Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Solvent-free base-controlled addition reaction of *H*-phosphonates and *H*-phosphine oxides to α -CF₃ styrenes: facile synthesis of β -CF₃-substituted

phosphonates and phosphine oxides

Qianding Zeng,^a Ying Liu,^a Jingjing He,^a Yupian Deng,^a Pai Zheng,^a Zhudi Sun,^a and Song Cao*^{a,b}

^aShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China

Contents

1. General information	S2
2. α-(Trifluoromethyl)styrenes (1a–y), <i>H</i> -phosphonates and <i>H</i> -phosphine oxides (2a–p)	used in
this reaction.	S2
3. General procedure for the synthesis of compounds 3aa-ya, 3hb-hg and 3hl-hp	S 3
4. General procedure for the synthesis of compounds 3hh-hk	S 3
5. Procedure for the synthesis of compound 4	S 3
6. Analytical data of the target compounds	S4
7. Reference	S19
8. ¹ H, ¹³ C ¹ , ¹⁹ F, ³¹ P NMR and HRMS (EI) spectra of the target compounds	S20

1. General information

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Melting points were measured in an open capillary using EZ-Melt automated melting point apparatus and are uncorrected. ¹H NMR spectra were obtained on a 400 spectrometer (400 MHz) using TMS as internal standard. ¹³C NMR spectra were obtained on a 400 spectrometer (100 MHz) or 600 spectrometer (150 MHz) using TMS as internal standard. ¹⁹F NMR spectra were obtained on a 600 spectrometer (564 MHz) with CF₃COOH as an internal standard. CDCl₃ was used as the NMR solvents. ³¹P NMR spectra were obtained on a 600 spectrometer (243 MHz) with H₃PO₄ as an internal standard. CDCl₃ was used as the NMR solvents. High resolution mass spectra (HRMS) were acquired in the EI mode using a TOF mass analyzer. The GC-MS was recorded on Agilent 5977. The LC was recorded on Shimadzu LC-20AT. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

All α-(trifluoromethyl)styrenes are known compounds. Substrates **1a**, **1g–h**, **1m–q**, **1t–u**, **1w** were prepared according to reference.¹ Substrates **1b**, **1f**, **1j–k**, **1s**, **1x** were prepared according to reference.² Substrates **1c–e**, **1i** were prepared according to reference.³ Substrates **1r**, **1y** were prepared according to reference.⁴ Substrate **1l** was prepared according to reference.⁵ Substrate **1v** was prepared according to reference.⁶

H-phosphinates and *H*-phosphine oxides (2a-m) were obtained from commercial suppliers.

Substrate 2n was prepared according to reference.⁷

Substrate 20 was prepared according to reference.8

Substrate 2p was prepared according to reference.9

3. General Procedure for the Synthesis of Compounds 3aa-ya, 3hb-hg and 3hl-hp

To a glass tube charged with a stirring bar were added α -(trifluoromethyl)styrenes **1a**-**y** (1.0 mmol), *H*-Phosphonates **2a**-**l**, **2l**-**p** (276 mg, 2.0 mmol, 2.0 equiv) and DBN (248 mg, 2.0 mmol, 2.0 equiv) under argon atmosphere. The tube was flushed with argon three times to remove the air and then sealed with a septum. Subsequently, the reaction mixture was stirred at room temperature for 2 h (monitored by TLC). After the completion of reaction, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (10 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was separated and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by column chromatography on silica gel to afford the final compound (**3aa-ya**, **3hb-hg** and **3hl-hp**). Compounds **3aa-ya** and **3hb-hg** were purified by column chromatography on silica gel using *n*-hexane/ethyl acetate (3/1) as an eluent. Compounds **3hn-hp** were purified by column chromatography on silica gel using *n*-hexane/ethyl acetate (20/1) as an eluent.

4. General Procedure for the Synthesis of Compounds 3hh-hk

To a glass tube charged with a stirring bar were added methyl 4-(3,3,3-trifluoroprop-1-en-2-yl)-benzoate **1h** (230 mg, 1.0 mmol), *H*-Phosphine oxides **2h**–**k** (2.0 mmol, 2.0 equiv), DBN (248 mg, 2.0 mmol, 2.0 equiv) and DMF (6 mL) under argon atmosphere. The tube was flushed with argon three times to remove the air and then sealed with a septum. Subsequently, the reaction mixture was stirred at room temperature for 2 h (monitored by

TLC). After the completion of reaction, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (10 mL) and extracted with ethyl acetate (3×10 mL). The organic layer was separated and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by column chromatography on silica gel to afford the final compound (**3hh–hk**). Compounds **3hh** was purified by column chromatography on silica gel using dichloromethane/methanol (15/1) as an eluent. Compounds **3hi–hk** were purified by column chromatography on chromatography on silica gel using *n*-hexane/ethyl acetate (3/1) as an eluent.

5. Procedure for the Synthesis of Compound 4

To a glass tube charged with a stirring bar were added **3aa** (1.0 mmol), TMSBr (612 mg, 4.0 mmol, 4.0 equiv) and DCM (4 mL) under argon atmosphere. The tube was flushed with argon three times to remove the air and then sealed with a septum. Subsequently, the reaction mixture was stirred at room temperature under inert atmosphere for 5 h (monitored by TLC). After the completion of reaction, the solvent was removed under vacuum and to the crude was added 6 ml solvent (MeOH/H₂O = 5/1). After 1 h reaction (monitored by TLC), the solvent was removed under vacuum giving the crude phosphonic acid. and then the crude product was dissolved in anhydrous CH₃CN (4 mL). Diisopropylethylamine (387.8 mg, 3.0 mmol, 3.0 equiv) was added, followed by iodomethylpivalate (605.2 mg, 2.5 mmol, 2.5 equiv). the reaction mixture was stirred at room temperature for 12 h (monitored by TLC). After the completion of reaction, the reaction mixture was guenched with saturated aqueous solution of NH₄Cl (10 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was separated and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by column chromatography on silica using *n*-hexane/ethyl acetate (4/1) as eluent to gel to afford the final compound **4**.

6. Analytical data of the target compounds

Diethyl (2-([1,1'-biphenyl]-4-yl)-3, 3,3-trifluoropropyl)phosphonate (3aa). white solid, m.p. 96.1–97.5 °C, 68% yield (262.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.55 (m, 4H), 7.47–7.40 (m, 4H), 7.39–7.33 (m, 1H), 4.01–3.87 (m, 2H), 3.85–3.73 (m, 2H), 3.69–3.58 (m, 1H), 2.51–2.35 (m, 2H), 1.16 (t, *J* = 8.0 Hz, 3H), 1.04 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 139.4, 131.5, 128.7, 127.8, 126.6, 126.3, 126.1, 125.3 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 23.0 Hz), 60.8 (d, *J*_{C-P} = 5.0 Hz), 60.7 (d, *J*_{C-P} = 6.0 Hz), 43.8 (q, *J*_{C-F} = 28.0 Hz), 25.1 (d, *J*_{C-P} = 146.0 Hz), 15.1 (d, *J*_{C-P} = 7.0 Hz), 15.0 (d, *J*_{C-P} = 7.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.96 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.7 (s); HRMS (EI) calcd for C₁₉H₂₂F₃O₃P [M]⁺: 386.1259, found: 386.1263.

Diethyl (2-(4-cyanophenyl)-3,3,3-trifluoropropyl)phosphonate (3ba). colorless oil, 76% yield (254.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 4.03–3.90 (m, 2H), 3.88–3.77 (m, 2H), 3.76–3.67 (m, 1H), 2.50–2.27 (m, 2H), 1.19 (t, *J* = 8.0 Hz, 3H), 1.07 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 132.3, 130.2, 125.8 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 118.2, 112.8, 62.1 (d, *J*_{C-P} = 6.0 Hz), 61.9 (d, *J*_{C-P} = 7.0 Hz), 45.4 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 2.0 Hz), 25.9 (d, *J*_{C-P} = 147.0 Hz), 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.71 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.5 (s); HRMS (EI) calcd for C₁₄H₁₇F₃NO₃P [M]⁺: 335.0898, found: 335.0900.

Diethyl (2-(3-cyanophenyl)-3,3,3-trifluoropropyl)phosphonate (3ca). colorless oil, 74% yield (247.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.59 (m, 3H), 7.55–7.48 (m, 1H), 4.03–3.89 (m, 2H), 3.89–3.76 (m, 2H), 3.76–3.68 (m, 1H), 2.50–2.28 (m, 2H), 1.19 (t, *J* = 8.0 Hz, 3H), 1.07 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 133.8, 132.8, 132.2, 129.5, 125.8 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 118.2, 112.9, 62.1 (d, *J*_{C-P} = 7.0 Hz), 61.8 (d, *J*_{C-P} = 7.0 Hz), 45.0 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 2.0 Hz), 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.97 (d, *J*_{H-F} = 5.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.6 (s); HRMS (EI) calcd for C₁₄H₁₇F₃NO₃P [M]⁺: 335.0898, found: 335.0900.

Diethyl (3,3,3-trifluoro-2-(4-nitrophenyl)propyl)phosphonate (3da). colorless oil, 74% yield (262.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 12.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 4.05–3.94 (m, 2H), 3.93–3.82 (m, 2H), 3.81–3.71 (m, 1H), 2.53–2.32 (m, 2H), 1.20 (t, *J* = 8.0 Hz, 3H), 1.07 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 140.7, 130.7, 125.7 (qd, *J*_{C-F} = 279.0 Hz, *J*_{C-P} = 22.0 Hz), 123.7, 62.1 (d, *J*_{C-P} = 6.0 Hz), 61.9 (d, *J*_{C-P} = 7.0 Hz), 45.1 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 2.0 Hz), 25.9 (d, *J*_{C-P} = 147.0 Hz), 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ –70.67 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.4 (s); HRMS (EI) calcd for C₁₃H₁₇F₃NO₅P [M]⁺: 355.0796, found: 355.0793.

Diethyl (3,3,3-trifluoro-2-(3-nitrophenyl)propyl)phosphonate (3ea). colorless oil, 76% yield (269.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.64–7.55 (m, 1H), 4.03–3.93 (m, 2H), 3.92–3.82 (m, 2H), 3.82–3.72 (m, 1H), 2.53–2.34 (m, 2H), 1.18 (t, J = 8.0 Hz, 3H), 1.07 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 134.6, 128.7, 124.8 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 123.2, 122.7, 61.1 (d, $J_{C-P} = 6.0$ Hz), 60.9 (d, $J_{C-P} = 7.0$ Hz), 44.0 (qd, $J_{C-F} = 29.0$ Hz, $J_{C-P} = 2.0$ Hz), 24.8 (d, $J_{C-P} = 145.0$ Hz), 15.2 (d, $J_{C-P} = 6.0$ Hz), 15.1 (d, $J_{C-P} = 6.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.96 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.4 (s); HRMS (EI) calcd for C₁₃H₁₇F₃NO₅P [M]⁺: 355.0796, found:355.0799.

Diethyl (3,3,3-trifluoro-2-(4-(methylsulfonyl)phenyl)propyl)phosphonate (3fa). colorless oil, 67% yield (260.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 4.02–3.91 (m, 2H), 3.90–3.79 (m, 2H), 3.78–3.68 (m, 1H), 3.08 (s, 3H), 2.51–2.34 (m, 2H), 1.18 (t, *J* = 8.0 Hz, 3H), 1.06 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 139.8, 130.4, 127.6, 125.8 (qd, *J*_{C-F} = 279.0 Hz, *J*_{C-P} = 23.0 Hz), 62.1 (d, *J*_{C-P} = 6.0 Hz), 61.9 (d, *J*_{C-P} = 7.0 Hz), 45.2 (qd, *J*_{C-F} = 29.0 Hz, *J*_{C-P} = 2.0 Hz), 44.4, 25.9 (d, *J*_{C-P} = 147.0 Hz), 16.2 (d, *J*_{C-P} = 7.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.62 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.8–25.3 (m); HRMS (EI) calcd for C₁₄H₂₀F₃O₅PS [M]⁺: 388.0721, found: 388.0719.

Diethyl (2-(4-acetylphenyl)-3,3,3-trifluoropropyl)phosphonate (3ga). colorless oil, 72% yield (253.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 3.94–3.81 (m, 2H), 3.80–3.69 (m, 2H), 3.66–3.56 (m, 1H), 2.54 (s, 3H), 2.42–2.26 (m, 2H), 1.09 (t, J = 8.0 Hz, 3H), 0.98 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 138.8, 137.3, 129.6, 128.5, 126.0 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 22.0$ Hz), 62.0 (d, $J_{C-P} = 6.0$ Hz), 61.9 (d, $J_{C-P} = 7.0$ Hz), 45.2 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 26.6, 25.9 (d, $J_{C-P} = 145.0$ Hz), 16.1 (d, $J_{C-P} = 7.0$ Hz), 16.0 (d, $J_{C-P} = 7.0$ Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ –70.76 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.0 (s); HRMS (EI) calcd for C₁₅H₂₀F₃O₄P [M]⁺: 352.1051, found: 352.1054.

Methyl 4-(3-(diethoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3ha). colorless oil, 74% yield (272.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 4.01–3.87 (m, 5H), 3.86–3.75 (m, 2H), 3.72–3.60 (m, 1H), 2.50–2.32 (m, 2H), 1.16 (t, J = 8.0 Hz, 3H), 1.05 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 138.6, 130.5, 129.8, 129.4, 126.0 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 61.9 (d, $J_{C-P} = 7.0$ Hz), 61.8 (d, $J_{C-P} = 8.0$ Hz), 52.2, 45.2 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 26.0 (d, $J_{C-P} = 147.0$ Hz), 16.2 (d, $J_{C-P} = 7.0$ Hz), 16.1 (d, $J_{C-P} = 6.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.82 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.1 (s); HRMS (EI) calcd for C₁₅H₂₀F₃O₅P [M]⁺: 368.1000, found: 368.0998.

Methyl 3-(3-(diethoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3ia). colorless oil, 78% yield (287.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.00 (m, 2H), 7.56 (d, J = 8.0 Hz 1H), 7.46 (t, J = 8.0 Hz 1H),4.01–3.87 (m, 5H), 3.86–3.76 (m, 2H), 3.73–3.62 (m, 1H), 2.50–2.35 (m, 2H), 1.15 (t, J = 8.0 Hz, 3H), 1.05 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 134.1, 133.8, 130.6, 130.4, 129.8, 128.8, 126.1 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 61.9 (d, $J_{C-P} = 7.0$ Hz), 61.8 (d, $J_{C-P} = 6.0$ Hz), 52.3, 45.1 (qd, $J_{C-F} = 29.0$ Hz, $J_{C-P} = 2.0$ Hz), 25.9 (d, $J_{C-P} = 145.0$ Hz), 16.1 (d, $J_{C-P} = 6.0$ Hz), 16.0 (d, $J_{C-P} = 5.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.98 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.5–25.9 (m); HRMS (EI) calcd for C₁₅H₂₀F₃O₅P [M]⁺: 368.1000, found: 368.0997.

Diethyl (2-(4-(dimethylcarbamoyl)phenyl)-3,3,3-trifluoropropyl)phosphonate (3ja). colorless oil, 80% yield (304.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 4.04–3.87 (m, 2H), 3.86–3.73 (m, 2H), 3.72–3.62 (m, 1H), 3.11 (s, 3H), 2.98 (s, 3H), 2.50–2.31 (m, 2H), 1.18 (t, *J* = 8.0 Hz, 3H), 1.08 (t, *J* = 8.0 Hz, 3H); ¹³C (100 MHz, CDCl₃) δ 170.8, 136.6, 135.1, 129.3, 127.4, 126.1 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 61.9 (d, *J*_{C-F} = 4.0 Hz), 61.8 (d, *J*_{C-F} = 4.0 Hz), 45.0 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 2.0 Hz), 39.5, 35.3, 25.9

(d, $J_{C-P} = 147.0 \text{ Hz}$), 16.2 (d, $J_{C-P} = 4.0 \text{ Hz}$), 16.1 (d, $J_{C-P} = 4.0 \text{ Hz}$); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.91 (d, $J_{H-F} = 11.3 \text{ Hz}$); ³¹P NMR (243 MHz, CDCl₃) δ 26.6–26.1 (m); HRMS (EI) calcd for C₁₆H₂₃F₃NO₄P [M]⁺: 381.1317, found: 381.1316.

Diethyl (3,3,3-trifluoro-2-(4-(trifluoromethyl)phenyl)propyl)phosphonate (3ka). colorless oil, 74% yield (279.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 4.02–3.88 (m, 2H), 3.87–3.76 (m, 2H), 3.73–3.63 (m, 1H), 2.51–2.31 (m, 2H), 1.16 (t, *J* = 8.0 Hz, 3H), 1.03 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 131.0 (q, *J*_{C-F} = 32.0 Hz), 129.8, 126.2 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 125.5 (q, *J*_{C-F} = 4.0 Hz), 123.9 (q, *J*_{C-F} = 270.0 Hz), 62.0 (d, *J*_{C-P} = 6.0 Hz), 61.8 (d, *J*_{C-P} = 7.0 Hz), 45.2 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 2.0 Hz), 26.0 (d, *J*_{C-P} = 147.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz), 16.0 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –62.87 (s, 3F), –70.87 (d, *J*_{H-F} = 5.6 Hz, 3F); ³¹P NMR (243 MHz, CDCl₃) δ 25.9 (s); HRMS (EI) calcd for C₁₄H₁₇F₆O₃P [M]⁺: 378.0820, found: 378.0818.

Diethyl (2-(3,5-dichlorophenyl)-3,3,3-trifluoropropyl)phosphonate (3la). colorless oil, 66% yield (249.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.25 (s, 2H), 4.04–3.93 (m, 2H), 3.92–3.84 (m, 1H), 3.83–3.75 (m, 1H), 3.74–3.64 (m, 1H), 2.46–2.23 (m, 2H), 1.20 (t, *J* = 8.0 Hz, 3H), 1.12 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 135.2, 128.9, 127.9, 125.8 (qd, *J*_{C-F} = 279.0 Hz, *J*_{C-P} = 22.0 Hz), 62.1 (d, *J*_{C-P} = 6.0 Hz), 61.9 (d, *J*_{C-P} = 6.0 Hz), 44.9 (q, *J*_{C-F} = 28.0 Hz), 26.0 (d, *J*_{C-P} = 147.0 Hz), 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.84 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.5 (s); HRMS (EI) calcd for C₁₃H₁₆Cl₂F₃O₃P [M]⁺: 378.0166, found: 378.0176.

Diethyl (2-(4-chlorophenyl)-3,3,3-trifluoropropyl)phosphonate (3ma). colorless oil, 68% yield (233.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 12.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.01–3.87 (m, 2H), 3.86–3.78 (m, 1H), 3.77–3.63 (m, 2H), 2.46–2.25 (m, 2H), 1.18 (t, *J* = 8.0 Hz, 3H), 1.08 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 132.1, 130.6, 128.8, 126.1 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 61.9 (d, $J_{C-P} = 6.0$ Hz), 61.8 (d, $J_{C-P} = 6.0$ Hz), 44.7 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 26.0 (d, $J_{C-P} = 146.0$ Hz), 16.2 (d, $J_{C-P} = 6.0$ Hz), 16.1 (d, $J_{C-P} = 6.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –71.19 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.3 (s); HRMS (EI) calcd for C₁₃H₁₇ClF₃O₃P [M]⁺: 344.0556, found: 344.0552.

Diethyl (2-(3-chlorophenyl)-3,3,3-trifluoropropyl)phosphonate (3na). colorless oil, 61% yield (209.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.28 (m, 3H), 7.27–7.22 (m, 1H), 4.02–3.88 (m, 2H), 3.87–3.78 (m, 1H), 3.77–3.62 (m, 2H), 2.47–2.27 (m, 2H), 1.18 (t, *J* = 8.0 Hz, 3H), 1.08 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 134.5, 129.9, 129.4, 128.8, 127.6, 126.2 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 61.9 (d, *J*_{C-P} = 7.0 Hz), 61.8 (d, *J*_{C-P} = 7.0 Hz), 45.0 (qd, *J*_{C-F} = 29.0 Hz, *J*_{C-P} = 1.0 Hz), 26.0 (d, *J*_{C-P} = 147.0 Hz), 16.1 (d, *J*_{C-P} = 7.0 Hz), 16.0 (d, *J*_{C-P} = 7.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.98 (d, *J*_{H-F} = 5.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.1 (s); HRMS (EI) calcd for C₁₃H₁₇ClF₃O₃P [M]⁺: 344.0556, found: 344.0551.

Diethyl (3,3,3-trifluoro-2-(naphthalen-2-yl)propyl)phosphonate (3pa). colorless oil, 61% yield (219.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.78 (m, 4H), 7.54–7.42 (m, 3H), 4.00–3.79 (m, 3H), 3.78–3.68 (m, 1H), 3.57–3.46 (m, 1H), 2.56–2.45 (m, 2H), 1.09 (t, J = 8.0 Hz, 3H), 0.89 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 133.1, 131.0, 129.1, 128.4, 128.0, 127.6, 126.5, 126.4 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 23.0$ Hz), 126.3, 126.1, 61.8 (d, $J_{C-P} = 7.0$ Hz), 45.3 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 1.0$ Hz), 26.2 (d, $J_{C-P} = 145.0$ Hz), 16.1 (d, $J_{C-P} = 6.0$ Hz), 15.9 (d, $J_{C-P} = 6.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.72 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.7 (s); HRMS (EI) calcd for C₁₇H₂₀F₃O₃P [M]⁺: 360.1102, found: 360.1100.

Diethyl (3,3,3-trifluoro-2-(4-(trifluoromethoxy)phenyl)propyl)phosphonate (3qa). colorless oil, 72% yield (283.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.03–3.87 (m, 2H), 3.86–3.72 (m, 2H), 3.70–3.59 (m, 1H), 2.48–2.28 (m, 2H), 1.17 (t, *J* = 8.0 Hz, 3H), 1.04 (t, *J* = 8.0 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 149.4, 132.4, 130.8, 126.1 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 23.0$ Hz), 121.1, 120.4 (q, $J_{C-F} = 250.0$ Hz), 61.9 (d, $J_{C-P} = 6.0$ Hz), 61.8 (d, $J_{C-P} = 6.0$ Hz), 44.7 (q, $J_{C-F} = 29.0$ Hz), 26.2 (d, $J_{C-P} = 147.0$ Hz), 16.1 (d, $J_{C-P} = 7.0$ Hz), 16.0 (d, $J_{C-P} = 7.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –57.99 (s, 3F), –71.19 (d, $J_{H-F} = 11.3$ Hz, 3F); ³¹P NMR (243 MHz, CDCl₃) δ 26.2 (s); HRMS (EI) calcd for C₁₄H₁₇F₆O₄P [M]⁺: 394.0769, found: 394.0774.

Diethyl (3,3,3-trifluoro-2-(4-(methylthio)phenyl)propyl)phosphonate (3ra). colorless oil, 60% yield (213.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.00–3.86 (m, 2H), 3.85–3.76 (m, 1H), 3.74–3.58 (m, 2H), 2.48 (s, 3H), 2.46–2.29 (m, 2H), 1.17 (t, J = 8.0 Hz, 3H), 1.07 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 130.2, 129.6, 126.5, 126.3 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 23.0$ Hz), 61.8 (d, $J_{C-P} = 3.0$ Hz), 61.7 (d, $J_{C-P} = 3.0$ Hz), 44.7 (q, $J_{C-F} = 28.0$ Hz), 26.1 (d, $J_{C-P} = 146.0$ Hz), 16.2 (d, $J_{C-P} = 6.0$ Hz), 16.1 (d, $J_{C-P} = 7.0$ Hz), 15.6; ¹⁹F NMR (564 MHz, CDCl₃) δ –71.20 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.7 (s); HRMS (EI) calcd for C₁₄H₂₀F₃O₃PS [M]⁺: 356.0823, found: 356.0820.

Diethyl (3,3,3-trifluoro-2-(3-(methylthio)phenyl)propyl)phosphonate (3sa). colorless oil, 64% yield (227.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m, 2H), 7.22 (s, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 4.02–3.86 (m, 2H), 3.85–3.76 (m, 1H), 3.74–3.60 (m, 2H), 2.49 (s, 3H), 2.45–2.28 (m, 2H), 1.17 (t, *J* = 8.0 Hz, 3H), 1.07 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 134.4, 129.0, 127.4, 126.6, 126.2 (qd, *J*_{C-F} = 279.0 Hz, *J*_{C-P} = 23.0 Hz), 125.9, 61.8 (d, *J*_{C-P} = 3.0 Hz), 61.7 (d, *J*_{C-P} = 2.0 Hz), 45.1 (qd, *J*_{C-F} = 28.0 Hz, *J*_{C-P} = 1.0 Hz), 26.1 (d, *J*_{C-P} = 146.0 Hz), 16.2 (d, *J*_{C-P} = 6.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz), 16.0; ¹⁹F NMR (564 MHz, CDCl₃) δ –72.25 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.5 (s); HRMS (EI) calcd for C₁₄H₂₀F₃O₃PS [M]⁺: 356.0823, found: 356.0825.

Diethyl (3,3,3-trifluoro-2-(4-methoxyphenyl)propyl)phosphonate (3ta). colorless oil, 51% yield (173.4 mg);. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 12.0 Hz, 2H), 6.89 (d, J = 8.0 Hz, 2H), 3.98–3.85 (m, 2H), 3.84–3.75 (m, 4H), 3.74–3.59 (m, 2H), 2.45–2.28 (m, 2H), 1.18 (t, J = 8.0 Hz, 3H), 1.07 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 130.3, 126.4 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 23.0$ Hz), 125.6, 114.0, 61.8 (d, $J_{C-P} = 7.0$ Hz), 61.7 (d, $J_{C-P} = 7.0$ Hz), 55.3, 44.4 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 26.2 (d, $J_{C-P} = 145.0$ Hz), 16.2 (d, $J_{C-P} = 5.0$ Hz), 16.1 (d, $J_{C-P} = 4.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –71.47 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 29.2–28.5 (m); HRMS (EI) calcd for C₁₄H₂₀F₃O₄P [M]⁺: 340.1051, found: 340.1048.

Diethyl (3,3,3-trifluoro-2-(p-tolyl)propyl)phosphonate (3ua). colorless oil, 58% yield (187.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 3.98–3.74 (m, 3H), 3.73–3.55 (m, 2H), 2.46–2.35 (m, 2H), 2.34 (s, 3H), 1.16 (t, J = 8.0 Hz, 3H), 1.06 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 130.6, 129.3, 129.1, 126.4 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 61.8 (d, $J_{C-P} = 7.0$ Hz), 61.7 (d, $J_{C-P} = 7.0$ Hz), 44.7 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 1.0$ Hz), 26.1 (d, $J_{C-P} = 147.0$ Hz), 21.1, 16.1 (d, $J_{C-P} = 6.0$ Hz), 16.0 (d, $J_{C-P} = 7.0$ Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ –71.24 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.9 (s); HRMS (EI) calcd for C₁₄H₂₀F₃O₃P [M]⁺: 324.1102, found: 324.1098.

Diethyl (2-(dibenzo[b,d]furan-4-yl)-3,3,3-trifluoropropyl)phosphonate (3va). colorless oil, 74% yield (296.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.90 (m, 2H), 7.64–7.56 (m, 1H), 7.52–7.42 (m, 2H), 7.40–7.31 (m, 2H), 4.56–4.36 (m, 1H), 3.90–3.62 (m, 4H), 2.88–2.68 (m, 1H), 2.62–2.48 (m, 1H), 1.00 (t, J = 8.0 Hz, 3H), 0.97 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 154.9, 127.5, 127.2, 126.3 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 22.0$ Hz), 124.6, 124.0, 123.0, 122.9, 120.9, 120.8, 117.8, 111.9, 61.8 (d, $J_{C-P} = 5.0$ Hz), 61.7 (d, $J_{C-P} = 6.0$ Hz), 39.6 (q, $J_{C-F} = 29.0$ Hz), 25.0 (d, $J_{C-P} = 147.0$ Hz), 16.0 (d, $J_{C-P} = 6.0$ Hz), 15.9 (d, $J_{C-P} = 7.0$ Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ –70.76 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.4 (s); HRMS (EI) calcd for C₁₉H₂₀F₃O₄P [M]⁺: 400.1051, found: 400.1049.

Diethyl (3,3,3-trifluoro-2-(quinolin-3-yl)propyl)phosphonate (3wa). colorless oil, 72% yield (259.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.18 (s, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 4.05–3.86 (m, 3H), 3.85–3.74 (m, 1H), 3.74–3.59 (m, 1H), 2.60–2.45 (m, 2H), 1.09 (t, *J* = 8.0 Hz, 3H), 0.94 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 147.7, 136.7, 130.3, 129.1, 127.9, 127.5, 127.3, 126.7, 126.1 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 23.0 Hz), 62.1 (d, *J*_{C-P} = 6.0 Hz), 61.9 (d, *J*_{C-P} = 6.0 Hz), 43.3 (qd, *J*_{C-F} = 29.0 Hz, *J*_{C-P} = 2.0 Hz), 26.0 (d, *J*_{C-P} = 146.0 Hz), 16.1 (d, *J*_{C-P} = 6.0 Hz), 16.0 (d, *J*_{C-P} = 6.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.80 (d, *J*_{H-F} = 5.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.9–25.4 (m); HRMS (EI) calcd for C₁₆H₁₉F₃NO₃P [M]⁺: 361.1055, found: 361.1057.

Diethyl (2-(6-chloropyridin-3-yl)-3,3,3-trifluoropropyl)phosphonate (3xa). colorless oil, 75% yield (258.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.67 (dd, J = 4.0, 8.0 Hz, 1H), 7.37 (d, J = 4.0 Hz, 1H), 4.03–3.93 (m, 2H), 3.92–3.85 (m, 1H), 3.84–3.72 (m, 2H), 2.49–2.25 (m, 2H), 1.20 (t, J = 8.0 Hz, 3H), 1.12 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 150.5, 139.0, 128.5, 125.7 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 124.2, 62.2 (d, $J_{C-P} = 6.0$ Hz), 62.0 (d, $J_{C-P} = 6.0$ Hz), 42.6 (qd, $J_{C-F} = 29.0$ Hz, $J_{C-P} = 2.0$ Hz) 25.7 (d, $J_{C-P} = 148.0$ Hz), 16.2 (d, $J_{C-P} = 7.0$ Hz), 16.1 (d, $J_{C-P} = 7.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –71.09 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 25.3 (s); HRMS (EI) calcd for C₁₂H₁₆ClF₃NO₃P [M]⁺: 345.0508, found: 345.0505.

Diethyl (3,3,3-trifluoro-2-(thiophen-2-yl)propyl)phosphonate (3ya). colorless oil, 70% yield (221.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 4.0 Hz, 1H), 7.11 (d, *J* = 4.0 Hz, 1H), 7.03–6.97 (m, 1H), 4.15–4.03 (m, 1H), 4.01–3.83 (m, 3H), 3.78–3.69 (m, 1H), 2.51–2.26 (m, 2H), 1.20 (t, *J* = 8.0 Hz, 3H), 1.13 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 128.3, 126.8, 126.1, 125.6 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 22.0 Hz), 62.0 (d, *J*_{C-P} = 4.0 Hz), 61.9 (d, *J*_{C-P} = 4.0 Hz), 40.7 (qd, *J*_{C-F} = 30.0 Hz, *J*_{C-P} = 2.0 Hz), 27.6 (d, *J*_{C-P} = 146.0 Hz), 16.2 (d,

 $J_{C-P} = 2.0 \text{ Hz}$), 16.1 (d, $J_{C-P} = 1.0 \text{ Hz}$); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.67 (d, $J_{H-F} = 11.3 \text{ Hz}$); ³¹P NMR (243 MHz, CDCl₃) δ 25.9 (s); HRMS (EI) calcd for C₁₁H₁₆F₃NO₃PS [M]⁺: 316.0510, found: 316.0507.

Methyl 4-(3-(dimethoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hb). colorless oil, 78% yield (265.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H), 3.87–3.74 (m, 1H), 3.57 (d, J = 12.0 Hz, 3H), 3.36 (d, J = 12.0 Hz, 3H), 2.54–2.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 138.5, 130.6, 129.9, 129.3, 125.9 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 22.0$ Hz), 52.4 (d, $J_{C-P} = 7.0$ Hz), 52.3 (d, $J_{C-P} = 6.0$ Hz), 52.2, 45.1 (qd, $J_{C-F} = 29.0$ Hz, $J_{C-P} = 2.0$ Hz), 25.3 (d, $J_{C-P} = 147.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.80 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 27.0 (s); HRMS (EI) calcd for C₁₃H₁₆F₃O₅P [M]⁺: 340.0687, found: 340.0685.

Methyl 4-(3-(diisopropoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hc). colorless oil, 71% yield (281.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 4.63–4.52 (m, 1H), 4.52–4.41 (m, 1H), 3.92 (s, 3H), 3.86–3.72 (m, 1H), 2.45–2.39 (m, 2H), 1.18 (t, J = 8.0 Hz, 6H), 1.12 (d, J = 4.0 Hz, 3H), 1.00 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 138.8, 130.3, 129.7, 129.5, 126.1 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 22.0$ Hz), 70.8 (d, $J_{C-P} = 7.0$ Hz), 70.7 (d, $J_{C-P} = 6.0$ Hz), 52.2, 45.4 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 27.1 (d, $J_{C-P} = 147.0$ Hz), 23.9 (d, $J_{C-P} = 3.0$ Hz), 23.8 (d, $J_{C-P} = 4.0$ Hz), 23.7 (d, $J_{C-P} = 4.0$ Hz), 23.5 (d, $J_{C-P} = 5.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.80 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 23.8 (s); HRMS (EI) calcd for C₁₇H₂₄F₃O₅P [M]⁺: 396.1313, found: 396.1310.

Methyl 4-(3-(diisobutoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hd). white solid, m.p. 79.8–82.8 °C, 76% yield (322.2 mg);. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 3.93 (s, 3H), 3.88–3.76 (m, 1H), 3.71–3.64 (m, 1H), 3.63–3.49 (m, 2H), 3.41–3.31 (m, 1H), 2.56–2.28 (m, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz, 2H), 1.79–1.69 (m, 1H), 1.68–1.56 (m, 1H), 0.83 (d, *J* = 4.0 Hz, 3H), 0.82 (d, *J* = 4.0 Hz, 3H), 0.76 (d, *J* = 8.0 Hz), 1.50 (d, J = 8.0 H

6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 138.6, 130.5, 129.9, 129.3, 126.0 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 22.0$ Hz), 71.9 (d, $J_{C-P} = 7.0$ Hz), 70.7 (d, $J_{C-P} = 7.0$ Hz), 52.2, 45.2 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 29.1 (d, $J_{C-P} = 7.0$ Hz), 28.9 (d, $J_{C-P} = 7.0$ Hz), 25.8 (d, $J_{C-P} = 147.0$ Hz), 18.5, 18.4; ¹⁹F NMR (564 MHz, CDCl₃) δ –70.81 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 26.0 (s); HRMS (EI) calcd for C₁₉H₂₈F₃O₅P [M]⁺: 424.1626, found: 424.1623.

Methyl 4-(3-(di-*tert*-butoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3he). white solid, m.p. 82.3–84.1 °C, 79% yield (335.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 3.92 (s, 3H), 3.81–3.66 (m, 1H), 2.39–2.25 (m, 2H), 1.35 (s, 9H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 139.3, 130.2, 129.7, 129.6, 126.3 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 22.0$ Hz), 82.8 (d, $J_{C-P} = 6.0$ Hz), 82.7 (d, $J_{C-P} = 5.0$ Hz), 52.2, 46.1 (qd, $J_{C-F} = 28.0$ Hz, $J_{C-P} = 2.0$ Hz), 30.2 (d, $J_{C-P} = 4.0$ Hz), 30.1 (d, $J_{C-P} = 3.0$ Hz), 29.6 (d, $J_{C-P} = 150.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.86 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 17.8–16.4 (m); HRMS (EI) calcd for C₁₉H₂₈F₃O₅P [M]⁺: 424.1626, found: 424.1628.

Methyl 4-(3-(diphenoxyphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (**3hf**). white solid, m.p. 153.4–155.6 °C, 52% yield (241.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 12.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.29–7.24 (m, 2H), 7.23–7.06 (m, 4H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 8.0 Hz, 2H), 4.10–3.96 (m, 1H), 3.92 (s, 3H), 2.85–2.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 149.9 (d, *J*_{C-P} = 9.0 Hz), 149.7 (d, *J*_{C-P} = 9.0 Hz), 137.9, 130.8, 130.1, 129.9, 129.7, 129.4, 125.9 (qd, *J*_{C-F} = 278.0 Hz, *J*_{C-P} = 23.0 Hz), 125.4 (d, *J*_{C-P} = 14.0 Hz), 120.2 (d, *J*_{C-P} = 4.0 Hz), 120.1 (d, *J*_{C-P} = 4.0 Hz), 52.3, 45.2 (qd, *J*_{C-F} = 29.0 Hz, *J*_{C-P} = 2.0 Hz), 26.4 (d, *J*_{C-P} = 148.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.60 (d, *J*_{H-F} = 5.6 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 19.4–19.0 (m); HRMS (EI) calcd for C₂₃H₂₀F₃O₅P [M]⁺: 464.1000, found: 464.0996.

Methyl 4-(3-(bis(2,2,2-trifluoroethoxy)phosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hg). colorless oil, 46% yield (219.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 12.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 4.28–4.19 (m, 2H), 4.16–4.05 (m, 1H), 3.94 (s, 3H), 3.88–3.77 (m, 1H), 3.69–3.56 (m, 1H), 2.72–2.55 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 137.2, 131.1, 130.2, 129.2, 125.6 (qd, $J_{C-F} = 276.0$, $J_{C-P} = 24.0$ Hz), 122.3 (qd, $J_{C-F} = 276.0$ Hz, $J_{C-P} = 7.5$ Hz), 122.2 (qd, $J_{C-F} = 276.0$ Hz, $J_{C-P} = 7.5$ Hz), 62.0 (qd, $J_{C-F} = 37.5$ Hz, $J_{C-P} =$ 7.5 Hz), 61.9 (qd, $J_{C-F} = 37.5$ Hz, $J_{C-P} = 6.0$ Hz), 52.3, 44.8 (q, $J_{C-F} = 28.5$ Hz), 26.4 (d, $J_{C-P} = 150.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.90 (d, J = 11.3 Hz, 3F), –75.31 (t, $J_{H-F} = 5.6$ Hz, 3F), –75.42 (t, $J_{H-F} = 5.6$ Hz, 3F); ³¹P NMR (243 MHz, CDCl₃) δ 30.1–29.6 (m); HRMS (EI) calcd for C₁₅H₁₄F₉O₅P [M]⁺: 476.0435, found: 476.0433.

Methyl 4-(3-(dimethylphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hh). white solid, m.p. 141.5–143.2 °C, 75% yield (231.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 4.12–3.98 (m, 1H), 3.93 (s, 3H), 2.57–2.47 (m, 1H), 2.32–2.19 (m, 1H), 1.50 (d, J = 12.0 Hz, 3H), 0.92 (d, J = 12.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 137.7, 129.8, 129.2, 128.4, 125.2 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 16.0$ Hz), 51.3, 43.0 (q, $J_{C-F} = 29.0$ Hz), 30.4 (d, $J_{C-P} = 68.0$ Hz), 17.0 (d, $J_{C-P} = 70.0$ Hz), 16.1 (d, $J_{C-P} = 69.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.38 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 38.9 (s); HRMS (EI) calcd for C₁₃H₁₆F₃O₃P [M]⁺: 308.0789, found: 308.0787.

Methyl 4-(3-(diphenylphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hi). white solid, m.p. 156.8–158.4 °C, 84% yield (362.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.67 (m, 4H), 7.57–7.45 (m, 3H), 7.42–7.33 (m, 2H), 7.32–7.27 (m, 1H), 7.24–7.12 (m, 4H), 4.16–4.02 (m, 1H), 3.89 (s, 3H), 3.07–2.94 (m, 1H), 2.93–2.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 137.9, 132.2, 131.4, 130.6 (d, $J_{C-P} = 9.0$ Hz), 130.1, 129.5, 129.4, 128.9 (d, $J_{C-P} = 11.0$ Hz), 128.2 (d, $J_{C-P} = 12.0$ Hz), 126.3 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 16.0$ Hz), 52.1, 44.2 (q, $J_{C-F} = 28.0$ Hz), 29.9 (d, $J_{C-P} = 72.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.22 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 27.4 (s); HRMS (EI) calcd for C₂₃H₂₀F₃O₃P [M]⁺: 432.1102, found: 432.1103.

Methyl 4-(3-(di-*p*-tolylphosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hj). white solid, m.p. 166.3–168.6 °C, 81% yield (372.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 12.0 Hz, 2H), 7.63–7.54 (m, 2H), 7.29–7.25 (m, 2H), 7.24–7.14 (m, 4H), 6.94 (d, J = 8.0 Hz, 2H), 4.12–3.98 (m, 1H), 3.90 (s, 3H), 3.00–2.88 (m, 1H), 2.86–2.70 (m, 1H), 2.38 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 142.7, 142.0, 138.1, 130.7 (d, $J_{C-P} = 8.0$ Hz), 130.5 (d, $J_{C-P} = 9.0$ Hz), 129.9, 129.6 (d, $J_{C-P} = 12.0$ Hz), 129.5, 128.9 (d, $J_{C-P} = 11.0$ Hz), 126.4 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 15.0$ Hz), 52.1, 44.3 (q, $J_{C-F} = 28.0$ Hz), 30.2 (d, $J_{C-P} = 70.0$ Hz), 21.5, 21.3; ¹⁹F NMR (564 MHz, CDCl₃) δ –70.23 (d, $J_{H-F} = 5.6$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 27.9 (s); HRMS (EI) calcd for C₂₅H₂₄F₃O₃P [M]⁺: 460.1415, found: 460.1412.

Methyl 4-(3-(bis(3,5-dimethylphenyl)phosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (3hk). white solid, m.p. 205.9–207.8 °C, 82% yield (400.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 12.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (s, 1H), 6.92 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 4.13–4.00 (m, 1H), 3.90 (s, 3H), 2.99–2.88 (m, 1H), 2.85–2.74 (m, 1H), 2.33 (s, 6H), 2.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 138.6 (d, $J_{C-P} = 12.0$ Hz), 138.1, 137.9 (d, $J_{C-P} = 13.0$ Hz), 133.9, 133.0, 129.9, 129.4, 129.2, 128.2 (d, $J_{C-P} = 10.0$ Hz), 127.9 (d, $J_{C-P} = 9.0$ Hz), 126.4 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 16.0$ Hz), 52.1, 44.2 (q, $J_{C-F} = 28.0$ Hz), 29.9 (d, $J_{C-P} = 71.0$ Hz), 21.3, 20.9; ¹⁹F NMR (564 MHz, CDCl₃) δ –70.18 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 27.9 (s); HRMS (EI) calcd for C₂₇H₂₈F₃O₃P [M]⁺: 488.1728, found: 488.1732.

Methyl 4-(3-(ethoxy(phenyl)phosphoryl)-1,1,1-trifluoropropan-2-yl)benzoate (**3hl**). white solid, m.p. 88.6–90.1 °C, 77% yield (308.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.70–7.61 (m, 1H), 7.58–7.51 (m, 0.5H), 7.50–7.40 (m, 2.0H), 7.39–7.32 (m, 1.5H), 7.24–7.18 (m, 1.0H),

7.16 (d, J = 8.0 Hz, 1H), 4.04–3.58 (m, 6H), 2.73–2.40 (m, 2H), 1.24 (t, J = 8.0 Hz, 1.5H), 0.94 (t, J = 8.0 Hz, 1.5H); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 166.5, 138.7, 137.6, 132.7, 132.2, 131.4 (d, $J_{C-P} = 4.5$ Hz), 131.3 (d, $J_{C-P} = 4.5$ Hz), 130.3, 130.2, 129.7, 129.6, 129.5, 129.4, 128.8 (d, $J_{C-P} = 12.0$ Hz), 128.4 (d, $J_{C-P} = 13.5$ Hz), 126.1 (qd, $J_{C-F} = 277.5$ Hz, $J_{C-P} = 19.5$ Hz), 126.0 (qd, $J_{C-F} = 277.5$ Hz, $J_{C-P} = 19.5$ Hz), 60.9 (d, $J_{C-P} = 6.0$ Hz), 60.7 (d, $J_{C-P} = 6.0$ Hz), 52.2, 52.1, 44.8 (q, $J_{C-F} = 28.5$ Hz), 44.4 (q, $J_{C-F} = 28.5$ Hz), 30.0 (d, $J_{C-P} = 102.0$ Hz), 29.5 (d, $J_{C-P} = 103.5$ Hz), 16.4 (d, $J_{C-P} = 4.5$ Hz), 16.0 (d, $J_{C-P} = 6.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.60 (d, $J_{H-F} = 5.6$ Hz, 1.5F), -70.80 (d, $J_{H-F} = 5.6$ Hz, 1.6F); ³¹P NMR (243 MHz, CDCl₃) δ 39.4 (s); HRMS (EI) calcd for C₁₉H₂₀F₃O₄P [M]⁺: 400.1051, found: 400.1054.

Methyl-4-(1,1,1-trifluoro-3-(6-oxido-6*H*-dibenzo[c,e][1,2]oxaphosphinin-6-yl)propan-2-yl)benzoate (3hm). white solid, m.p. 158.4–160.6 °C, 68% yield (303.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.92–7.81 (m, 3H), 7.80–7.76 (m, 0.4H), 7.70–7.58 (m, 1.0H), 7.49–7.42 (m, 0.6H), 7.39–7.15 (m, 5.0H), 7.08 (d, J = 8.0 Hz, 0.4H), 6.46 (d, J = 8.0 Hz, 0.6H), 4.07–4.02 (m, 0.6H), 3.98 (s, 1.8H), 3.94 (s, 1.2H), 3.91–3.75 (m, 0.4H), 2.82–2.53 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 165.3, 147.8 (d, $J_{C-P} = 9.0$ Hz), 147.4 (d, $J_{C-P} = 7.5$ Hz), 137.0, 136.5, 134.7 (d, $J_{C-P} = 6.0$ Hz), 134.6 (d, $J_{C-P} = 6.0$ Hz), 132.7, 132.5, 129.9, 129.6, 129.5, 129.4, 129.2 (d, $J_{C-P} = 6.0$ Hz), 129.1 (d, $J_{C-P} = 4.5$ Hz), 128.9, 128.8, 128.4, 128.3, 127.6 (d, $J_{C-P} = 13.5$ Hz), 127.4 (d, $J_{C-P} = 13.5$ Hz), 125.0 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 19.5$ Hz), 124.8 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 12.0$ Hz), 120.6 (d, $J_{C-P} = 10.5$ Hz), 119.3 (d, $J_{C-P} = 6.0$ Hz), 119.2 (d, $J_{C-P} = 6.0$ Hz), 51.3, 51.2, 43.6 (q, $J_{C-F} = 28.5$ Hz), 43.2 (qd, $J_{C-F} = 28.5$ Hz, $J_{C-P} = 3.0$ Hz), 28.0 (d, $J_{C-P} = 48.75$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -70.47 (d, $J_{H-F} = 5.6$ Hz, 1.8F), -70.79 (d, $J_{H-F} = 5.6$ Hz, 1.2F); ³¹P NMR (243 MHz, CDCl₃) δ 33.5 (s, 0.4P), 32.7 (s, 0.6P); HRMS (EI) calcd for C₂₃H₁₈F₃O₄P [M]⁺: 446.0895, found: 446.0892.

Methyl 4-(3-(dimethoxyphosphorothioyl)-1,1,1-trifluoropropan-2-yl)benzoate (3hn). white solid, m.p. 78.3–81.1 °C, 78% yield (277.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 4.03–3.93 (m, 1H), 3.92, (s, 3H), 3.58 (d, *J* = 12.0 Hz, 3H), 3.20 (d, *J* = 12.0 Hz, 3H), 2.72–2.53 (m, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ 166.6, 138.4, 130.5, 129.8, 129.6, 126.1 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 24.0$ Hz), 53.1 (d, $J_{C-P} = 6.0$ Hz), 52.7 (d, $J_{C-P} = 7.0$ Hz), 52.3, 45.8 (q, $J_{C-F} = 28.0$ Hz), 33.4 (d, $J_{C-P} = 118.0$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.27 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 98.5–97.9 (m); HRMS (EI) calcd for C₁₃H₁₆F₃O₄PS [M]⁺: 356.0459, found: 356.0461.

Methyl 4-(3-(diethoxyphosphorothioyl)-1,1,1-trifluoropropan-2-yl)benzoate (**3ho**). white solid, m.p. 82.1–83.7 °C, 74% yield (284.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 4.04–3.93 (m, 3H), 3.92, (s, 3H), 3.78–3.68 (m, 1H), 3.56–3.45 (m, 1H), 2.72–2.48 (m, 2H), 1.19 (t, *J* = 8.0 Hz, 3H), 0.92 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 138.6, 130.4, 129.7, 126.1 (qd, *J*_{C-F} = 279.0 Hz, *J*_{C-P} = 25.0 Hz), 62.6 (d, *J*_{C-P} = 6.0 Hz), 52.3, 45.8 (q, *J*_{C-F} = 28.0 Hz), 34.0 (d, *J*_{C-P} = 119.0 Hz), 16.0 (d, *J*_{C-P} = 8.0 Hz), 15.8 (d, *J*_{C-P} = 7.0 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.28 (d, *J*_{H-F} = 11.3 Hz); ³¹P NMR (243 MHz, CDCl₃) δ 93.6–93.0 (m); HRMS (EI) calcd for C₁₅H₂₀F₃O₄PS [M]⁺: 384.0772, found: 384.0775.

Methyl 4-(3-(diisopropoxyphosphorothioyl)-1,1,1-trifluoropropan-2-yl)benzoate (3hp). white solid, m.p. 83.7–85.4 °C, 75% yield (309.0 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 4.77–4.69 (m, 1H), 4.57–4.48 (m, 1H), 4.01–3.93 (m, 1H), 3.92, (s, 3H), 2.67–2.59 (m, 1H), 2.47–2.40 (m, 1H), 1.20 (d, J = 4.0 Hz, 3H), 1.15 (d, J = 6.0 Hz, 6H), 0.77 (t, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.7, 138.8, 130.3, 129.8, 129.7, 126.3 (qd, $J_{C-F} = 279.0$ Hz, $J_{C-P} = 22.5$ Hz), 72.0 (d, $J_{C-P} = 6.0$ Hz), 71.4 (d, $J_{C-P} = 7.5$ Hz), 52.3, 46.0 (q, $J_{C-F} = 28.5$ Hz), 35.3 (d, $J_{C-P} = 118.5$ Hz), 23.8 (d, $J_{C-P} = 4.5$ Hz), 23.7 (d, $J_{C-P} = 3.0$ Hz), 23.5 (d, $J_{C-P} = 4.5$ Hz), 22.9 (d, $J_{C-P} = 7.5$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ –70.31 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 89.7–89.2 (m); HRMS (EI) calcd for C₁₇H₂₄F₃O₄PS [M]⁺: 412.1085, found: 412.1084.

(((2-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoropropyl)phosphoryl)bis(oxy))bis(methylene)bis(2,2-dimethylpropano ate) (4). White solid, m.p. 92.8–94.1 °C, 56% yield (312.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.57 (m, 4H), 7.48–7.40 (m, 4H), 7.39–7.33 (m, 1H), 5.98–5.48 (m, 2H), 5.30 (dd, J = 12.0 Hz, J = 8.0 Hz, 1H), 5.08 (dd, J =12.0 Hz, J = 4.0 Hz, 1H), 3.88–3.75 (m, 1H), 2.62–2.45 (m, 2H), 1.22 (s, 9H), 0.96 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 141.8, 140.2, 131.8, 129.6, 128.9, 127.7, 127.5, 127.1, 126.1 (qd, $J_{C-F} = 278.0$ Hz, $J_{C-P} = 23.0$ Hz), 81.5 (d, $J_{C-P} = 6.0$ Hz), 81.3 (d, $J_{C-P} = 6.0$ Hz), 44.6 (q, $J_{C-F} = 28.0$ Hz), 38.7 (d, $J_{C-P} = 5.0$ Hz), 27.2 (d, $J_{C-P} =$ = 148.0 Hz), 26.8, 26.7; ¹⁹F NMR (564 MHz, CDCl₃) δ –70.93 (d, $J_{H-F} = 11.3$ Hz); ³¹P NMR (243 MHz, CDCl₃) δ 27.7–26.8 (m); HRMS (EI) calcd for C₂₇H₃₄F₃O₇P [M]⁺: 558.1994, found: 558.1996.

7. Reference

- (1) Y.-Q. Guo, Y.-P. Cao, H.-J. Song, Y.-X. Liu and Q.-M. Wang, Chem. Commun., 2021, 57, 9768–9771.
- (2) J.-J. Zhang, J.-D. Yang and J.-P. Chen, Nat. Commun., 2021, 12, 2835.
- (3) Y. Li, B. Zhao, K. Dai, D.-H. Tu, Wang, B.; Y.-Y. Wang, Z.-T. Liu, Z.-W. Liu and J. Lu, *Tetrahedron*, 2016, **72**, 5684–5690.
- (4) Y.-F. Chen,; N.-N. Ni, D.-P. Cheng and X.-L. Xu, Tetrahedron Lett., 2020, 61, 152425.
- (5) W.-J. Yue, C. S. Day and R. Martin, J. Am. Chem. Soc., 2021, 143, 6395–6400.
- (6) F.-L. Chen, X.-F. Xu, Y.-L. He, G.-P. Huang and S.-L. Zhu, Angew. Chem., Int. Ed., 2020, 59, 5398–5402.
- (7) P. Tongcharoensirikul, A. I. Suarez, T. Voelker and C. M. Thompson, J. Org. Chem., 2004, 69, 2322–2326.
- (8) C. M. Jessop, A. F. Parsons, A. Routledge, J. Derek and D. J. Irvine, *Eur. J. Org. Chem.*, 2006, 2006, 1547–1554.
- (9) A. Hałuszczuk, N. Babul, L. Nierzwicki and W. Przychodzeń, Eur. J. Org. Chem. 2019, 2019, 4411-4416.

8. ¹H, ¹³C, ¹⁹F, ³¹P NMR and HRMS (EI) spectra of the target compounds

¹H NMR spectrum of 3aa

¹³C NMR spectrum of 3aa

¹⁹F NMR spectrum of 3aa

³¹P NMR spectrum of 3aa

HRMS (EI) spectrum of 3aa

¹H NMR spectrum of 3ba

¹³C NMR spectrum of 3ba

¹⁹F NMR spectrum of 3ba

³¹P NMR spectrum of 3ba

HRMS (EI) spectrum of 3ba

¹H NMR spectrum of 3ca

¹³C NMR spectrum of 3ca

¹⁹F NMR spectrum of 3ca

³¹P NMR spectrum of 3ca

HRMS (EI) spectrum of 3ca CS-ZQD-3-335 Waters GCT Premier 20221582 75 (1.250) Cm (75-(24+46)) TOF MS EI+ 315.0839 1.31e4 100 267.0467 239.0149 138.0447 * 111.0217 210.0323 178.0469 262.0250

¹H NMR spectrum of 3da

¹³C NMR spectrum of 3da

¹⁹F NMR spectrum of 3da

³¹P NMR spectrum of 3da

HRMS (EI) spectrum of 3da

¹H NMR spectrum of 3ea

¹³C NMR spectrum of 3ea

¹⁹F NMR spectrum of 3ea

³¹P NMR spectrum of 3ea

HRMS (EI) spectrum of 3ea

¹H NMR spectrum of 3fa

¹³C NMR spectrum of 3fa

¹⁹F NMR spectrum of 3fa

³¹P NMR spectrum of 3fa

HRMS (EI) spectrum of 3fa

¹H NMR spectrum of 3ga

¹³C NMR spectrum of 3ga

¹⁹F NMR spectrum of 3ga

³¹P NMR spectrum of 3ga

HRMS (EI) spectrum of 3ga

¹H NMR spectrum of 3ha

¹³C NMR spectrum of 3ha

¹⁹F NMR spectrum of 3ha

³¹P NMR spectrum of 3ha

HRMS (EI) spectrum of 3ha

¹H NMR spectrum of 3ia

¹³C NMR spectrum of 3ia

¹⁹F NMR spectrum of 3ia

³¹P NMR spectrum of 3ia

HRMS (EI) spectrum of 3ia

¹H NMR spectrum of 3ja

¹³C NMR spectrum of 3ja

S47

¹⁹F NMR spectrum of 3ja

³¹P NMR spectrum of 3ja

HRMS (EI) spectrum of 3ja

¹H NMR spectrum of 3ka

¹³C NMR spectrum of 3ka

¹⁹F NMR spectrum of 3ka

³¹P NMR spectrum of 3ka

HRMS (EI) spectrum of 3ka

¹H NMR spectrum of 3la

¹³C NMR spectrum of 3la

¹⁹F NMR spectrum of 3la

³¹P NMR spectrum of 3la

HRMS (EI) spectrum of 3la

¹H NMR spectrum of 3ma

¹³C NMR spectrum of 3ma

¹⁹F NMR spectrum of 3ma

³¹P NMR spectrum of 3ma

HRMS (EI) spectrum of 3ma

¹H NMR spectrum of 3na

¹³C NMR spectrum of 3na

¹⁹F NMR spectrum of 3na

³¹P NMR spectrum of 3na

HRMS (EI) spectrum of 3na

¹H NMR spectrum of 3pa

¹³C NMR spectrum of 3pa

¹⁹F NMR spectrum of 3pa

³¹P NMR spectrum of 3pa

HRMS (EI) spectrum of 3pa

¹H NMR spectrum of 3qa

¹³C NMR spectrum of 3qa

¹⁹F NMR spectrum of 3qa

³¹P NMR spectrum of 3qa

HRMS (EI) spectrum of 3qa

¹H NMR spectrum of 3ra

¹³C NMR spectrum of 3ra

¹⁹F NMR spectrum of 3ra

³¹P NMR spectrum of 3ra

HRMS (EI) spectrum of 3ra

¹H NMR spectrum of 3sa

¹³C NMR spectrum of 3sa

¹⁹F NMR spectrum of 3sa

³¹P NMR spectrum of 3sa

HRMS (EI) spectrum of 3sa

¹H NMR spectrum of 3ta

¹³C NMR spectrum of 3ta

¹⁹F NMR spectrum of 3ta

³¹P NMR spectrum of 3ta

HRMS (EI) spectrum of 3ta

¹H NMR spectrum of 3ua

¹³C NMR spectrum of 3ua

¹⁹F NMR spectrum of 3ua

³¹P NMR spectrum of 3ua

HRMS (EI) spectrum of 3ua

¹H NMR spectrum of 3va

¹³C NMR spectrum of 3va

¹⁹F NMR spectrum of 3va

³¹P NMR spectrum of 3va

HRMS (EI) spectrum of 3va

¹H NMR spectrum of 3wa

¹³C NMR spectrum of 3wa

¹⁹F NMR spectrum of 3wa

³¹P NMR spectrum of 3wa

HRMS (EI) spectrum of 3wa

¹H NMR spectrum of 3xa

¹³C NMR spectrum of 3xa

¹⁹F NMR spectrum of 3xa

³¹P NMR spectrum of 3xa

HRMS (EI) spectrum of 3xa

¹H NMR spectrum of 3ya

¹³C NMR spectrum of 3ya

¹⁹F NMR spectrum of 3ya

³¹P NMR spectrum of 3ya

HRMS (EI) spectrum of 3ya

¹H NMR spectrum of 3hb

¹³C NMR spectrum of 3hb

¹⁹F NMR spectrum of 3hb

³¹P NMR spectrum of 3hb

HRMS (EI) spectrum of 3hb

¹H NMR spectrum of 3hc

¹³C NMR spectrum of 3hc

¹⁹F NMR spectrum of 3hc

³¹P NMR spectrum of 3hc

HRMS (EI) spectrum of 3hc

¹H NMR spectrum of 3hd

¹³C NMR spectrum of 3hd

¹⁹F NMR spectrum of 3hd

³¹P NMR spectrum of 3hd

HRMS (EI) spectrum of 3hd

¹H NMR spectrum of 3he

¹³C NMR spectrum of 3he

¹⁹F NMR spectrum of 3he

³¹P NMR spectrum of 3he

HRMS (EI) spectrum of 3he

¹H NMR spectrum of 3hf

¹⁹F NMR spectrum of 3hf

³¹P NMR spectrum of 3hf

HRMS (EI) spectrum of 3hf

¹H NMR spectrum of 3hg

¹³C NMR spectrum of 3hg

¹⁹F NMR spectrum of 3hg

³¹P NMR spectrum of 3hg

HRMS (EI) spectrum of 3hg

¹H NMR spectrum of 3hh

¹³C NMR spectrum of 3hh

¹⁹F NMR spectrum of 3hh

³¹P NMR spectrum of 3hh

HRMS (EI) spectrum of 3hh

¹H NMR spectrum of 3hi

¹³C NMR spectrum of 3hi

¹⁹F NMR spectrum of 3hi

³¹P NMR spectrum of 3hi

HRMS (EI) spectrum of 3hi

¹H NMR spectrum of 3hj

¹³C NMR spectrum of 3hj

¹⁹F NMR spectrum of 3hj

³¹P NMR spectrum of 3hj

HRMS (EI) spectrum of 3hj

¹H NMR spectrum of 3hk

¹³C NMR spectrum of 3hk

¹⁹F NMR spectrum of 3hk

³¹P NMR spectrum of 3hk

HRMS (EI) spectrum of 3hk

¹H NMR spectrum of 3hl

¹³C NMR spectrum of 3hl

¹⁹F NMR spectrum of 3hl

³¹P NMR spectrum of 3hl

HRMS (EI) spectrum of 3hl

¹H NMR spectrum of 3hm

¹³C NMR spectrum of 3hm

¹⁹F NMR spectrum of 3hm

³¹P NMR spectrum of 3hm

HRMS (EI) spectrum of 3hm

¹H NMR spectrum of 3hn

¹³C NMR spectrum of 3hn

¹⁹F NMR spectrum of 3hn

³¹P NMR spectrum of 3hn

HRMS (EI) spectrum of 3hn

¹H NMR spectrum of 3ho

¹³C NMR spectrum of 3ho

¹⁹F NMR spectrum of 3ho

³¹P NMR spectrum of 3ho

HRMS (EI) spectrum of 3ho

¹H NMR spectrum of 3hp

¹³C NMR spectrum of 3hp

¹⁹F NMR spectrum of 3hp

³¹P NMR spectrum of 3hp

HRMS (EI) spectrum of 3hp

¹H NMR spectrum of compound 4

¹³C NMR spectrum of compound 4

¹⁹F NMR spectrum of compound 4

³¹P NMR spectrum of compound 4

HRMS (EI) spectrum of compound 4

