Supporting Information

Photocatalytic Synthesis of Alkynylsulfones and Alkenylsulfones Using Sulfonylhydrazides and Alkynes

Xiaoju Yang,^a Jumei Yi,^b Xinhan Li,^a Yihang Wu,^b Jun Dong,^b Zhenxiu He,^b Guangzhi Zeng,^{*b} Jianbin Xu^{*a} and Baomin Fan^{*a}

Table of contents

General information	S1
General procedure for synthesis of substrates	S1
Control experiments	S4
General experimental methods	S5
¹ H NMR and ¹³ C NMR spectra data of products or materials	S6
General procedure for the synthesis of (E)-Vinyl Sulfones	S21
¹ H and ¹³ C NMR Spectra	S29

General information

Bromoalkyne were synthesized according to literature procedure. A part of Arylsulfonylhydrazides were synthesized according to literature procedure. Other commercially available reagents and solvents were purchased and used without further purification. All catalytic experiments were performed under an atmosphere of argon by using Glove Box. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker NMR spectrometer in CDCl₃ using TMS as an internal reference with chemical shift values reported in ppm. Abbreviations used in the NMR follow-up experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained by fast atom bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI⁺) ionization technique.

General procedure for synthesis of substrates

Preparation of sulfonyl hydrazides. A water (30mL) solution of hydrazine hydrate (0.5 g, 10 mmol), was cooled in ice-water bath to -5°C. The temperature was then maintained below 8°C, while the THF(10 mL) solution of sulfonyl chloride (0.3 g, 1 mmol) was slowly added with stirring. After the addition was completed the reaction mixture was stirred at room temperature for thirty minutes and tetrahydrofuran was evaporated at reduced pressure. The white solid product was separated by filtration, washed with water (3×15 mL) and dried on air overnight to give pure product (90% yield).^[1]

$$4 5 6$$

Synthesis of aryl halide: AgNO₃ (0.17 g, 1 mmol) was added to a solution of phenylacetylene (2.58 mL, 20 mmol) in acetone (50 mL). Then NBS (4.27 g, 24 mmol) was added in portion. The mixture was stirred for 3 h at room temperature, and then concentrated in vacuo. The residue was dissolved in petroleum ether and filtered through a short column of silica gel. Solvent was removed in vacuo to afford a pale-yellow oil of bromoalkyne (99% yield).^[2]

Synthesis of bromo ethisterone: DMAP (1.4 mmol), NEt₃ (4 mmol) and acetic anhydride (4 mmol) were added to a solution of ethisterone (1. 4 mmol) in CH₂Cl₂ (0.1 M) at 0 °C. The reaction mixture was stirred for 2 4 h at room temperature and then concentrated. The residue was purified b y chromatography (Hexane: Ethyl acetate= 80: 20) to give the ethisterone acetate in 98% yield.^[3]

To a solution of ethisterone acetate (1 equiv) in acetone (0.3 M) was added NBS (1.2 equiv) and AgNO₃ (5 mol%) at room temperature and th en the mixture was stirred for 3 h. After removing excess acetone, the con centrated residue was quenched with NH₄Cl solution. Organic layer was e xtracted with diethyl ether (20 ml x 2), dried over anhydrous Na₂SO₄, con centrated under reduced pressure, and chromatographed to give 62% yiel d (Hexane: Ethyl acetate= 85: 15).

Control experiments

General experimental methods

Under Ar or N_2 atmosphere, to an oven-dried Schlenk tube was equipped with magnetic stir bar and charged with arylsulfonyl hydrazides (0.1 mmol, 1.0 equiv), bromoalkyne (0.25 mmol, 2.5 equiv), Eosin Y (0.002 mmol, 0.02 equiv), KI (0.1 mmol, 1.0 equiv), KHCO₃ (0.1 mmol, 1.0 equiv), TBHP (0.1 mmol, 1.0 equiv), and MeCN (1 mL). The mixture was then irradiated by 30 W blue LED (460 nm-470 nm) at room temperature until the starting material disappeared from the TLC. The reaction mixture was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to give alkynyl sulfones products. ¹H NMR and ¹³C NMR spectra data of products or materials

$$F_3CO \longrightarrow O H S - N - NH_2$$

4-(trifluoromethoxy)benzenesulfonohydrazide(3)

¹H NMR (400 MHz, Methanol- d_4) δ 8.01 (d, J = 8.9 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 4.85 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 146.7, 139.1, 134.8, 129.1, 128.8, 128.7, 128.0, 127.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.69. HRMS-EI⁺ (m/z) [M+H]⁺ calcd for C₇H₇N₂O₃F₃S 257.0202, found 257.0201.

(8R,9S,10R,13S,14S,17S)-17-(bromoethynyl)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-17-yl acetate.(9)^[3]

¹H NMR (400 MHz, Chloroform-*d*) δ 5.74 (s, 1H), 2.72 (td, *J* = 9.5, 4.8 Hz, 1H), 2.48 – 2.26 (m, 5H), 2.03 – 1.97 (m, 1H), 1.81 – 1.66 (m, 6H), 1.57 (td, *J* = 11.0, 3.4 Hz, 1H), 1.52 – 1.31 (m, 4H), 1.20 (s, 4H), 1.14 – 0.97 (m, 3H), 0.90 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 199.5, 170.9, 169.4, 124.0, 85.1, 53.2, 48.4, 47.9, 46.7, 38.6, 37.1, 36.0, 35.7, 34.0, 33.0, 32.7, 31.5, 23.6, 21.4, 20.7, 17.4, 13.5.

(8R,9S,13S,14S,17S)-17-(bromoethynyl)-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diyl diacetate.(12)^[3]

¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 1H), 6.85 (dd, J = 8.4, 2.6 Hz, 1H), 6.79 (d, J = 2.5 Hz, 1H), 2.87 (dd, J = 8.4, 4.1 Hz, 2H), 2.76 (m, J = 15.1, 9.7, 5.9 Hz, 1H), 2.37 (dt, J = 12.8, 3.6 Hz, 1H), 2.29 (s, 3H), 2.05 (d, J = 1.4 Hz, 3H), 2.02 – 1.79 (m, 4H), 1.72 – 1.62 (m, 1H), 1.56 – 1.34 (m, 4H), 0.89 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 169.5, 148.4, 138.2, 137.8, 126.5, 121.5, 118.6, 85.3, 48.3, 48.0, 46.6, 43.6, 38.8, 37.1, 33.3, 29.5, 27.1, 26.2, 23.4, 21.4, 21.2, 13.5.

1-methyl-4-((phenylethynyl)sulfonyl)benzene (3aa)^[4]

21.8 mg, 85% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.94 (m, 2H), 7.54 – 7.50 (m, 2H), 7.50 – 7.44 (m, 1H), 7.38 (dt, *J* = 8.6, 7.2 Hz, 4H), 2.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 139.0, 132.7, 131.5, 130.0, 128.7, 127.5, 118.0, 93.0, 85.6, 21.7.

1-methoxy-4-(tosylethynyl)benzene(3ab)^[4]

25.8 mg, 90% yield; white solid , ¹H NMR (400 MHz, Chloroformd) δ 7.98 – 7.92 (m, 2H), 7.49 – 7.44 (m, 2H), 7.40 – 7.36 (m, 2H), 6.90 – 6.84 (m, 2H), 3.83 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.3, 139.1, 138.6, 133.2, 132.4, 123.0, 129.9, 128.6, 127.5, 117.8, 93.4, 85.3, 21.7, 21.1.

1-methyl-4-((p-tolylethynyl)sulfonyl)benzene (3ac)^[4]

23.0 mg, 82% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.39 (t, *J* = 8.3 Hz, 4H), 7.16 (d, *J* = 7.9 Hz, 2H), 2.46 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.2, 142.3, 139.1, 132.7, 130.0, 129.5, 127.5, 114.9, 93.7, 85.2, 21.8, 21.7.

1-isopropyl-4-(tosylethynyl)benzene (3ad)^[4]

23.9 mg, 77% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.4 Hz, 2H), 7.43 (s, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 2.91 (p, J = 6.9 Hz, 1H), 2.46 (s, 3H), 1.22 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.1, 145.2, 139.2, 132.9, 130.0, 127.4, 126.9, 115.2, 93.8, 85.1, 34.3, 23.6, 21.7.

1-butyl-4-(tosylethynyl)benzene (3ae)^[5]

27.5 mg, 88% yield; colorless liquid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.93 (m, 2H), 7.46 – 7.35 (m, 4H), 7.20 – 7.14 (m, 2H), 2.65 – 2.58 (m, 2H), 2.46 (s, 3H), 1.61 – 1.52 (m, 2H), 1.31 (tt, *J* = 14.1, 7.1 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.3, 145.3, 139.1, 132.7, 130.0, 128.8, 127.4, 115.0, 93.8, 85.2, 35.8, 33.1, 22.3, 21.8, 13.9.

1-fluoro-4-(tosylethynyl)benzene (3af)^[4]

20.6 mg, 71% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.4 Hz, 2H), 7.53 (dd, J = 8.9, 5.2 Hz, 2H), 7.41 (s, 2H), 7.07 (t, J = 8.7 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 164.4 (d, ¹ $J_{C-F} = 253$ Hz), 145.5, 138.8, 135.1, 135.1 (d, ³ $J_{C-F} = 1.0$ Hz), 127.5, 116.3 (d, ²*J*_{C-F} = 23.2 Hz), 114.2, 114.2, 91.8, 85.6, 85.6, 21.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.62.

1-chloro-4-(tosylethynyl)benzene.(3ag)^[4]

25.6 mg, 88% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.38 (dd, *J* = 18.7, 8.3 Hz, 4H), 2.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.6, 138.7, 138.0, 133.9, 130.1, 129.2, 127.6, 116.5, 91.5, 86.5, 21.8.

1-butyl-4-(tosylethynyl)benzene (3ah)^[4]

30.2 mg, 90% yield; white solid ,¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.43 – 7.35 (m, 4H), 2.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.6, 138.7, 134.0, 132.1, 130.1, 127.6, 126.5, 117.0, 91.6, 86.6, 21.8.

1-methyl 4-(tosylethynyl)benzoate (3ai)^[4]

9.5 mg, 30% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.94 (m, 4H), 7.61 – 7.57 (m, 2H), 7.44 – 7.38 (m, 2H), 3.93 (s, 3H), 2.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.8, 145.7, 138.6, 132.7, 132.4, 130.1, 129.7, 127.7, 122.4, 91.2, 87.6, 52.5, 21.8.

1-methyl-2-(tosylethynyl)benzene (3aj)^[6]

23.5 mg, 87% yield, yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.94 (m, 2H), 7.46 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.24–7.14 (m, 2H), 2.47 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101MHz, Chloroform-*d*) δ 145.3, 142.4, 139.3, 133.0, 131.5, 130.0, 129.9, 127.4, 125.9, 117.9, 92.6, 89.3, 21.7, 20.4.

1-methyl-3-(tosylethynyl)benzene (3ak)^[4]

21.8 mg, 80% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.32 (dd, J = 8.8, 1.9 Hz, 2H), 7.30 – 7.22 (m, 2H), 2.47 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 145.1, 139.3, 134.7, 129.9, 127.4, 114.4, 109.7, 94.1, 84.9, 55.5, 21.7.

1-ethyl-4-(tosylethynyl)benzene (3al)^[7]

25.6 mg, 90% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.41 (dd, *J* = 20.1, 8.2 Hz, 4H), 7.19 (d, *J* = 8.2 Hz, 2H), 2.66 (q, *J* = 7.6 Hz, 2H), 2.46 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.5, 145.2, 139.2, 132.8, 130.0, 128.3, 127.5, 115.1, 93.7, 85.2, 29.0, 21.7, 15.1.

3-(tosylethynyl)thiophene (3am)^[4]

19.7 mg, 71% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.93 (m, 2H), 7.74 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.32 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.17 (dd, *J* = 5.1, 1.2 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 137.9, 133.5, 129.0, 128.7, 126.5, 125.5, 116.2, 87.6, 84.5, 20.7.

1-methoxy-4-((4-phenylbut-1-yn-1-yl)sulfonyl)benzene (3an)

12.6 mg, 42% yield; colorless oil, ¹H NMR (400 MHz, Chloroformd) δ 7.90 – 7.85 (m, 2H), 7.27 – 7.21 (m, 3H), 7.13 – 7.09 (m, 2H), 7.04 – 6.98 (m, 2H), 3.90 (s, 3H), 2.84 (t, J = 7.4 Hz, 2H), 2.64 (td, J = 7.4, 0.6 Hz, 2H).¹³C NMR (101 MHz, Chloroform-d) δ 164.0, 139.0, 129.6, 128.6, 128.3, 126.8, 114.4, 95.5, 55.8, 55.7, 33.2, 21.2. HRMS-EI⁺ (m/z) [M+Na]⁺ calcd for 323.0712, found 323.0712.

(10aR,11bR)-10a,11b-dimethyl-3-oxo-9-((phenylsulfonyl)ethynyl)-2,3,5,6,6a,7,7a,8,9,10,10a,11,11a,11b-tetradecahydro-1Hcyclopenta[b]phenanthren-9-yl acetate.(3ao)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 5.75 (s, 1H), 2.69-2.40 (m, 1H), 2.45 – 2.26 (m, 5H), 2.01 (s, 4H), 1.83 – 1.67 (m, 5H), 1.55 (dd, J = 11.4, 3.6 Hz, 2H), 1.44 – 1.32 (m, 3H), 1.17 (s, 3H), 0.99 (dd, J = 12.4, 4.4 Hz, 2H), 0.89 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 199.5, 170.5, 169.1, 142.1, 134.3, 129.5, 127.3, 124.2, 95.3, 83.6, 83.3, 53.1, 49.2, 48.8, 38.6, 36.8, 35.9, 35.8, 34.1, 33.1, 32.7, 31.5, 23.7, 21.1, 20.6, 17.5, 13.6. TOFMS-ESI⁺ (m/z) [M+H]⁺calcd for C₂₉H₃₄O₅S 495.21997, found 495.21903. m.p.: 198 °C-200 °C.

(138)-13-methyl-17-((phenylsulfonyl)ethynyl)-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diyl diacetate.(3ap) ¹H NMR (400 MHz, Chloroform-d) δ 8.03 (dd, J = 7.3, 1.7 Hz, 2H), 7.69

- 7.53 (m, 3H), 7.28 - 7.21 (m, 1H), 6.89 - 6.77 (m, 2H), 2.85 (dd, J =
8.9, 4.3 Hz, 2H), 2.29 (s, 3H), 2.23 - 2.07 (m, 2H), 2.02 (s, 4H), 1.86 1.75 (m, 3H), 1.61 (m, J = 13.0, 4.1 Hz, 1H), 1.42 (m, J = 19.5, 8.3, 6.1 Hz, 5H), 0.87 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 169.0, 148.5, 142.1, 138.0, 137.3, 134.1, 129.3, 127.2, 126.4, 121.6, 118.8, 95.5, 83.3, 49.2, 48.7, 43.4, 38.7, 36.8, 33.2, 29.4, 27.0, 26.0, 23.3, 21.2, 21.0, 13.4. TOFMS-ESI⁺ (m/z) [M+H]⁺calcd for C₃₀H₃₂O₆S 521.19924, found 521.19885. m.p.: 170 °C-175 °C

1-methoxy-4-(((4-methoxyphenl)ethynyl)sulfonyl)benzene (3bb)^[8]

25.7 mg, 80% yield; yellow oil, ¹H NMR (400 MHz, Chloroform-d) δ 7.99 (d, J = 8.9 Hz, 2H), 7.45 (d, J = 8.9 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.1, 162.1, 134.6, 133.8, 129.7,

114.5, 114.4, 109.8, 93.6, 85.1, 55.8, 55.5.

1-(tert-butyl)-4-(((4-methoxyphenyl)ethynyl)sulfonyl)benzene (3b c)^[6]

32.2 mg, 98% yield; yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.7 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.50 – 7.45 (m, 2H), 6.90 – 6.84 (m, 2H), 3.82 (s, 3H), 1.36 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 158.0, 139.1, 134.7, 127.2, 126.4, 114.4, 109.7, 94.1, 84.9, 55.5, 35.4, 31.1.

4-((phenylethynyl)sulfonyl)-1,1'-biphenyl (3bd)^[9]

26.7 mg, 85% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, J = 8.9 Hz, 2H), 7.53 – 7.38 (m, 5H), 6.88 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4, 153.1, 153.1, 140.3, 134.8, 129.7, 121.0, 114.5, 109.2, 95.5, 84.3, 55.5.

1-fluoro-4-(((4-methoxyphenyl)ethynyl)sulfonyl)benzene (3be)^[10]

21.8 mg, 75% yield; yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.06 (m, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.31 – 7.22 (m, 2H), 6.93 – 6.85 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0 (d, ¹ J_{C-F} = 257.6 Hz) 162.3, 138.2, 138.2, 134.8, 130.4, 130.3, 116.7 (d, ² J_{C-F} = 23.2 Hz), 114.49, 114.49, 109.3, 94.9, 84.5, 55.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.68.

1-chloro-4-(((4-methoxyphenyl)ethynyl)sulfonyl)benzene (3bf)^[10]

29.5 mg, 96% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.99 (m, 2H), 7.59 – 7.54 (m, 2H), 7.50 – 7.45 (m, 2H), 6.91 – 6.85 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4, 140.7, 140.6, 134.8, 129.7, 128.8, 114.5, 109.2, 95.3, 84.4, 55.5.

29.9 mg, 85% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.90 (m, 2H), 7.76 – 7.70 (m, 2H), 7.51 – 7.45 (m, 2H), 6.92 – 6.85 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4, 141.1, 134.8, 132.7, 132.5, 129.4, 129.0, 128.9, 114.5, 109.2, 95.4, 84.3, 55.5.

1-methoxy-4-(((4-(trifluoromethyl)phenyl)sulfonyl)ethynyl)benz-e ne (3bh)^[10]

27.2 mg, 80% yield; yellow soild, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 8.1 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.53 – 7.46 (m, 2H), 6.92 – 6.86 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 162.5, 145.5, 135.7, 135.4, 134.9, 127.9, 126.6, 126.5, 126.5, 126.5, 124.5, 121.8, 114.6, 109.0, 96.3, 84.0, 55.5.

1-((phenylethynyl)sulfonyl)-4-(trifluoromethoxy)benzene (3bi)

32.1 mg, 90% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 – 8.10 (m, 2H), 7.53 – 7.46 (m, 2H), 7.41 (d, *J* = 9.0 Hz, 2H), 6.93 – 6.85 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4, 153.1 (q, ²*J*_{C-F} = 4.0 Hz), 140.3, 134.8, 129.7, 121.3 (q, ¹*J*_{C-F} = 46.5 Hz), 118.9, 114.5, 109.2, 95.5, 84.3, 55.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.64, -57.65. HRMS-EI⁺ (m/z) [M+H]⁺ calcd for $C_{16}H_{11}O_4F_3S$ 357.0403 found 357.0403. m.p.: 90 °C~ 93 °C.

1-methoxy-4-(((4-nitrophenyl)sulfonyl)ethynyl)benzene (3bj)

17.5 mg, 50% yield; yellow solid, ¹H NMR (400 MHz, Chloroformd) δ 8.42 (s, 2H), 8.28 (s, 2H), 7.50 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.7, 150.8, 147.5, 135.0, 128.7, 124.6, 114.6, 108.7, 97.3, 83.7, 55.5. TOFMS-ESI⁺ (m/z) [M+H]⁺calcd for C₁₆H₁₁NO₃ 298.0532, found 298.0521. m.p.: 135 °C~ 138 °C.

4-(((4-methoxyphenyl)ethynyl)sulfonyl)benzonitrile (3bk)

17.8 mg, 60% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 – 8.17 (m, 2H), 7.92 – 7.87 (m, 2H), 7.52 – 7.47 (m, 2H), 6.93 – 6.87 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.7, 146.0, 135.0, 133.2, 128.0, 117.6, 117.1, 114.6, 108.8, 97.0, 83.8, 55.5. TOFMS-ESI⁺ (m/z) [M+H]⁺calcd for C₁₆H₁₁NO₃ 318.0431, found 318.0431. m.p.: 150 °C~ 153 °C.

1-(((4-methoxyphenyl)ethynyl)sulfonyl)-3-methylbenzene (3bl)

27.2 mg, 95% yield; yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, J = 1.4 Hz, 2H), 7.51 – 7.44 (m, 4H), 6.90 – 6.84 (m, 2H), 3.83 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.2, 141.9, 139.7, 134.8, 134.7, 129.2, 127.6, 124.5, 114.4, 109.6, 94.4, 84.7, 55.5, 21.4. HRMS-EI⁺ (m/z) [M+H]⁺ calcd for C₁₆H₁₄O₃S 287.0736, found 287.0734.

1-(((4-methoxyphenyl)ethynyl)sulfonyl)-2-methylbenzene (3bm)^[8]

25.5 mg, 89% yield; white solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 9.4 Hz, 1H), 7.58 – 7.34 (m, 5H), 6.88 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 2.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.2, 140.0, 138.3, 134.8, 133.9, 132.7, 128.6, 126.5, 114.5, 109.5, 93.1, 84.4, 55.5, 20.1.

2-(((4-methoxyphenyl)ethynyl)sulfonyl)thiophene (3bn)

20.9 mg, 75% yield; yellow oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dd, J = 3.9, 1.4 Hz, 1H), 7.75 (dd, J = 5.0, 1.4 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.16 (dd, J = 5.0, 3.8 Hz, 1H), 6.92 – 6.86 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.3, 143.4, 134.8, 134.5, 134.0, 127.9, 114.5, 109.4, 94.5, 85.0, 55.5. HRMS-EI⁺ (m/z) [M+H]⁺ calcd for C₁₃H₁₀O₃S₂ 279.0144, found 279.0141.

General procedure for the synthesis of (*E*)-Vinyl Sulfones

(E)-1-methyl-4-((4-methylstyryl)sulfonyl)benzene (4ac)^[11]

12.3 mg, 42 yield; White soild, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.79 (m, 2H), 7.62 (d, *J* = 15.4 Hz, 1H), 7.35 (dd, *J* = 12.5, 8.1 Hz, 4H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 15.3 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 142.0, 141.7, 138.0, 129.9, 129.8, 128.5, 127.7, 126.4, 21.6, 21.5.

(*E*)-1-methyl-4-((4-methylstyryl)sulfonyl)benzene (4ad)^[11]

17.2mg, 60% yield; colorless oil, ¹H NMR (400 MHz, Chloroformd) δ 7.86 – 7.79 (m, 2H), 7.62 (d, J = 15.4 Hz, 1H), 7.35 (dd, J = 12.5, 8.1 Hz, 4H), 7.19 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 15.3 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 142.0, 141.7, 138.0, 129.9, 129.8, 128.5, 127.7, 126.4, 21.6, 21.5.

(*E*)-1-isopropyl-4-(2-tosylvinyl)benzene (4ae)^[11]

13.5 mg, 43% yield; colorless oil, ¹H NMR (400 MHz, Chloroformd) δ 7.84 – 7.79 (m, 2H), 7.64 (d, J = 15.4 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.36 – 7.31 (m, 2H), 7.26 – 7.22 (m, 2H), 6.79 (d, J = 15.4 Hz, 1H), 2.94 – 2.88 (m, 1H), 2.43 (s, 3H), 1.25 (s, 3H), 1.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.6, 144.2, 142.1, 138.0, 130.1, 129.9, 128.7, 127.7, 127.2, 126.5, 34.1, 23.7, 21.6.

(*E*)-1-butyl-4-(2-(phenylsulfonyl)vinyl)benzene35 (4af)^[12]

16.5 mg, 55% yield; colourless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.80 (m, 2H), 7.63 (d, *J* = 15.4 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.21 – 7.17 (m, 2H), 6.79 (d, *J* = 15.4 Hz, 1H), 2.64 – 2.59 (m, 2H), 2.43 (s, 3H), 1.58 (d, *J* = 1.8 Hz, 2H), 1.37 – 1.30 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.7, 144.2, 142.1, 138.0, 129.9, 129.2, 128.6, 127.7, 126.5, 35.6, 33.3, 22.3, 21.6, 13.9.

(*E*)-1-methyl-2-(2-tosylvinyl)benzene (4aj)^[13]

13.6 mg, 46% yield; colorless oil, ¹H NMR (400 MHz, Chloroform-d) δ 7.94 (d, J = 15.3 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.19 (dd, J = 16.3, 8.0 Hz, 2H), 6.77 (d, J = 15.3 Hz, 1H), 2.45 (d, J = 5.3 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 144.4, 139.6, 138.2, 137.7, 131.4, 131.1, 130.9, 130.0, 128.5, 127.7, 126.9, 126.5, 21.7, 19.8.

(E)-1-fluoro-4-(2-tosylvinyl)benzene (4ah)^[11]

12.4 mg, 40% yield; white soild, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.80 (m, 2H), 7.62 (d, J = 15.4 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.38 – 7.32 (m, 2H), 7.12 – 7.05 (m, 2H), 6.78 (d, J = 15.4 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.32 (¹ $J_{C-F} = 254.5$ Hz), 144.5, 140.6, 137.7, 130.5 (d, ³ $J_{C-F} = 9.1$ Hz), 130.0, 127.7, 116.3 (² $J_{C-F} = 22.2$ Hz), 21.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.94.

(E)-1-chloro-4-(2-tosylvinyl)benzene (4ai)^[11]

14.1 mg, 48% yield; white soild, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.80 (m, 2H), 7.60 (d, *J* = 15.4 Hz, 1H), 7.43 – 7.33 (m, 6H), 6.83 (d, *J* = 15.4 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 144.6, 140.4, 137.5, 137.2, 131.0, 130.0, 129.7, 129.4, 128.3, 127.8, 21.6.

(E)-1-bromo-4-(2-tosylvinyl)benzene (4ag)^[11]

16.9 mg,50% yield; white soild ^{,1}H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 15.4 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.38 – 7.30 (m, 4H), 6.84 (d, J = 15.5 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.6, 140.5, 137.5, 132.4, 131.4, 130.0, 129.9, 128.4, 127.8, 125.5, 21.6.

(*E*)-1-methoxy-4-(styrylsulfonyl)benzene (4ba)^[11]

12.4 mg, 40% yield; white soild, ¹H NMR (400 MHz, Chloroform-d) δ 8.00 (d, J = 9.0 Hz, 2H), 7.53 – 7.44 (m, 3H), 7.40 – 7.30 (m, 3H), 7.05 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 141.4, 131.0, 130.1, 129.9, 129.1, 128.5, 128.0, 114.6, 55.7.

(*E*)-1-(tert-butyl)-4-(styrylsulfonyl)benzene (4ca)^[14]

12.0 mg, 46% yield; colorless oil, ¹H NMR (400 MHz, Chloroformd) δ 7.90 – 7.84 (m, 2H), 7.67 (d, J = 15.4 Hz, 1H), 7.58 – 7.46 (m, 5H), 7.40 (d, J = 1.0 Hz, 2H), 6.86 (d, J = 15.4 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 157.4, 142.0, 137.7, 132.5, 131.1, 129.1, 128.5, 127.7, 127.6, 126.4, 35.3, 31.1.

(E)-1-methyl-4-(styrylsulfonyl)benzene (4da)^[11]

14.2 mg, 53% yield; White soild, ¹H NMR (400 MHz, Chloroformd) δ 7.83 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 15.4 Hz, 1H), 7.48 (dd, J = 7.7, 2.1 Hz, 2H), 7.37 (dt, J = 19.4, 6.7 Hz, 5H), 6.85 (d, J = 15.3 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.4, 142.0, 137.8, 132.5, 131.1, 130.0, 129.1, 128.5, 127.7, 127.7, 21.6.

(*E*)-1-methyl-3-(styrylsulfonyl)benzene (4ea)^[11]

11.1 mg, 50% yield; colorless oil, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.65 (m, 3H), 7.52 – 7.47 (m, 2H), 7.44 – 7.38 (m, 5H), 6.86 (d, *J* = 15.4 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ

142.3, 140.6, 139.7, 134.2, 132.5, 131.2, 129.2, 129.1, 128.6, 128.0, 127.5, 124.8, 21.3.

Reference

- G. F. Zhang, Q. K. Fan, H. M. Wang, Y. Y. Zhao, and C. R. Ding. NaHSO₃ -Mediated Direct Synthesis of Sulfinic Esters from Sulfonyl Hydrazides under Transition-Metal-Free Conditions[J]. *Advanced Synthesis & Catalysis*, 2021, 363(3): 833-837.
- [2] Y. P. Gao, G. J. Wu, Q. Zhou, and J. B. Wang. Palladium-Catalyzed Oxygenative Cross-Coupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion[J]. *Angewandte Chemie International Edition*, **2018**, 57(10): 2716-2720.
- [3] Oh K H, Kim S M, Park S Y, and Park J. K. Base-Controlled Cu-Catalyzed Tandem Cyclization/Alkynylation for the Synthesis of Indolizines[J]. Organic Letters, 2016, 18, 9, 2204–2207.
- [4] X. T. Meng, H. H. Xu, X. J. Cao, X. M. Cai, J.Y. Luo, F. Wang, and S.L. Huang. Electrochemically Enabled Sulfonylation of Alkyneswith Sodium Sulfinates[J]. Organic Letters, 2020, 22(17): 6827-6831.
- [5] H. M. Guo, Q. Q. Zhou, X. Jiang, D. Q. Shi, and W. J. Xiao. Catalyst- and Oxidant-Free Desulfonative C-P Couplings for the Synthesis of Phosphine Oxides and Phosphonates[J]. Advanced Synthesis & Catalysis, 2017, 359(23): 4141-4146.
- [6] Tanaka I, Sawamura M, Shimizu Y. Visible Light-Induced Reductive Alkynylation of Aldehydes by Umpolung Approach[J]. Organic Letters, 2022, 24(2): 520-524.
- [7] C. S. Dai, J. Q. Wang, S. Q. Deng, C. D. Zhou, Wenhe Zhang, Qiuhua Zhu and Xiaodong Tang. Acid-mediated sulfonylation of arylethynylenebromides with sodium arylsulfinates: synthesis of (E)-1,2-bis(arylsulfonyl)ethylenes and arylacetylenic sulfones[J]. *RSC Advances*, 2017, 7(57): 36112-36116.
- [8] Z. Y. Mo, Y. Z. Zhang, G. B. Huang, X. Y. Wang, Y. M. Pan, H. T. Tang. Electrochemical Sulfonylation of Alkyneswith Sulfonyl Hydrazides: A Metaland Oxidant-Free Protocol for the Synthesis of Alkynyl Sulfones[J]. Advanced Synthesis & Catalysis, 2020, 362(11): 2160-2167.
- [9] D. D. He, W. T. Zhong, M. M. Zhou, B.W. Wang, M. Li, H. F. Jiang, and W. Q. Wu. Palladium-Catalyzed Regio- and Stereoselective Coupling of Alkynylsulfones with Alkenes: Access to Dichlorinated Vinyl Sulfones[J]. Organic Letters, 2022, 24(31): 5802-5806.

- [10] L. Ding, Y. X. Liu, K. K. Niu and Q. M. Wang. Photochemical alkynylation of hydrosilanes by iron catalysis[J]. *Chemical Communications*, 2022, 58(76): 10679-10682.
- [11] G. W. Rong, J. C. Mao, H. Yan, Y. Zheng, and G. Q. Zhang. Iron/Copper Co-Catalyzed Synthesis of Vinyl Sulfones from Sulfonyl Hydrazides and Alkyne Derivatives[J]. *The Journal of Organic Chemistry*, 2015, 80(9): 4697-4703.
- [12] A. Kumar, G. Shelke, V. Rao, K. Pericherla. An Efficient and Facile Synthesis of Vinyl Sulfones via Microwave-AssistedCopper Triflate Catalyzed Hydrosulfonylation of Alkynes[J]. *Synlett*, 2014, 25(16): 2345-2349.
- [13] Y. L. Xu, X. D. Tang, W. G. Hu, W. Q. Wu and H. F. Jiang. Transition-metalfree synthesis of vinyl sulfones via tandem cross-decarboxylative/coupling reactions of sodium sulfinates and cinnamic acids[J]. *Green Chem.*, 2014, 16(8): 3720-3723.
- [14] Y. Fang, D. P. Xu, Y. L. Yu, R. M. Tang, S. S. Dai, Z. H. Wang, and W. Zhang. Controlled Synthesis of β -Keto Sulfonesand Vinyl Sulfones under Electrochemical Oxidation[J]. *European Journal of Organic Chemistry*, **2022**, 2022(13): 2023-02-19.

¹H and ¹³C NMR Spectra

10.1111.00 10.111

S32

-169,87 -169,02 -148,54 -142,05 -137,20 -137,20 -137,20 -118,75 -118,75 -118,75 -118,75 -118,75 -118,75 -118,75 -33,25 -23,25 -2

io 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 4 f1 (ppm)

S59

S60

S72

S73

S75

