Supporting Information

Pd-Catalyzed Homo-Coupling of Benzofurans: One-Pot Synthesis of Diverse 3,3'-Bisbenzofurans

Kishan Gugulothu, ${ }^{a}$ Ramanna Jatoth, ${ }^{a}$ Ramakrishna Gudipati, ${ }^{a}$ Nampally Rajitha, ${ }^{\text {a }}$ Rambabu Dandela, ${ }^{\text {b }}$ K. Shiva Kumar, ${ }^{\text {a, }, ~}$ *

${ }^{a}$ Department of Chemistry, Osmania University, Hyderabad-500 007, India
${ }^{b}$ Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
${ }^{c}$ Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
E-mail: shivakumarkota@yahoo.co.in; shivakumarkota@cukerala.ac.in

Table of contents

1. General methods S2
2. General procedure and characterisation of 2,2'-diphenyl-3,3'-bibenzofuran (2) S2
3. X-ray Data S10
4. References S11
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products S12
6. General methods: Unless stated otherwise, solvents and chemicals were obtained from commercial sources and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F 254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (100-200 mesh) using hexane and ethyl acetate. Melting points were recorded on a DBK digital melting point apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 500 or 400 or 125 or 100 Bruker Biospin A III FT-NMR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined in CDCl_{3} solution by using 500 or 400 or 125 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, $\delta=0.00$) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), dd (doublet of doublet), t (triplet) and m (multiplet). Coupling constants (J) are 3 given in hertz. High-resolution mass spectra were recorded on a Bruker maxis-TOF mass spectrometer. All starting materials substituted 2-phenylbenzofuran were prepared according to the known literature procedure. ${ }^{1}$

2. General procedure and characterisation of substituted 2,2'-diphenyl-3,3'bibenzofuran (2)

An oven dried schlenk tube was charged with magnetic stirring bar, 2-substituted benzofuran (1) $(0.50 \mathrm{mmol})$, in $\mathrm{DMSO}(2 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(1.5 \mathrm{eq})$ were added and schlenck tube was closed with oxygen balloon. The resulting reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, the mixture was cooled to room temperature, diluted with water (10 mL) and extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The organic layers were collected, washed with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum to give the crude, which was further purified by flash column chromatography, was performed on silica gel (100-200 mesh) using hexane and ethyl acetate as eluent to afford the desired product (2).

2,2'-Diphenyl-3,3'-bibenzofuran (2a)

White solid; Yield: 72%; mp: $148-150{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{2}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, J=8 . .0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19$ (m, 7H), $7.14-7.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4$ (2C), 151.9 (2C), 130.4
(2C), 129.5 (2C), 128.6 (4C), 128.5 (2C), 126.2 (4C), 124.9 (2C), 123.0 (2C), 120.7 (2C), 111.2 (2C), 107.6 (2C).

2,2'-Di-p-tolyl-3,3'-bibenzofuran (2b)

White solid; Yield: 70%; mp: $189-191{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{3} 190-192{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 8 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2(2 \mathrm{C}), 152.2$ (2C), 138.5 (2C), 129.7 (4C), 129.3 (2C), 127.79 (2C), 126.1(4C), 124.6 (2C), 122.9 (2C), 120.6 (2C), 111.1 (2C), 107.0 (2C), 21.3 (2C).

5,5'-Dichloro-2,2'-di-p-tolyl-3,3'-bibenzofuran (2c)

White solid; Yield: 68%; mp: $185-187{ }^{\circ} \mathrm{C} \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9$ (2C), 153.4 (2C), 152.6 (2C), 139.3 (2C), 131.0 (2C), 129.5 (4C), 128.8 (2C), 127.0 (2C), 126.1 (4C), 125.0 (2C), 119.7 (2C), 112.2 (2C), 21.3 (2C); HR-MS (ESI +) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$ 483.0913, found 483.0913.

2,2'-Bis(4-methoxyphenyl)-3,3'-bibenzofuran (2d)

White solid; Yield: 68%; mp: $177-179{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{3} 178-180{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{f}=0.4(5 \% \mathrm{EtOAc} / n-$ Hexane); ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8$ (2C), 154.2 (2C), 152.1 (2C), 129.8 (2C), 127.7 (4C), 124.4 (2C), 123.3 (2C), 122.9 (2C), 120.5 (2C), 114.14 C), 111.0 (2C), 106.1 (2C), 55.2 (2C).

2,2'-Di-m-tolyl-3,3'-bibenzofuran (2e)

White solid; Yield: 69%; mp: $182-184{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{4}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29$ ($\mathrm{m}, 2 \mathrm{H}$), $7.14-7.02(\mathrm{~m}, 8 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3(2 \mathrm{C}), 152.1$ (2C), 138.1 (2C), 130.4 (2C), 129.5 (2C), 129.3 (2C), 128.5 (2C), 126.8 (2C), 124.8 (2C), 123.6 (2C), 122.9 (2C), 120.8 (2C), 111.1 (2C), 107.7 (2C), 21.4 (2C).

2,2'-Bis(3-methoxyphenyl)-3,3'-bibenzofuran (2f)

White solid; Yield: 68%; mp: $104-106{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($5 \% \mathrm{EtOAc} / n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{dd}$, $J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5$ (2C), 154.3 (2C), 151.8 (2C), 131.5 (2C), 129.6 (2C), 129.4 (2C), 125.1 (2C), 123.1 (2C), 120.8 (2C), 118.8 (2C), 115.2 (2C), 111.2 (2C), 110.8 (2C), 107.9 (2C), 54.9 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 447.1591$, found 447.1591.

2,2'-Bis(4-(tert-butyl)phenyl)-3,3'-bibenzofuran (2g)

White solid; Yield: 65%; mp: $212-214{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{4}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% \quad n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2$ (2C), 152.2 (2C), 151.5 (2C), 129.9 (2C), 127.6 (2C), 125.9 (4C), 125.5 (4C), 124.6 (2C), 122.9 (2C), 120.5 (2C), 111.1 (2C), 107.0 (2C), 34.6 (2C), 31.1 (6C).

2,2'-Bis(4-chlorophenyl)-3,3'-bibenzofuran (2h)

White solid; Yield: 68%; mp: $240-242{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{4}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% \quad n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ - $7.61(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4$ (2C), 150.9 (2C), 134.5 (2C), 129.1 (2C), 128.9 (4C), 128.8 (2C), 127.4 (4C), 125.4 (2C), 123.3 (2C), 120.7 (2C), 111.4 (2C), 107.8 (2C).

2,2'-Bis(4-phenoxyphenyl)-3,3'-bibenzofuran (2i)

White solid; Yield: 68%; mp: $152-153{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4\left(100 \% n\right.$-Hexane) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.07$ $(\mathrm{m}, 6 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.8 (2C), 156.4 (2C), 154.3 (2C), 151.6 (2C), 129.8 (4C), 129.6 (2C), 127.8 (4C), 125.4 (2C), 124.7 (2C), 123.8 (2C), 123.0 (2C), 120.6 (2C), 119.4 (4C), 118.4 (4C), 111.2 (2C), 106.7 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{27} \mathrm{O}_{4}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 571.1904$, found 571.1902.

5,5'-Dimethyl-2,2'-diphenyl-3,3'-bibenzofuran (2j)

White solid; Yield: 70%; mp: $156-158{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.14$ (dd, $J=8.0,0.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7$ (2C), 152.0 (2C), 132.6 (2C), 130.6 (2C), 130.0 (2C), 128.6 (4C), 128.3 (2C), 126.3 (2C), 126.0 (4C), 120.3 (2C), 110.7 (2C), 107.6 (2C), 21.3 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$415.1693, found 415.1691.

5,5'-Diethyl-2,2'-diphenyl-3,3'-bibenzofuran (2k)

Off white solid; Yield: 68%; mp: $128-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 8 \mathrm{H}), 6.94(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}) $\delta 152.9$ (2C), $152.0(2 \mathrm{C}), 139.1$ (2C), 130.7 (2C), 129.6 (2C), 128.5 (4C), 128.3 (2C), 126.2 (4C), 125.1 (2C), 119.4 (2C), 110.7 (2C), 107.7 (2C), 28.8 (2C), 16.2 (2C); HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 443.2006$, found 443.2005.

5,5'-Di-tert-butyl-2,2'-diphenyl-3,3'-bibenzofuran (21)

Yellow solid; Yield: 62%; mp: 153-155 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{3} 155-157{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right) \delta 7.67(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27$ (dd, $J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7$ (2C), 152.2 (2C), 145.8 (2C), 130.9 (2C), 128.4
(4C), 128.3 (2C), 128.2 (2C), 126.7 (4C), 122.5 (2C), 117.7 (2C), 110.3 (2C), 108.1 (2C), 34.5 (2C), 31.6 (6C).

5,5'-Dichloro-2,2'-diphenyl-3,3'-bibenzofuran (2m)

White solid; Yield: 67%; mp: $225-226{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4\left(100 \% n\right.$-Hexane) ; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7$ (2C), 152.7 (2C), 130.8 (2C), 129.7 (2C), 129.2 (2C), 128.9 (2C), 128.8 (4C), 126.2 (4C), 125.4 (2C), 119.84 (2C), 112.4 (2C), 106.5 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 455.0600$, found 455.0602.

5,5'-Difluoro-2,2'-diphenyl-3,3'-bibenzofuran (2n)

White solid; Yield: 68%; mp: $198-200{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{4}\right) ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{dd}, J=8.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.06$ $-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1$ (2C), 151.8 (2C), 147.9 (2C), 147.8 (2C), 129.6 (2C), 124.6 (2C), 123.0 (2C), 120.8 (2C), 120.4 (2C), 111.1 (2C), 108.6 (2C), 106.6 2C), 106.4(2C), 101.2 (2C).

2,2'-Diphenyl-[3,3'-bibenzofuran]-5,5'-dicarbonitrile (20)

Off white solid; Yield: 58\%; mp: 282-284 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.71(\mathrm{~m}, 6 \mathrm{H}), 7.63(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 8 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0$ (2C), 154.9 (2C), 130.0 (2C), 129.6 (2C), 129.0 (4C), 128.9 (2C), 128.8 (2C), 126.5 (4C), 125.1 (2C), 119.0 (2C), 112.8 (2C), 107.3 (2C), 105.9 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+} 459.1104$, found 459.1103.

4,4'-([3,3'-Bibenzofuran]-2,2'-diyl)dibenzaldehyde (2q)

c

Yellow solid; Yield: 62\%; mp: 218-220 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4\left(10 \% \mathrm{EtOAc} / n\right.$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 191.4$ (2C), 154.8 (2C), 150.4 (2C), 135.7 (2C), 135.6 (2C), 130.0 (4C), 128.8 (2C), 126.4 (4C), 126.3 (2C), 123.6 (2C), 120.9 (2C), 111.7 (2C), 110.1 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+} 465.1097$, found 465.1210.

Bimethyl 2,2'-diphenyl-[3,3'-bibenzofuran]-5,5'-dicarboxylate (2r)

White solid; Yield: 60%; mp: $175-177{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5\left(10 \% \mathrm{EtOAc} / n\right.$-Hexane); ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 4 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.9 (2C), 156.9 (2C), 153.7 (2C), 129.7 (2C), 129.7 (2C), 129.2 (2C), 128.8 (4C), 126.9 (2C), 126.2 (4C), 125.7 (2C), 122.6 (2C), 111.3 (2C), 107.3 (2C), 52.0 (2C); HR-MS (ESI+) m / z calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$525.1314, found 525.1292.

2,2'-Di(thiophen-2-yl)-3,3'-bibenzofuran (2s)

Yellow solid; Yield: 65%; mp: $108-110{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($100 \% n$-Hexane); ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.06(\mathrm{t}, J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,153.7$, $150.9,148.0,134.3,132.9,131.9,129.9,129.1$ (2C), 127.6, 127.0, 126.8, 125.2, 125.1, 124.5, 123.5, 123.2, 120.8, 120.0, 111.1 (2C), 109.5, 101.4; HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+} 399.0508$, found 399.0516 .

2,2'-Bis(benzo[d][1,3]dioxol-5-yl)-3,3'-bibenzofuran (2t)

white solid; Yield: 63%; mp: $210-212{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.3$ ($5 \% \mathrm{EtOAc} / n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.68$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5$ (2C), 153.9 (2C), 150.5 (2C), 129.9 (2C), 129.0 (2C), 128.7 (4C), 126.2 (4C), 112.9 (2C), 112.7 (2C), 112.1 (2C), 112.0 (2C), 106.1 (2C), 105.9 (2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{O}_{6}\right]^{+}=$ $[\mathrm{M}+\mathrm{H}]^{+} 475.1176$, found 475.1176.

2,2'-Di(1H-indol-3-yl)-3,3'-bibenzofuran (2u)

Brown solid; Yield: 66\%; mp: 204-206 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.4$ ($20 \% \mathrm{EtOAc} / n$-Hexane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H})$, $7.26-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2$ (2C), 151.3 (2C), 135.5 (2C), 129.3 (2C), 125.1 (2C), 124.7 (2C), 123.4 (2C), 122.9 (2C), 122.8 (2C), 121.9 (2C), 121.0 (2C), 120.1 (2C), 111.3 (2C), 111.0 (2C), 107.5 (2C), 104.3
(2C); HR-MS (ESI+) m/z calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$465.1598, found 465.1594.
3. X-ray Data: The quality single crystals suitable for SC-XRD experiments of all the three compounds were obtained from $\mathrm{CHCl}_{3}: \mathrm{MeOH}(50 ; 50)$ solvent by the slow evaporation method. The single-crystal X-ray diffraction measurements were performed to determine the crystal structure of three compounds using APEX3 (Bruker, 2016; Bruker D8 Venture photon 100 CMOS detector) diffractometer having graphite-monochromatized ($\mathrm{MoK} \alpha=0.71073 \AA$). The X-ray generator was operated at 50 kV and 30 mA . A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5° steps φ / ω. The data were collected with a time frame of 10 sec for the three components by setting the sample to detector distance fixed at 40 cm . The data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS97 (Sheldrick, 2018) was used for structure solution and full-matrix least-squares refinement on $\mathrm{F}^{2}{ }^{5}$ The program(s) used to refine the molecular structures of $\mathbf{2 i}$ are SHELXL 2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined by the anisotropic method and hydrogen atoms were either refined or placed in calculated positions. The molecular graphics of ORTEP diagrams were performed by XP software.

Single crystals suitable for X-ray diffraction of 2i ethylacetate: hexene (1:1). Molecular formula $=\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{4}$, Molecular weight $=570.61$, space group $=\operatorname{Pna} 21, \mathrm{a}=12.3643(4) \AA, \mathrm{b}=$ $7.5268(4) \AA, \mathrm{c}=31.4217(12) \AA, \mathrm{T}=297 \mathrm{~K}, \mathrm{R}$ (reflections) $=0.1349$ (2598) wR2(reflections)= 0.4051(6198), $\mathrm{S}=1.154$. Crystallographic data for compound deposited with the Cambridge Crystallographic Data Centre as supplementary publication no CCDC 2240724.

Figure S1. X-ray crystal structure of $\mathbf{2 i}$ (ORTEP diagram). Thermal ellipsoids are drawn at the 50% probability level.

References

[1] M. J. Bosiak, ACS Catal. 2016, 6, 2429-2434
[2] T. Wirtanen, M. K. Mäkelä, J. Sarfraz, P, Ihalainen, S, Hietala, M, Melchionna, J. Helaja, Adv. Synth. Cat. 2015, 357, 3718-3726.
[3] M. G. Auzias, M. Neuburger and H. A. Wegner, Synlett. 2010, 16, 2443-2448.
[4] L. Bering, F. M. Paulussen, A. P. Antonchick, Org. Lett. 2018, 20, 1978-1981.
[5] Sheldrick, G. M. SHELXS97 and SHELXL97. Program for Crystal Structure Solution and Refinement. University of Göttingen, Göttingen, 1997.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products Compound 2a

Compound 2b

Compound 2c

77.34
7702
-21.36

Compound 2d

NonNNNNNGON
\rightarrow (
$\stackrel{n}{\stackrel{n}{\sim}} \stackrel{n}{\sim}$

| 1 | | | | | | | | | | | | | | | | |
| :--- |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

Compound 2e

Compound $2 f$

Compound 2g

Compound 2h

160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	0

Compound 2i

Compound 2j

Compound 2k

পN	\hat{C}_{8}^{∞}
vinj	

No
$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}}$

1															
150	140	130	120	110	100	90	$\underset{f}{80}$	70	60	50	40	30	20	10	0

Compound 21

Compound 2m

H W W
にMm8

1	1	,	,	1	,	,	1	1	1	1	1	,	,	1	1	1
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
								f1 (ppm)								

0%
$\stackrel{\sim}{n}$

씅
NN゚

160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	0

Compound 2n

160																
160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	0

Compound 20

Compound 2q

Compound 2r

Compound 2s


```
NNNNNNNNNNNNNNNNかも
```


Compound 2 t

Compound 2u

	$\begin{aligned} & \text { H} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\sim}$															
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{ppm}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

						1							1			
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

