Supplementary Information

Synthesis and structure of stannane-based molecular bevel gears having substituents on a tin linker

Satoshi Hosono,^a Yusuke Inagaki,^a and Wataru Setaka,^{*a} a. Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

> E-mail: wsetaka@tmu.ac.jp (Total 30 pages including this cover page)

1. Copies of NMR and HRMS Spectra for New Compounds

Fig. S1. ¹H NMR spectrum of SnPh2 in CDCl₃.

Fig. S2. ¹³C NMR spectrum of SnPh2 in CDCl₃.

Fig. S3. HRMS spectrum of SnPh2 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S4. 1H-1H COSY NMR spectrum of SnPh2 in CDCl3.

Fig. S5. ¹H-¹³C HSQC NMR spectrum of SnPh2 in CDCl₃

Fig. S6. ¹H⁻¹³C HMBC NMR spectrum (the whole region) of SnPh2 in CDCl₃.
 Fig. S7. ¹H⁻¹³C HMBC NMR spectrum (the aromatic region) of SnPh2 in CDCl₃.
 Fig. S8. ¹H NMR spectrum of SnMe2 in CDCl₃.

Fig. S9. ¹³C NMR spectrum of SnMe2 in CDCl₃.

Fig. S10. HRMS spectrum of SnMe2 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S11. ¹H-¹H COSY NMR spectrum of SnMe2 in CDCl₃.

Fig. S12. ¹H-¹³C HSQC NMR spectrum of SnMe2 in CDCl₃ Fig. S13. ¹H-¹³C HMBC NMR spectrum (the whole region) of SnMe2 in CDCl₃

Fig. S14. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnMe2 in CDCl₃.

Fig. S15. ¹H NMR spectrum of SnPh2me in CDCl₃.

Fig. S16. ¹³C NMR spectrum of SnPh2me in CDCl₃.

Fig. S17. HRMS spectrum of SnPh2me (ESI, positive). Top: obsd. Bottom: sim.

Fig. S18. 1H-1H COSY NMR spectrum of SnPh2me in CDCl3.

Fig. S19. ¹H-¹³C HSQC NMR spectrum of SnPh2me in CDCl₃

Fig. S20. ¹H-¹³C HMBC NMR spectrum (the whole region) of SnPh2me in CDCl₃.

Fig. S21. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnPh2me in CDCl₃.

Fig. S22. ¹H NMR spectrum of SnMe2me in CDCl₃.

Fig. S23. ¹³C NMR spectrum of SnMe2me in CDCl₃.

Fig. S24. HRMS spectrum of SnMe2me (ESI, positive). Top: obsd. Bottom: sim.

Fig. S25. ¹H-¹H COSY NMR spectrum of SnMe2me in CDCl₃.

Fig. S26. ¹H-¹³C HSQC NMR spectrum of SnMe2me in CDCl₃

Fig. S27. 1H-13C HMBC NMR spectrum (the whole region) of SnMe2me in CDCl3. Fig. S28. 1H-13C HMBC NMR spectrum (the aromatic region) of SnMe2me in CDCl3.

2. Appended Data of X-ray Crystallography Table S1. Crystal Data

Fig. S29. (a) An ORTEP drawing (50% thermal ellipsoids) of molecular structure and (b) crystal packing of SnPh2 determined by X-ray crystallography. Fig. S30. (a) An ORTEP drawing (50% thermal ellipsoids) of molecular structure and (b) crystal packing of SnMe2 determined by X-ray crystallography.

3. Appended Data of VT-NMR Study

Fig. S31 Eyring plot of gear slippage (kex values taken from Fig. 5): (a) SnPh2 and (b) SnMe2.

4. Appended Data of DFT Calculations

Table S2. Optimized Structural Coordinate and its Total Energy of SnPh2 (Ground State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level Table S3. Optimized Structural Coordinate and its Total Energy of SnPh2 (Ground State) at ωB97XD/B1(Sn;LanL2DZ, C,H;6-31G(d)) level **Table S4.** Optimized Structural Coordinate and its Total Energy of **SnPh2** (Transition State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level Table S5. Optimized Structural Coordinate and its Total Energy of SnPh2 (Transition State) at ωB97XD/B1(Sn;LanL2DZ, C,H;6-31G(d)) level Table S6. Optimized Structural Coordinate and its Total Energy of SnMe2 (Ground State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(J)) level Table S7. Optimized Structural Coordinate and its Total Energy of SnMe2 (Ground State) at @B97XD/B1(Sn;LanL2DZ, C,H;6-31G(d)) level Table S8. Optimized Structural Coordinate and its Total Energy of SnMe2 (Transition State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level Table S9. Optimized Structural Coordinate and its Total Energy of SnMe2 (Transition State) at ω B97XD/B1(Sn;LanL2DZ, C,H;6-31G(d)) level Fig. S32. Potential energies of gear slippage as a function of the reaction coordinate for SnPh2 calculated at the IRC-B3LYP-D3/6-31G* level. Fig. S33. Potential energies of gear slippage as a function of the reaction coordinate for SnPh2 calculated at the IRC- ω B97XD/6-31G* level. Fig. S34. Potential energies of gear slippage as a function of the reaction coordinate for SnMe2 calculated at the IRC-B3LYP-D3/6-31G* level. Fig. S35. Potential energies of gear slippage as a function of the reaction coordinate for SnMe2 calculated at the IRC-ωB97XD/6-31G* level.

- 1. Copies of NMR and HRMS Spectra for New Compounds
- 1. Spectra of SnPh2

Fig. S2. ¹³C NMR spectrum of SnPh2 in CDCl₃.

ers

0 Hz

Fig. S4. ¹H-¹H COSY NMR spectrum of SnPh2 in CDCl₃.

Fig. S6. ¹H-¹³C HMBC NMR spectrum (the whole region) of SnPh2 in CDCl₃.

Fig. S7. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnPh2 in CDCl₃.

b. Spectra of SnMe2

Fig. S8. ¹H NMR spectrum of SnMe2 in CDCl₃.

Fig. S10. HRMS spectrum of SnMe2 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S14. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnMe2 in CDCl₃.

c. Spectra of SnPh2me

Fig. S16. ¹³C NMR spectrum of SnPh2me in CDCl₃.

Fig. S17. HRMS spectrum of SnPh2me (ESI, positive). Top: obsd. Bottom: sim.

Fig. S18. ¹H-¹H COSY NMR spectrum of SnPh2me in CDCl₃.

Fig. S20. ¹H-¹³C HMBC NMR spectrum (the whole region) of SnPh2me in CDCl₃.

Fig. S21. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnPh2me in CDCl₃.

d. Spectra of SnMe2me

Fig. S25. ¹H-¹H COSY NMR spectrum of SnMe2me in CDCl₃.

Fig. S26. ¹H-¹³C HSQC NMR spectrum of SnMe2me in CDCl₃.

Fig. S27. ¹H-¹³C HMBC NMR spectrum (the whole region) of SnMe2me in CDCl₃.

Fig. S28. ¹H-¹³C HMBC NMR spectrum (the aromatic region) of SnMe2me in CDCl₃.

2. Appended Data of X-ray Crystallography

2-1. Crystal Data

Table S1. Crystal Data

Compound		SnPh2	SnMe2 (with 4MeOH)
CCDC #		2259574	2259575
Empirical formula		C52 H36 Sn	C46 H48 O4 Sn
Temperature		200(2) K	100(2) K
Crystal shape & Color	Z	Prism, colorless	Prism, colorless
Crystal size		0.330 x 0.280 x 0.260 mm ³	0.400 x 0.300 x 0.200 mm ³
Formula weight / mol ⁻¹	g	779.50	783.53
Crystal system		Orthorhombic	Monoclinic
Space group		Fdd2	C2/c
Z		16	4
Calculated densit	ty	1.410 Mg/m ³	1.385 Mg/m ³
	а	18.4107(4) Å	24.8807(14) Å
	b	30.9552(6) Å	11.0845(6) Å
	С	25.7752(5) Å	16.1241(9) Å
Cell parameter	α	90°	90°
•	β	90°	122.3220(10)°
	γ	90°	90°
	V	14689.5(5) Å ³	3757.9(4) Å ³
F(000)		6368	1624
Absorption coefficient		0.733 mm ⁻¹	5.746 mm ⁻¹
heta range for collection		2.397 to 32.560° (MoKα)	4.205 to 71.273° (CuKα)
Index ranges		-27<=h<=24, -46<=k<=46, - 38<=l<=37	-30<=h<=30, -13<=k<=13, - 19<=l<=19
Reflections collected		48405	17172
Independent reflections		12621 [R(int) = 0.0281]	3541 [R(int) = 0.0256]
Completeness		99.7 %	98.6 %
Goodness-of-fit on F ²		1.040	1.136
Final R indices [I>2sigma(I)]		R1 = 0.0210, wR2 = 0.0492	R1 = 0.0258, wR2 = 0.0691
R indices (all data)		R1 = 0.0233, wR2 = 0.0501	R1 = 0.0259, wR2 = 0.0692

Fig. S29. (a) An ORTEP drawing (50% thermal ellipsoids) of molecular structure and (b) crystal packing of SnPh2 determined by X-ray crystallography.

Fig. S30. (a) An ORTEP drawing (50% thermal ellipsoids) of molecular structure and (b) crystal packing of SnMe2 determined by X-ray crystallography.

3. Appended Data of VT-NMR Study

Fig. S31. Eyring plot of gear slippage (k_{ex} values taken from Fig. 5): (a) SnPh2me and (b) SnMe2me.

4. Appended Data of DFT Calculations

 Table S2. Optimized Structural Coordinate and its Total Energy of SnPh2 (Ground State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level

 HF=-2006.6423324, NImg=0

			·····		
Center	Ato	mic	Atomic	Coordina	tes (Angstroms)
Number	N	imber	Гуре	Χ	Y Z
1	50	0	0 00000	-0 000000	0 723330
2	6	Ő	0.000000	1 627833	1 981488
3	6	Ő	-0.607862	-1.627833	1.981488
4	6	Õ	-1.860003	0.652124	-0.365346
5	6	0	1.860003	-0.652124	-0.365346
6	6	0	-2.130587	-0.218824	-1.614285
7	6	0	2.130587	0.218824	-1.614285
8	6	0	-3.140909	0.545473	0.518855
9	6	0	3.140909	-0.545473	0.518855
10	6	0	-1.947221	2.121458	-0.875486
11	6	0	1.947221	-2.121458	-0.875486
12	6	0	-3.336241	0.070701	-2.279142
13	6	0	3.336241	-0.070701	-2.279142
14	6	0	-4.330326	0.820931	-0.187772
15	6	0	4.330326	-0.820931	-0.187772
16	6	0	-3.138552	2.390273	-1.583380
1/	0	U	3.138552	-2.3902/3	-1.585580
18	0	0	-4.102403	1.210685	-1.040310
19	0	U	4.102403	-1.210085	-1.040310
20	1	0	-5.051142	1.449452	-2.105457
21	1	0	1 30/786	1 205078	-2.103457
23	6	0	1 304786	1 205978	-2.141042
23	6	Ő	-3 230749	0.303673	1 887954
25	6	ŏ	3.230749	-0.303673	1.887954
26	ő	Ŏ	-1.042634	3.162468	-0.680026
27	Ğ	Ŏ	1.042634	-3.162468	-0.680026
28	6	Ő	-3.720951	-0.630850	-3.414785
29	6	0	3.720951	0.630850	-3.414785
30	6	0	-5.568672	0.796200	0.440472
31	6	0	5.568672	-0.796200	0.440472
32	6	0	-3.390394	3.645939	-2.119450
33	6	0	3.390394	-3.645939	-2.119450
34	6	0	-1.684099	-1.922331	-3.283568
35	6	0	1.684099	1.922331	-3.283568
36	6	0	-4.476686	0.281884	2.528571
37	6	0	4.476686	-0.281884	2.528571
38	6	0	-1.293343	4.431697	-1.220109
39	6	0	1.293343	-4.431697	-1.220109
40	6	0	-2.892349	-1.642104	-3.917239
41	6	0	2.892349	1.642104	-3.91/239
42	0	0	-5.045/15	0.514589	1.809390
43	6	0	5.045/15	-0.514509	1.009390
44	6	0	-2.450015	4.074031	-1.940137
46	1	0	-0 345157	-1 427786	-1 698004
47	1	ŏ	0.345157	1.427786	-1.698004
48	1	Ŏ	-2.346949	0.107045	2.478917
49	1	Ŏ	2.346949	-0.107045	2.478917
50	1	0	-0.140937	3.013778	-0.101854
51	1	0	0.140937	-3.013778	-0.101854
52	1	0	-4.658662	-0.388281	-3.909340
53	1	0	4.658662	0.388281	-3.909340
54	1	0	-6.468659	1.010625	-0.131141
55	1	0	6.468659	-1.010625	-0.131141
56	1	0	-4.315589	3.826521	-2.661773
57	1	0	4.315589	-3.826521	-2.661773
58	1	0	-1.021592	-2.692808	-3.667825
59	1	0	1.021592	2.692808	-3.667825
60	1	0	-4.521059	0.078823	3.595052
61	1	Ű	4.521059	-0.078823	3.595052
02 63	1	U A	-0.3/0838	5.22/3/9	-1.039918
03 64	1	0	0.3/0838	-3.44/3/9	-1.037718
65	1	0	-3.10020/ 3.188207	2.190232	-4.803953
66	1	0	-6 611070	0 493475	2 307845
67	1	0	6.611070	-0.493425	2.307845

68	1	0	-2.646980	5.659175	-2.364521
69	1	0	2.646980	-5.659175	-2.364521
70	6	0	-0.000000	1.852462	3.226394
71	6	0	1.637156	2.500822	1.581591
72	6	0	1.411540	3.778240	3.623212
73	6	0	0.397182	2.916906	4.042190
74	6	0	2.032998	3.567297	2.389302
75	1	0	-0.788397	1.193433	3.582118
76	1	0	2.148708	2.343259	0.634049
77	1	0	1.719830	4.607110	4.255196
78	1	0	-0.087690	3.071831	5.002905
79	1	0	2.830901	4.228114	2.060008
80	6	0	0.000000	-1.852462	3.226394
81	6	0	-1.637156	-2.500822	1.581591
82	6	0	-1.411540	-3.778240	3.623212
83	6	0	-0.397182	-2.916906	4.042190
84	6	0	-2.032998	-3.567297	2.389302
85	1	0	0.788397	-1.193433	3.582118
86	1	0	-2.148708	-2.343259	0.634049
87	1	0	-1.719830	-4.607110	4.255196
88	1	0	0.087690	-3.071831	5.002905
89	1	0	-2.830901	-4.228114	2.060008

Table S3.	Optimized Structural	Coordinate and its	Total Energy	of SnPh2 (Ground State)	at ωB97XD/B	1(Sn;LanL2DZ,	C,H;6-31G(d	i)) level
HF=-2005	.9287733, NImg=0								

Center Number	Ato Ni	mic umber	Atomic Type	Coordina X	ates (Angstroms) Y Z
	50	0	0.00000	-0 000000	0 721153
2	6	Ő	0.601833	1.630695	1.976923
3	6	Ŏ	-0.601833	-1.630695	1.976923
4	6	Ő	-1.849717	0.642783	-0.364992
5	ő	Ŏ	1.849717	-0.642783	-0.364992
6	6	Õ	-2.114492	-0.224236	-1.610921
7	6	0	2.114492	0.224236	-1.610921
8	6	0	-3.125672	0.529948	0.513757
9	6	0	3.125672	-0.529948	0.513757
10	6	0	-1.941552	2.106273	-0.870237
11	6	0	1.941552	-2.106273	-0.870237
12	6	0	-3.315180	0.060413	-2.274885
13	6	0	3.315180	-0.060413	-2.274885
14	6	0	-4.311390	0.799975	-0.189845
15	6	0	4.311390	-0.799975	-0.189845
16	6	0	-3.127903	2.372140	-1.575983
17	6	0	3.127903	-2.372140	-1.575983
18	6	0	-4.084668	1.193012	-1.636948
19	6	0	4.084668	-1.193012	-1.636948
20	1	0	-5.013518	1.429405	-2.162428
21	1	0	5.013518	-1.429405	-2.162428
22	6	0	-1.285759	-1.204570	-2.135234
23	6	0	1.285759	1.204570	-2.135234
24	6	0	-3.213297	0.286579	1.878289
25	6	0	3.213297	-0.286579	1.878289
26	6	0	-1.041856	3.144797	-0.670994
27	6	0	1.041856	-3.144797	-0.670994
28	6	0	-3.694132	-0.639343	-3.408543
29	6	0	3.694132	0.639343	-3.408543
30	6	0	-5.546450	0.767048	0.435482
31	6	0	5.546450	-0.767048	0.435482
32	6	0	-3.381779	3.624792	-2.107786
33	6	0	3.381779	-3.624792	-2.107786
34	6	0	-1.658554	-1.919335	-3.274898
35	6	0	1.658554	1.919335	-3.274898
36	6	0	-4.455397	0.255465	2.516394
37	6	0	4.455397	-0.255465	2.516394
58 20	6	0	-1.293830	4.410878	-1.206180
39 40	6	0	1.293830	-4.410878	-1.206180
40	0	0	-2.862910	-1.043844	-3.9084//
41	0	0	2.862910	1.045844	-3.908477
42	0	0	-5.621/98	0.481/49	1./99380
43	0 6	U A	5.021/98	-0.481/49	1./99380
44	U E	0	-2.432008	4.03102/	-1.930002
43	0	U	2.452008	-4.051827	-1.930862

46	1	0	-0.324794 -1.424555 -1.690320
47	1	0	0.324794 1.424555 -1.690320
48	1	0	-2.328794 0.095933 2.471506
49	1	0	2.328794 -0.095933 2.471506
50	1	0	-0.139724 2.996177 -0.091664
51	1	0	0.139724 -2.996177 -0.091664
52	1	0	-4.631142 -0.401072 -3.905446
53	1	0	4.631142 0.401072 -3.905446
54	1	0	-6.447632 0.977955 -0.134633
55	1	0	6.447632 -0.977955 -0.134633
56	1	0	-4.305867 3.805637 -2.650941
57	1	0	4.305867 -3.805637 -2.650941
58	1	0	-0.992094 -2.685575 -3.659036
59	1	0	0.992094 2.685575 -3.659036
60	1	0	-4.499207 0.050210 3.581703
61	1	0	4.499207 -0.050210 3.581703
62	1	0	-0.574468 5.207706 -1.042759
63	1	0	0.574468 -5.207706 -1.042759
64	1	0	-3.154209 -2.197820 -4.795886
65	1	0	3.154209 2.197820 -4.795886
66	1	0	-6.586363 0.453379 2.297399
67	1	0	6.586363 -0.453379 2.297399
68	1	0	-2.645079 5.636541 -2.346210
69	1	0	2.645079 -5.636541 -2.346210
70	6	0	-0.000000 1.850423 3.219872
71	6	0	1.622924 2.504245 1.573872
72	6	0	1.401773 3.774937 3.611186
73	6	0	0.395231 2.912876 4.032625
74	6	0	2.017538 3.567945 2.378215
75	1	0	-0.783911 1.187299 3.578385
76	1	0	2.130632 2.349860 0.623181
77	1	0	1.709553 4.603877 4.242072
78	1	0	-0.086115 3.065473 4.994514
79	1	0	2.811248 4.231182 2.046461
80	6	0	0.000000 -1.850423 3.219872
81	6	0	-1.622924 -2.504245 1.573872
82	6	0	-1.401773 -3.774937 3.611186
83	6	0	-0.395231 -2.912876 4.032625
84	6	0	-2.017538 -3.567945 2.378215
85	1	0	0.783911 -1.187299 3.578385
86	1	0	-2.130632 -2.349860 0.623181
87	1	0	-1.709553 -4.603877 4.242072
88	1	0	0.086115 -3.065473 4.994514
89	1	0	-2.811248 -4.231182 2.046461

 Table S4. Optimized Structural Coordinate and its Total Energy of SnPh2 (Transition State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level

 HF=-2006.6180576, NImg=1

Center	Ato	mic	Atomic	Coordina	tes (Angstroms)
Number	Nı	ımber	Туре	Х	Y Z
1	50	0	0.612895	0.025172	0.000000
2	6	0	-0.345073	-2.069232	0.000000
3	6	0	0.840191	-3.100444	0.000000
4	6	0	0.426934	-4.446174	0.000000
5	6	0	-1.075790	-4.615952	0.000000
6	1	0	-1.386685	-5.664084	0.000000
7	6	0	-1.236001	-2.481273	1.201286
8	6	0	-1.590081	-3.846955	1.207879
9	6	0	-1.236001	-2.481273	-1.201286
10	6	0	-1.590081	-3.846955	-1.207879
11	6	0	-0.298649	2.120894	-0.000000
12	6	0	0.701926	3.321627	-0.000000
13	6	0	0.045444	4.574862	-0.000000
14	6	0	-1.482994	4.486825	-0.000000
15	1	0	-1.958743	5.471174	-0.000000
16	6	0	-1.154651	2.427271	-1.260528
17	6	0	-1.830887	3.661560	-1.220149
18	6	0	-1.154651	2.427271	1.260528
19	6	0	-1.830887	3.661560	1.220149
20	6	0	2.214552	-2.845747	0.000000
21	6	0	3.141165	-3.893841	0.000000
22	6	0	1.340894	-5.494353	0.000000
23	6	0	2.710756	-5.218605	0.000000

24	1	0	2.601793	-1.834715	0.000000
25	1	0	4.202256	-3.661460	0.000000
26	1	0	0.982012	-6.520821	0.000000
27	1	0	3.431977	-6.031320	0.000000
28	6	0	2.094269	3.304351	-0.000000
29	6	Õ	2.825856	4 501729	-0 000000
30	6	Ő	0 766337	5 760747	_0.000000
21	6	0	0.700357	5 727166	-0.000000
22	1	0	2.10/334	3.727100	-0.000000
32	1	0	2.030137	2.303470	-0.000000
33	1	U	3.911555	4.461900	-0.000000
34	1	U	0.239504	6./12068	-0.000000
35	1	0	2.733529	6.654433	-0.000000
36	6	0	-1.777269	-1.656379	2.177974
37	6	0	-2.595676	-2.180798	3.186604
38	6	0	-2.395358	-4.377069	2.207318
39	6	0	-2.891730	-3.540955	3.215465
40	1	0	-1.596575	-0.594126	2.152463
41	1	0	-3.002441	-1.512870	3.941170
42	1	Ő	-2 652035	-5 433758	2 190729
43	1	Ő	-3 523157	-3 949951	3 999560
44	6	0	1 777260	1 656370	2 177074
44	U C	0	-1.///209	-1.030379	-2.1//9/4
45	0	U	-2.5950/0	-2.180/98	-3.180004
46	6	0	-2.395358	-4.377069	-2.207318
4 7	6	0	-2.891730	-3.540955	-3.215465
48	1	0	-1.596575	-0.594126	-2.152463
49	1	0	-3.002441	-1.512870	-3.941170
50	1	0	-2.652035	-5.433758	-2.190729
51	1	0	-3.523157	-3.949951	-3.999560
52	6	0	-1.194151	1.708356	-2.453172
53	6	0	-1.993077	2.132507	-3.522939
54	6	Õ	-2.629460	4.091637	-2.272865
55	6	Ő	-2 734676	3 307136	-3 426726
56	1	Ő	-0 562821	0.843634	-2 594921
50	1	0	-0.302021	1 5 4 2 0 6 1	-2.334321
51	1	0	-2.012037	5.047252	-4.455005
30 50	1	U	-3.144009	5.04/252	-2.204/08
59	I	U	-3.35/931	3.634545	-4.254365
60	6	0	-1.194151	1.708356	2.453172
61	6	0	-1.993077	2.132507	3.522939
62	6	0	-2.629460	4.091637	2.272865
63	6	0	-2.734676	3.307136	3.426726
64	1	0	-0.562821	0.843634	2.594921
65	1	0	-2.012857	1.543061	4.435603
66	1	0	-3.144069	5.047252	2.204768
67	1	0	-3.357931	3.634545	4.254365
68	6	0	1.661864	-0.036414	-1.913040
69	6	0	2.214129	1.111582	-2.512421
70	6	Õ	1 658755	-1 215932	-2 683042
71	ő	Ő	2 777760	-0 111427	-4 524668
72	6	Ő	2 771921	1 075737	-3 792491
72	6	0	2.771921	1 255925	3 066502
73	0	0	2.208900	-1.255625	-3.900502
74	1	U	2.190940	2.06/484	-2.000379
75	I	0	1.2164/4	-2.126396	-2.301109
76	1	0	3.207118	-0.140591	-5.522944
77	1	0	3.190722	1.984205	-4.218481
78	1	0	2.184854	-2.186227	-4.528319
79	6	0	1.661864	-0.036414	1.913040
80	6	0	2.214129	1.111582	2.512421
81	6	0	1.658755	-1.215932	2.683042
82	6	0	2.777760	-0.111427	4.524668
83	6	0	2.771921	1.075737	3.792491
84	6	ő	2.208960	-1.255825	3.966502
85	1	ň	2 190940	2 067484	2 006370
86	1	0	1 216474	2.00/404	2.000379
00 07	1	0	1.2104/4	-2.120370	2.301109
0/	1	U	3.20/118	-0.140391	3.322944
88	1	U	3.190/22	1.984205	4.218481
89	1	U	2.184854	-2.186227	4.528519

Center	Atomic	1	Atomic	Coordina	ites	(Angstroms)
Number	Numbe	er	Туре	X	Y	Z
1	50	0	0.595793	0.021362	-0.	000000

2	6	0	-0.341420	-2.063079	0.000000
3	6	0	0.847913	-3.080315	0.000000
4	6	0	0.448991	-4.424165	0.000000
5 6	0	0	-1.04/005	-4.00/104	0.000000
7	6	Ő	-1.225654	-2.481263	1.195768
8	6	0	-1.566693	-3.844150	1.204057
9	6	0	-1.225654	-2.481263	-1.195768
10	6	0	-1.566693	-3.844150	-1.204057
11	6	U A	-0.302/58	2.105480	-0.000000
13	6	Ő	0.090384	4.542834	-0.000000
14	6	Õ	-1.434351	4.486809	-0.000000
15	1	0	-1.889975	5.480359	-0.000000
16	6	0	-1.150588	2.427152	-1.255509
17	6	0	-1.798556	3.670275	-1.215801
10	6	0	-1.150566	2.42/152	1.255509
20	6	Ő	2.216219	-2.814151	0.000000
21	6	0	3.148894	-3.850511	0.000000
22	6	0	1.368912	-5.462023	0.000000
23	6	0	2.731740	-5.175171	0.000000
24 25	1	0	2.600250	-1.800936	-0.000000
26	1	Ő	1.019828	-6.491346	0.000000
27	1	Õ	3.459993	-5.980578	0.000000
28	6	0	2.104301	3.230408	-0.000000
29	6	0	2.859952	4.407307	-0.000000
30	6	0	0.835044	5.709158	-0.000000
32	0	0	2.230595	5.045527	-0.000000
33	1	Ő	3.943792	4.343838	-0.000000
34	1	0	0.331246	6.672325	-0.000000
35	1	0	2.817601	6.556705	-0.000000
36	6	0	-1.775681	-1.659780	2.163909
3/	6	U A	-2.58/9/8	-2.180043	3.1/013/ 2/200582
39	6	0	-2.869409	-3.545357	3.202781
40	1	0	-1.607637	-0.594919	2.131475
41	1	0	-3.003933	-1.520970	3.920604
42	1	0	-2.614867	-5.435780	2.187244
43 11	1	0	-3.498141	-3.95/162	2 163000
45	6	Ő	-2.587978	-2.186643	-3.170137
46	6	0	-2.366319	-4.377610	-2.200582
47	6	0	-2.869409	-3.545357	-3.202781
48	1	0	-1.607637	-0.594919	-2.131475
49 50	1	0	-3.003933	-1.520970	-3.920604
51	1	Ő	-3.498141	-3.957162	-3.986539
52	6	Õ	-1.207542	1.709420	-2.443094
53	6	0	-1.998520	2.146400	-3.507808
54	6	0	-2.589209	4.114095	-2.263299
55 56	0 1	0	-2.714141	3.3318/9	-3.411491
57	1	0	-2.031435	1.557348	-4.419534
58	1	Ŏ	-3.084251	5.079487	-2.196051
59	1	0	-3.332409	3.670042	-4.237558
60	6	0	-1.207542	1.709420	2.443094
61 62	6	0	-1.998520	2.146400	3.507808
63	6	Ő	-2.714141	3.331879	3.411491
64	1	Õ	-0.591367	0.833661	2.588688
65	1	0	-2.031435	1.557348	4.419534
66	1	0	-3.084251	5.079487	2.196051
0/ 68	1 6	U A	-5.552409	5.6/0042 _0.032039	4.25/558
69	6	0	2.131696	1.123224	-1.519677
70	6	0	1.659060	-1.216593	-2.673799
71	6	0	2.709711	-0.099540	-4.537869
72	6	0	2.670970	1.092283	-3.822226
15 74	6 1	U A	2.190996	-1.252960	-3.900663
75	1	0	1.254220	-2.138261	-2.275285
76	1	0	3.125749	-0.125510	-5.541051

77	1	0	3.049147	2.009620	-4.264633
78	1	0	2.191267	-2.189589	-4.510818
79	6	0	1.632150	-0.032938	1.919877
80	6	0	2.131696	1.123224	2.538822
81	6	0	1.659060	-1.216593	2.673799
82	6	0	2.709711	-0.099540	4.537869
83	6	0	2.670970	1.092283	3.822226
84	6	0	2.190996	-1.252960	3.960663
85	1	0	2.077644	2.084767	2.044498
86	1	0	1.254220	-2.138261	2.275285
87	1	0	3.125749	-0.125510	5.541051
88	1	0	3.049147	2.009620	4.264633
89	1	0	2.191267	-2.189589	4.510818

 Table S6.
 Optimized Structural Coordinate and its Total Energy of SnMe2 (Ground State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level

 HF=-1623.1661381, NImg=0

Center	Ato	mic	Atomic	Coordina	tes (Angstroms)
Number	Nu	imber	Туре	X	Y Z
1	50	0	-0.000000	0.000000	1.312261
2	6	0	0.831659	1.502528	2.618211
3	6	0	-0.831659	-1.502528	2.618211
4	6	0	-1.574889	1.131697	0.197814
5	6	0	1.574889	-1.131697	0.197814
6	6	0	-2.094936	0.450815	-1.089433
7	6	0	2.094936	-0.450815	-1.089433
8	6	0	-2.824317	1.361761	1.096979
9	6	0	2.824317	-1.361761	1.096979
10	6	0	-1.209443	2.574679	-0.260478
11	6	0	1.209443	-2.574679	-0.260478
12	6	0	-3.164495	1.125067	-1.708262
13	6	0	3.164495	-1.125067	-1.708262
14	6	0	-3.882147	2.020938	0.438893
15	6	0	3.882147	-2.020938	0.438893
16	6	0	-2.277322	3.236610	-0.904253
17	6	0	2.277322	-3.236610	-0.904253
18	6	0	-3.553546	2.406414	-0.993205
19	6	0	3.553546	-2.406414	-0.993205
20	1	0	-4.369866	2.940049	-1.487364
21	1	0	4.369866	-2.940049	-1.487364
22	6	0	-1.588535	-0.692292	-1.699126
23	6	0	1.588535	0.692292	-1.699126
24	6	0	-2.976878	1.057054	2.448447
25	6	0	2.976878	-1.057054	2.448447
26	6	0	-0.000000	3.252458	-0.115482
27	6	0	-0.000000	-3.252458	-0.115482
28	6	0	-3.741571	0.643951	-2.876558
29	6	0	3.741571	-0.643951	-2.876558
30	6	0	-5.070481	2.317480	1.093424
31	6	0	5.070481	-2.317480	1.093424
32	6	0	-2.135580	4.529243	-1.390621
33	6	0	2.135580	-4.529243	-1.390621
34	6	0	-2.164587	-1.185908	-2.876618
35	6	0	2.164587	1.185908	-2.876618
36	6	0	-4.172041	1.357534	3.1165/5
37	6	0	4.172041	-1.35/534	3.116575
38	0	U	0.14/866	4.55/066	-0.60/6/4
39	0	0	-0.14/800	-4.55/066	-0.60/6/4
40	6	0	-3.244018	-0.52/550	-3.401100
41	6	0	5.244010	0.52/550	-3.401100
42	0	U	-5.222217	1.974554	2.442118
43	6	0	5.222217	-1.9/4554	2.442110
44	6	0	-0.913009	5.190390	-1.243008
45	0	0	0.913009	-5.190590	-1.243000
40	1	0	-0.728644	-1.203303	-1.293573
49	1	0	-2 176060	1.203303	-1.275575 3 011714
40 40	1	0	-2.1/0209	-0 503380	3.011714
	1	0	2.1/0709 0 8/0310	2 781242	0.364386
51	1	0	-0 849319	_2.781342	0 364386
52	1	0	-4 568102	1 182163	-3 334793
53	1	0	4 568102	-1 182163	-3 334793
54	1	Ő	-5 870395	2 824768	0 559140
54		U	-3.070393	2.024/00	0.007140

55	1	0	5.870395	-2.824768	0.559140
56	1	0	-2.973550	5.016620	-1.883502
57	1	0	2.973550	-5.016620	-1.883502
58	1	0	-1.754505	-2.083934	-3.330217
59	1	0	1.754505	2.083934	-3.330217
60	1	0	-4.271364	1.105890	4.168997
61	1	0	4.271364	-1.105890	4.168997
62	1	0	1.100843	5.065257	-0.488645
63	1	0	-1.100843	-5.065257	-0.488645
64	1	0	-3.690725	-0.910661	-4.374659
65	1	0	3.690725	0.910661	-4.374659
66	1	0	-6.149048	2.203012	2.961227
67	1	0	6.149048	-2.203012	2.961227
68	1	0	-0.795932	6.207598	-1.623051
69	1	0	0.795932	-6.207598	-1.623051
70	1	0	0.179165	2.380424	2.618756
71	1	0	0.883191	1.114309	3.641302
72	1	0	1.837911	1.814875	2.323890
73	1	0	-0.179165	-2.380424	2.618756
74	1	0	-0.883191	-1.114309	3.641302
75	1	0	-1.837911	-1.814875	2.323890

Table S7. Optimized Structural Coordinate and its Total Energy of SnMe2 (Ground State) at ω B97XD/B1(Sn;LanL2DZ, C,H;6-31G(d)) level HF=-1622.5970242, NImg=0

Center	Ato	mic	Atomic	Coordina	ites (4	Angstroms
Number	Nu	ımber	Туре	Χ	Y	Z
1	50		0.00000	0 000000	1 2	 0 <i>15</i> 99
2	30 6	0	0.828805	1 501942	2 60	04300 18699
23	6	0	0.828805	1.501942	2.00	18600
4	6	Ő	-1 568285	1 122963	0.19)5531
5	6	0	1 568285	-1 122963	0.19	5531 5531
6	6	ŏ	-2.086713	0 440860	-1.08	R4014
7	6	ŏ	2.086713	-0 440860	-1.08	84014
8	6	ŏ	-2.811082	1.353087	1.09	2372
9	6	Ő	2.811082	-1.353087	1.09	2372
10	6	0	-1.205360	2.559151	-0.2	62141
11	6	Ŏ	1.205360	-2.559151	-0.2	62141
12	6	0	-3.152262	1.109496	-1.7	02870
13	6	Ŏ	3.152262	-1.109496	-1.7	02870
14	6	0	-3.866031	2.007805	0.4	36879
15	6	0	3.866031	-2.007805	0.4	36879
16	6	0	-2.268034	3.216912	-0.9	06180
17	6	0	2.268034	-3.216912	-0.9	06180
18	6	0	-3.540495	2.388878	-0.9	92873
19	6	0	3.540495	-2.388878	-0.9	92873
20	1	0	-4.357243	2.921194	-1.4	87222
21	1	0	4.357243	-2.921194	-1.4	87222
22	6	0	-1.580293	-0.700934	-1.6	85968
23	6	0	1.580293	0.700934	-1.6	85968
24	6	0	-2.958691	1.053126	2.4	41066
25	6	0	2.958691	-1.053126	2.4	41066
26	6	0	-0.000000	3.234350	-0.1	13504
27	6	0	0.000000	-3.234350	-0.1	13504
28	6	0	-3.727269	0.624583	-2.8	65858
29	6	0	3.727269	-0.624583	-2.8	65858
30	6	0	-5.049547	2.305455	1.0	90903
31	6	0	5.049547	-2.305455	1.0	90903
32	6	0	-2.125789	4.504965	-1.3	93150
33	6	0	2.125789	-4.504965	-1.3	93150
34	6	0	-2.153647	-1.199007	-2.8	57551
35	6	0	2.153647	1.199007	-2.8	57551
36	6	0	-4.148770	1.354434	3.1	08810
37	6	0	4.148770	-1.354434	3.1	08810
38	6	0	0.148918	4.533947	-0.6	05883
39	6	0	-0.148918	-4.533947	-0.6	05883
40	6	0	-3.230018	-0.545759	-3.4	43003
41	6	0	3.230018	0.545759	-3.4	43003
42	6	0	-5.197269	1.967163	2.4	36893
43	6	0	5.197269	-1.967163	2.4	36893
44	6	0	-0.906959	5.169645	-1.2	43950
45	6	0	0.906959	-5.169645	-1.2	43950
46	1	0	-0.719901	-1.214107	-1.2	77986

47	1	0	0.719901	1.214107	-1.277986
48	1	0	-2.157747	0.590640	3.005478
49	1	0	2.157747	-0.590640	3.005478
50	1	0	0.847625	2.764694	0.372785
51	1	0	-0.847625	-2.764694	0.372785
52	1	0	-4.553795	1.158958	-3.327438
53	1	0	4.553795	-1.158958	-3.327438
54	1	0	-5.851089	2.810956	0.558372
55	1	0	5.851089	-2.810956	0.558372
56	1	0	-2.961474	4.992750	-1.888419
57	1	0	2.961474	-4.992750	-1.888419
58	1	0	-1.742759	-2.097877	-3.307077
59	1	0	1.742759	2.097877	-3.307077
60	1	0	-4.245854	1.106731	4.161605
61	1	0	4.245854	-1.106731	4.161605
62	1	0	1.100441	5.042723	-0.484505
63	1	0	-1.100441	-5.042723	-0.484505
64	1	0	-3.675629	-0.932975	-4.354492
65	1	0	3.675629	0.932975	-4.354492
66	1	0	-6.121995	2.196979	2.957595
67	1	0	6.121995	-2.196979	2.957595
68	1	0	-0.788378	6.179459	-1.625175
69	1	0	0.788378	-6.179459	-1.625175
70	1	0	0.173460	2.378039	2.611845
71	1	0	0.882528	1.114725	3.631794
72	1	0	1.833718	1.817350	2.312900
73	1	0	-0.173460	-2.378039	2.611845
74	1	0	-0.882528	-1.114725	3.631794
75	1	0	-1.833718	-1.817350	2.312900

 Table S8.
 Optimized Structural Coordinate and its Total Energy of SnMe2 (Transition State) at B3LYP-D3/B1(Sn:LanL2DZ, C,H:6-31G(d)) level

 HF=-1623.1484911, NImg=1

Center	Ator	mic	Atomic	Coordina	ates (Angstroms)
Number	Nu	mber	Туре	Х	Y Z
1	50	0	-0.907491	0.011149	-0.000000
2	6	0	-0.046364	-2.099884	0.000000
3	6	0	-1.289023	-3.056507	0.000000
4	6	0	-0.952695	-4.425295	0.000000
5	6	0	0.539050	-4.680775	0.000000
6	1	0	0.789521	-5.744982	0.000000
7	6	0	0.808142	-2.561536	-1.206166
8	6	0	1.092398	-3.943477	-1.210135
9	6	0	0.808142	-2.561536	1.206166
10	6	0	1.092398	-3.943477	1.210135
11	6	0	-0.045830	2.095755	-0.000000
12	6	0	-1.183057	3.165969	-0.000000
13	6	0	-0.685581	4.489044	-0.000000
14	6	0	0.842716	4.582345	-0.000000
15	1	0	1.200417	5.615441	-0.000000
16	6	0	0.773235	2.490995	1.251528
17	6	0	1.288924	3.801034	1.219815
18	6	0	0.773235	2.490995	-1.251528
19	6	0	1.288924	3.801034	-1.219815
20	6	0	-2.645503	-2.727235	0.000000
21	6	0	-3.630085	-3.723960	0.000000
22	6	0	-1.922262	-5.420318	0.000000
23	6	0	-3.275730	-5.069714	0.000000
24	1	0	-2.978786	-1.699548	-0.000000
25	1	0	-4.677219	-3.433739	-0.000000
26	1	0	-1.621063	-6.465224	0.000000
27	1	0	-4.040852	-5.841176	0.000000
28	6	0	-2.561151	2.968180	-0.000000
29	6	0	-3.433015	4.067176	-0.000000
30	6	0	-1.546949	5.576797	-0.000000
31	6	0	-2.932468	5.365774	-0.000000
32	1	0	-2.983247	1.969476	-0.000000
33	1	0	-4.506073	3.895868	-0.000000
34	1	0	-1.143887	6.586884	-0.000000
35	1	0	-3.610893	6.214511	-0.000000
36	6	0	1.374326	-1.770897	-2.197289
37	6	0	2.152819	-2.341132	-3.213703
38	6	0	1.859224	-4.518249	-2.214643

39	6	0	2.383388	-3.713810	-3.234730
40	1	0	1.253680	-0.699332	-2.170458
41	1	0	2.582271	-1.700464	-3.979285
42	1	0	2.062509	-5.586443	-2.195530
43	1	0	2.984453	-4.158139	-4.023380
44	6	0	1.374326	-1.770897	2.197289
45	6	0	2.152819	-2.341132	3.213703
46	6	0	1.859224	-4.518249	2.214643
47	6	0	2.383388	-3.713810	3.234730
48	1	0	1.253680	-0.699332	2.170458
49	1	0	2.582271	-1.700464	3.979285
50	1	0	2.062509	-5.586443	2.195530
51	1	0	2.984453	-4.158139	4.023380
52	6	0	0.930392	1.758565	2.424369
53	6	0	1.678813	2.264545	3.495113
54	6	0	2.036952	4.312877	2.272836
55	6	0	2.254354	3.530097	3.412785
56	1	0	0.435478	0.805115	2.543945
57	1	0	1.795966	1.665773	4.394292
58	1	0	2.428080	5.326008	2.216054
59	1	0	2.839488	3.922499	4.239913
60	6	0	0.930392	1.758565	-2.424369
61	6	0	1.678813	2.264545	-3.495113
62	6	0	2.036952	4.312877	-2.272836
63	6	0	2.254354	3.530097	-3.412785
64	1	0	0.435478	0.805115	-2.543945
65	1	0	1.795966	1.665773	-4.394292
66	1	0	2.428080	5.326008	-2.216054
67	1	0	2.839488	3.922499	-4.239913
68	6	0	-2.085870	0.044771	1.806154
69	6	0	-2.085870	0.044771	-1.806154
70	1	0	-1.950030	0.997685	2.324726
71	1	0	-3.152940	-0.074614	1.591346
72	1	0	-1.784384	-0.770321	2.471520
73	1	0	-1.950030	0.997685	-2.324726
74	1	0	-1.784384	-0.770321	-2.471520
75	1	0	-3.152940	-0.074614	-1.591346

Table S9.	Optimized Structural	Coordinate and its To	tal Energy of SnMe2	? (Transition Sta	ate) at ωB97XD/B1(Si	n;LanL2DZ, C	C,H;6-31G(d)) level
HF=-1622	.577781, NImg=1						

Center Number	Ato Nu	mic Imber	Atomic Type	Coordina X	ites (Angstro V Z	oms)
1	50	0	0.920581	0.010136	-0.000000	
2	6	0	0.052750	2.075993	-0.000000	
3	6	0	1.170013	3.156824	-0.000000	
4	6	0	0.654991	4.467768	-0.000000	
5	6	0	-0.870930	4.539056	-0.000000	
6	1	0	-1.243171	5.566751	-0.000000	
7	6	0	-0.763387	2.459735	-1.250104	
8	6	0	-1.302414	3.754013	-1.217113	
9	6	0	-0.763387	2.459735	1.250104	
10	6	0	-1.302414	3.754013	1.217113	
11	6	0	0.050805	-2.080179	0.000000	
12	6	0	1.284125	-3.038353	-0.000000	
13	6	0	0.945015	-4.400518	0.000000	
14	6	0	-0.542913	-4.649595	0.000000	
15	1	0	-0.797932	-5.712462	0.000000	
16	6	0	-0.805129	-2.535473	1.199581	
17	6	0	-1.092298	-3.911015	1.206093	
18	6	0	-0.805129	-2.535473	-1.199581	
19	6	0	-1.092298	-3.911015	-1.206093	
20	6	0	2.546033	2.977037	-0.000000	
21	6	0	3.399803	4.084961	-0.000000	
22	6	0	1.498413	5.564094	-0.000000	
23	6	0	2.882677	5.372139	-0.000000	
24	1	0	2.983715	1.984086	-0.000000	
25	1	0	4.474484	3.929324	-0.000000	
26	1	0	1.083194	6.568697	-0.000000	
27	1	0	3.549122	6.229363	-0.000000	
28	6	0	2.637858	-2.714778	-0.000000	
29	6	0	3.615833	-3.711744	-0.000000	
30	6	0	1.907518	-5.396811	-0.000000	

31	6	0	3.258014	-5.052085	-0.000000
32	1	0	2.977567	-1.688515	-0.000000
33	1	0	4.663294	-3.425534	-0.000000
34	1	0	1.603333	-6.440340	0.000000
35	1	0	4.020179	-5.825419	-0.000000
36	6	0	-0.885922	1.735910	-2.427744
37	6	0	-1.634713	2.229420	-3.498327
38	6	0	-2.051310	4.254177	-2.269847
39	6	0	-2.241929	3.475024	-3.411816
40	1	0	-0.359132	0.799604	-2.554743
41	1	0	-1.725374	1.636937	-4.403895
42	1	0	-2.463453	5.258376	-2.212769
43	1	0	-2.828647	3.858236	-4.241134
44	6	0	-0.885922	1.735910	2.427744
45	6	0	-1.634713	2.229420	3.498327
46	6	0	-2.051310	4.254177	2.269847
47	6	0	-2.241929	3.475024	3.411816
48	1	0	-0.359132	0.799604	2.554743
49	1	0	-1.725374	1.636937	4.403895
50	1	0	-2.463453	5.258376	2.212769
51	1	0	-2.828647	3.858236	4.241134
52	6	0	-1.377834	-1.739380	2.176117
53	6	0	-2.160591	-2.301247	3.188001
54	6	0	-1.863321	-4.478163	2.206077
55	6	0	-2.389705	-3.669604	3.216163
56	1	0	-1.261361	-0.666989	2.139300
57	1	0	-2.597368	-1.656180	3.944687
58	1	0	-2.070416	-5.545192	2.191588
59	1	0	-2.995827	-4.108361	4.003054
60	6	0	-1.377834	-1.739380	-2.176117
61	6	0	-2.160591	-2.301247	-3.188001
62	6	0	-1.863321	-4.478163	-2.206077
63	6	0	-2.389705	-3.669604	-3.216163
64	1	0	-1.261361	-0.666989	-2.139300
65	1	0	-2.597368	-1.656180	-3.944687
66	1	0	-2.070416	-5.545192	-2.191588
67	1	0	-2.995827	-4.108361	-4.003054
68	6	0	2.103800	0.038063	1.800243
69	6	0	2.103800	0.038063	-1.800243
70	1	0	1.800158	-0.775612	2.466826
71	1	0	3.168975	-0.089015	1.581149
72	1	0	1.979514	0.991624	2.321260
73	1	0	1.800158	-0.775612	-2.466826
74	1	0	1.979514	0.991624	-2.321260
75	1	0	3.168975	-0.089015	-1.581149

Fig. S32. Potential energies of gear slippage as a function of the reaction coordinate for SnPh2 calculated at the IRC-B3LYP-D3/6-31G* level.

Fig. S33. Potential energies of gear slippage as a function of the reaction coordinate for SnPh2 calculated at the IRC- ω B97XD/6-31G* level.

Fig. S34. Potential energies of gear slippage as a function of the reaction coordinate for SnMe2 calculated at the IRC-B3LYP-D3/6-31G* level.

Fig. S35. Potential energies of gear slippage as a function of the reaction coordinate for SnMe2 calculated at the IRC- ω B97XD/6-31G* level.