Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Regio and Stereo-controlled Synthesis of 6-Deoxy-β-D-*ido*-heptopyranosides Related to *Campylobacter jejuni* HS:4

Saba Homayonia,^a Pengfei Zhang,^a Ping Zhang^a and Chang-Chun Ling^a*

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary

Alberta T2N 1N4, Canada. Email: ccling@ucalgary.ca

Contents

Experimental Section
4-Chlorophenyl 2,3,4-tri- <i>O</i> -acetyl-7- <i>O</i> -benzyl-6-deoxy-1-thio-α,β-D- <i>galacto</i> - heptopyranoside (6)
6-Azidohexyl 2,3,4-tri-O-acetyl-7-O-benzyl-6-deoxy-β-D-galacto-heptopyranoside (8)
4-Chlorophenyl 7- <i>O</i> -benzyl-6-deoxy-1-thio- α ,β-D- <i>galacto</i> -heptopyranoside (9)6
4-Chlorophenyl 7- <i>O</i> -benzyl-6-deoxy-3,4- <i>O</i> -isopropylidene-1-thio-α,β-D- <i>galacto</i> - heptopyranoside (10)
4-Chlorophenyl 2- <i>O</i> -acetyl-7- <i>O</i> -benzyl-6-deoxy-3,4- <i>O</i> -isopropylidene-1-thio-α,β-D- <i>galacto</i> - heptopyranoside (11)
6-Azidohexyl 3,4,6-tri- <i>O</i> -acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (13)
6-Azidohexyl 2-deoxy-2-phthalimido-β-D-glucopyranoside (14)
6-Azidohexyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (15) 11
6-Azidohexyl 3- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (16)
6-Azidohexyl 3,6-di- <i>O</i> -benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (17)

6-Azidohexyl 2- <i>O</i> -acetyl-7- <i>O</i> -benzyl-6-deoxy-3,4- <i>O</i> -isopropylidene-β-D- <i>galacto</i> -heptopyranosyl-(1 \rightarrow 4)-3,6-di- <i>O</i> -benzyl-2-deoxy-2-phthalimido-β-D-	
glucopyranoside (18)	. 14
2,3,4-Tri-O-acetyl-7-O-benzyl-6-deoxy-D-galacto-heptopyranosyl trichloroacetimidate (20)	. 16
6-Azidohexyl 2,4-di-O-acetyl-7-O-benzyl-6-deoxy-β-D- <i>ido</i> -heptopyranosyl-(1→4)-3,6-di-O- benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (36)	. 17
6-azidohexyl 3,4,6-tri- <i>O</i> -acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside-(1→4)-3,6-di- <i>O</i> - benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (43)	. 18
4-Chlorophenyl 3,4,6-tri- <i>O</i> -benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (45)	. 19
3,4,6-Tri- <i>O</i> -benzyl-2-deoxy-2-phthalimido- α/β -D-glucopyranosyl trichloroacetimidate (46)	. 20
References	. 21

¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 6	. 22
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 9	. 27
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 11	. 31
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 13	. 35
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 14	. 39
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 15	. 43
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 16	. 47
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 17	. 51
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 19	. 55
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 20	. 59
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 21	. 63
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 22	. 67
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 23	. 71
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 24	. 75

¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 27
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 28
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 29
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 2
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 31
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 32
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 33 103
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 34 107
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 3 111
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 35 115
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 36 119
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 39 123
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 40 127
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 41 131
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 45 135
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 47 138
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 48 143
¹ H, ¹³ C, ¹ H- ¹ H GCOSY and ¹ H- ¹³ C NMR spectra of Compound 4 147

Experimental Section

4-Chlorophenyl 2,3,4-tri-*O*-acetyl-7-*O*-benzyl-6-deoxy-1-thio-α,β-D-*galacto*-heptopyranoside (6)

To a solution of compound 5 (5.1 g, 11.27 mmol) in anhydrous CH_2Cl_2 (60 mL) under an argon atmosphere were added p-chlorothiophenol¹ (2.77 g, 19.16 mmol) and boron trifluoride diethyl etherate (2.17 mL, 18.03 mmol) respectively, and the reaction mixture was stirred for 4 hrs at room temperature. The solution was quenched by adding triethylamine followed by acetic anhydride (1.0 mL). After stirring for 1 hr, the solution was evaporated to dryness. The residue was redissolved in EtOAc (170 mL), washed with saturated brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude material was then purified by column chromatography on silica gel using a gradient of 20 \rightarrow 30 % EtOAc-hexanes as the eluent to afford the product **6** (α/β , 0.11:1) as a syrup (5.81 g, 10.82 mmol, 96% yield). $R_f = 0.59$ (EtOAc : hexanes, 2 : 3). ¹H NMR (400 MHz, CDCl₃): δ_H 7.46-7.23 (m, 9H, Ar), 5.31 (dd, J = 3.4, 1.0 Hz, 1H, H-4), 5.20 (dd, J = 9.9, 9.9 Hz, 1H, H-2), 5.05 (dd, J = 9.9, 3.7 Hz, 1H, H-3), 4.66 (d, J = 9.9 Hz, 1H, H-1), 4.45 $(d, J = 12.5 Hz, 1H, PhCH_aH_b), 4.41 (d, J = 12.5 Hz, 1H, PhCH_aH_b), 3.91 (ddd, J = 9.0, 4.3)$ 1.1 Hz, 1H, H-5), 3.58-3.43 (m, 2H, H-7a and H-7b), 2.16 (s, 3H, Ac), 2.08 (s, 3H, Ac), 1.97 (s, 3H, Ac), 1.89 (dddd, J = 13.8, 9.2, 4.6, 4.6 Hz, 1H, H-6a), 1.74 (dddd, J = 14.3, 8.6, 5.7, 4.3 Hz, 1H, H-6b). ¹³C NMR (101 MHz, CDCl₃): δ_C 170.3 (C=O), 169.9 (C=O), 169.5 (C=O), 138.0 (Ar), 134.1 (Ar), 133.6 (Ar), 131.1 (Ar), 129.0 (Ar), 128.9 (Ar), 128.4 (Ar), 128.3 (Ar), 127.7 (Ar), 127.7 (Ar), 127.7 (Ar), 127.4 (Ar), 86.0 (C-1), 73.9 (C-5), 73.0 (Ph*C*H₂), 72.3 (C-3), 69.6 (C-2), 67.5 (C-4), 65.6 (C-7), 31.0 (C-6), 20.8 (Me), 20.6 (Me), 20.5 (Me). HRMS (ESI-QTOF) m/z calc'd for C₂₆H₂₉NClO₈S [M + NH₄]⁺, 554.1610; found, 554.1626.

6-Azidohexyl 2,3,4-tri-O-acetyl-7-O-benzyl-6-deoxy-β-D-galacto-heptopyranoside (8)

A solution of compound 6 (278 mg, 0.52 mmol), the alcohol 7 (372 mg, 2.59 mmol) and molecular sieves (4 Å, crushed, 1 g) in anhydrous CH₂Cl₂ (10.0 mL) was stirred for 1 hr at room temperature. After cooling down the reaction mixture to -40 °C, NIS (175.5 mg, 0.77 mmol) and a catalytic amount of TfOH (15 μ L) were added. The mixture was stirred for 1 hr at -40 °C and allowed to warm to room temperature gradually overnight. After TLC showed the disappearance of the starting material, the reaction was quenched by adding triethylamine (0.1 mL). The reaction mixture was filtered to remove molecular sieves and evaporated. The residue was redissolved in EtOAc (30 mL), and washed with a mixture of 10% NaHCO₃ (15 mL) and 10% Na₂S₂O₃ (15 mL), and saturated brine (20 mL), dried over anhydrous Na₂SO₄, and evaporated. The crude material was then purified by column chromatography on silica gel using a gradient of $15 \rightarrow 25\%$ EtOAc-hexanes as the eluent to afford the pure product 8 as a syrup (210 mg, 0.391 mmol, 75% yield). $R_f = 0.55$ (EtOAc : hexanes 3 : 7). $[\alpha]_D^{20}$: +7.2 (*c* 2.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_H 7.38-7.28 (m, 5H, Ar), 5.28 (dd, J = 3.5, 1.1 Hz, 1H, H-4), 5.16 (dd, J = 10.4, 7.9 Hz, 1H, H-2), 5.02 (dd, J = 10.4, 3.4 Hz, 1H, H-3), 4.53 (d, J = 12.0 Hz, PhCH_aH_b), 4.44 (d, J = 12.0 Hz, 1H,PhCH_a*H*_b), 4.38 (d, *J* = 7.9 Hz, 1H, H-1), 3.87 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, *J* = 8.7, 4.6, 1.3 Hz, 1H, H-5), 3.79 (ddd, J = 8.7, 1H, H-5), 3.79 (ddd, H = 8.7, 1H, H-5), 3.

J = 9.6, 6.2, 6.2 Hz, 1H, OCH_aH_b), 3.61-3.55 (m, 1H, H-7a), 3.50 (ddd, *J* = 9.4, 5.2, 5.2 Hz, 1H, H-7b), 3.38 (ddd, *J* = 9.6, 7.2, 6.3 Hz, 1H, OCH_aH_b), 3.25 (t, *J* = 6.9 Hz, 2H, Hex_NCH₂), 2.14 (s, 3H, Ac), 2.07, (s, 3H, Ac), 1.98, (s, 3H, Ac), 1.89-1.80 (m, 1H, H-6a), 1.78-1.69 (m, 1H, H-6b), 1.63-1.51 (m, 4H, 2 × CH₂), 1.42-1.32 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.5 (C=O), 170.1 (C=O), 169.4 (C=O), 129.5 (Ar), 128.4 (Ar), 127.7 (Ar), 101.2 (C-1), 73.1 (PhCH₂), 71.3 (C-3), 69.8 (C-4), 69.7 (OCH_aH_b), 69.6 (C-2), 69.2 (C-5), 65.5 (C-7), 51.3 (CH₂), 30.8 (C-6), 29.3 (CH₂), 28.7 (CH₂), 26.4 (CH₂), 25.4 (CH₂), 20.8 (Ac), 20.7 (Ac), 20.6 (Ac). HRMS (ESI-QTOF) *m/z* calc'd for C₂₆H₃₇N₃O₉ [M + NH₄]⁺, 553.2868; found, 553.2882.

4-Chlorophenyl 7-O-benzyl-6-deoxy-1-thio- α , β -D-galacto-heptopyranoside (9)

To a solution of compound **6** (2.71 g, 5.04 mmol) in anhydrous MeOH (10 mL) was added a solution of NaOMe in anhydrous MeOH (1.5 M, 2.5 mL, 3.4 mmol). After stirring for 0.5 hours, the reaction mixture was neutralized with Amberlite IR-120 (H⁺), filtered and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of $1\rightarrow$ 5% MeOH–CH₂Cl₂ as the eluent to afford the desired product **9** (α / β , 0.11:1) as a syrup (1.89 g, 4.59 mmol, 91% yield). R_f = 0.16 (MeOH : CH₂Cl₂, 1 : 9). ¹H NMR (600 MHz, CDCl₃) for β -anomer: δ_{H} 7.49 – 7.44 (m, 2H, Ar), 7.35 (m, 2H, Ar), 7.33 – 7.28 (m, 3H, Ar), 7.25 – 7.21 (m, 2H, Ar), 4.49 (d, *J* = 9.6 Hz, 1H, H-1), 4.48 (d, *J* = 12.1 Hz, 1H, PhCH_aH_b), 4.46 (d, *J* = 12.1 Hz, 1H, PhCH_aH_b), 3.85 (dd, *J* = 3.4, 3.4 Hz, 1H, H-4), 3.71 (m, 1H, H-5), 3.67 (dd, *J* = 9.3, 9.3 Hz, 1H, H-2), 3.65 – 3.59 (m, 2H, H-4 and H-7a), 3.55 (ddd, J = 9.1, 9.1, 3.7 Hz, 1H, H-7b), 3.23 (d, J = 5.0 Hz, 1H, OH-3), 3.08 (d, J = 3.8 Hz, 1H, OH-4), 2.97 (s, 1H, OH-2), 2.08 (dddd, J = 14.6, 7.8, 5.6, 3.7 Hz, 1H, H-6a), 1.96 (dddd, J = 14.6, 8.9, 5.7, 4.4 Hz, 1H, H-6b). ¹³C NMR (151 MHz, CDCl₃): $\delta_{\rm C}$ 137.7 (Ar), 134.0 (Ar), 133.5 (Ar), 131.1 (Ar), 129.0 (Ar), 128.5 (Ar), 127.8 (Ar), 127.6 (Ar), 88.2 (C-1), 75.8 (C-5), 74.9 (C-4), 73.2 (PhCH₂), 70.3 (C-3), 70.1 (C-2), 66.0 (C-7), 31.2 (C-6). HRMS (ESI-QTOF) m/z calc'd for C₂₀H₂₃ClO₅S [M + Na]⁺, 433.0847; found, 433.0866.

4-Chlorophenyl 7-O-benzyl-6-deoxy-3,4-O-isopropylidene-1-thio-α,β-D-galacto-

heptopyranoside (10)

To a solution of compound **9** (1.15 g, 2.79 mmol) in anhydrous acetone (15.0 mL) were added 2,2-dimethoxypropane (2.0 mL) and camphorsulfonic acid (20 mg), and the reaction was stirred for 6 hrs at room temperature. Triethylamine (~1 mL) was added, and the solution was evaporated. The residue was redissolved in EtOAc (50 mL), washed with saturated brine (30 mL), dried over anhydrous Na₂SO₄ and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of $20 \rightarrow 30\%$ EtOAc–hexanes as the eluent to afford the desired product **10** (α/β , 0.06:1) as a syrup (1.142 g, 2.53 mmol, 90% yield). R_f = 0.33 (EtOAc: hexanes, 4:6). ¹H NMR (400 MHz, CDCl₃) for β -anomer: δ_{H} 7.51-7.22 (m, 9H, Ar), 4.51 (d, *J* = 11.9 Hz, 1H, PhCH_aH_b), 4.47 (d, *J* = 11.9 Hz, 1H, PhCH_aH_b), 4.45 (d, *J* = 10.2 Hz, 1H, H-1), 4.10 – 4.04 (m, 2H, H-3, H-4), 3.98 (ddd, *J* = 8.7, 4.5, 1.7 Hz, 1H, H-5), 3.70-3.56 (m, 3H, H-7a, H-7b, H-2), 3.60 (dd, *J* = 10.2, 8.7 Hz, 1H, H-2), 2.53, (br s, 1H, OH-2), 2.15 (dddd, *J* = 14.3, 9.4, 9.2, 4.3 Hz, 1H, H-6a), 2.01 (dddd, J = 14.4, 9.4, 9.4, 9.4, 4.3 Hz, 1H, H-6b), 1.48 (s, 3H, ISP_Me), 1.34 (s, 3H, ISP_Me). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 138.3 (Ar), 134.2 (Ar), 133.7 (Ar), 131.0 (Ar), 129.1 (Ar), 128.4 (Ar), 127.7 (Ar), 127.7 (Ar), 110.0 (ISP_*C*(CH₃)₂), 87.8 (C-1), 79.2 (C-4), 75.4 (C-3), 73.2 (C-5), 73.0 (Ph*C*H₂), 71.9 (C-2), 66.1 (C-7), 31.5 (C-6), 28.2 (ISP_Me), 26.3 (ISP_Me). HRMS (ESI-QTOF) *m/z* calc'd for C₂₃H₂₇ClO₅S [M + Na]⁺, 473.1160; found, 473.1169.

4-Chlorophenyl 2-*O*-acetyl-7-*O*-benzyl-6-deoxy-3,4-*O*-isopropylidene-1-thio-α,β-D-*galacto*heptopyranoside (11)

Compound **10** (1.1 g, 2.43 mmol) was acetylated in a mixture of Ac₂O (11.0 mL) and anhydrous pyridine (12.0 mL) for 6 hrs at room temperature. The mixture was concentrated under reduced pressure and coevaporated with toluene. The crude mixture was purified by column chromatography on silica gel using a gradient of $15\rightarrow 25\%$ EtOAc-hexanes as the eluent to afford the desired product **11** (α/β , 0.19:1) as a syrup (1.035 g, 2.09 mmol, 86% yield). R_f = 0.35 (EtOAc : hexanes 3 : 7). ¹H NMR (400 MHz, CDCl₃) for the β-anomer: δ_H 7.45 – 7.26 (m, 7H, Ar), 7.24 – 7.15 (m, 2H, Ar), 5.05 (dd, *J* = 10.2, 7.3 Hz, 1H, H-2), 4.59 (d, *J* = 10.2 Hz, 1H, H-1), 4.49 (d, *J* = 12.1 Hz, 1H, PhCH_aH_b), 4.45 (d, *J* = 12.1 Hz, 1H, PhCH_aH_b), 4.18 (dd, *J* = 7.2, 5.3 Hz, 1H, H-3), 4.10 (dd, *J* = 5.3, 2.1 Hz, 1H, H-4), 3.99 (ddd, *J* = 9.2, 4.4, 2.1 Hz, 1H, H-5), 3.67 – 3.54 (m, 2H, 2 × H-7), 2.20 – 2.11 (m, 4H, Ac + H-6a), 1.99 (dddd, *J* = 14.4, 8.3, 5.7, 4.4 Hz, 1H, H-6b), 1.54 (s, 3H, ISP_Me), 1.32 (s, 3H, ISP_Me). ¹³C NMR (101 MHz, CDCl₃): δ_C 171.5 (C=O), 138.2 (Ar), 133.8 (Ar), 133.2 (Ar), 132.2 (Ar), 131.9 (Ar), 129.5 (Ar), 129.0 (Ar), 128.9 (Ar), 128.4 (Ar), 128.3(Ar), 127.7 (Ar), 127.5 (Ar), 110.3 (C(Me)₂), 85.4 (C-1), 77.1 (C-3), 75.5 (C-4), 73.0 (Ph*C*H₂), 72.9 (C-5), 71.5 (C-2), 66.0 (C-7), 31.4 (C-6), 27.7 (ISP_Me), 26.3 (ISP_Me), 21.0 (Ac). HRMS (ESI-QTOF) *m/z* calc'd for C₂₅H₂₉ClO₆S [M + Na]⁺, 515.1266; found, 515.1267.

6-Azidohexyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (13)

Compound 12 (284 mg, 0.505 mmol) and alcohol 7 (292 mg, 2.04 mmol) were dissolved in anhydrous CH₂Cl₂ (5.0 mL) under argon, 4Å molecule sieves (500 mg) was added. After stirring the mixture for 1 hr, the reaction mixture was cooled down to -78 °C and NIS (225 mg, 0.12 mmol) was added; after 10 min, TfOH (50 µL) was added dropwise. The reaction was continued at -78 °C for 4 hrs, and temperature was allowed to warm up to room temperature gradually. Triethylamine (~0.5 mL) was added, and the mixture was filtered off and concentrated under reduced pressure. The crude mixture was redissolved in EtOAc (30 mL). The organic phase was washed with a mixture of aqueous NaHCO₃ (10%, 15 mL) and aqueous Na₂S₂O₃ (10%, 15 mL), saturated brine (20 mL), dried over anhydrous Na₂SO₄ and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of $15 \rightarrow 20\%$ EtOAc-hexanes as the eluent to afford the desired product 13 as a syrup (221 mg, 0.394 mmol, 78% yield). R_f = 0.53 (EtOAc : hexanes 4 : 6). $[\alpha]_D^{20}$: +75.1 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_H 7.89-7.82 (m, 2H, Pht), 7.79-7.71 (m, 2H, Pht), 5.78 (dd, J = 10.8, 9.1 Hz, 1H, H-3), 5.35 (d, J = 8.5 Hz, 1H, H-1), 5.17 (dd, J = 10.1, 9.1 Hz, 1H, H-4), 4.33 (dd, J = 12.3, 4.6 Hz, 1H, H-6a), 4.31 (dd, J = 10.8, 8.8 Hz, 1H, H-2), 4.17 (dd, J = 12.3, 2.4 Hz, 1H, H-6b), 3.90 – 3.81 (m, 2H, H-5, OCH_aH_b), 3.43 (ddd, J = 9.7, 7.2, 5.8 Hz, 1H, OCH_aH_b), 3.04 (t, J = 7.0 Hz, 2H, Hex_NCH₂), 2.11 (s, 3H, Ac), 2.02 (s, 3H, Ac), 1.86 (s, 3H, Ac), 1.44-1.35 (m, 2H, CH₂), 1.32-1.22 (m, 2H, CH₂), 1.18-1.05 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): δ_{c} 170.7 (C=O), 170.1 (C=O), 169.4 (C=O), 167.8 (C=O), 167.4 (C=O), 134.3 (Pht), 123.6 (Pht), 98.2 (C-1), 71.8 (C-5), 70.8 (C-3), 69.8 (OCH_aH_b), 69.1 (C-4), 62.1 (C-6), 54.7 (C-2), 51.1 (CH₂), 29.1 (CH₂), 28.6 (CH₂), 26.2 (CH₂), 25.4 (CH₂), 20.8 (Ac), 20.6 (Ac), 20.5 (Ac). HRMS (ESI-QTOF) *m/z* calc'd for C₂₆H₃₂N₄O₁₀ [M + Na]⁺, 583.2011; found, 583.2013.

6-Azidohexyl 2-deoxy-2-phthalimido-β-D-glucopyranoside (14)

Compound **13** (280 mg, 0.499 mmol) was transesterified in anhydrous MeOH (4.0 mL), using a solution of guanidine/guanidinium buffer (1 M) in methanol (pH ~10). After stirring for 3 hrs, the reaction mixture was neutralized with acetic acid and concentrated under reduced pressure. The residue was redissolved in EtOAc (20 mL). The organic phase was washed with brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography on silica gel using 3% MeOH–CH₂Cl₂ as the eluent to afford the desired product **14** as a white solid (213 mg, 0.489 mmol, 98% yield). R_f = 0.29 (MeOH : CH₂Cl₂, 5 : 95). [α]_D²⁰: -1.4 (*c* 4.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.81 (dd, *J* = 5.5, 3.0 Hz, 2H, Pht), 7.75 – 7.69 (dd, *J* = 5.5, 3.0 Hz, 2H, Pht), 5.16 (d, *J* = 8.4 Hz, 1H, H-1), 4.28 (dd, *J* = 10.8, 8.8 Hz, 1H, H-3), 4.06 (dd, *J* = 10.8, 8.4 Hz, 1H, H-2), 3.88 (high order m, 2H, H-6a, H-6b), 3.79 (m, 1H, OCH_aH_b), 3.69

(dd, J = 9.2, 9.2 Hz, 1H, H-4), 3.45 – 3.34 (m, 2H, H-5, OCH_aH_b), 3.02 (t, J = 7.0 Hz, 2H, Hex_NCH₂), 1.45 – 1.29 (m, 2H, CH₂), 1.28 -1.15 (m, 2H, CH₂), 1.15 – 0.99 (m, 4H, 2 × CH₂). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 168.4 (C=O), 134.1 (Pht), 131.6 (Pht), 123.3 (Pht), 98.4 (C-1), 75.6 (C-5), 71.5 (C-4), 71.2 (C-3), 69.6 (OCH_aH_b), 61.6 (C-6), 56.7 (C-2), 51.1 (NCH₂), 29.0 (CH₂), 28.5 (CH₂), 26.2 (CH₂), 25.3 (CH₂). HRMS (ESI-QTOF) *m/z* calc'd for C₂₀H₂₆N₄O₇ [M + NH₄]⁺, 452.2140; found, 452.2129.

6-Azidohexyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (15)

To a solution of compound **14** (217 mg, 0.499 mmol) in anhydrous acetonitrile (3.0 mL) were added benzaldehyde dimethyl acetal (0.15 mL, 0.99 mmol), and a catalytic amount of (1S)-(+)-10-camphorsulfonic acid. The reaction was continued at room temperature for 5 hrs and neutralized with triethylamine. The mixture was concentrated under reduced pressure. The crude syrup was redissolved in EtOAc (50 mL). The organic phase was washed with brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of $15 \rightarrow 20\%$ EtOAc–hexanes as the eluent to afford the desired product **15** (225 mg, 0.429 mmol, 86% yield). R_f = 0.52 (EtOAc : hexanes, 3 : 7). [α] $_{0}^{20}$: +12.7 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.89-7.82 (m, 2H, Pht), 7.78-7.70 (m, 2H, Pht), 7.54-7.46 (m, 2H, Ar), 7.43-7.32 (m, 3H, Ar), 5.57 (s, 1H, PhCH), 5.26 (d, *J* = 8.5 Hz, 1H, H-1), 4.63 (high order dd, *J* = 10.4, 8.3 Hz, 1H, H-3), 4.39 (high order dd, *J* = 10.5, 4.2 Hz, 1H, H-6a), 4.24 (dd, *J* = 10.1, 8.6 Hz, 1H, H-2), 3.89-3.79 (m, 2H, H-6b, OCH_aH_b), 3.68-3.56 (m, 2H, H-4, H-5), 3.47-

3.38 (m, 1H, OCH_aH_b), 3.05 (t, J = 7.0 Hz, 2H, Hex_NCH₂), 2.58-2.49 (m, 1H, OH-3), 1.52-1.35 (m, 2H, CH₂), 1.31-1.19 (m, 2H, CH₂), 1.18-1.03 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 168.5 (C=O), 168.1 (C=O), 134.2 (Pht), 129.3 (Ar), 128.4 (Ar), 126.3 (Ar), 123.5 (Pht), 123.1 (Pht), 101.9 (Ph<u>C</u>H), 98.3 (C-1), 82.3 (C-5), 69.8 (OCH_aH_b), 68.7 (C-6), 68.6 (C-3), 66.2 (C-4), 56.6 (C-2), 29.1 (CH₂), 28.6 (CH₂), 26.2 (CH₂), 25.4 (CH₂). HRMS (ESI-QTOF) m/z calc'd for C₂₇H₃₀N₄O₇ [M + Na]⁺, 454.2007; found, 545.2000.

6-Azidohexyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (16)

To a solution of compound **15** (581 mg, 1.11 mmol) in anhydrous DMF (6.0 mL) under argon atmosphere was added NaH (60% dispersion in mineral oil, 97 mg, 2.44 mmol) at ambient temperature. After stirring for 10 min, benzyl bromide (0.26 mL, 2.22 mmol) was added. After stirring for 1 hr, the reaction mixture was then quenched with a few drops of methanol, diluted with EtOAc (40 mL), and the organic solution was washed with saturated brine (30 mL × 2), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of 10→12% EtOAc–hexanes as the eluent to afford the desired product **16** as a syrup (613 mg, 1.0 mmol, 90% yield). R_f = 0.65 (EtOAc : hexanes, 2 : 8). [α]_D²⁰: +57.2 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.93-7.66 (m, 4H, Pht), 7.57-7.49 (m, 2H, Ar), 7.44-7.35 (m, 3H, Ar), 7.04- 6.98 (m, 2H, Ar), 6.96-6.85 (m, 3H, Ar), 5.63 (s, 1H, PhC<u>H</u>), 5.20 (d, *J* = 8.5 Hz, 1H, H-1), 4.81 (d, *J* = 12.3 Hz, 1H, PhCH_aH_b), 4.51 (d, *J* = 12.3 Hz, 1H, PhCH_aH_b), 4.49 -4.39 (m, 2H, H-3, H-6a), 4.22 (dd, *J* = 10.5, 8.5 Hz, 1H, H-2), 3.91-3.76 (m, 3H, H-4, H-6b, OCH_aH_b), 3.64 (ddd, 1H, J = 9.8, 9.8, 4.9 Hz, H-5), 3.39 (ddd, J = 9.8, 7.2, 5.7 Hz, 1H, OCH_aH_b), 3.02 (t, J = 7.0 Hz, 2H, Hex_NCH₂), 1.48-1.32 (m, 2H, CH₂), 1.30-1.20 (m, 2H, CH₂), 1.17-1.03 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 167.9 (C=O), 167.7 (C=O), 137.9 (Pht), 137.4 (Pht), 133.9 (Pht), 131.6 (Pht), 128.3 (Ar), 128.0 (Ar), 127.3 (Ar), 126.0 (Ar), 123.3 (Pht), 101.3 (Ph<u>C</u>H), 98.9 (C-1), 83.1 (C-5), 74.6 (C-3), 74.1 (Ph<u>C</u>H₂), 69.8 (C-6), 69.6 (OCH_aH_b), 66.1 (C-4), 55.9 (C-2), 51.1 (CH₂), 29.1 (CH₂), 28.5 (CH₂), 26.1 (CH₂), 25.4 (CH₂). HRMS (ESI-QTOF) *m*/*z* calc'd for C₃₄H₃₆N₄O₇ [M + Na]⁺, 635.2476; found, 635.2463.

6-Azidohexyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (17)

To a solution of compound **16** (124 mg, 0.20 mmol) in anhydrous CH₂Cl₂ (5 mL) was added triethylsilane (116 mg, 1.1 mmol) at 0 °C, followed by BF₃.Et₂O (50 µL, 0.4 mmol). After stirring for 4 hours, the reaction was quenched with triethylamine and concentrated under reduced pressure to afford a syrup. The crude mixture was redissolved in EtOAc (30 mL), and the organic solution was washed with brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography on silica gel using a gradient of $15 \rightarrow 20\%$ EtOAc-hexanes as the eluent to afford the desired product **17** as a syrup (94 mg, 0.16 mmol, 76% yield). R_f = 0.69 (EtOAc : hexanes, 3 : 7). $[\alpha]_D^{20}$: +35.3 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_H 7.89-7.62 (m, 4H, Pht), 7.42-7.28 (m, 5H, Ar), 7.10-7.02 (m, 2H, Ar), 7.00-6.91 (m, 3H, Ar), 5.13 (d, *J* = 8.3 Hz, 1H, H-1), 4.75 (d, *J* = 12.2 Hz, 1H, PhCH_aH_b), 4.65 (d, *J* = 11.9 Hz, 1H, PhCH_aH_b), 4.59 (d, *J* = 11.9 Hz, 1H, PhCH_aH_b), 4.54 (d, *J* = 12.2 Hz, 1H, PhCH_aH_b), 4.23 (dd,

J = 10.8, 8.3 Hz, 1H, H-3), 4.15 (dd, J =10.8, 8.3 Hz, 1H, H-2), 3.87-3.74 (m, 4H, H-4, H-6a, H-6b, OCH_aH_b), 3.65 (ddd, J = 9.8, 4.9, 4.9 Hz, 1H, H-5), 3.36 (ddd, J = 9.8, 7.3, 5.7 Hz, 1H, OCH_aH_b), 3.01 (t, J = 6.9 Hz, 2H, Hex_NCH₂), 2.94 (d, J = 2.6 Hz, 1H, OH-4), 1.47-1.31 (m, 2H, CH₂), 1.30-1.18 (m, 2H, CH₂), 1.16-1.01 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 168.3 (C=O), 167.6 (C=O), 133.8 (Pht), 128.5 (Ar), 128.1 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.4 (Ar), 123.3 (Pht), 123.1 (Pht), 98.3 (C-1), 78.7 (C-3), 74.5 (C-4), 74.3 (PhCH₂), 73.8 (PhCH₂), 73.5 (C-5), 70.8 (C-6), 69.3 (OCH_aH_b), 55.4 (C-2), 51.1 (CH₂), 29.4 (CH₂), 28.5 (CH₂), 26.2 (CH₂), 25.4 (CH₂). HRMS (ESI-QTOF) *m/z* calc'd for C₃₄H₃₈N4₅O₇ [M + NH₄]⁺, 632.3079; found, 632.3068.

6-Azidohexyl 2-O-acetyl-7-O-benzyl-6-deoxy-3,4-O-isopropylidene-β-D-galacto-

heptopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (18)

To a solution of glycosyl donor **11** (32 mg, 0.065mmol), glycosyl acceptor **17** (61 mg, 0.099 mmol) in anhydrous CH₂Cl₂ (2 mL), was added crushed molecular sieves (4 Å, 100 mg). After stirring at room temperature for 1 hr, the reaction mixture was cooled down to -50 °C, and NIS (29 mg, 0.131mmol) was added; after another 10 min, TfOH (30 μ L) was added. The reaction was stirred at -50 °C for 2 hrs. Triethylamine (~0.5 mL) was added to quench the reaction. The reaction mixture was filtered off and evaporated. The crude mixture was redissolved in EtOAc (30 mL), washed with a mixture of 10% aqueous Na₂S₂O₃ (15 mL) and 10% aqueous NaHCO₃ (15 mL), saturated brine (20 mL), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column

chromatography on silica gel using a gradient of $15 \rightarrow 20\%$ EtOAc-hexanes as the eluent to afford recovered acceptor 17 (23 mg, 0.037mmol) and the desired product 18 as a syrup (35 mg, 0.036 mmol, 59% yield based on recovered acceptor). R_f = 0.33 (EtOAc : hexanes, 3 : 7). $[\alpha]_D^{20}$: +24.1 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ_H 7.87-7.54 (m, 4H, Pht), 7.42-7.26 (m, 10H, Ar), 7.02-6.95 (m, 2H, Ar), 6.89-6.81 (m, 3H, Ar), 5.07 (d, J = 8.3 Hz, 1H, GlcN H-1), 4.94 (dd, J = 8.4, 7.3 Hz, 1H, Galacto-Hep H-2), 4.80 (d, J = 12.2 Hz, 1H, PhCH_aH_b), 4.76 (d, J = 12.2 Hz, 1H, PhCH_aH_b), 4.51 – 4.46 (m, 3H, PhCH_aH_b, $PhCH_aH_b$), 4.43 (d, J = 12.2 Hz, 1H, $PhCH_aH_b$), 4.34 (d, J = 8.4 Hz, 1H, *Galacto*-Hep_H-1), 4.20 (dd, J = 10.7, 8.2 Hz, 1H, GlcN H-3), 4.12 (dd, J = 10.9, 8.2 Hz, 1H, GlcN H-2), 3.93 (dd, J = 7.2, 2.3 Hz, 1H, Galacto-Hep H-3), 3.91 (dd, J = 5.4, 2.3 Hz, 1H, Galacto-Hep H-4), 3.87 (dd, J = 8.3, 7.3 Hz, 1H, GlcN H-4), 3.82-3.73 (m, 4H, Galacto-Hep H-5, GlcN H-6a, GlcN H-6b, OCH_aH_b), 3.57 (ddd, J = 9.1, 9.0, 4.5 Hz, 1H, Galacto-Hep_H-7a), 3.51 (ddd, J = 9.9, 3.5, 1.9 Hz, 1H, GlcN H-5), 3.41 (ddd, J = 9.1, 5.1, 5.1 Hz, 1H, Galacto-Hep H-7b), 3.36 (ddd, J = 13.2, 7.3, 5.1 Hz, 1H, OCH_aH_b), 3.01 (t, J = 6.9 Hz, 2H, Hex NCH₂), 2.07 (s, 3H, Ac), 1.94 (dddd, J = 13.7, 9.6, 8.9, 4.7 Hz, 1H, Galacto-Hep H-6a), 1.85 (dddd, J = 13.9, 9.5, 8.8, 5.4 Hz, 1H, Galacto-Hep H-6b), 1.53 (s, 3H, ISP CH₃), 1.39 (m, 2H, CH₂), 1.29 (s, 3H, ISP_CH₃), 1.28-1.19 (m, 2H, CH₂), 1.15-1.03 (m, 4H, 2 × CH₂). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 138.7 (Pht), 138.5 (Pht), 138.0 (Pht), 133.7 (Pht), 128.4 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 126.9 (Pht), 100.04 (Galacto-Hep_C-1), 98.4(GlcN_C-1), 78.3 (GlcN_C-4), 77.4 (Galacto-Hep_C-4), 76.7 (GlcN C-3), 75.7 (Galacto-Hep C-3), 74.9 (GlcN C-5), 74.6 (PhCH₂), 73.6 (Galacto-Hep C-2), 73.5 (PhCH₂), 73.1 (Ph<u>C</u>H₂), 69.5 (Galacto-Hep_C-5), 69.2 (OCH_aH_b), 67.8 (GlcN_C-6),

66.0 (*Galacto*-Hep_C-7), 55.8 (GlcN_C-2), 51.2 (Ph<u>C</u>H₂), 31.2 (*Galacto*-Hep_C-6), 29.1 (CH₂), 28.6 (CH₂), 27.8 (ISP_Me), 26.3 (ISP_Me), 26.2 (CH₂), 25.4 (<u>C</u>H₂), 21.0 (*Galacto*-Hep_Ac). HRMS (ESI-QTOF) m/z calc'd for C₅₃H₆₂N₄O₁₃ [M + Na]⁺, 985.4206; found, 985.4196.

2,3,4-Tri-O-acetyl-7-O-benzyl-6-deoxy-D-galacto-heptopyranosyl trichloroacetimidate (20).

Crude compound **20**(α/β 0.77:1) was prepared from compound **5** according to our previous procedures.² R_f = 0.66 (EtOAc : hexanes, 2:3). Data for the α-anomer: ¹H NMR (400 MHz, CDCl₃): 8.61 (s, 1H, C=N*H*), 7.41 – 7.28 (m, 5H, Ar), 6.58 (d, *J* = 3.6 Hz, 1H, H-1), 5.55 – 5.34 (m, 3H, H-2, H-3, H-4), 4.56 – 4.40 (m, 3H, H-5 + PhCH_aH_b), 3.65 – 3.47 (m, 2H, H-7a + H-7b), 2.18 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 – 1.71 (m, 2H, H-6a + H-6b). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 170.4 (C=O), 170.0 (C=O), 169.2 (C=O), 161.1 (*C*=NH), 138.1 (Ar), 138.0 (Ar), 128-127 (Ar), 93.6 (C-1), 73.2 (PhCH₂O), 71.2 (C-3), 69.2 (C-4), 68.0 (C-5), 67.2 (C-2), 65.6 (C-7), 30.6 (C-6), 20.7-20.5 (OAc, × 3). Data for the β-anomer: ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.70 (s, 1H, C=N*H*), 7.41 – 7.28 (m, 5H, Ar), 5.81 (d, *J* = 8.5 Hz, 1H, H-1), 5.55 – 5.34 (m, 2H, H-2, H-4), 5.15 (dd, *J* = 3.6, 10.6 Hz, H-3), 4.56 – 4.40 (m, 2H, PhCH_aH_b), 4.09, (ddd, *J* = 0.9, 4.6, 8.6 Hz, 1H, H-5), 3.65 – 3.47 (m, 2H, H-7a + H-7b), 2.20 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 – 1.71 (m, 2H, H-6a + H-6b). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 170.3 (OAc), 170.2 (OAc), 170.0 (OAc), 161.1 (*C*=NH), 138.2 (Ar), 128 -127 (Ar), 96.3 (C-1), 73.1 (PhCH₂O), 71.2 (C-5), 70.0 (C-3), 68.3

(C-2), 68.0 (C-4), 65.6 (C-7), 30.8 (C-6), 20.7-20.5 (OAc, × 3). HRMS (ESI-QTOF) *m/z* calc'd for C₂₂H₂₆Cl₃NO₉ [M + Na]⁺, 576.0565; found, 576.0559.

6-Azidohexyl 2,4-di-*O*-acetyl-7-*O*-benzyl-6-deoxy-β-D-*ido*-heptopyranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (36)

To a solution of compound 35 (38 mg, 0.038 mmol) in anhydrous methanol (1.0 mL) under argon atmosphere was added PdCl₂ (4 mg, 0.022 mmol) and the reaction stirred for 24 hrs at ambient temperature. The reaction mixture was filtered off, evaporated and purified by column chromatography on silica gel using 40% EtOAc-hexanes as the eluent to afford the desired product 36 as a syrup (30 mg, 0.031 mmol, 82% yield). R_f = 0.22 (EtOAc : hexanes, 2 : 3). $[\alpha]_D^{20}$: +28.0 (c 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ_H 7.82 (br, 1H, Pht), 7.70 (br, 2H, Pht), 7.66 (br, 1H, Pht), 7.43 - 7.38 (m, 2H, Ar), 7.40 -7.32 (m, 4H, Ar), 7.30 – 7.26 (m, 4H, Ar), 7.08 – 7.01 (m, 2H, Ar), 6.92 – 6.87 (m, 3H, Ar), 5.08 (d, J = 8.7 Hz, GlcN H-1), 5.07 (d, J = ~1 Hz, ido-Hep H-1), 4.93 (d, J = 12.1 Hz, 1H, $PhCH_{a}H_{b}$), 4.83 (dd, J = 2.8, 1.1 Hz, 1H, *ido*-Hep H-2), 4.62 (s, 2H, PhCH_{a}H_{b}), 4.55 (dd, J =1.5, 1.5 Hz, 1H, *ido*-Hep H-4), 4.49 (d, J = 12.1 Hz, 1H, PhCH_aH_b), 4.42 (d, J = 12.1 Hz, 1H, PhCH_aH_b), 4.39 (d, J = 12.1 Hz, 1H, PhCH_aH_b), 4.27 (dd, J = 10.8, 8.6 Hz, 1H, GlcN H-3), 4.15 (dd, J = 8.4, 10.7 Hz, 1H, GlcN_H-2), 4.11 (ddd, J = 1.6, 4.3, 9.2 Hz, ido-Hep_H-5), 4.06 (ddd, J = 2.7, 2.7, 4.2 Hz, 1H, ido-Hep_H-3), 4.01 (dd, J = 9.9, 8.5 Hz, 1H, GlcN_H-4), 3.81 (ddd, J = 6.0, 6.0, 9.9 Hz, OCH_aH_b), 3.76 (dd, J = 2.1, 10.9 Hz, 1H, GlcN H-6a), 3.73 (dd, J = 3.8, 10.9 Hz, GlcN_H-6b), 3.59 (ddd, J = 9.9, 3.7, 2.1 Hz, 1H, GlcN_H-5), 3.50 (ddd, J = 9.0, 9.0, 5.2 Hz, 1H, *ido*-Hep_H-7a), 3.42 – 3.34 (m, 2H, *ido*-Hep_H-7b, OCH_aH_b), 3.28 (d, J = 2.6 Hz, *ido*-Hep_OH-3), 3.03 (t, J = 7.1 Hz, 2H, CH₂N₃), 2.09 (s, 3H, Ac), 2.03 (s, 3H, Ac), 1.78 (m, 1H, *ido*-Hep_H-6a), 1.66 (m, 1H, *ido*-Hep_H6b), 1.49 – 1.35 (m, 4H, CH₂CH₂N₃, OCH_aH_bCH₂), 1.31 – 1.20 (m, 4H, OCH_aH_bCH₂(CH₂)₂). ¹³C NMR (151 MHz, CDCI₃): $\delta_{\rm C}$ 170.3 (C=O), 170.1 (C=O), 138.9 (Ar), 138.4 (Ar), 138.1 (Ar), 133.9 (Ar), 133.8 (Ar), 128.9 (Ar), 128.4 (Ar), 128.0 (Ar), 127.8 (Ar), 127.8 (Ar), 127.6 (Ar) 127.57 (Ar), 127.0 (Ar), 123.1 (Ar), 123.0 (Ar), 98.4 (GlcN_C-1), 97.3 (*ido*-Hep_H-1), 78.6 (GlcN_C-4), 77.1 (GlcN_C-3), 74.5 (GlcN_C-5), 74.2 (PhCH₂), 73. (PhCH₂), 73.1 (PhCH₂), 70.3 (*ido*-Hep_C-4), 69.6 (*ido*-Hep_C-5)), 69.2 (*ido*-Hep_C-2), 69.19 (OCH_aH_b), 68.7 (GlcN_C-6), 67.3 (*ido*-Hep_C-3), 65.9 (*ido*-Hep_C-3), 55.7 (GlcN_C-2), 51.1 (CH₂N₃), 30.8 (*ido*-Hep_C-6), 29.1 (Hex_CH₂), 28.6 (Hex_CH₂), 26.2 (Hex_CH₂), 25.4 (Hex_CH₂), 21.0 (Ac), 20.7 (Ac). HRMS (ESI-QTOF): *m/z* calc'd for C₅₂H₆₀N₄O₁₄ [M + Na]⁺: 987.3998; found: 987.3999.

6-azidohexyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (43)

To a solution of thioglycosyl donor **12** (23.8 mg, 0.042 mmol), glycosyl acceptor **41** (30 mg, 0.028 mmol) in anhydrous acetonitrile (1.0 mL), was added crushed molecular sieves (4 Å, 150 mg). After stirring at room temperature for 2 hrs, the reaction cooled down to - 20 °C, and NIS (12.6 mg, 0.056 mmol) was added followed by TfOH (15 μ L); the reaction was continued at -20 °C for 1 hr, and gradually warmed up to ambient temperature. Triethylamine (~0.1 mL) was added to quench the reaction. The reaction mixture was

filtered off and evaporated. The mixture was purified by column chromatography on silica gel using 30% EtOAc-hexanes as the eluent. ¹H NMR revealed that the major compound was 6-azidohexyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-Dglucopyranoside- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (43) which is contaminated with other unidentified impurities. Selected ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ 5.79 (dd, J = 10.7, 9.0 Hz, 1H, H-3'), 5.54 (d, J = 8.4 Hz, 1H, H-1'), 5.12 (dd, J = 9.1, 10.1 Hz, 1H, H-4'), 4.94 (d, J = 8.5 Hz, 1H, H-1), 4.84 (d, J = 12.7 Hz, 1H, PhCH_aH_b), 4.57 (d, J = 11.9 Hz, 1H, PhCH_aH_b), 4.54 (d, J = 11.9 Hz, 1H, PhCH_aH_b), 4.49 (d, J = 12.7 Hz, 1H, PhCH_aH_b), 4.34 (dd, J = 10.7, 8.4 Hz, 1H, H-2'), 4.10 (dd, J = 8.5, 10.7 Hz, 1H, H-2), 3.94 (dd, J = 2.1, 12.2 Hz, 1H, H-6b'), 3.69 (ddd, J = 6.0, 6.0, 9.8 Hz, 1H, OCH_aH_b),3.59 (dd, J = 1.3, 11.1 Hz, 1H, H-6a), 3.49 (dd, J = 4.0, 11.1 Hz, 1H, H-6b), 3.47 (ddd, J = 2.5, 4.3, 10.0 Hz, 1H, H-5'), 3.36 (ddd, J = 1.3, 4.0, 10.1 Hz, 1H, H-5), 3.39 - 3.32 (m, 2H), 2.98 (t, J = 6.8 Hz, 2H, CH₂N₃). 2.01 (Ac), 1.98 (Ac), 1.85 (Ac).

4-Chlorophenyl 3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (45)

To a solution of 4-chlorophenyl 3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-1-thio-β-Dglucopyranoside **44** (1.031 g, 1.67 mmol) in anhydrous DMF (10.0 mL) under an argon atmosphere was added NaH (60% dispersion in mineral oil, 233 mg, 5.84 mmol) at ambient temperature. After stirring for 15 min, benzyl bromide (0.59 mL, 5.02 mmol) was added. After stirring for 1 hr, the reaction mixture was then quenched with a few drops of acetic acid, diluted by EtOAc (40 mL), and the organic solution was washed with saturated brine (30 mL \times 2), dried over anhydrous Na₂SO₄, and evaporated. The crude mixture was purified by column chromatography on silica gel using 22% EtOAc-hexanes as the eluent to afford the desired product 45 as a syrup (768 mg, 1.087 mmol, 65% yield). R_f = 0.23 (EtOAc : hexanes, 1 : 4). $[\alpha]_D^{20}$: +22.4 (c 4.2, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 7.2 Hz, 1H, Pht), 7.69 (m, 2H, Pht), 7.62 (d, J = 7.2 Hz, 1H, Pht), 7.40 – 7.24 (m, 12H, Ar), 7.14 – 7.10 (m, 2H, Ar), 6.99 – 6.96 (m, 2H, Ar), 6.90 – 6.82 (m, 3H, Ar), 5.49 (d, J = 10.4 Hz, 1H, H-1), 4.84 (d, J = 10.9 Hz, 1H, PhCH_aH_b), 4.78 (d, J = 12.0 Hz, 1H, PhCH_aH_b), 4.66 (d, J = 10.8 Hz, 1H, PhCH_aH_b), 4.63 (d, J = 11.9 Hz, 1H, PhCH_aH_b), 4.57 (d, J= 11.9 Hz, 1H, PhCH_aH_b), 4.43 (d, J = 12.0 Hz, 1H, PhCH_aH_b), 4.37 (dd, J = 10.2, 8.5 Hz, 1H, H-3), 4.21 (dd, J = 10.3 Hz, 1H, H-2), 3.82 (dd, J = 1.9, 10.8 Hz, H-6a), 3.79 (dd, J = 4.4, 10.8 Hz, H-6b), 3.76 (dd, J = 8.5, 9.9 Hz, H-4), 3.71 (ddd, J = 10.0, 4.3, 2.0 Hz, 1H, H-5). ¹³C NMR (151 MHz, CDCl₃) δ 168.0 (C=O), 167.3 (C=O), 138.2 (Ar), 137.9 (Ar), 137.7 (Ar), 134.3 (Ar), 134.2 (Ar), 133.9 (Ar), 133.8 (Ar), 131.6 (Ar), 131.5 (Ar), 130.2 (Ar), 128.9 (Ar), 128.5 (Ar), 128.4 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.7 (Ar), 127.65 (Ar), 127.4 (Ar), 123.5 (Ar), 123.3 (Ar), 82.9 (C-1), 80.2 (C-3), 79.4 (C-4), 79.3 (C-5), 75.0 (PhCH₂), 75.0 (PhCH₂), 73.4 (PhCH₂), 68.8 (C-6), 54.9 (C-2). HRMS (ESI-QTOF): m/z calc'd for C₄₁H₃₆CINO₆S [M + Na]⁺: 728.1844; found: 728.1842.

3,4,6-Tri-O-benzyl-2-deoxy-2-phthalimido- α/β -D-glucopyranosyl trichloroacetimidate (46)

To a solution of 4-chlorophenyl 3,4,6-tri-*O*-benzyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside **45** (1.235 g, 1.748 mmol) in acetone (15.0 mL) and water (2.0 mL) was

added *N*-bromosuccinimide (933 mg, 5.24 mmol) at 0 °C. The ice bath was then removed and the reaction mixture was stirred at room temperature for 1.5 hrs. CH₂Cl₂ (50 mL) was added and the organic solution was washed with saturated aq Na₂S₂O₃ solution (30 mL). The aqueous layer was further extracted with CH₂Cl₂ (2 × 70 mL), and the combined organic phases were washed with brine (25 mL), dried over anhydrous Na₂SO₄, filtered off and concentrated. The crude mixture was purified by column chromatography (27→35% EtOAc/hexane) to afford the hemiacetal (740 mg, 73%) as a colorless viscous liquid. To a solution of hemiacetal (208 mg, 0.359 mmol) in anhydrous CH₂Cl₂ (3.0 mL) were added K₂CO₃ (150 mg, 1.085 mmol) and trichloroacetonitrile (0.54 mL, 5.38 mmol). The reaction mixture was stirred at ambient temperature for 3 hrs. The solution was filtered over a bed of celite and concentrated to afford the crude product **46** (α/β 3:97) as a colorless syrup. R_f = 0.66 (EtOAc/hexanes 2:3). The crude product was used directly for the next step without further purification.

References

- 1P. Zhang, K. Ng and C.-C. Ling, Org Biomol Chem, 2010, 8, 128–136.
- 2P. Zhang, R. Hevey and C.-C. Ling, J. Org. Chem., 2017, 82, 9662–9674.

¹H NMR Spectrum in CDCI₃, 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H-¹H GCOSY NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H-¹H GCOSY NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H-¹H GCOSY NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCl₃, 100 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCl₃, 100 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCl₃, 100 MHz, 298 K

¹H-¹H GCOSY NMR Spectrum in CDCI₃, 400 MHz, 298 K

BnO

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in D_2O , 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in D_2O , 100 MHz, 298 K

¹H-¹³C GHSQC NMR Spectrum in D_2O , 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

BnQ BnO

¹H-¹³C GHSQC NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CDCI₃, 100 MHz, 298 K

¹H NMR Spectrum in CD₃OD, 400 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in CD₃OD, 100 MHz, 298 K

¹³C (DEPT-Q) NMR Spectrum in D_2O , 100 MHz, 298 K

¹H NMR Spectrum in CDCl₃, 400 MHz, 298 K

¹H NMR Spectrum in D₂O, 400 MHz, 298 K

147

¹³C (DEPT-Q) NMR Spectrum in D_2O , 100 MHz, 298 K

148

