Fe-MediatedOxidativeCascade[1+2+3]-Cyclization/EsterificationReaction:Synthesisof4-Alkylated 1,4-Dihydropyridines

Zhuoyuan Liu,^a Yulin Sun,^a Mingshuai Zhang,^a Longkun Chen,^a Xue-Bing Chen^{*,b}, Xiang Li^{*,c} and

Fuchao Yu*,a

^aFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. China. ^bCollege of Science, Honghe University, Mengzi, 661199, Yunnan, P. R. China. ^cResearch Center for Analysis and Measurement, Kunming Uni-versity of Science and Technology, Kunming 650500, PR China.

Supporting Information

Table of Contents

1. General information.	2
2. General procedure	3
3. Spectroscopic data.	4
4. ¹ H NMR and ¹³ C NMR spectra for spectroscopic data	16
5. References and notes	75

1. General information.

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a DRX600 (¹H: 600 MHz, ¹³C: 150 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ and DMSO-*d*₆ were used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/MS TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

Enaminones **1** were prepared according to the literature¹. Other reagents were purchased from Energy Chemical and Adamas-beta®.

2. General procedure.

2.1 Synthesis of 1,4-DHPs 4.

Enaminones 1 (0.4 mmol), FeCl₂ (0.2 mmol), acid anhydrides 3 (1.2 mmol), DCP (0.6 mmol) and tetrahydrofuran (3.0 mL) were charged into a 10 mL Ace Glass pressure tubes under nitrogen atmosphere, and the mixture was stirred at 80 °C for 8.0 h until enaminones were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 1,4-DHPs **4**.

2.2 Gram-level synthesis of 1,4-DHPs 4a.

Enaminone **1a** (10 mmol), FeCl₂ (5.0 mmol), acetic anhydride (30 mmol), DCP (15 mmol) and tetrahydrofuran (50 mL) were charged into a 10 mL Ace Glass pressure tubes under nitrogen atmosphere, and the mixture was stirred at 80 °C for 8.0 h until enaminones were completely consumed. The mixture was cooled to room temperature, and then EtOAc (30 mL \times 3) were added. The organic phase was washed with water (30 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 1,4-DHPs **4a** in 49% yield (1.1 g).

2.3 Synthesis of 1,4-DHP 5.

Enaminone **1a** (0.4 mmol), FeCl₂ (0.2 mmol), DCP (0.6 mmol) and tetrahydrofuran (3.0 mL) were charged into a 10 mL Ace Glass pressure tubes under nitrogen atmosphere, and the mixture was stirred at 80 °C for 8.0 h until enaminones were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 1,4-DHP **5** in 42% yield.

3. Spectroscopic data.

3-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4a)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 68 mg (73%); mp = 115–117 °C; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.69 (d, J = 7.6 Hz, 4H, ArH), 7.59–7.57 (m, 2H, ArH), 7.53–7.50 (m, 4H, ArH), 7.43–7.40 (m, 2H, ArH), 7.33–7.32 (m, 2H, ArH), 7.29–7.28 (m, 3H, ArH+C=CH), 4.46 (t, J = 5.2 Hz, 1H, C-CH), 4.00 (t, J = 6.5 Hz, 2H, C-CH₂), 1.94 (s, 3H, C-CH₃), 1.69–1.62 (m, 2H, C-CH₂), 1.58–1.55 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.8, 194.8, 170.9, 143.2, 141.7, 141.7, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.7, 118.7, 64.5, 31.9, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₇NO₄ [(M+H)⁺], 466.2013, found, 466.2017.

3-(3,5-Bis(4-methoxybenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4b)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 76 mg (72%); mp = 137–139 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.70 (d, *J* = 8.3 Hz, 4H, ArH), 7.43–7.40 (m, 2H, ArH), 7.36–7.35 (m, 2H, ArH), 7.27–7.26 (m, 3H, ArH+C=CH), 7.04 (d, *J* = 8.2 Hz, 5H, ArH), 4.42 (t, *J* = 5.4 Hz, 1H, C-CH), 3.96 (t, *J* = 6.5 Hz, 2H, C-CH₂), 3.82 (s, 6H, ArOCH₃), 1.91 (s, 3H, C-CH₃), 1.63–1.60 (m, 2H, C-CH₂), 1.54–1.50 (m, 2H, CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 193.8, 193.8, 170.9, 162.4, 162.4, 143.3, 140.4, 140.4, 131.5, 131.5, 131.2, 131.2, 131.2, 131.2, 130.4, 130.4, 126.9, 121.4, 121.4, 118.6, 118.6, 114.3, 114.3, 114.3, 64.44, 55.85, 55.85, 32.10, 30.64, 24.61, 21.16; HRMS (TOF ES⁺): m/z calcd for C₃₂H₃₁NO₆ [(M+H)⁺], 526.2224, found, 526.2238.

3-(3,5-Bis(4-methylbenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4c)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f=0.5; Yellow solid: 66 mg (68%); mp = 157–159 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.60–7.58 (m, 4H, ArH), 7.41–7.39 (m, 2H, ArH), 7.32–7.30 (m, 6H, ArH+C=CH), 7.26–7.24 (m, 2H, ArH), 4.43–4.41 (m, 1H, C-CH), 3.98–3.96 (m, 2H, C-CH₂), 2.36 (s, 6H, ArCH₃), 1.91 (s, 3H, C-CH₃), 1.63–1.61 (m, 2H, C-CH₂), 1.54–1.52 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ =194.6, 194.6, 170.9, 143.3, 141.9, 141.9, 141.2, 141.2, 136.5, 136.5, 130.5, 130.5, 129.5, 129.5, 129.5, 129.5, 129.1, 129.1, 129.1, 129.1, 127.0, 121.5, 121.5, 118.7, 118.7, 64.4, 31.9, 30.1, 24.5, 21.5, 21.2; HRMS (TOF ES+): m/z calcd for C₃₂H₃₁NO₄ [(M+H)⁺], 493.2373, found, 493.2382.

3-(3,5-Bis(4-ethylbenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4d)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 63 mg (60%); mp = 134–136 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.63 (d, *J* = 7.8 Hz, 4H, ArH), 7.43–7.41 (m, 2H, ArH), 7.35 (d, *J* = 7.8 Hz, 6H, ArH), 7.29-7.27 (m, 3H, C=CH+ArH), 4.44 (t, *J* = 5.9 Hz, 1H, C-CH), 3.98 (t, *J* = 6.4 Hz, 2H, C-CH₂), 2.69–2.65 (m, 4H, C-CH₂), 1.93 (s, 3H, C-CH₃), 1.67–1.60 (m, 2H, C-CH₂), 1.57–1.52 (m, 2H, C-CH₂), 1.20 (t, *J* = 7.6 Hz, 6H, C-CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.6, 194.6, 170.9, 148.0, 148.0, 143.3, 141.2, 141.2, 136.7, 136.7, 130.5, 130.5, 130.5, 130.5, 129.2, 129.2, 129.2, 129.2, 128.4, 128.4, 128.4, 128.4, 127.1, 121.7, 121.7, 118.6, 118.6, 64.5, 32.0, 30.2, 28.5, 24.6, 21.2, 15.7; HRMS (TOF ES⁺): m/z calcd for C₃₄H₃₅NO₄ [(M+H)⁺], 520.2614, found, 520.2625.

3-(3,5-Bis(4-fluorobenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4e)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 65 mg (65%); mp = 127-129 °C; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.78–7.76 (m, 4H, ArH), 7.41–7.28 (m, 11H, ArH+C=CH), 4.43–4.41 (m, 1H, C-CH), 3.98–3.96 (m, 2H, C-CH₂), 1.92 (s, 3H, C-CH₃), 1.63–1.61 (m, 2H, CH₂), 1.55–1.53 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 193.6, 193.6, 170.9, 164.3 (J_{C-F} = 249.5 Hz), 164.3 (J_{C-F} = 249.5 Hz), 143.2, 141.7, 141.7, 135.7, 131.7 (J_{C-F} = 9.0 Hz), 130.40, 130.40, 130.40, 127.1, 121.6, 121.6, 118.5, 118.5, 116.0 (J_{C-F} = 21.6 Hz), 121.824, found, 502.1831.

3-(3,5-Bis(4-chlorobenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4f)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 59 mg (56%); mp = 153–155 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.73 (d, *J* = 7.9 Hz, 4H, ArH), 7.58–7.57 (m, 4H, ArH), 7.43–7.39 (m, 2H, ArH), 7.33 (s, 2H, C=CH), 7.31–7.30 (m, 1H, ArH), 4.43–4.42 (m, 1H, C-CH), 4.00–3.98 (m, 2H, C-CH₂), 1.94 (s, 3H, C-CH₃), 1.69–1.61 (m, 2H, C-CH₂), 1.61–1.50 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 193.6, 193.6, 170.9, 143.1, 142.0, 142.0, 137.9, 137.9, 136.6, 130.6, 130.9, 130.9, 130.9, 130.4, 130.4, 129.1, 129.1, 129.1, 129.1, 127.2, 121.7, 118.5, 118.5, 64.4, 31.8, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₅Cl₂NO₄ [(M+H)⁺], 534.1233, found, 534.1238.

3-(3,5-Bis(4-bromobenzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4g)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 66 mg (54%); mp = 168–170 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.71 (d, *J* = 8.1 Hz, 4H, ArH), 7.64 (d, *J* = 8.1 Hz, 4H, ArH), 7.44–7.41 (m, 2H, ArH), 7.39–7.37 (m, 2H, ArH), 7.32–7.28 (m, 3H, ArH+C=CH), 4.41 (t, *J* = 5.0 Hz, 1H, C–CH), 3.98 (t, *J* = 6.4 Hz, 2H, C-CH₂), 1.94 (s, 3H, C-CH₃), 1.67–1.59 (m, 2H, C-CH₂), 1.56–1.53 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 193.8, 193.8, 170.9, 143.1, 142.0, 142.0, 138.3, 138.3, 132.0, 132.0, 132.0, 131.0, 131.0, 131.0, 130.4, 130.4, 127.2, 125.5, 125.5, 121.7, 121.7, 118.5, 118.5, 64.4, 31.8, 29.8, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₆Br₂NO₄ [(M+H)⁺], 622.0023, found, 622.0030.

3-(3,5-Di(2-naphthoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4h)

 $V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.5$; Yellow solid: 66 mg (58%); mp = 175–177 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.34 (s, 2H, ArH), 8.14–8.13 (m, 2H, ArH), 8.05–7.99 (m, 4H, ArH), 7.78 (d, *J* = 8.5 Hz, 2H, ArH), 7.65–7.55 (m, 4H, ArH), 7.43 (s, 2H, ArH), 7.36–7.34 (m, 4H, ArH+C=CH), 7.22–7.20 (m, 1H, ArH), 4.57–4.55 (m, 1H, C–CH), 4.05 (t, *J* = 6.6 Hz, 2H, C-CH₂), 1.92 (s, 3H, C-CH₃),

1.79–1.72 (m, 2H, C-CH₂), 1.68–1.64 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.8, 194.8, 171.0, 143.2, 141.9, 136.6, 136.6, 134.6, 134.6, 132.6, 132.6, 130.4, 130.4, 130.4, 129.6, 129.6, 129.3, 129.3, 128.7, 128.7, 128.3, 128.3, 128.1, 128.1, 127.4, 127.4, 127.0, 125.8, 125.8, 121.5, 121.5, 121.5, 119.0, 119.0, 64.6, 32.2, 30.1, 24.7, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₈H₃₁NO₄ [(M+H)⁺], 566.2326, found, 566.2333.

3-(3,5-Bis(benzo[d][1,3]dioxole-5-carbonyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4i)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 34 mg (31%); mp = 137-139 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ =7.43 (t, *J* = 7.8 Hz, 2H, ArH), 7.38 (d, *J* = 8.0 Hz, 2H, ArH), 7.30–7.28 (m, 4H, ArH), 7.23 (s, 2H, C=CH), 7.02 (d, J = 8.0 Hz, 2H, ArH), 6.12 (d, *J* = 4.5 Hz, 4H, C-CH₂), 4.39–4.38 (m, 1H, C–CH), 3.96 (t, *J* = 6.5 Hz, 2H, C-CH₂), 1.92 (s, 3H, C-CH₃), 1.64–1.55 (m, 2H, C-CH₂), 1.52-1.49 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 170.9, 143.2, 141.7, 141.7, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.7, 118.7, 64.5, 31.9, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₂H₂₇NO₈ [(M+H)⁺], 554.1809, found, 554.1814.

3-(3,5-Di(furan-2-carbonyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4j)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.5; Yellow solid: 53 mg (59%); mp = 130–132 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.99 (d, *J* = 8.9 Hz, 4H, C=CH), 7.59–7.57 (m, 2H, C=CH), 7.54–7.51 (m, 2H, ArH), 7.38–7.35 (m, 3H, ArH+C=CH), 6.76–6.67 (m, 2H, C=CH), 4.36–7.34 (m, 1H, C–CH), 3.93–3.91 (m, 2H, C-CH₂), 1.90 (s, 3H, C-CH₃), 1.56-1.50 (m, 2H, C-CH₂), 1.49–1.44 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 179.9, 179.9, 170.8, 152.3, 152.3, 147.4, 147.4, 143.4, 139.9, 139.9, 130.5, 130.5, 127.1, 121.6, 121.6, 118.5, 118.5, 117.8, 117.8, 112.6, 112.6, 64.4, 32.0, 29.9, 24.4, 21.1; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃NO₆ [(M+H)⁺], 446.1598, found, 446.1604.

3-(3,5-Bis(4-(methylsulfonyl)benzoyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4k)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.5; Yellow solid: 54 mg (44%); mp = 171-173 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.04 (d, *J* = 8.0 Hz, 4H, ArH), 7.93 (d, *J* = 8.0 Hz, 4H, ArH), 7.46–7.38 (m, 4H, ArH), 7.35 (s, 2H, C=CH), 7.32–7.28 (m, 1H, ArH), 4.44 (t, *J* = 5.2 Hz, 1H, C–CH), 4.01 (t, *J* = 6.5 Hz, 2H, C-CH₂), 3.29 (s, 6H, C-CH₃), 1.96 (s, 3H, C-CH₃), 1.67–1.64 (m, 2H, C-CH₂), 1.61–1.58 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 193.6, 193.6, 170.9, 143.6, 143.6, 143.1, 143.1, 143.0, 143.0, 130.4, 130.4, 130.4, 129.7, 129.7, 129.7, 129.7, 127.7, 127.7, 127.7, 127.1, 122.1, 118.5, 118.5, 64.5, 43.7, 43.7, 31.9, 29.4, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₂H₃₁NO₈S₂ [(M+H)⁺], 622.1564, found, 622.1558.

3-(3,5-Dibenzoyl-1-(3,4,5-trimethoxyphenyl)-1,4-dihydropyridin-4-yl)propyl acetate (41)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.5; Yellow solid: 50 mg (48%); mp = 135–137 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.71–7.69 (m, 4H, ArH), 7.56–7.49 (m, 6H, ArH), 7.22 (s, 2H, C=CH), 6.68–7.66 (m, 2H, ArH), 4.43–4.45 (m, 1H, C–CH), 3.40–3.38 (s, 2H, C-CH₂), 3.72 (s, 6H, ArOCH₃), 3.58 (s, 3H, ArOCH₃), 1.92 (s, 3H, C-CH₃), 1.66–1.64 (m, 2H, C-CH₂), 1.57–1.55 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 170.9, 153.9, 153.9, 153.9, 142.4, 142.4, 139.6, 139.2, 136.7, 131.9, 131.9, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 118.1, 118.1, 100.5, 100.5, 64.5, 60.5, 56.7, 56.7, 32.0, 30.0, 24.6, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₁H₃₀NO₅ [(M+H)⁺], 556.2330, found, 556.2333

3-(3,5-Dibenzoyl-1-(4-(dimethylamino)phenyl)-1,4-dihydropyridin-4-yl)propyl acetate (4m)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, $R_f = 0.5$; Yellow liquid: 47 mg (46%); ¹H NMR (600 MHz, DMSO- d_6) $\delta =$

7.65–7.61 (m, 4H, ArH), 7.54 (d, J = 7.6 Hz, 2H, ArH), 7.50–7.47 (m, 4H, ArH), 7.12–7.09 (m, 4H, ArH+C=CH), 6.67 (d, J = 8.5 Hz, 2H, ArH), 4.44–4.43 (m, 1H, C–CH), 4.00 (t, J = 6.5 Hz, 2H, CH₂), 2.84 (s, 6H, N-CH₃), 1.94 (s, 3H, C-CH₃), 1.66–1.64 (m, 2H, C-CH₂), 1.57–1.53 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) $\delta = 194.7$, 194.7, 170.9, 149.8, 142.9, 142.9, 139.4, 139.4, 132.7, 131.6, 131.6, 128.5, 128.5, 128.5, 128.5, 128.9, 128.9, 128.9, 128.9, 123.2, 117.8, 117.8, 113.3, 113.3, 64.5, 40.6, 40.6, 31.9, 29.6, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₁H₃₀NO₅ [(M+H)⁺], 509.2435, found, 509.2441.

3-(3,5-Dibenzoyl-1-(4-methoxyphenyl)-1,4-dihydropyridin-4-yl)propyl acetate (4n)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.5; Yellow solid: 50 mg (47%); mp = 113–115 °C; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.66 (d, *J* = 7.6 Hz, 4H, ArH), 7.58–7.55 (m, 2H, ArH), 7.51–7.49 (m, 4H, ArH), 7.28 (d, *J* = 8.7 Hz, 2H, ArH), 7.15 (s, 2H, C=CH), 6.95 (d, *J* = 8.6 Hz, 2H, ArH), 4.44 (t, *J* = 5.2 Hz, 1H, C–CH), 4.00 (t, *J* = 6.6 Hz, 2H, C-CH₂), 3.72 (s, 3H, ArOCH₃), 1.94 (s, 3H, CH₃), 1.68–1.63 (m, 2H, C-CH₂), 1.59–1.53 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.7, 194.7, 190.7, 170.9, 158.4, 142.5, 142.5, 139.3, 139.3, 136.6, 131.7, 131.7, 129.0, 129.0, 129.0, 129.0, 128.8, 128.8, 128.8, 128.8, 123.7, 123.7, 118.1, 118.1, 115.5, 115.5, 64.5, 55.9, 31.9, 29.7, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₉NO₅ [(M+H)⁺], 496.2118, found, 496.2122.

3-(3,5-Dibenzoyl-1-(p-tolyl)-1,4-dihydropyridin-4-yl)propyl acetate (40)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 63 mg (66%); mp = 127–129 °C; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.66–7.65 (m, 4H, ArH), 7.57–7.55 (m, 2H, ArH), 7.51–7.49 (m, 4H, ArH), 7.20–7.18 (m, 6H, ArH+C=CH), 4.44–4.42 (m, 1H, C–CH), 4.00–4.38 (m, 2H, C-CH₂), 2.24 (s, 3H, ArCH₃), 1.92 (s, 3H, C-CH₃), 1.65–1.63 (m, 2H, CH₂), 1.56–1.54 (m, 2H, CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.8, 194.8, 170.9, 142.0, 142.0, 140.9, 139.2, 139.2, 136.8, 131.8, 131.8, 130.8, 130.0, 130.0, 130.0, 128.8, 128.8, 128.8, 128.8, 121.7, 121.7, 118.4, 118.4, 64.5, 31.9, 29.8, 24.5, 21.2, 20.8; HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₉NO₄ [(M+H)⁺], 480.2169, found, 480.2186.

3-(3,5-Dibenzoyl-1-(4-chlorophenyl)-1,4-dihydropyridin-4-yl)propyl acetate (4p)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 64 mg (64%); mp = 135–137 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.69 (d, *J* = 7.5 Hz, 4H, ArH), 7.59–7.56 (m, 2H, ArH), 7.51–7.49 (m, 4H, ArH), 7.44–7.44 (m, 2H, ArH), 7.37–7.36 (m, 2H, ArH), 7.25 (s, 2H, C=CH), 4.55–4.30 (m, 1H, C–CH), 3.99–3.97 (m, 2H, C-CH₂), 1.92 (s, 3H, C-CH₃), 1.68–1.60 (m, 2H, C-CH₂), 1.57–1.53 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 170.9, 142.1, 141.4, 141.4, 139.1, 139.1, 131.9, 131.9, 131.3, 130.2, 130.2, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 123.5, 123.5, 118.8, 118.8, 64.4, 31.9, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₆CINO₄ [(M+H)⁺], 500.1623, found, 500.1630.

3-(3,5-Dibenzoyl-1-(4-bromophenyl)-1,4-dihydropyridin-4-yl)propyl acetate (4q)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 50 mg (46%); mp = 133–135 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ =7.69 (d, *J* = 7.4 Hz, 4H, ArH), 7.60–7.57 (m, 4H, ArH), 7.52–7.50 (m, 4H, ArH), 7.32 (d, *J* = 8.4 Hz, 2H, ArH), 7.26 (s, 2H, C=CH), 4.45–4.43 (m, 1H, C–CH), 4.00–3.97 (m, 2H, C-CH₂), 1.93 (s, 3H, C-CH₃), 1.72–1.59 (m, 2H, C-CH₂), 1.56–1.54 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 170.9, 142.5, 141.3, 141.3, 139.1, 139.1, 133.2, 133.2, 131.9, 131.9, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 123.8, 123.8, 119.5, 118.9, 118.9, 64.4, 31.8, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₆BrNO₄ [(M+H)⁺], 544.1118, found, 544.1112.

3-(3,5-Dibenzoyl-1-benzyl-1,4-dihydropyridin-4-yl)propyl acetate (4r)

 $V_{Petroleum ether}/V_{Ethyl acetate} = 6:1, R_f = 0.5; Yellow solid: 44 mg (46%); mp = 119-121 °C; ¹H NMR (600)$

MHz, DMSO- d_6) δ = 7.56–7.54 (m, 2H, ArH), 7.50–7.46 (m, 8H, ArH), 7.41–7.43 (m, 2H, ArH), 7.35–7.32 (m, 1H, ArH), 7.23 (d, J = 7.5 Hz, 2H, ArH), 7.13 (s, 2H, C=CH), 4.73 (s, 2H, C-CH₂), 4.33 (t, J = 5.2 Hz, 1H, C-CH), 3.91 (t, J = 6.5 Hz, 2H, C-CH₂), 1.93 (s, 3H, C-CH₃), 1.49–1.45 (m, 2H, CH₂), 1.41–1.38 (m, 2H, CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.3, 194.3, 170.8, 144.4, 144.4, 139.6, 139.6, 137.6, 131.5, 131.5, 129.3, 129.3, 128.8, 128.8, 128.8, 128.8, 128.7, 128.7, 128.7, 128.7, 128.4, 127.9, 116.7, 116.7, 64.5, 57.0, 31.8, 29.4, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₁H₃₀NO₄ [(M+H)⁺], 480.2179, found, 480.2171.

3-(3,5-Dibenzoyl-1-cyclohexyl-1,4-dihydropyridin-4-yl)propyl acetate (4s)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow liquid: 52 mg (55%);¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.57−7.56 (m, 6H, ArH), 7.51−7.50 (m, 4H, ArH), 7.06 (s, 2H, C=CH), 4.36 (t, *J* = 5.2 Hz, 1H, C−CH), 3.96 (t, *J* = 6.6 Hz, 2H, C-CH₂), 3.48−3.46 (m, 1H, C−CH), 1.93 (s, 3H, C-CH₃), 1.78−1.74 (m, 2H, C-CH₂), 1.69−1.65 (m, 2H, C-CH₂), 1.59−1.46 (m, 4H, C-CH₂), 1.44−1.40 (m, 2H, C-CH₂), 1.26−1.20 (m, 4H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.4, 194.4, 170.9, 142.2, 142.2, 139.7, 139.7, 131.4, 131.4, 128.9, 128.9, 128.9, 128.9, 128.7, 128.7, 128.7, 128.7, 116.6, 116.6, 64.5, 62.3, 32.1, 32.1, 31.8, 29.9, 25.2, 25.2, 24.8, 24.3, 21.2, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₃₃NO₄ [(M+H)⁺], 472.2482, found, 472.2487.

3-(**3**,**3**,**6**,**6**-tetramethyl-1,**8**-dioxo-10-(*p*-tolyl)-1,**2**,**3**,**4**,**5**,**6**,**7**,**8**,**9**,**10**-decahydroacridin-9-yl)propyl acetate (4t)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.5; White solid: 57 mg (62%); mp = 159–160 °C; ¹¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.39–7.04 (m, 4H, ArH), 3.97 (m, 3H, C-CH₂+C-CH), 2.40 (s, 3H, ArCH₃), 2.17 (t, *J* = 16.4 Hz, 4H, CH₂), 2.08 (d, *J* = 16.0 Hz, 2H, C-CH₂), 1.96 (s, 3H, C-CH₃), 1.69 (d, *J* = 17.5 Hz, 2H, CH₂), 1.53–1.45 (m, 2H, CH₂), 1.35–1.27 (m, 2H, C-CH₂), 0.88 (s, 6H, C-CH₃), 0.86 (s, 6H, C-CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ =195.9, 195.9, 170.8, 152.1, 152.1, 139.3, 136.3, 112.4, 112.4, 64.6, 64.6, 50.2, 50.2, 41.4, 41.4, 32.2, 32.2, 32.2, 31.9, 30.0, 30.0, 26.5, 26.5, 25.1, 24.9, 21.2, 21.2, 21.2; HRMS (TOF ES⁺): m/z calcd for C₂₉H₃₇NO₄ [(M+H)⁺], 464.2795, found, 464.2801.

3-(3,5-Di(cyclopropanecarbonyl)-1-phenyl-1,4-dihydropyridin-4-yl)propyl acetate (4u)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.5; Yellow solid: 40 mg (51%); mp = 110-112 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.08 (s, 2H, C=CH), 7.61 (d, *J* = 7.9 Hz, 2H, ArH), 7.52 (t, *J* = 7.7 Hz, 2H, ArH), 7.35 (t, *J* = 7.4 Hz, 1H, ArH), 4.06 (t, *J* = 5.2 Hz, 1H, C–CH), 3.88 (t, *J* = 6.6 Hz, 2H, C-CH₂), 2.75–2.73 (m, 2H, C-CH₂), 1.94 (s, 3H, C-CH₃), 1.41–1.35 (m, 2H, C-CH₂), 1.27–1.20 (m, 2H, C-CH₂), 0.97–0.72 (m, 8H, CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 197.4, 197.4, 170.8, 143.2, 138.7, 138.7, 130.1, 130.1, 126.7, 121.9, 121.9, 120.0, 120.0, 64.5, 31.9, 28.3, 24.2, 21.2, 15.6, 15.6, 10.3, 10.3, 10.3, 10.3; HRMS (TOF ES⁺): m/z calcd for C₂₄H₂₇NO₄ [(M+H)⁺], 394.2013, found, 394.2019.

3-(3,5-Bis(3-methylbutanoyl)-1-(p-tolyl)-1,4-dihydropyridin-4-yl)propyl acetate (4v)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.5; Yellow solid: 45 mg (53%); mp = 115-117 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.78 (s, 2H, C=CH), 7.42 (d, *J* = 8.0 Hz, 2H, ArH), 7.32 (d, *J* = 8.0 Hz, 2H, ArH), 4.07 (t, *J* = 5.0 Hz, 1H, C–CH), 3.88 (t, *J* = 6.6 Hz, 2H, C–CH₂), 2.68–2.64 (m, 2H, C-CH₂), 2.48–2.47 (m, 1H, ArH), 2.35 (s, 3H, ArCH₃), 2.07–2.03 (m, 2H, C-CH₂), 1.92 (s, 3H, C-CH₃), 1.38–1.35 (m, 2H, C-CH₂), 1.24–1.21 (m, 2H, C-CH₂), 0.88–0.86 (m, 12H, C-CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 198.1, 198.1, 170.8, 140.9, 139.2, 139.2, 136.2, 130.5, 130.5, 130.5, 121.9, 121.9, 121.9, 119.2, 119.2, 64.4, 45.4, 45.4, 45.4, 31.5, 27.8, 25.9, 25.9, 24.1, 22.9, 22.9, 22.9, 22.9, 21.1, 20.9; HRMS (TOF ES⁺): m/z calcd for C₂₆H₃₅NO₄ [(M+H)⁺], 440.2795, found, 440.2804.

3-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)propyl 2-chloroacetate (4w)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 51 mg (51%); mp = 119−121 °C; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.69−7.67 (m, 4H, ArH), 7.61−7.54 (m, 2H, ArH), 7.52−7.49 (m, 4H, ArH), 7.42−7.36 (m, 3H, ArH), 7.33−7.29 (m, 2H, ArH), 7.25 (s, 2H, C=CH), 4.46−4.42 (m, 1H, C−CH), 4.33−4.29 (m, 2H, C-CH₂), 4.14−4.09 (m, 2H, C-CH₂), 1.69−1.64 (m, 2H, C-CH₂), 1.59−1.55 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO- d_6) δ = 194.8, 194.8, 167.9, 143.2, 141.8, 141.8, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.7, 118.7, 66.2, 41.6, 31.9, 29.8, 24.4; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₆ClNO₄ [(M+H)⁺], 500.1623, found, 500.1626.

3-(3,5-dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)propyl propionate (4x)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 58 mg (61%); mp = 130–132 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.68 (d, *J* = 7.5 Hz, 4H, ArH), 7.58–7.56 (m, 2H, ArH), 7.52–7.49 (m, 4H, ArH), 7.40 (t, *J* = 7.7 Hz, 2H, ArH), 7.31 (d, *J* = 7.9 Hz, 2H, ArH), 7.28–7.26 (m, 2H, ArH+C=CH), 4.45 (t, *J* = 5.1 Hz, 1H, C–CH), 4.01 (t, *J* = 6.4 Hz, 2H, C-CH₂), 2.22–2.20 (m, 2H, C-CH₂), 1.67–1.63 (m, 2H, C-CH₂), 1.58–1.54 (m, 2H, C-CH₂), 0.94 (t, *J* = 7.5 Hz, 3H, C-CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 174.1, 143.2, 141.7, 141.7, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.7, 118.7, 64.3, 31.7, 29.9, 27.3, 24.6, 9.5; HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₉NO₄ [(M+H)⁺], 480.2169, found, 480.2173.

3-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)propyl isobutyrate (4y)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 59 mg (60%); mp = 148–150 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.67 (d, *J* = 7.4 Hz, 4H, ArH), 7.58–7.56 (m, 2H, ArH), 7.51–7.49 (m, 4H, ArH), 7.42–7.39 (m, 2H, ArH), 7.31–7.30 (m, 2H, ArH), 7.28–7.25 (m, 3H, ArH+C=CH), 4.45 (t, *J* = 5.2 Hz, 1H, C-CH), 4.02 (t, *J* = 6.2 Hz, 2H, C-CH₂), 2.43–2.42 (m, 1H, C-CH), 1.67–1.63 (m, 2H, C-CH₂), 1.60–1.50 (m, 2H, C-CH₂), 0.98 (d, *J* = 7.0 Hz, C-CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 176.6, 143.2, 141.8, 141.8, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.6, 118.6, 64.2, 33.6, 31.6, 29.9, 24.5, 19.2, 19.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₆CINO₄ [(M+H)⁺], 494.2326, found, 494.2332.

3-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)propyl pivalate (4z)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_{*f*} = 0.5; Yellow solid: 43 mg (41%); mp = 174-176 °C ¹H NMR (600 MHz, CDCl₃) δ = 7.65−7.64 (m, 4H, ArH), 7.51−7.50 (m, 2H, ArH), 7.47−7.45 (m, 4H, ArH), 7.38−7.36 (m, 2H, ArH), 7.27−7.22 (m, 2H, ArH+C=CH), 7.08−7.07 (m, 2H, ArH), 4.48−4.46 (m, 1H, C-CH), 4.08−4.06 (m, 2H, C-CH₂), 1.75−1.73 (m, 4H, C-CH₂), 1.12 (s, 9H, C-CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.0, 195.0, 178.7, 143.0, 141.0, 141.0, 139.2, 139.2, 131.2, 131.2, 130.1, 130.1, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 126.8, 121.0, 121.0, 119.8, 119.8, 64.4, 38.7, 31.7, 30.4, 27.2, 27.2, 27.2, 24.8; HRMS (TOF ES⁺): m/z calcd for C₃₄H₃₅NO₄ [(M+Na)⁺], 530.2307, found, 530.2312.

4-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)butan-2-yl acetate (4a')

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.5; Yellow solid: 60 mg (57%); mp = 136–138 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.69 (d, *J* = 7.6 Hz, 4H, ArH), 7.58 (t, *J* = 7.4 Hz, 2H, ArH), 7.52 (t, *J* = 7.5 Hz, 4H, ArH), 7.41 (t, *J* = 7.7 Hz, 2H, ArH), 7.33 (d, *J* = 7.9 Hz, 2H, CH=CH₂), 7.28 (m, 3H, ArH), , 4.46 (t, *J* = 5.2 Hz, 1H, C-CH), 4.00 (t, *J* = 6.5 Hz, 2H, CH₂), 1.94 (s, 3H, CH₃), 1.69–1.62 (m, 2H, CH₂), 1.58–1.55 (m, 2H, CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 194.8, 194.8, 170.9, 143.2, 141.7, 141.7, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 118.7, 118.7, 64.5, 31.9, 29.9, 24.5, 21.2; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₇NO₄ [(M+H)⁺], 528.2196, found, 528.2181.

4-(3,5-Dibenzoyl-1-phenyl-1,4-dihydropyridin-4-yl)butyl acetate (4b')

V_{Petroleum ether}/V_{Ethyl acetate} = 6:1, R_f = 0.5; Yellow solid: 55 mg (57%); mp = 121-123 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ =7.72−7.65 (m, 4H, ArH), 7.58 (t, *J* = 6.9 Hz, 2H, ArH), 7.51 (m, *J* = 9.8, 5.2 Hz, 4H, ArH), 7.45−7.37 (m, 2H, ArH), 7.33 (s, 2H, C=CH), 7.29−7.24 (m, 2H, ArH), 4.42 (t, *J* = 5.4 Hz, 1H, C–CH), 3.96 (t, 2H, C-CH₂), 1.90 (s, 3H, C-CH₃), 1.58-1.52 (m, 4H, C-CH₂), 1.40−1.38 (m, 2H, C-CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆) δ =194.8, 194.8, 170.8, 143.3, 141.5, 141.5, 139.2, 139.2, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.2, 121.6, 121.6, 119.0, 119.0, 64.1, 35.4, 30.1, 28.5, 21.4, 21.1; HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₉NO₄ [(M+H)⁺], 480.2169, found, 480.2180.

(4-(3-Hydroxypropyl)-1-phenyl-1,4-dihydropyridine-3,5-diyl)bis(phenylmethanone) (5)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.2; Yellow solid: 35 mg (42%); mp = 160−162 °C; ¹H NMR (600 MHz, CDCl₃): δ = 7.67−7.65 (m, 4H, ArH), 7.53−7.50 (m, 2H, ArH), 7.46−7.44 (m, 4H, ArH), 7.38−7.36 (m, 2H, ArH), 7.25 (s, 2H, C=CH), 7.08−7.07 (m, 2H, ArH), 4.66 (t, *J* = 5.3 Hz, 1H, C−CH), 3.72 (t, *J* = 6.4 Hz, 2H, OCH₂), 1.76−1.72 (m, 2H, C−CH₂), 1.68−1.63 (m, 2H, C−CH₂); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 194.9, 194.9, 143.3, 141.4, 141.4, 139.3, 139.3, 131.8, 131.8, 130.5, 130.5, 129.0, 129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 127.1, 121.5, 121.5, 119.2, 119.2, 61.5, 32.3, 30.2, 28.8; HRMS (TOF ES+): m/z calcd for C₂₈H₂₅NO₃ [(M+H)⁺], 424.1907, found, 424.1906.

4. ¹H NMR and ¹³C NMR spectra for spectroscopic data.

Figure S18. ¹³C NMR (150 MHz, DMSO-d6) spectra of compound 4i

Figure S54. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4a'

4.67 4.66 4.65 $\stackrel{3.73}{\underbrace{+3.72}_{3.71}}$

S73

5. References and notes.

(a) Y. Liu, R. Zhou, J.-P. Wan. Synth. Commun. 2013, 43, 2475; (b) Z.-Z. Zhou, F.-S. Liu, D.-S. Shen, C. Tan, L.-Y. Luo. Inorg. Chem. Commun. 2011, 14, 659; (c) N. A. Larina, V. Lokshin, J. Berthet, S. Delbaere, G. Vermeersch, V. Khodorkovsky, Tetrahedron 2010, 66, 8291; (d) P. Zhou, B. Hu, K. Rao, L. Li, J. Yang, C. Gao, F. Wang, F. Yu. Synlett, 2018, 29, 519.