 i / 4 i^{\prime}$

NMR Spectra

Bidimensional COSY-experiment of compound 4a

Bidimensional HSQC-experiment of compound 4a

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $4 \mathbf{a}^{\prime}$

Bidimensional HSQC-experiment of compound 4b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{4 b}^{\text {' }}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 b}^{\text {' }}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $4 \mathbf{c}$

Bidimensional COSY-experiment of compound 4c

Bidimensional HMQC-experiment of compound 4c

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{4 d}{ }^{\prime}$

Bidimensional HSQC-experiment of compound $\mathbf{4 d}^{\prime}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $4 \mathrm{e}^{\prime}$

Bidimensional HSQC-experiment of compound $4 \mathbf{e}^{\prime}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 f}^{\prime}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 g} \mathbf{g}^{\text {' }}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 h}^{\text {' }}$

Bidimensional HSQC-experiment of compound 4i

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 j}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $4 \mathrm{j}{ }^{\prime}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{4 k}$ (It is a $70-30 \%$ mixture of inseparable isomers)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{4 k}$ (It is a $70-30 \%$ mixture of inseparable isomers)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $4 \mathrm{I}^{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 4 n

Bidimensional COSY-experiment of compound $\mathbf{4 n}$

Bidimensional HSQC-experiment of compound 4n

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 40

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{6 b}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{6 c}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{6 g}$

Bidimensional HSQC-experiment of compound $\mathbf{6 g}$

Reference 13: Non reproducible experiments employing another bases

When sodium hydride was used as base to generate the sulfur ylide, using acetronitrile or DMF as solvent, reaction products were detected, and we could determine the reaction between 2 molecules of allenoate and 1 molecule of sulfur ylide. However, the experiments were non reproducible at all.

Mechanistic studies. Isotopic labelling

We synthesized sulfonium salt 1d and we got confirmation by NMR analysis because of absence of signals assigned to methyl groups attached to sulfur atom. Then, we designed
an original and genuine protocol in order to isolate the deuterated compound $\mathbf{4 e}^{\prime}$, what it would confirm our proposed mechanism.

Thus, our efforts were addressed to isolate the sulfur ylide 2d itself. With this objective, we modified an earlier protocol used in our labs (F. Sarabia, 2008) consisting in reaction between sulfonium salt 1d ($239 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0$ equiv.) with NaH (60% mineral oil, $60 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.2$ equiv.) in acetonitrile at room temperature and stirred for 3 hours, with the presence of two drops of $\mathrm{D}_{2} \mathrm{O}$. Then, reaction mixture was filtered and concentrated in rotavapor, affording the freshly prepared sulfur ylide 2d. This freshly prepared compound $\mathbf{2 d}$ was redissolved in freshly distilled dichloromethane and allenoate $3 \mathbf{e}(193 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0$ equiv.) was then added (dissolved in 1 mL of DCM) to reaction. Reaction was stirred at room temperature for 3 hours. Then, reaction mixture was directly concentrated in rotavapor and dried at high vacuum. Crude of reaction was then purified by flash column chromatography to separate both deuterated compounds $\mathbf{4 e}$ and $4 \mathrm{e}^{\prime}$. Then, we realized ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of compounds using CDCl_{3}, and we could observe a good ratio of proton-deuterium exchange between acidic protons in α-position of sulfur atom and protons of solvent (see first spectra serie, Figure S1, page SI-83). In order to avoid that easy exchange of protons, we realized another identical experiment but using benzene- d_{6} to do the ${ }^{1} \mathrm{H}$-NMR analysis, obtaining an excellent concordance with the expected spectra, where the absence of signals confirm our proposed mechanism. (see second spectra serie, Figure S3, page SI-85).

The proportion of deuterium on deuterated compound $4 \mathbf{e}^{\prime}$ based on NMR spectra was clearly observed in the methyl group attached to sulfur atom, where we observed a signal at 2.04 ppm , which integration is 0.7 H (It is 3 H in non-deuterated compound $\mathbf{4 \mathbf { e } ^ { \prime }}$). Moreover, we also observed the decreased integration at 2.33 ppm and 2.64 ppm corresponding to CD_{2} attached to sulfur atom. That fact that integration is 0.74 H and 0.77 H instead of 0 H each one is due to the easy interconversion between hydrogen atoms and deuterium atoms with the solvent $\left(\mathrm{CHCl}_{3}\right.$ contained in $\left.\mathrm{CDCl}_{3}\right)$ because of acidity of them . (Figure S1)

As we have already explained, in order to reduce the high ratio of interconversion between hydrogen atoms and deuterium atoms we programmed the second experiment, using benzene- d_{6} as solvent for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

First spectra serie registered in CDCl_{3}

Figure S1. Up-spectra: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$) of compound $4 \mathrm{e}^{\prime}$ vs Down-spectra: ${ }^{1} \mathrm{H}$ NMR (500 MHz) of deuterated compound $4 \mathrm{e}^{\prime}$.
The proportion of deuterium on deuterated compound $4 \mathrm{e}^{\prime}$ based on NMR spectra was clearly observed in the methyl group attached to sulfur atom, where we did not observe a signal at 2.04 ppm , corresponding to methyl group attached to sulfur atom. Moreover, we also observed the decreased integration at 2.56 ppm and 2.68 ppm corresponding to CD_{2} attached to sulfur atom. Now, these integrations are reduced up to 0.56 H and 0.43 H versus 1 H each one in compound $\mathbf{4 e}^{\prime}$. (Figure S2 and S3)

3H at 2.04 ppm

Integration 0.92 H
at 2.04 ppm

Integration 0.74 H at Integration 0.77 H at 2.68 ppm
2.56 ppm
${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis in CDCl_{3}

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analyses of compounds $4 \mathbf{e}^{\prime}$. Differences between proton-deuterium exchange in CDCl_{3} and benzene- d_{6}

Second spectra serie registered in Benzene- d_{6}

Figure S3. Up-spectra: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz) of compound $4 \mathrm{e}^{\prime}$ vs Down-spectra: ${ }^{1} \mathrm{H}$ NMR $\quad(500 \mathrm{MHz})$ of deuterated compound $4 \mathrm{e}^{\prime}$

[^0]: ${ }^{1}$ a) Z. Huang, X. Yang, F. Yang, T. Lu, Q. Zhou. Org. Lett. 2017, 19, 3524-3527; b) M. G. Sankar, M. Garcia-Castro, C. Golz, C. Strohmann, K. Kumar. Angew. Chem. Int. Ed. 2016, 55, 1-6.
 ${ }^{2}$ M. Valpuesta-Fernandez, P. Durate-Lanes, F. J. Lopez-Herrera. Tetrahedron 1990, 46, 7911-7922

