## Supporting Information

## for

# Anion-Accelerated Asymmetric Nazarov Cyclization: Access to Vicinal All-Carbon Quaternary Stereocenters 

Cody F. Dickinson ${ }^{\text {a }}$, Glenn P. A. Yap ${ }^{\text {b }}$, and Marcus A. Tius*,a${ }^{\text {a Chemistry Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States }}$${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, UnitedStatesEmail: tius@hawaii.edu
Table of Contents:

1. General Methods ..... 2
2. Initial Cyclization Results ..... 3
3. Solvent Screen ..... 5
4. Catalyst \& Ester Screens ..... 7
5. Synthesis of Rh Catalysts ..... 9
6. Preparation of Carboxylic Acids ..... 14
7. Preparation of Benzyl Propiolate ..... 18
8. Synthesis of Ynones ..... 19
9. Synthesis of Diketones ..... 27
10. Synthesis of Cyclopentenones ..... 38
11. Modifications to the Cyclopentenone ..... 51
12. X-Ray Crystallography ..... 56
13. References ..... 61
14. HPLC Traces ..... 62
15. NMR Spectra ..... 90

## 1. General Methods

All moisture and air sensitive reactions were performed under an argon atmosphere in oven-dried or flame-dried glassware. Reactions that required heating where carried with a stir-hot plate using a heated external oil bath. Tetrahydrofuran (THF) and diethyl ether ( $\mathrm{Et}_{2} \mathrm{O}$ ) were dried using a Glass Contour solvent purification system. Acetonitrile (MeCN) was purchased from Fisher (HPLC grade) and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were measured on a Varian Mecury-300 ( $300 \mathrm{MHz} / 75 \mathrm{MHz}$ ), Agilent 400 DD2 ( $400 \mathrm{MHz} / 100 \mathrm{MHz}$ ), or Agilent 600 DD2 ( $600 \mathrm{MHz} / 150 \mathrm{MHz}$ ) spectrometer at ambient temperature. Chemical shifts are reported in parts per million (ppm) and are referenced to the solvent (e.g., $\delta 7.26$ for $\mathrm{CHCl}_{3} ; \delta 77.0$ for $\mathrm{CDCl}_{3}$ ). ${ }^{19}$ F NMR spectra were measured on a Varian Mercury-300 ( 282 MHz ), Varian INOVA-500 (470 MHz ), or an Agilent 600 DD2 ( 565 MHz ) spectrometer and reported in ppm relative to TFA ( -76.5 ppm). Multiplicities are indicated as follows: br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), pent (pentet), sext (sextet), sept (septet), etc. or $m$ (multiplet). Coupling constants ( $J$ ) are reported in Hertz (Hz). Infrared (IR) spectra were recorded on a ThermoFisher Nicolet Summit FTIR spectrophotometer. Optical rotations ([a]D) were measured on a JASCO-DIP-370 polarimeter. High performance liquid chromatography (HPLC) analyses were performed using a Thermo-Fisher UltiMate 3000 instrument using Chiralpak AD-H, OD-H, or OJ-H columns ( 4.6 mm x 250 mm , UV detection at 261 nm ) and $i-\mathrm{PrOH}$ and hexane as eluents. High-resolution mass spectra (HRMS) were obtained with an Agilent 1100 quaternary LC system or were measured at the University of Illinois Mass Spectrometry Laboratory (Dr. Furong Sun, Dr. Xiuli Mao, and Dr. Haijun Yao). Melting points were recorded on a DigiMelt MPA160 instrument and are uncorrected. Thin layer chromatography (TLC) was performed on glass plates, $250 \mu \mathrm{~m}$, particle size $5-17 \mu \mathrm{~m}$, pore size 60 A. All reactions were monitored by TLC and analyzed under UV ( 254 and/or 365 nm ) light and visualized using either $\mathrm{PAA}, \mathrm{KMnO}_{4}, \mathrm{PMA}, \mathrm{CAM}$, or DNP stains. Flash column chromatography was performed on silica gel, 200-400 mesh or premium silica gel, $60 \AA, 40-75$ $\mu \mathrm{m}$. Purity and homogeneity of all materials was determined by TLC, ${ }^{1} \mathrm{H} N \mathrm{NR},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$, and LCMS.

## 2. Initial Cyclization Results

Below is a partial list of results of our initial survey of catalysts on the cyclization of diketoester 1 focused on metal BOX/PyBOX catalyst systems and is shown below. We were unable to improve the e.r. of cyclopentenone 3 upon further optimization of the reaction conditions using the best catalysts shown in the below list.


1
NOTE: *ADDITIVE USED IN
3

$\mathrm{Mg}(\mathrm{OTf})_{2}: 50: 50 \mathrm{er}$ (in PhMe )




$\mathrm{Cu}(\mathrm{OTf})_{2}{ }^{*}: 47.5: 52.5 \mathrm{er}$

$\mathrm{Cu}(\mathrm{OTf})_{2}: 50: 50 \mathrm{er}$ $\mathrm{Zn}(\mathrm{OTf})_{2}: 48: 52 \mathrm{er}$


$\mathrm{Cu}(\mathrm{OTf})_{2}{ }^{*}: 40: 60 \mathrm{er}$

$\mathrm{Cu}(\mathrm{OTf})_{2}{ }^{\star}: 66: 34$ er



$\mathrm{Cu}(\mathrm{OTf})_{2}{ }^{*}: 35 \cdot 5: 64.5 \mathrm{er}$

$\mathrm{Cu}(\mathrm{OTf})_{2}{ }^{*}: 52: 48 \mathrm{er}$

We decided to refocus our reaction screening efforts using diketoester 7 as the substrate since it is more easily accessible from commercially available starting materials and is more activated towards cyclization. Our initial screening of conditions for the cyclization of compound 7 is shown in Table S1. We chose to use Meggers' catalyst ( $\wedge$-RhOtBu, ca. $5 \mathrm{~mol} \%$ ) in MeCN as the starting point for the cyclization conditions. First, in the absence of base the reaction was slow and stoichiometric with respect to the Rh-catalyst (entry 1). The trace amount of cyclopentenone 8 that was produced had an e.r. of 86/14. The reaction did not progress upon prolonged reaction times or heating. In a separate experiment, diisopropylethylamine was added at the outset to the reaction mixture. The reaction went to completion at room temperature overnight and resulted in cyclopentenone 8 with an e.r. of 86/14, regardless if the amine base was used stoichiometrically or catalytically (entries 2 and 3 ). Performing the reaction with either catalytic dicyclohexylamine or DABCO (entries 4 and 5) did not change the outcome of the reaction. The use of $t$-BuOLi as base led to erosion of the e.r. of cyclopentenone 8 (entries 6 and 7 ), for the reasons described in the manuscript. Based on the above experiments we decided to use diisopropylethylamine as the base for this reaction.

Table S1: Initial results and base screen.


## 3. Solvent Screen

We were encouraged by the initial results of the catalytic cyclization and e.r. of the cyclopentenone 8. We wanted to determine if the e.r. could be improved by a change of solvent in both the presence and absence of $i-\mathrm{Pr}_{2} \mathrm{NEt}$. Table $\mathbf{S} 2$ lists the results of the solvent screen. In the presence of base, the e.r. of 8 had a strong correlation to the dielectric constant ${ }^{1}$ of the reaction solvent. In polar, aprotic solvents (DMSO, MeCN, DMF) the e.r. of 8 was much higher than in non-polar solvents (EtOAc, PhMe, isooctane). However, in the absence of base the e.r. of 8 was less affected by the solvent polarity (compare entries $2,8,10-12$ ), but the reaction was not catalytic. Interestingly, the reaction was catalytic in the absence of base when carried out in DMF or polar protic solvents (entries 3, 14, and 15), but the e.r. of 8 was poor.

Table S2: Solvent screen.

7
8

| Entry | Solvent | er with <br> base | er without <br> base | $\boldsymbol{\varepsilon}_{\boldsymbol{r}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | DMSO | $86 / 14$ | - | 47.2 |
| 2 | MeCN | $86 / 14$ | $86 / 14$ | 36.6 |
| 3 | DMF | $83 / 17$ | $79 / 21^{\text {[a][b] }}$ | 38.3 |
| 4 | EtCN | $80 / 20$ | - | 29.7 |
| 5 | Acetone | $78 / 22$ | - | 21.0 |
| 6 | PhCN | $76 / 24$ | - | 25.9 |
| 7 | EtOAc | $70 / 30$ | - | 6.1 |
| 8 | PhMe | $61 / 39$ | $86 / 14$ | 2.4 |
| 9 | Isooctane | $59 / 41$ | - | 1.9 |
| 10 | PhF | - | $86 / 14$ | 5.5 |
| 11 | DCM | - | $85 / 15$ | 8.9 |
| 12 | CHCl | - | $86 / 14$ | 4.8 |
| 13 | THF | - | $74 / 26$ | 7.5 |
| 14 | EtOH | - | $71 / 29^{[\text {a] }}$ | 25.3 |
| 15 | $i-\mathrm{PrOH}$ | - | $73 / 27^{\text {[a] }}$ | 20.2 |

[a] these reactions were catalytic in the absence of $i-\mathrm{Pr}_{2} \mathrm{NEt}$. [b] The DMF was used as is and was most likely not dimethylamine free.

From these results we hypothesized that when an amine base is employed in polar, aprotic solvents the conjugate acid of the amine is completely dissociated from the keto-enolate of 7 and a bidentate chelate between the keto-enolate of 7 and the Rh-catalyst is formed (see manuscript). This bidentate chelation is essential in order to transfer asymmetry effectively. As the solvent polarity decreases, less bidentate chelation occurs as a result of stronger ion pairing of the amine conjugate acid and the enolate. This competition between monodentate and bidentate chelation increasingly favors the monodentate chelate in very non-polar solvents. It is interesting that in polar, protic solvents a catalytic reaction in the absence of base occurs. This is likely a result of
hydrogen-bonding between 8 and the solvent, allowing for decomplexation of the cyclopentenone from the Rh center, whereas in aprotic solvents a strong complex between the product and Rh exists and is not as easily displaced (in the absence of added base). Based on these results, we chose to keep MeCN as the solvent since it provided good e.r. of 8 in the presence or absence of base, resulted in a fast catalytic reaction in the presence of base, and is relatively easy to keep anhydrous.

## 4. Catalyst \& Ester Screens

The results of our catalyst and ester screen are shown in Table S3. We started our study by first screening Rh-catalysts for the cyclization of compound 7. See Scheme S1 (section 5) for the structures of the catalysts used. The best results were obtained with Rh-catalysts that had a tertiary alkyl side arm (entries 1 and 2, e.r. 86/14). Other catalysts were much less effective and no clear trend could be observed. Next, we changed the size of the ester substituent. We screened a number of catalysts using the phenyl ester 7a. In general, the e.r. of cyclopentenone 8a was lower than that of cyclopentenone 8. The larger size of the phenyl ester apparently introduces unfavorable steric interactions that precludes discrimination of the two helical enolateconformers in the pocket of the catalyst. Lastly, we screened the methyl ester 7b using the three best Rh-catalysts found from screening ethyl ester 7 (entries 1-3). We observed minor improvement in the e.r. with the smaller methyl ester. Based on these results, we used $\Lambda$-Rh catalyst 11 in further screens.

Table S3: Catalyst and ester screening.


| Entry | Rh cat. | er ( $\mathrm{R}^{\prime}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Me | Et | Ph |
| 1 | $\wedge-11^{[a]}$ | 88/12 | 86/14 | - |
| 2 | $\wedge$-C18 | 86/14 | 86/14 | 77/23 |
| 3 | $\Delta$-C8 | 14/86 | 19/81 | - |
| 4 | $\triangle$-C15 | - | 17/83 | 19/81 |
| 5 | $\Delta$-C11 | - | 20/80 | - |
| 6 | $\Delta$-C9 | - | 20/80 | 29/71 |
| 7 | $\Delta$-C13 | - | 25/75 | - |
| 8 | $\Delta$-C14 | - | 26/74 | 28/72 |
| 9 | ^-C19 | - | 72/28 | 59/41 |
| 10 | $\Delta-\mathrm{C} 10$ | - | 30/70 | 25/75 |
| 11 | $\Delta$-C12 | - | 31/69 | - |
| 12 | $\Delta$-C16 | - | 36/64 | 40/60 |
| 13 | $\Delta-\mathrm{C} 17$ | - | 47/53 | - |

[a] Use of either TFA salt of $\mathrm{PF}_{6}$ salt gave identical results.

Since we were more interested in the all-aliphatic cases, we used $\Lambda$-Rh catalyst 11 to study the cyclization of diketoester DK16a using the standard conditions. Cyclopentenone 28a was formed in 92:8 e.r. Changing the ethyl ester to a phenyl ester also led to a marked decrease in e.r. of cyclopentenone 28c (80:20 e.r.). Moving the bulk one carbon atom further on the ethyl ester chain as in isobutyl or benzyl esters DK16b and DK16, respectively, led to an improved e.r. of 95/5 for both cyclopentenones 28b and 28. Bulk at the end of the ethyl chain provides a beneficial steric interaction with Rh catalyst 11.

We chose to use the benzyl ester for further substrate screening since it led to an improved e.r. for the trisubstituted case shown here, can be easily removed in a number of different ways, and also for the reasons discussed in the manuscript regarding the cyclization of diketones 9.

Table S4: Ester screening.

ca. 15 mg
e.r.

92/8 28a

95/5 28b

95/5

80/20 28c

DK16c


## 5. Synthesis of Rh Catalysts

The general synthetic scheme used to prepare the Rh-catalysts used in this study are shown in Scheme S1.


Scheme S1: Synthesis of chiral-at-rhodium complexes. a. For C11-C17: $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (5 mol\%), $\mathrm{PPh}_{3}$ (40 mol\%), $\mathrm{RB}(\mathrm{OH})_{2}\left(2.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(4.0\right.$ equiv), $\mathrm{PhMe}, 100^{\circ} \mathrm{C}$; for $\mathrm{C} 9: \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{CPhos}(15 \mathrm{~mol} \%), \mathrm{CyZnl} \cdot \mathrm{LiCl}$ (2.0 equiv), THF, rt.

Complexes C18 ${ }^{2}$ and $\mathbf{C 1 9}{ }^{3}$ were prepared according to Meggers' protocols.


## Synthesis of Chiral-at-Rhodium Complex 11

The general procedure follows that described by Meggers ${ }^{3}$ with some minor changes.

## Preparation of Oxazole.



5-((3r,5r,7r)-adamantan-1-yl)-2-phenylbenzo[d]oxazole (C2a)
Starting from commercially available 4-(1-adamantyl)-2-aminophenol (Combi-blocks).
A solution of benzaldehyde ( $109 \mathrm{mg}, 1.03 \mathrm{mmol}, 1.0$ equiv) and 4-(1-adamantyl)-2-aminophenol ( $300 \mathrm{mg}, 1.23 \mathrm{mmol}, 1.2$ equiv) in absolute ethanol ( 15 mL ) was added anhydrous $\mathrm{CuSO}_{4}$ ( 247 $\mathrm{mg}, 1.55 \mathrm{mmol}, 1.5$ equiv) and a spatula tip of $p-\mathrm{TsOH}$. The reaction mixture was stirred vigorously at room temperature overnight, filtered through Celite, and washed with DCM. After concentration, the crude solid was placed under an inert atmosphere and dissolved in DCM ( 30 mL ) and cooled to $0^{\circ} \mathrm{C}$. DDQ ( $352 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.5$ equiv) was added at once to the reaction mixture and allowed to warm to room temperature. After 1.5 hrs., the reaction mixture was quenched by the addition of a saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The phases were separated and the aqueous phase extracted with DCM (x3). The combined organic extracts were washed with $\mathrm{NaHCO}_{3}$ (sat. aq., x2), and dried over anhydrous $\mathrm{MgSO}_{4}$. After filtration, the solvent was removed in vacuo to afford a crude solid. The crude solid was dry loaded onto a silica gel column and eluted with 10, $20,30,40 \%$ DCM in hexane. 5-((3r,5r,7r)-adamantan-1-yl)-2-phenylbenzo[d]oxazole was isolated as an off-white solid that could be recrystallized from hexane to afford fluffy white needles (297 $\mathrm{mg}, 88 \%$ ).
m.p. $=194-195^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8.29-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ -7.47 (m, 4H), 7.40 (dd, J = 8.6, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.19-2.07$ (m, 3H), $2.03-1.93$ (m, 6H), 1.86 1.73 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 163.1, 148.8, 148.5, 142.0, 131.4, 128.9, 127.6, 127.3, 122.5, 116.2, 109.8, 43.7, 36.87, 36.4, 29.0; IR (neat, $\mathrm{cm}^{-1}$ ) 2901, 2846, 1550, 1474, 1448, 1425, 1332, 1321, 1283, 1263, 1426, 1201, 1052, 1024; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 330.1852; found: 330.1855.

Preparation of Rh dimer:


A stirred suspension of oxazole C2a ( $988 \mathrm{mg}, 3.0 \mathrm{mmol}$ ) and $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5 \mathrm{mmol})$ in 2-methoxyethanol ( 0.06 M ) was heated to $140^{\circ} \mathrm{C}$ in a glass pressure tube for five hours. A yellow solid precipitated. After cooling to room temperature, the reaction was diluted with water and filtered through Celite. The filter cake was washed with water and methanol. Into a separate flask, the filter cake was washed with hot toluene and the filtrate concentrated in vacuo to afford a yellow solid C3a ( 1.59 g , quant.) which was used immediately in the next step without further purification.

Preparation of $\Lambda$ - and $\Delta$-RhAd-(R)-aux:



C3a
rac- RhCl dimer

( $R$ )-aux ( 2.5 equiv)


$\Lambda$-RhAd-(R)-aux C5a

$\Delta$-RhAd-(R)-aux
C6a

A vigorously stirred suspension of $\mathbf{C} 3 \mathrm{a}(1.03 \mathrm{~g}, 0.65 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(269 \mathrm{mg}, 1.95 \mathrm{mmol})$, and ( $R$ )chiral auxiliary C4 ( $418 \mathrm{mg}, 1.63 \mathrm{mmol}$ ) in an ethanol/toluene ( $2.5 / 1.0$ ) mixture were heated to $100^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction mixture was filtered over Celite and washed with toluene. The filtrate was concentrated in vacuo and the crude solid was taken up in hot ethanol, and the insoluble solid filtered and washed with hot ethanol. The filtrate contains primarily $\Delta-(R)$-C6a while the insoluble residue contains primarily $\Lambda-(R)$-C5a.

Separation of $\Delta-(R)$-C6a from $\Lambda-(R)$-C5a can be achieved by differential solubility in ethanol. In a typical procedure, the insoluble solid, described above, was washed with hot ethanol until the $\Delta$ -$(R)$-C6a was not detectable by $\operatorname{TLC}\left(1 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in PhMe). Further purification of $\Lambda-(R)$-C5a can be achieved by flash column chromatography ( $0,1,5 \% \mathrm{Et}_{2} \mathrm{O}$ in PhMe ) to afford a yellow solid (405 $\mathrm{mg}, 30 \%$ ). This typically provided $\Lambda-(R)$-C5a of $\geq 99.5 \%$ purity (as judged by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR). No trace amounts of $\Delta-(R)$-C6a were detected.
^-(R)-C5a: ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{*}$ ) 8.09 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.66 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.56$ (m, 2H), 7.52 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, J = 8.8 Hz , $1 \mathrm{H}), 7.37$ (dd, $J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.94$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.74$ (m, 3H), 6.72 (td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=11.4,8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=10.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 9 \mathrm{H}), 1.91-1.81(\mathrm{~m}$, 12H), 1.73 - 1.67 (m, 6H); ${ }^{13} \mathrm{CNMR}^{* *}$ ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{*}$ ) 174.5 (d, J = 3.6 Hz ), 171.5 (d, J = 3.9 $\mathrm{Hz}), 171.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 167.9(\mathrm{~d}, J=31.9 \mathrm{~Hz}), 166.7(\mathrm{~d}, J=30.7 \mathrm{~Hz}), 166.2,162.5\left(\mathrm{~d}, J_{C F}=\right.$ 253.7 Hz ), 150.6, 149.2, 148.3, 147.7, 140.6, 138.7, 138.4, 135.3, 133.1, 132.2 (d, J = 13.2 Hz ), $131.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 130.6,130.0(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 129.7,128.1,127.1,126.8,125.02,124.99$, $122.8,122.6,122.2,121.7,119.2(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 114.8,113.5,110.3,110.2,102.8\left(\mathrm{~d}, J_{C F}=8.2\right.$ Hz ), 98.7 (d, JCF $=22.1 \mathrm{~Hz}$ ), 75.3, 68.7, 43.4, 43.1, 36.7, 36.53, 36.49, 29.0, 28.8; ${ }^{19}$ F NMR (564 NMR, $\mathrm{CDCl}_{3}$ ) -107.92 (dd, $J=11.5,7.4 \mathrm{~Hz}$ ); IR (neat, $\mathrm{cm}^{-1}$ ) 3058, 2035, 2905, 2849, 1620, 1592, 1527, 1478, 1448, 1380, 1224, 1035; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Rh}\left[\mathrm{M}-\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNO}_{2}\right]^{+}$: 759.2452; found: 759.2445.
${ }^{*} \mathrm{CDCl}_{3}$ was passed through basic alumina prior to use. **One of the adamantyl qC atoms was not observed in the ${ }^{13} \mathrm{C}$ NMR.

Separation of $\Lambda-(R)$-C5a from $\Delta-(R)$-C6a (from the ethanolic solution) can be achieved by flash column chromatography (dry load, 5\% EtOAc in hexanes) to afford a yellow solid ( $454 \mathrm{mg}, 34 \%$ ). This typically provided of $\Delta-(R)$-C6a $\geq 99 \%$ purity (as judged by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR). Approximately $<1 \%$ of $\Lambda-(R)$-C5a was detectable by ${ }^{19} \mathrm{~F}$ NMR.
$\Delta-(R)-\mathbf{C 6 a :}{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{*}$ ) $7.94(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (dd, J = 7.5, 1.5 Hz, 1H), $6.98-6.82(\mathrm{~m}, 6 \mathrm{H}), 6.64$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (brs, 2H), 6.36 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (brd, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.98 (dd, $J=12.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=9.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{dd}, \mathrm{J}=8.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 6 \mathrm{H})$, $1.91-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}^{* *}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{*}\right)$ 174.7 (d, $J=3.1 \mathrm{~Hz}$ ), 171.7 (d, $J=3.4 \mathrm{~Hz}$ ), 170.1 (d, $J=4.0 \mathrm{~Hz}$ ), 168.5 (d, $J=30.0 \mathrm{~Hz}$ ), 166.8 (d, $J=31.4 \mathrm{~Hz}$ ), 165.0 (d, $J=3.7 \mathrm{~Hz}$ ), 163.7 (d, $J=257.8 \mathrm{~Hz}), 149.9,149.8,148.1,148.0,140.9$, $138.9,138.3,134.1,133.0,132.8(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}), 131.5,130.9,130.3(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}), 127.5$, 126.9, 125.3 (brd), 125.13, 125.06, 122.6, 122.3, 122.0, 121.8, 120.2 (d, J=2.1 Hz), 115.1, 112.5, 110.8, 109.8, 99.9 (d, JCF $=6.4 \mathrm{~Hz}$ ), $98.6\left(\mathrm{~d}, J_{C F}=24.2 \mathrm{~Hz}\right), 74.4,69.5,43.5,43.4,36.67,36.63$, 36.58, 36.49, 29.94, 29.93; ${ }^{19}$ F NMR ( $564 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) -104.94 (dd, $J=12.8,7.0 \mathrm{~Hz}$ ); IR (neat, $\mathrm{cm}^{-1}$ ) 3057, 3031, 2904, 2849, 1618, 1592, 1528, 1477, 1447, 1431, 1381, 1265, 1220, 1036; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{61} \mathrm{H}_{56} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{Rh}[\mathrm{M}+\mathrm{H}]^{+}: 1016.3304$; found: 1016.3328.
${ }^{*} \mathrm{CDCl}_{3}$ was passed through basic alumina prior to use. **Two carbon atoms were not observed in the ${ }^{13} \mathrm{C}$ NMR.

## Preparation of $\wedge$ - and $\Delta$-11 TFA Catalyst:



To a suspension of $\Lambda-(R)$-C5a ( $377 \mathrm{mg}, 0.376 \mathrm{mmol}$ ) in MeCN ( 30 mL , HPLC grade) was added trifluoroacetic acid $(0.5 \mathrm{~mL})$ at room temperature. The reaction mixture become homogeneous upon the addition of trifluoroacetic acid and was allowed to stir for 30 min before being concentrated in vacuo. The residue was purified by flash column chromatography ( $0,1,5 \% \mathrm{MeCN}$ in DCM doped with $1-2 \%$ TFA) to afford 11 as a pale-yellow solid ( $282 \mathrm{mg}, 86 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{*}$ ) 7.90 (brs, 2H), $7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (d, J=8.8 Hz, 2H), 7.01 (t, J=7.6 Hz, 2H), $6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.11$ (brs, 6H), 1.97 (s, 12H), $1.80-1.74$ (m, 12H); ${ }^{13} \mathrm{CNMR}^{* *}$ (150 MHz, $\mathrm{CDCl}_{3}{ }^{*}$ ) 170.6, 159.1 (br), 150.7 (br), 148.2, 138.1 (br), 134.3 (br), 131.3, 130.7, 125.5, 123.4, 123.2, 114.0 (br), 110.7, 43.4, 36.6, 36.6, 28.9; ${ }^{19}$ F NMR ( $564 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) -75.15 (brs); IR (neat, cm ${ }^{-1}$ ) 3054, 2905, 2850, 1781, 1652, 1617, 1592, 1529, 1478, 1452, 1431, 1386, 1347, 13319, 1267, 1199, 1162, 1117, 1081, 1036, 931, 821, 797, 738; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$ Rh [M-TFA] ${ }^{+}$: 759.2452; found 759.2436.

* $\mathrm{CDCl}_{3}$ was passed through basic alumina prior to use.
**The two carbon signals belonging to the TFA anion were not observed in the ${ }^{13} \mathrm{C}$ NMR.


## 6. Preparation of Carboxylic Acids

A majority of the tetrasubstituted carboxylic acids used in this study could be prepared from our previously described method; ${ }^{4,5}$ however, we have found it useful to use a Pd-catalyzed Negishi cross coupling of the vinyl bromide B-1 shown below, which was prepared according to a procedure found in the literature. ${ }^{6}$ Tiglic acid, (E)-2-methylpent-2-enoic acid, cyclohex-1-ene-1carboxylic acid were purchased from commercial sources.


A typical procedure for the Negishi cross coupling is as follows:

(E)-3-cyclohexyl-2-methylbut-2-enoic acid (B-3)

To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(168 \mathrm{mg}, 0.75 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, DavePhos ( $442 \mathrm{mg}, 1.1 \mathrm{mmol}, 7.5$ $\mathrm{mol} \%$ ), and bromide B-1 ( $2.90 \mathrm{~g}, 16.2 \mathrm{mmol}, 1.0$ equiv) in THF ( 15 mL ) at $0^{\circ} \mathrm{C}$ was added dropwise freshly prepared $\mathrm{CyZnl} \cdot \mathrm{LiCl}(25 \mathrm{~mL}, 37.5 \mathrm{mmol}, 2.5$ equiv, 1.35 M soln in THF). The reaction was allowed to warm to room temperature overnight. The reaction was quenched with 1 M HCl and diluted with diethyl ether. The phases were separated and the aqueous phase extracted with diethyl ether (x3). The combined organic extracts were washed a sodium sulfite solution* and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to afford a crude solid. Compound B-3 was isolated from the crude material using silica gel chromatography (dry load, $0,3,5,10,15 \%$ ethyl acetate in hexane) as a white solid ( $1.83 \mathrm{~g}, 62 \%$ ). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra matched the previously reported values.
*A sodium sulfite wash was only necessary if the organozinc was prepared from the corresponding alkyl iodide.

In some cases, small amounts of angelic acid were detectable by ${ }^{1} \mathrm{H}$ NMR analysis. Angelic acid could be removed from the bulk material by sublimation under high vacuum at room temperature over the course of 18-24 hours or until a constant mass was reached. Also, in some cases traces of a highly colored red compound (presumably a Pd-complex) carried through the silica gel column. Although it does not interfere in subsequent reactions it can be removed by an aqueous acid-base extraction of the acid.

(E)-7-chloro-2,3-dimethylhept-2-enoic acid (B-4)

Brown oil ( $2.65 \mathrm{~g}, 87 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 3.56 (t, J = $6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.22 - $2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.09(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-178(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 174.3, 150.7, 122.0, 44.7, 36.0, 32.3, 24.5, 21.4, 15.2; IR (neat, cm ${ }^{-1}$ ) 3055, 2954, 2867, 2673, 2621, 1683, 1445, 1405, 1375, 1287, 1233, 1116; HRMS (ESI ${ }^{-}$) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClO}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 189.0688$; found 189.0692.

(E)-2,3-dimethylhept-2-enoic acid (B-5)

Colorless oil ( $1.57 \mathrm{~g}, 79 \%$ ); ${ }^{1} \mathrm{H}$ NMR matched previously reported values. ${ }^{4,5}{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) 11.24(\mathrm{brs}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{q}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.47-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-2,3-dimethylpent-2-enoic acid (B-6)

Deliquescent white solid ( $629 \mathrm{mg}, 59 \%$ ); ${ }^{1} \mathrm{H}$ NMR matched previously reported values. ${ }^{4}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.19(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$ ).

(Z)-2,3-dimethylpent-2-enoic acid (B-7)

Prepared from ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate and hydrolyzed according to a protocol found in the literature. ${ }^{4}$ Deliquescent white solid ( $1.21 \mathrm{~g}, 77 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 12.10 (brs, 1 H ), 2.49 (q, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.87 (q, J = 1.5 Hz , $3 \mathrm{H}), 1.83$ ( $\mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.06(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-2,3,5-trimethylhex-2-enoic acid (B-8)

White solid (1.38 g, 59\%); ${ }^{1} \mathrm{H}$ NMR matched previously reported values. ${ }^{4}{ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ) 8.27 (brs, 1H), $2.11-2.06(\mathrm{~m}, 5 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.


Prepared from ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate and hydrolyzed according to a protocol found in the literature. ${ }^{4}$ White solid ( $1.03 \mathrm{~g}, 57 \%$ over 2 steps). m.p. $=113$ $-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 11.52 (brs, 1H), $3.22-3.09(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.52(\mathrm{~m}, 5 \mathrm{H})$, 1.73 (s, 3H), 1.41 - 1.06 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 175.9, 153.4, 121.1, 42.9, 30.8, 26.2, 26.1, 16.0, 15.6; IR (neat, $\mathrm{cm}^{-1}$ ) 2936, 2850, 2655, 1669, 1621, 1444, 1408, 1377, 1295, 1226, 1126; HRMS (EI ${ }^{+}$) m/z calcd for [M] ${ }^{+}$: 182.1301; found: 182.1303.

(E)-4-((tert-butyldimethylsilyl)oxy)-2,3-dimethylbut-2-enoic acid (B-10)

Compound B-10 was prepared according to the scheme shown below.


Carboxylic acid B-1 ( 2.68 g ) was reduced to allylic alcohol B-11 according to a protocol found in the literature. ${ }^{6}$

A solution of crude allylic alcohol B-11 ( $1.85 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) was added to stirred mixture of TBSCI and imidazole in DMF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after 2 hours was quenched by the addition of water and diethyl ether. The phases were separated and the aqueous phase extracted with diethyl ether (x2). The combined organic extracts were washed with 1 M HCl , water, and brine, followed by drying over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo and the crude material ( 2.60 g ) used in the next step without further purification.

To a solution of crude TBS-protected vinyl bromide B-12 ( $2.60 \mathrm{~g}, 9.32 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) in diethyl ether ( 50 mL ) at $-78^{\circ} \mathrm{C}$ was added a solution $t$-BuLi ( $9.3 \mathrm{~mL}, 18.6 \mathrm{mmol}, 2.0$ eq., 2.0 M in pentane) dropwise. After stirring for $10-15 \mathrm{~min}$, the solution was poured onto dry ice and allowed to warm to room temperature. The reaction mixture was diluted with 1 M HCl and the aqueous phase was extracted with diethyl ether (x2). The combined organic extracts were washed with water and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo and the crude material subjected to column chromatography ( $0,10,25 \%$ ethyl acetate in
hexanes). The isolated carboxylic acid was still contaminated by pivalic acid. Pivalic acid could be removed by sublimation at room temperature under a high vacuum to afford B-10 as a white solid ( $1.40 \mathrm{~g}, 61 \%$ yield, $70 \%$ yield BRSM).
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $4.26(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, 9 H ), 0.08 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 175.2, 149.8, 121.8, 64.2, 25.9, 18.3, 17.6, 14.6, -5.4 ; IR (neat, $\mathrm{cm}^{-1}$ ) 3038, 2954, 2930, 2885, 2857, 2709, 2609, 1679, 1664, 1626, 1471, 1462, 1406, 1387, 1374, 1312, 1294, 1256, 1220, 1081; HRMS (ESI-) m/z calcd for [M-H] ${ }^{-}$: 243.1421; found 243.1415 .

(E)-2-ethyl-3,4-dimethylpent-2-enoic acid (B-13)

Acid B-13 was prepared according a protocol found in the literature ${ }^{4}$ using ethyl 2-ethyl-3oxobutanoate as the starting material.

White solid ( $1.01 \mathrm{~g}, 84 \%$ yield over two steps); ${ }^{1} \mathrm{H}$ NMR ( 300 MHz ) 11.33 (brs, 1H), 2.94 (hept, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 175.9, 154.0, 127.5, 31.2, 22.3, 20.3, 14.9, 14.4; IR (neat, cm ${ }^{-1}$ ) 3051, 2964, 2936, 2875, 2799, 2706, 2618, 2521, 1682, 1604, 1467, 1310, 1257, 1241; HRMS (ESI- $\mathrm{m}^{-} \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$ [M-H]: 155.1078; found: 155.1082.


B-14


B-15


B-16


B-17


B-18

Acid B-14 was prepared according to a protocol found in the literature. ${ }^{4}$
Acids B-15 and -16 were prepared according to a protocol found in the literature. ${ }^{5}$
Acids B-17 and -18 were prepared according to a protocol found in the literature. ${ }^{7,8}$

## 7. Preparation of Benzyl Propiolate

Benzyl propiolate was prepared according to a protocol found in the literature. ${ }^{9}$
To a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(15.2 \mathrm{~g}, 110 \mathrm{mmol}, 1.5\right.$ equiv) in DMF ( 100 mL ) at $0^{\circ} \mathrm{C}$ was added propiolic acid ( $7.70 \mathrm{~g}, 110 \mathrm{mmol}, 1.1$ equiv). After stirring at this temperature for ten minutes, benzyl bromide ( $11.9 \mathrm{~mL}, 100 \mathrm{mmol}, 1.0$ equiv) was added. The reaction mixture was allowed to warm to room temperature and diluted with water and diethyl ether at $0^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase extracted with diethyl ether ( x 3 ). The combined organic extracts were washed with water (x2) and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to afford a crude oil. The crude oil was subjected to silica gel column chromatography (dry load, $0,2,5 \%$ diethyl ether in hexane) to afford benzyl propiolate as a colorless oil ( $14.4 \mathrm{~g}, 90 \%$ ). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched the previously reported values. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ) 7.42 - 7.34 (m, 5H), 5.23 (s, 2H), 2.91 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 152.6, 134.5, 128.8, 128.7, 128.6, 75.2, 74.6, 68.0; IR (neat, cm ${ }^{-1}$ ) 3277, 3091, 3068, 2960, 2121, 1716, 1498, 1456, 1375, 1220.

## 8. Synthesis of Ynones

Representative procedure:


Benzyl 4-(2-methylcyclohex-1-en-1-yl)-4-oxobut-2-ynoate (5)
To a solution of 2-methylcyclohex-1-ene-1-carboxylic acid ( $612 \mathrm{mg}, 4.37 \mathrm{mmol}$ ) in DCM (1 M) was added oxalyl chloride ( $0.56 \mathrm{~mL}, 6.56 \mathrm{mmol}$ ) dropwise followed by two drops of anhydrous DMF from a Pasteur pipet. Once the evolution of gas ceased (approx. 2 to 3 h ), the mixture was cooled to $0^{\circ} \mathrm{C}$. In a separate flask, Hünig's base ( $1.1 \mathrm{~mL}, 6.56 \mathrm{mmol}$ ) was added to a stirred suspension of benzyl propiolate ( $1.05 \mathrm{~g}, 6.56 \mathrm{mmol}$ ) and Cul ( $83 \mathrm{mg}, 0.44 \mathrm{mmol}$ ). Once the mixture became homogenous it was added dropwise to the acid chloride at $0{ }^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. The reaction was quenched by the addition of a saturated aqueous ammonium chloride solution and was extracted with DCM (x2). The combined organic extracts were washed with saturated aqueous sodium bicarbonate solution (x2) and dried over anhydrous magnesium sulfate. After filtration, the solvent was removed in vacuo and the crude oil purified by flash column chromatography ( $0,1,2,5,7 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford 5 as a pale-yellow oil (4.19 g, 96\%).
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.17(\mathrm{~m}$, $2 \mathrm{H}), 2.14-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 177.7, 154.5, 152.5, 134.3, 131.0, 128.9, 128.7, 128.7, 82.9, 79.6, 68.3, 35.0, 26.1, 22.7, 22.1, 21.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2937, 2863, 2200, 1717, 1651, 1560, 1498, 1456, 1418, 1375, 1280, 1231, 1179, 941, 747; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 305.1148$; found: 305.1151.

Note: Benzyl propiolate often has very similar chromatographic properties to many of the ynones prepared herein and as a result may appear as a minor, inseparable contaminant. In most cases, the bulk of the excess benzyl propiolate could be separated by silica gel chromatography using $10,20,30 \%$ PhMe in hexanes followed by $3,5 \%$ ether in hexanes as eluent.

All of the acyclic tetrasubstituted all-aliphatic carboxylic acids used in this study are sensitive to anhydrous acid. exposure to which will cause isomerization of the alkene. In these cases, cyanuric chloride and triethylamine were used to form the acid chloride (see the SI of reference 4) and the copper propiolate, formed as described above, was added directly to the reaction mixture of the acid chloride. In some cases, an adduct of TCT and triethylamine carries over as a chromatographically inseparable contaminant and can be seen by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (marked on the corresponding spectra). This contaminate did not affect the subsequent steps in the reaction sequence and is chromatographically separable from the cyclopentenone.


Ethyl (E)-5-methyl-4-oxo-6-phenylhex-5-en-2-ynoate (A2)
Pale-yellow oil ( $2.17 \mathrm{~g}, 89 \%)^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.93 ( $\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.52-7.36$ ( m , $5 \mathrm{H}), 4.31(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 178.7, 152.5, 148.1, 137.5, 134.8, 130.4, 129.9, 128.7, 80.3, 79.7, 62.9, 14.0, 12.1; IR (neat, $\mathrm{cm}^{-1}$ ) 3057, 3027, 2986, 2939, 2874, 2229, 1717, 1639, 1618, 1574, 1448, 1393, 1366, 1327, 1299, 1250, 1089, 1018; HRMS (ESI+) m/z calcd for [M+H] ${ }^{+}$: 243.1016; found 243.1016.


Benzyl (E)-5,6-dimethyl-4-oxooct-5-en-2-ynoate (A3)
Pale-yellow oil ( $1.14 \mathrm{~g}, 60 \%$ ); ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.21$ ( $\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.14(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.4, 157.5, 152.5, 134.3, 128.9, 128.73, 128.69, 128.63, 83.1, 79.6, 68.3, 30.8, 21.2, 14.8, 11.4; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3035, 2972, 2937, 2877, 2214, 1717, 1651, 1583, 1536, 1506, 1456, 1375, 1321, 1283, 1228; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 293.1148; found 293.1154.
*Inseparable benzyl propiolate contaminant is present.


Benzyl ( $E$ )-5,6-dimethyl-4-oxodec-5-en-2-ynoate (A4)
Pale-yellow oil ( $1.28 \mathrm{~g}, 54 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.40 - 7.33 (m, 5H), 5.24 (s, 2H), 2.22 $-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.2, 156.5, 152.5, 134.3, 129.0, 128.9, 128.74, 128.67, 83.1, 79.6, 68.3, 37.6, 29.4, 22.9, 21.8, 15.1, 14.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3066, 3035, 2960, 2932, 2872, 2119, 1717, 1650, 1490, 1476, 1457, 1376, 1350, 1328, 1305, 1230, 1161, 1082, 1031; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 321.1461$; found: 321.1456 .


Benzyl (E)-10-chloro-5,6-dimethyl-4-oxodec-5-en-2-ynoate (A5)
Pale-yellow oil ( $636 \mathrm{mg}, 37 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.32 (m, 5H), 5.24 (s, 2H), 3.54 ( $\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.24-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.01-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.65-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.3, 154.9, 152.4, 134.3, 129.4, 128.9, 128.8, 128.7, 82.9, 79.7, 68.3, 44.6, 36.8, 32.3, 24.4, 21.7, 15.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3091, 3067, 3035, 2956, 2870, 2216, 1720, 1650, 1601, 1498, 1456, 1375, 1225, 1070, 950; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 355,1071; found: 355.1069.


Benzyl ( $E$ )-5,6,7-trimethyl-4-oxooct-5-en-2-ynoate (A6)
Pale-yellow oil (425 mg, 64\%); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.40 - 7.35 (m, 5H), 5.25 (s, 2H), 2.89 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.9,160.0,152.5,134.3,128.9,128.8,128.7,83.1,79.5,68.3,32.6,19.6$, 15.4, 14.6; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3035, 2968, 2934, 2873, 2216, 1720, 1648, 1579, 1498, 1457, 1375, 1331, 1304, 1279, 1232, 1152, 1061, 965; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 307.1305; found: 307.1314.


Benzyl ( $E$ )-6-cyclohexyl-5-methyl-4-oxohept-5-en-2-ynoate (A7)
Pale-yellow oil ( $692 \mathrm{mg}, 43 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.34$ (m, 5H), 5.24 (s, 2H), 2.54 - $2.44(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.85-1.10(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 179.0, 159.4, 152.5, 134.3, 128.9, 128.7, 128.7, 128.4, 83.2, 79.5, 68.3, 44.0, 29.6, 26.2, 26.0, 16.8, 14.7; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2930, 2854, 2214, 1717, 1647, 1574, 1532, 1499, 1451, 1417, 1375, 1300, 1280, 1230, 1143, 1080, 968; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 347.1618; found 347.1604.


Benzyl (E)-5,6,8-trimethyl-4-oxonon-5-en-2-ynoate (A8)
Pale-yellow oil ( $889 \mathrm{mg}, 75 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.40 - 7.34 (m, 5H), 5.25 (m, 2H), 2.13 $-2.08(\mathrm{~m}, 5 \mathrm{H}), 2.02(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $178.3,155.3,152.5,134.3,129.8,128.9,128.74,128.69,83.1,79.6,68.3,46.6$, 27.5, 22.7, 22.2, 15.7; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2959, 2870, 2214, 1719, 1650, 1585, 1532, 1499, 1457, 1375, 1332, 1230, 1143, 1072, 987, 952; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 321.1461; found: 321.1451.


Benzyl (Z)-5,6-dimethyl-4-oxooct-5-en-2-ynoate (A9)
Pale-yellow oil ( $747 \mathrm{mg}, 28 \%)^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 2.53$ (qq, $J=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.96 (sext, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.87 (q, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.08 (t, $J=7.4 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 177.7, 157.7, 152.5, 134.3, 129.1, 128.9, 128.73, 128.65, 82.9, 79.0, 68.3, 29.6, 21.8, 15.5, 12.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2973, 2936, 2875, 2213, 1720, 1651, 1575, 1498, 1457, 1375, 1300, 1262, 1230, 1074; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 293.1148; found 293.1161.


Pale-yellow oil ( $565 \mathrm{mg}, 47 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.41-7.35$ (m, 5 H ), 7.23 (qq, J=7.0, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{dq}, J=7.0,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{p}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.0, 152.3, 148.7, 141.9, 139.2, 134.2, 128.9, 128.8, 80.1, 79.1, 68.4, 15.5, 10.1; IR (neat, $\mathrm{cm}^{-1}$ ) 3036, 2959, 2218, 1720, 1635, 1456, 1378, 1267, 1228, 1113, 1086, 1013, 966, 906; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 265.0835; found 265.0844.


Colorless oil ( $538 \mathrm{mg}, 42 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.42 - 7.33 (m, 5H), 7.10 (tq, J = 7.5, 0.8 $\mathrm{Hz}, 1 \mathrm{H}$ ), $5.26(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{pq}, J=7.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{q}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3 H ); ${ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.2,155.0,152.4,148.5,137.7,134.2,128.9,128.8,80.3,79.2,68.4$, 23.0, 12.7, 10.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3036, 2971, 2936, 2876, 2225, 1720, 1634, 1499, 1457, 1375, 1227, 1128, 993, 941; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 279.0992; found 279.0996.


Benzyl (E)-6-cyclohexyl-5-methyl-4-oxohex-5-en-2-ynoate (A12)
Pale-yellow oil ( $721 \mathrm{mg}, 72 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.43 - 7.35 (m, 5H), 6.90 (dq, J = 9.5, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.39$ $-1.16(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )* $178.5,158.3,152.4,136.3,134.2,128.9,128.8,80.4$, $79.2,68.4,38.8,31.5,25.7,25.4,10.4$; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2928, 2853, 2214, 1720, 1633, 1498, 1449, 1375, 1300, 1275, 1260, 1231, 1140, 1082, 996, 967; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 333.1461$; found: 333.1457.
*One carbon signal is not observed in the ${ }^{13} \mathrm{C}$ NMR.


Benzyl (E)-5-methyl-4-oxo-6-phenylhex-5-en-2-ynoate (A13)
Pale-yellow oil (1.08 g, 71\%); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.95 (q, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.54-7.37$ (m, 10 H ), 5.30 (s, 2H), 2.14 (d, J= $1.3 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.7, 152.3, 148.2, 137.6, 134.8, 134.3, 130.4, 130.0, 129.0, 128.8, 128.8, 80.3, 80.1, 68.5, 12.2; IR (neat, cm ${ }^{-1}$ ) 3090, 3065, 3034, 2962, 2926, 2222, 1720, 1638, 1619, 1574, 1498, 1449, 1393, 1375, 1327, 1298, 1246, 1184, 1089, 1027, 1002, 931; HRMS (ESI $)$ m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 327.0992$; found: 327.0994.


Ethyl (E)-4-oxo-6-phenylhex-5-en-2-ynoate (A14)
Pale-yellow oil ( $1.36 \mathrm{~g}, 60 \%)^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.85(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56$ (m, 2H), $7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 176.2, 152.2, 150.9, 133.5, 131.9, 129.2, 129.0, 127.4, 79.5, 79.3, 63.1, 14.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3083, 3063, 3027, 2985, 2940, 2906, 1717, 1636, 1597, 1576, 1450, 1368, 1331, 1297, 1256, 1202, 1136, 1022; HRMS (ESI ${ }^{+}$m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}: 229.0859$; found; 229.0860.


Benzyl (Z)-6-cyclohexyl-5-methyl-4-oxohex-5-en-2-ynoate (A15)
Pale-yellow oil (774 mg, 50\%); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.43 - 7.30 (m, 5H), 6.08 (dq, J = 10.3, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{qt}, J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.58(\mathrm{~m}$, $5 \mathrm{H}), 1.33-1.00(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 177.3, 153.5, 152.3, 134.2, 132.2, 128.9, 128.7, 82.5, 78.9, 68.4, 37.9, 32.7, 25.8, 25.4, 20.1; IR (neat, cm ${ }^{-1}$ ) 3067, 3035, 2927, 2852, 2215, 1720, 1661, 1623, 1498, 1449, 1376, 1352, 1308, 1231, 1142, 1079, 1010, 947, 906; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 333.1461; found: 333.1474.


Pale-yellow oil ( $1.29 \mathrm{~g}, 80 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.42 - 7.33 (m, 6H), 5.26 (s, 2H), 2.38 $-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 177.3, 152.3, $150.9,140.4,134.2,128.9,128.8,80.1,78.8,68.4,26.7,22.1,21.5,21.3$; IR (neat, cm ${ }^{-1}$ ) 3093 , 3067, 3035, 2937, 2863, 2222, 1720, 1630, 1498, 1456, 1418, 1385, 1343, 1234, 1083, 1054, 1029, 966, 905; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 291.0992; found 291.0996.


Benzyl 4-(2-methylcyclohept-1-en-1-yl)-4-oxobut-2-ynoate (A18)
Pale-yellow oil ( $724 \mathrm{mg}, 62 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.44-7.31$ (m,5H), 5.25 (s, 2H), 2.64 $-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.0, 160.6, 152.6, 137.3, 134.3, 128.9, 128.8, 128.7, 83.1, 79.5, 68.3, 39.1, 32.1, 29.3, 26.4, 24.7, 24.0; IR (neat, $\mathrm{cm}^{-1}$ ) 2924, 2853, 2213, 1719, 1648, 1601, 1498, 1457, 1440, 1375, 1286, 1231, 1180, 942; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 319.1305; found: 319.1311.


Benzyl (E)-7-((tert-butyldimethylsilyl)oxy)-5,6-dimethyl-4-oxohept-5-en-2-
ynoate (A19)
Pale-yellow oil ( $945 \mathrm{mg}, 47 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.36$ (m, 5H), 5.25 (s, 2H), 4.27 (s, 2H), 2.18 (tq, J = 1.6, $0.8 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.96 (tq, J=1.5, $0.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.4, 153.9, 152.4, 134.3, 128.9, 128.8, 128.7, 128.6, 82.7, 79.7, 68.3, $64.5,25.8,18.3,17.5,14.3,-5.4$; IR (neat, $\mathrm{cm}^{-1}$ ) 3036, 2955, 2930, 2886, 2857, 1720, 1655, 1611, 1471, 1375, 1285, 1228, 1089, 1063; This compound was not fully characterized (HRMS) but was fully characterized at the next compound (DK19) in the reaction sequence.


Benzyl (Z)-6-cyclohexyl-5-methyl-4-oxohept-5-en-2-ynoate (A20)
Pale-yellow oil ( $753 \mathrm{mg}, 45 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.33 (m, 5H), $5.25(\mathrm{~s}, 2 \mathrm{H}), 3.33$ $-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.21$ ( $\mathrm{m}, 5 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 178.5, 159.3, 152.5, 134.3, 129.5, 128.9, 128.7, 128.7, 83.0, 78.9, 68.3, 42.7, 30.8, 26.0, 25.9, 16.7, 15.6; IR (neat, cm${ }^{-1}$ ) 3035, 2929, 2854, 2213, 1719m 1645, 1602, 1498, 1450, 1375, 1294, 1228, 1083, 1061; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 325.1798$; found 325.1804 .


Benzyl (E)-5-methyl-4-oxo-6-phenylhept-5-en-2-ynoate (A21)
Pale-yellow oil (879 mg, 71\%); ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\mathrm{CDCl}_{3}$ ) 7.42 - 7.36 (m, 7H), $7.34-7.30$ (m, 1H), $7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CDCl}_{3}$ ) 179.0, 152.8, 152.4, 143.2, 134.2, 130.6, 128.9, 128.73, 128.68, 128.5, 127.7, 126.8, 82.6, 79.8, 68.4, 23.7, 17.3; IR (neat, $\mathrm{cm}^{-1}$ ) 3061, 3035, 2950, 2120, 1717, 1651, 1586, 1491, 1456, 1442, 1375, 1309, 1243, 1181, 1112; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ [M+Na]+: 341.1148; found: 341.1145.


Benzyl (E)-5-ethyl-6,7-dimethyl-4-oxooct-5-en-2-ynoate (A22)
Pale-yellow oil ( 1.0 g , yield determined in next step) ${ }^{*}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44-7.35$ (m, 5 H ), 5.27 ( $\mathrm{s}, 2 \mathrm{H}$ ), 2.90 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.53 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.04$ (m, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) 179.3, 159.2, 152.5, 134.8, 128.9, 128.74, 128.67, 83.2, 78.7, 68.3, 32.0, 22.2, 20.2, 15.3, 14.8; IR (neat, $\mathrm{cm}^{-1}$ ) 3272, 3067, 3035, 2968, 2934, 2873, 2120, 1717, 1645, 1574, 1456, 1375, 1229, 1080; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 321.1461; found: 321.1464.
*isolated as an inseparable mixture with benzyl propiolate

## 9. Synthesis of Diketones

Representative procedure:


To a stirred suspension of freshly prepared $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}{ }^{10}(1.02 \mathrm{~g}, 4.97 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{M})$ was added $\mathrm{MeLi}\left(3.3 \mathrm{~mL}, 4.97 \mathrm{mmol}, 1.5 \mathrm{M}\right.$ soln in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $-30^{\circ} \mathrm{C}$. After stirring at this temperature for 15 min , the canary yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of alkyne $5(1.08 \mathrm{~g}$, $3.82 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{M})$ was added dropwise. After 15 min at this temperature, the reaction mixture was cooled between -94 and $-78^{\circ} \mathrm{C}$ (liquid $\mathrm{N}_{2} /$ hexane) and a solution of $t$-BuOOLi in $\mathrm{Et}_{2} \mathrm{O}$ (preparation described below) at $-78^{\circ} \mathrm{C}$ was vacuum transferred via cannula to the reaction mixture. After stirring for $15-30 \mathrm{~min}$ the reaction mixture was quenched by the addition of a saturated aqueous ammonium chloride solution and the reaction mixture was allowed to warm to room temperature. The reaction mixture was extracted with EtOAc (x3). The combined organic extracts were washed with saturated ammonium chloride ( x 2 ) and saturated aqueous sodium sulfite, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo and the crude oil purified by flash column chromatography ( $0,10,20,30,40,50 \%$ DCM in hexanes) to afford diketone 6 as a yellow oil ( $613 \mathrm{mg}, 51 \%$ yield).

Preparation of $t$-BuOOLi solution:
To a solution of 1,10-phenanthroline (spatula tip) in $\mathrm{Et}_{2} \mathrm{O}(19 \mathrm{~mL})$ was added anhydrous $t$ - BuOOH ( $2.8 \mathrm{~mL}, 9.55 \mathrm{mmol}, 3.4 \mathrm{M} \pm 5 \%$ solution in $\mathrm{PhMe}^{*}$ ). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n$ BuLi ( $3.8 \mathrm{~mL}, 9.55 \mathrm{~mol}, 2.5 \mathrm{M}$ in hexanes) was added dropwise until an endpoint was reached. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for $5-10 \mathrm{~min}$ before transferring to the organocopper species.
*Anhydrous $t$-BuOOH in PhMe was prepared according to a Sharpless procedure ${ }^{11}$ with one deviation - the extracts were dried over activated $4 \AA$ molecular sieves (no azeotropic distillation necessary). We have also found that long-term storage of the solution in an amber glass bottle under an Ar atmosphere at room temperature leads to little change in active oxidant concentration.

## Please Note:

1. Many of these diketones are highly reactive and some have been observed to spontaneously decompose during silica gel column chromatography which may lead to low yields of isolated diketone. Consequently, the diketones used in this study were not as rigorously purified.
2. Many of these diketones are not stable to long term storage and should be used immediately. If storage is necessary, we found it best to store the diketone neat in a sealed vial under Ar in a $-20^{\circ} \mathrm{C}$ freezer.
3. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the diketones appear complicated because there is ca. $10 \%$ of the enol tautomer present (mixture of $E / Z$ ).
4. A subtle note regarding the eluent system for column chromatography. The mixing of DCM and hexane is endothermic. Using a cold solution as the eluent leads to poor mobility of the diketone on silica. We regularly prepare the eluent freshly and gently warm the mixture to approximately room temperature in a warm water bath prior to use.


Benzyl 2-methyl-4-(2-methylcyclohex-1-en-1-yl)-3,4-dioxobutanoate (6)
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.27 (m, 5H), 5.13 (s, 2H), 4.19 ( $\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.31 - 1.96 (m, 4H), $1.83-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 197.6, 194.4, 170.3, 151.9, 135.0, 128.6, 128.49, 128.46, 128.0, 67.3, 47.5, 34.1, 25.5, 22.7, 21.92, 21.91 12.1.; IR (neat, $\mathrm{cm}^{-1}$ ) 2939, 2862, 1750, 1715, 1672, 1622, 1455, 1379, 1279, 1214, 1176, 1115, 1087; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 315.1591$; found 315.1594.


Ethyl (E)-2,5-dimethyl-3,4-dioxo-6-phenylhex-5-enoate (7)
Yellow oil ( $523 \mathrm{mg}, 76 \%$ ); Spectral data matched the previously reported data. ${ }^{12,13}$
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.55(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 198.4, 194.7, 170.0, 147.0, 135.1, 132.3, 130.3, 130.2, 129.6, 128.62, 128.59, 61.6, 48.5, 14.0, 12.6, 11.7.


Benzyl (E)-2,5,6-trimethyl-3,4-dioxooct-5-enoate (DK3)
Yellow oil ( $520 \mathrm{mg}, 41 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.39 - 7.25 (m, 5H), 5.13 (s, 2H), 4.20 (q, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ ( $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 197.2, 194.7, 170.4, 154.8, 135.1, 128.6, 128.5, 128.4, 125.5, 67.3, 47.3, 29.5, 20.9, 14.2, 12.1, 11.4; IR (neat, $\mathrm{cm}^{-1}$ ) 3034, 2972, 2937, 2877, 1751, 1716, 1675, 1513, 1497, 1456, 1377, 1279, 1253, 1217, 1184, 1131, 1084, 1029; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1410$; found 325.1396.


Benzyl (E)-2,5,6-trimethyl-3,4-dioxodec-5-enoate (DK4)
Yellow oil ( $520 \mathrm{mg}, 41 \%)^{*}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.27$ (m,5H), 5.16 (d, J = 12.1 Hz , $1 \mathrm{H}), 5.11$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{q}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.75(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 197.1, 194.7, 170.4, 153.6, 135.1, 128.6, 128.45, 128.4, 125.9, $67.3,47.3,36.3,29.4,22.9,21.5,14.5,14.0,12.1$; IR (neat, $\mathrm{cm}^{-1}$ ) 2961, 2933, 2873, 1752, 1717, 1673, 1569, 1492, 1457, 1437, 1378, 1327, 1278, 1257, 1217, 1185, 1132, 1083, 1030; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 353.1723$; found: 353.1708.
*Contaminated with an inseparable TCT-triethylamine adduct.


Benzyl (E)-10-chloro-2,5,6-trimethyl-3,4-dioxodec-5-enoate (DK5)
Yellow oil ( $303 \mathrm{mg}, 44 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.27$ (m, 5 H ), 5.16 (d, J=12.3 Hz, $1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.09(\mathrm{~m}$, 2H), $1.97-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H})$, 1.43 (t, J = 7.2 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) 196.9, 194.6, 170.4, 151.7, 135.0, 128.6, $128.5,128.4,126.5,67.3,47.2,44.7,35.5,32.3,24.4,21.3,14.6,12.1$; IR (neat, $\mathrm{cm}^{-1}$ ) 3066 , 3034, 2943, 2870, 1751, 1716, 1673, 1616, 1533, 1498, 1456, 1378, 1216, 1183, 1003; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 387.1334$; found: 387.1332.


Benzyl (E)-2,5,6,7-tetramethyl-3,4-dioxooct-5-enoate (DK6)
Yellow oil (198 mg, 44\%); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.27 (m, 5H), 5.16 (d, J = 12.2 Hz , 1H), 5.12 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.20 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (q, $J=$ $1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{q}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.9, 195.1, 170.4, 156.9, 135.1, 128.6, 128.5, 128.4, 124.9, 67.3, 47.2, 31.6, 19.69, 19.67, 15.2, 14.1, 12.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3035, 2967, 2874, 1752, 1717, 1674, 1570, 1512, 1498, 1456, 1380, 1308, 1278, 1219, 1188, 1162, 1133, 1082; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 339.1567$; found 339.1566.


Benzyl (E)-6-cyclohexyl-2,5-dimethyl-3,4-dioxohept-5-enoate (DK7)
Yellow oil ( $284 \mathrm{mg}, 51 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.27 (m, 5H), 5.16 (d, J = 12.2 Hz , $1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.49(\mathrm{~m}, 11 \mathrm{H})$, $1.43(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 196.8,195.2,170.4$, 156.3, 135.1, 128.6, 128.44, 128.38, 125.2, 67.3, 47.2, 42.9, 29.8, 29.7, 26.31, 26.29, 26.1, 16.7, 14.1, 12.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3066, 3034, 2930, 2854, 1751, 1717, 1674, 1608, 1535, 1498, 1453, 1379, 1279, 1217, 1177, 1130, 1082, 1029; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 379.1880; found: 379.1877.


Benzyl ( $E$ )-2,5,6,8-tetramethyl-3,4-dioxonon-5-enoate (DK8)
Yellow oil ( $361 \mathrm{mg}, 50 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.28$ (m, 5H), 5.16 (d, J = 12.4 Hz , $1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{q}, J=1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.76$ (q, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.9, 194.9, 170.4, 151.6, 135.1, 128.6, 128.5, 128.4, 126.9, $67.3,47.2,45.2,27.2,22.7,22.6,21.8,15.0,12.2$; IR (neat, $\mathrm{cm}^{-1}$ ) 3035, 2958, 2870, 1752, 1717, 1677, 1610, 1498, 1456, 1383, 1303, 1274, 1216, 1176, 108, 1028; HRMS (ESI+) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 353.1723$; found: 353.1718.


Benzyl (Z)-2,5,6-trimethyl-3,4-dioxooct-5-enoate (DK9)
Yellow oil ( $230 \mathrm{mg}, 42 \%^{*}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.43-7.28$ (m, 5H), 5.14 (s, 2H), 4.20 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{q}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.9, 194.1, 170.3, 154.6, 135.0, 128.5, 128.35, 128.33, 125.9, 67.2, 47.2, 29.7, 20.1, 14.9, 12.6, 12.0; IR (neat, cm ${ }^{-1}$ ) 3034, 2974, 2937, 2876, 1752, 1717, 1676, 1570, 1512, 1492, 1456, 1379, 1327, 1278, 1259, 1216, 1185, 1132, 1082, 1029; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1410$; found 325.1421.
*isolated as an inseparable mixture of geometrical isomers.


Benzyl (E)-2,5-dimethyl-3,4-dioxohept-5-enoate (DK10)
Yellow oil ( $233 \mathrm{mg}, 36 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.46-7.27$ (m, 5H), 6.77 (qq, J=7.0, 1.1 $\mathrm{Hz}, 1 \mathrm{H}) 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dq}, J=7.0,1.1 \mathrm{~Hz} 3 \mathrm{H}), 1.78(\mathrm{p}, J=1.1 \mathrm{~Hz}$, 3H), 1.46 (t, J = 7.2 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 198.2, 193.7, 169.8, 147.6, 135.0, 133.9, 128.6, 128.52, 128.47, 67.4, 48.3, 15.4, 11.8, 10.3; IR (neat, $\mathrm{cm}^{-1}$ ) 3066, 3035, 2943, 1749, 1715, 1658, 1637, 1498, 1456, 1396, 1379, 1264. 1209, 1140, 1084, 1027; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 297.1097$; found 297.1102.
*Significant amounts of the enol tautomer are observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.


Benzyl (E)-2,5-dimethyl-3,4-dioxooct-5-enoate (DK11)
Yellow oil ( $221 \mathrm{mg}, 37 \%$ ) ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.27$ (m,5H), 6.65 (tq, J = 7.2, 1.7 $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=12.3 \mathrm{~Hz}, \mathrm{~d}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.12$ (m, 2H), 1.76 (brs, 3H), 1.44 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 198.1, 193.9, 169.8, 154.1, 135.0, 132.3, 128.6, 128.5, 128.3, 67.3, 48.4, 22.9, 12.6, 11.8, 10.5; IR (neat, $\mathrm{cm}^{-1}$ ) 3066, 3035, 2971, 2937, 2877, 1750, 1717, 1657, 1634, 1498, 1456, 1379, 1306, 1246, 1210, 1144, 1086, 1029; HRMS (ESI $) ~ m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NaO}_{8}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 599.2615; found 599.2622.
*Significant amounts of the enol tautomer are observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.


Benzyl (E)-6-cyclohexyl-2,5-dimethyl-3,4-dioxohex-5-enoate (DK12)
Yellow oil ( $453 \mathrm{mg}, 70 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.42 - 7.28 (m, 5H), 6.50 (d, J = 9.5 Hz , $1 \mathrm{H}), 5.17$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}$, 1H), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-0.98(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 198.3, 194.3, 169.8, 157.4, 135.1, 131.0, 128.6, 128.4, 128.2, 67.2, 48.6, 38.6, 31.4, $31.3,25.7,25.38,25.34,11.8,10.6$; IR (neat, $\mathrm{cm}^{-1}$ ) 3034, 2928, 2853, 1751, 1716, 1657, 1633, 1498, 1450, 1381, 1302, 1274, 1259, 1225, 1202, 1154, 1117, 1082, 1028; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1723$; found: 365.1731.


Benzyl (E)-2,5-dimethyl-3,4-dioxo-6-phenylhex-5-enoate (DK13)
Yellow oil (470 mg, 35\%) ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.55 (q, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.51 - 7.33 (m, $10 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 198.3, 194.6, 169.8, 147.2, 135.1, 134.9, 132.2, 130.4, 129.6, 128.6, 128.5, 128.5, 128.4, 67.5, 48.5, 12.6, 11.8; IR (neat, $\mathrm{cm}^{-1}$ ) 3065, 3033, 2989, 2943, 1749, 1713, 1655, 1616, 1574, 1497, 1454, 1395, 1382, 1324, 1244, 1217, 1197, 1130, 1081, 1028, 1002; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 359.1254; found 359.1259.


## Ethyl (E)-2-methyl-3,4-dioxo-6-phenylhex-5-enoate (DK14)

Yellow oil ( $193 \mathrm{mg}, 25 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.86 (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.66-7.59$ (m, 2H), $7.47-7.35(\mathrm{~m}, 4 \mathrm{H}) ; 4.27$ (q, J = 7.2, 1H), 4.16 (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (d, J = 7.2 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) 196.2, 186.6, 170.34 148.2, 134.3, 131.6, 129.1, 129.0, 118.4, 61.6, 46.3, 14.0, 11.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3063, 2985, 2940, 1717, 1682, 1651, 1607, 1576, 1496, 1450, 1377, 1306, 1206, 1095, 1030; HRMS (EI ${ }^{+}$m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 283.1043; found; 283.1040.


Benzyl (Z)-6-cyclohexyl-2,5-dimethyl-3,4-dioxohex-5-enoate (DK15)
Yellow oil ( $412 \mathrm{mg}, 61 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.28$ (m, 5H), 5.90 (dq, J = 10.6, 1.4 $\mathrm{Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 512(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (qt, J $=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-$ 0.96 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.9, 194.4, 170.2, 151.3, 135.1, 128.7, 128.6, 128.5, 128.3, 67.3, 47.4, 39.0, 32.5, 32.2, 25.8, 25.42, 25.38, 19.5, 12.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3034, 2927, 2852, 1752, 1716, 1679, 1651, 1498, 1449, 1381, 1309, 1257, 1217, 1190, 1112, 1081, 1027; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1723$; found: 365.1734.


Benzyl 4-(cyclohex-1-en-1-yl)-2-methyl-3,4-dioxobutanoate (DK16)
Yellow oil ( $352 \mathrm{mg}, 25 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.27$ (m, 5H), 6.94 (tt, J = 3.9, 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 197.8, 192.6, 169.9, 149.9, 135.0, 134.7, 128.6, 128.5, 128.4, 67.4, 48.0, 26.6, 22.3, 21.4, 21.2, 11.7; IR (neat, cm${ }^{-1}$ ) 3070, 3035, 2939, 2863, 1750, 1714, 1656, 1630, 1498, 1456, 1382, 1309, 1273, 1235, 1193, 1121, 1082, 1029; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 323.1254$; found: 323.1257.


Benzyl 2-methyl-4-(2-methylcyclohept-1-en-1-yl)-3,4-dioxobutanoate
(DK17)
Yellow oil ( $474 \mathrm{mg}, 59 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.28$ (m, 5 H ), 5.16 (d, J= 12.3 Hz , $1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{t}, J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 193.8, 190.5, 166.8, 154.5, 131.5, 124.9, 124.8, 124.7, 63.6, 43.6, 34.7, 28.5, 25.4, 22.7, 22.7, 21.1, 20.3, 8.5; IR (neat, $\mathrm{cm}^{-1}$ ) 2926, 2853, 1750, 1716, 1671, 1612, 1455, 1378, 1284, 1254, 1216, 1176, 1119, 1087; HRMS (ESI $) ~ m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 329.1747$; found 329.1752.


Benzyl (E)-7-((tert-butyldimethylsilyl)oxy)-2,5,6-trimethyl-3,4-dioxohept-5-
enoate (DK18)
Yellow oil ( $341 \mathrm{mg}, 33 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.27$ (m, 5H), 5.14 (s, 2H), 4.23 (brs, $2 \mathrm{H}), 4.21$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (tq, $J=1.7,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.71$ (tq, $J=1.6,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.6, 194.4, 170.3, 151.0, 135.0, 128.6, 128.5, 128.5, 125.6, 67.3, 63.8, 47.2, 25.8, 18.3, 17.6, 13.8, 12.1, -5.4; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3035, 2955, 2930, 2886, 2857, 1753, 1719, 1678, 1649, 1566, 1457, 1375, 1300, 1255, 1216, 1180, 1136; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 419.2248; found: 419.2254.


Benzyl (Z)-6-cyclohexyl-2,5-dimethyl-3,4-dioxohept-5-enoate (DK20)
Yellow oil ( $295 \mathrm{mg}, 42 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.41 - 7.27 (m, 5H), 5.18 (d, J= 12.2 Hz , $1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.59(\mathrm{~m}, 9 \mathrm{H})$, $1.57-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.5, 194.9, 170.5, 156.5, 135.2, 128.6, 128.4, 128.3, 125.9, 67.2, 47.3, 44.2, 30.4, 25.98, 25.95, 15.7, 15.1, 12.4; IR (neat, $\mathrm{cm}^{-1}$ ) 3034, 2930, 2854, 1717, 1672, 1639, 1608, 1452, 1382, 1288, 1214, 1176, 1128, 1080; HRMS (ESI $)$ m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 357.2060$; found: 357.2066.


Benzyl ( $E$ )-2,5-dimethyl-3,4-dioxo-6-phenylhept-5-enoate (DK21)
Yellow oil ( $347 \mathrm{mg}, 34 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.42-7.29$ (m, 8H), $7.17-7.11$ (m, $2 \mathrm{H}), 5.20(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.68(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.4, 195.2, 170.3, 150.0, 142.7, 135.1, 128.6, 128.5, 128.4, 128.4, 127.9, 127.5, 127.2, 67.4, 47.2, 23.6, 16.6, 12.1; IR (neat, $\mathrm{cm}^{-1}$ ) 3063, 3033, 2989, 2943, 1753, 1717, 1685, 1611, 1597, 1492, 1455, 1376, 1304, 1238, 1200, 1087, 1026; HRMS (ESI $) ~ m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1410$; found: 373.1412.


Benzyl (E)-5-ethyl-2,6,7-trimethyl-3,4-dioxooct-5-enoate (DK22)
Yellow oil ( $519 \mathrm{mg}, 35 \%$ over 2 steps); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.41-7.28$ (m, 5H), 5.15 (s, 2 H ), 4.16 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.91 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (brq, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 196.4, 196.0, 170.4, 154.4, 135.2, 131.8, 128.6, 128.4, 128.3, 67.2, 47.3, 30.9, 21.7, 20.4, 20.3, 15.3, 14.2, 12.5; IR (neat, $\mathrm{cm}^{-1}$ ) 3067, 3035, 2967, 2937, 2875, 1752, 1719, 1665, 1609, 1498, 1456, 1378, 1306, 1216, 1186, 1133, 1083, 1027; HRMS (ESI $) ~ \mathrm{~m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 353.1723$; found: 353.1725.


Benzyl 2-(2-(2-methylcyclohex-1-en-1-yl)-2-oxoacetyl)hexanoate (DK23)
Yellow oil ( $439 \mathrm{mg}, 43 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.43 - 7.26 (m, 5H), 5.17 (d, J = 12.2 Hz , $1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.78(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 196.9, 194.4, 169.8, 151.5, 135.1, 128.5, 128.5, 128.4, 128.1, 67.2, 53.2, 34.0, 29.3, 27.2, 25.5, 22.6, 22.4, 22.0, 21.9, 13.8; IR (neat, cm ${ }^{-1}$ ) 3066, 3034, 2933, 2862, 1749, 1716, 1673, 1621, 1498, 1456, 1419, 1378, 1336, 1280, 1214, 1169, 1122, 1082, 1054, 1029, 1002; HRMS $\left(E I^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 379.1880$; found 379.1886.

Diketones DK24 and DK25 were prepared through the method described below.


SEM enol ether SE1 was prepared according to a protocol found in the literature. ${ }^{13}$
Hydrolysis of SEM enol ether SE1 using lithium hydroxide monohydrate (5.0 equiv) in THF/H2O ( $1 / 1,0.1 \mathrm{M}$ ) at $50{ }^{\circ} \mathrm{C}$ overnight led to an incomplete reaction that provided $98 \%$ yield (BRSM) of the intermediate carboxylic acid, which was separated from the unreacted starting material by silica gel column chromatography ( $10 \%$ to $20 \%$ ethyl acetate in hexanes as eluent). The intermediate acid was immediately esterified to compound SE2 using benzyl bromide (1.5 equiv) and potassium carbonate ( 2.0 equiv) in DMF ( 0.1 M ) at room temperature. The reaction mixture was quenched by the addition of water and diethyl ether. The phases were separated and the aqueous phase was extracted with diethyl ether (x2). The combined organic extracts were dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo and compound SE2 was isolated as a colorless oil ( 314 mg , quantitative yield). Deprotection of the SEM protecting group of SE2 was achieved using a large excess of TBAF in THF at $50^{\circ} \mathrm{C}$. The diketone was purified using column chromatography ( $30 \%$ DCM/Hex then $4 \%$ EtOAc/Hex) and isolated as a yellow oil ( $95 \mathrm{mg}, 49 \%$ yield).


Benzyl (2E,5E)-2-ethyl-5-methyl-4-oxo-6-(p-tolyl)-3-((2-(trimethylsilyl)ethoxy)methoxy)hexa-2,5dienoate (SE2)

Colorless oil ( 314 mg , quant.); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.44 (brs, 1 H ), 7.31 - 7.22 (m, 9H), $3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.9-0.84(\mathrm{~m}$, 2H), -0.03 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) 194.8, 167.1, 158.3, 142.0, 139.3, 136.5, 135.8, 132.8, 130.2, 129.2, 128.4, 128.2, 128.0, 116.9, 93.2, 66.8, 66.4, 21.4, 19.2, 17.9, 13.5, 12.3, 1.5 ; IR (neat, $\mathrm{cm}^{-1}$ ) 3033, 2955, 1703, 1659, 1622, 1510, 1456, 1379, 1359, 1307, 1251, 1184, 1126, 1086, 1059, 1029; HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 517.2381$; found: 517.2378.


Benzyl ( $E$ )-2-ethyl-5-methyl-3,4-dioxo-6-( $p$-tolyl)hex-5-enoate (DK24)
Yellow oil ( $95 \mathrm{mg}, 49 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.47 (q, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32-7.22$ (m, 9H), $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 197.9, 194.7, 169.2, 147.5, 140.2, 135.0, 132.3, 131.4, 130.6, 129.3, 128.6, 128.4, 128.4, 67.3. 55.9, 21.5, 20.8, 12.6, 11.9; IR (neat, $\mathrm{cm}^{-1}$ ) 2969, 2932, 2878, 1745, 1712, 1685, 1654, 1605, 1456, 1382, 1345, 1244; HRMS (ESI $)$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 387.1567$; found: 387.1580.


Benzyl (2E,5E)-2-butyl-5-methyl-4-oxo-6-phenyl-3-((2-(trimethylsilyl)ethoxy)methoxy)hexa-2,5dienoate (SE3)

Colorless oil ( $237 \mathrm{mg}, 73 \%$ yield over two steps); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.47 (q, J=1.7 Hz, 1H), $7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (dd, $J=8.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.00(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90-0.84(\mathrm{~m}, 2 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 194.9, 167.3, 158.4, 141.7, 137.4, $135.8,135.6,130.0,129.0,128.5,128.4,128.2,128.0,115.8,93.1,66.9,66.4,31.0,25.4,22.8$, 17.9, 14.0, 12.3, -1.6; IR (neat, $\mathrm{cm}^{-1}$ ) 3033, 2955, 2927, 2872, 1705, 1661, 1621, 1498, 1455, 1378, 1359, 1313, 1279, 1250, 1208, 1127, 1093, 1040, 1029, 1003; HRMS (ESI $) ~ m / z ~ c a l c d ~ f o r ~$ $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 531.2537 ; found: 531.2530 .


Benzyl (E)-2-butyl-5-methyl-3,4-dioxo-6-phenylhex-5-enoate (DK25)
Yellow oil ( $113 \mathrm{mg}, 64 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.52 - $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 6 \mathrm{H})$, $7.30-7.28(\mathrm{~m}, 4 \mathrm{H}) ; 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.07-1.98$ (m, 2H), $1.47-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl ${ }_{3}$ ) 197.8, 194.6, 169.3, 147.2, 135.1, 135.0, 132.3, 130.4, 129.6, 128.6, 128.5, 128.5, 128.4, 67.3, 54.4, 29.5, 27.0, 22.5, 13.9, 12.6; IR (neat, cm ${ }^{-1}$ ) 3064, 3033, 2958, 2928, 2858, 1744, 1717, 1655, 1616, 1575, 1497, 1456, 1378, 1326, 1245, 1215, 1169, 1129, 1077, 1029, 1003; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$ [ $\mathrm{M}+\mathrm{Na}]^{+}$401.1723; found: 401.1721.

## 10. Synthesis of Cyclopentenones

Representative procedure:


Benzyl (1R,7aR)-3-hydroxy-1,7a-dimethyl-2-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-1carboxylate (14)

To a solution of diketone 6 ( $535 \mathrm{mg}, 1.7 \mathrm{mmol}$ ) and $\wedge-11$ TFA ( 15 mg , $1 \mathrm{~mol} \%$ ) in $\mathrm{MeCN}(0.05 \mathrm{M}$ ) was added $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.15 \mathrm{~mL}, 0.85 \mathrm{mmol})$ at ambient temperature. The reaction was monitored by LCMS for $\geq 95 \%$ conversion of diketone, was quenched by the addition of 1 M HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic extracts were washed with water (x2) and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo and the crude oil was purified by flash column chromatography (load with PhMe, 0, 5, 10, 15\% EtOAc in hexanes) to afford cyclopentenone 14 as a colorless oil ( $482 \mathrm{mg}, 91 \%$ yield).
e.r. 97:3; $[\alpha]_{\mathrm{D}}{ }^{20}-10.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.97$ (brs, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddt}, J=14.2,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=14.2,13.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.47$ (m, 3H), 1.39 (s, 3H), 1.32 $1.10(\mathrm{~m}, 2 \mathrm{H}), 1.18$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.3, 171.7, 152.4, 144.2, 135.4, 128.5, 128.2, 128.1, 66.6, 60.1, 44.6, 35.5, 26.0, 22.8, 21.9, 20.8, 16.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3348, 2942, 2864, 1732, 1705, 1657, 1454, 1399, 1349, 1331, 1256, 1233, 1181, 1158, 1140, 1098, 1082, 1034; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 337.1416; found: 337.1411; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=11.9 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=15.5 \mathrm{~min}$ (major).

## Please note:

1. Several cyclopentenones prepared here have been observed to discolor in air within minutes when neat and have prompted us to store them immediately in a screw cap vial sealed under an Ar atmosphere and to store them in the freezer $\left(-20^{\circ} \mathrm{C}\right)$. We have found the cyclopentenones to be indefinitely stable under these storage conditions (as long as efforts are made to exclude air).
2. The cyclopentenone racemates that were used as standards for HPLC in this study were prepared in parallel with the enantioenriched cyclopentenones using Sc(OTf) $)_{3}(30 \mathrm{~mol} \%$ ) and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ ( 1.5 equiv) in MeCN ( 2 mL ) with $10-15 \mathrm{mg}$ of diketone. The Sc-catalyzed cyclizations were not as highly diastereoselective.


8

dia-8

Ethyl ( $1 R, 5 R$ )-3-hydroxy-1,4-dimethyl-2-oxo-5-phenylcyclopent-3-ene-1-carboxylate (8) and ethyl (1S,5R)-3-hydroxy-1,4-dimethyl-2-oxo-5-phenylcyclopent-3-ene-1-carboxylate (dia-8)

Combined yield: 354 mg, 96\%; dr 4.6/1.0.
8*: White solid; e.r. 86:14; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data match previously reported values. ${ }^{13}{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{brs}, 1 \mathrm{H}), 3.71(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.58 (dq, $J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (dq, $J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.93 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (s, $3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.4, 170.0, 148.8, 142.7, 136.6, 129.3, 128.2, 127.8, 61.0, 58.7, 58.4, 21.8, 13.5, 13.0; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=7.18 \mathrm{~min}($ minor $), \mathrm{t}_{R}=14.8 \mathrm{~min}$ (major).
dia-8: Colorless oil; e.r. 92:8; [ $\alpha]_{\mathrm{D}}{ }^{20}+52.6$ (c 1.2, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.25$ (m, 3H), $7.09-6.97$ (m, 2H), 6.12 (brs, 1H), 4.24 (q, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.21 (q, J = 7.1 Hz, 2H), 1.94 (d, J = $1.5 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.27 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.85 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 199.9, $171.9,148.5,144.5,137.0,129.5,128.6,127.7,61.8,56.1,54.7,17.8,14.1,13.3$; IR (neat, $\mathrm{cm}^{-1}$ ) 3442, 3063, 3031, 2987, 2941, 1789, 1733, 1667, 1456, 1379, 1246, 1170, 1106, 1082, 1018; HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{aNa}[\mathrm{M}+\mathrm{Na}]^{+}: 297.1103$; found: 297.1101; HPLC (Chiralpak OJ-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=95 / 5$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=13.5 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=$ 43.8 min (major).
*Absolute stereochemistry was determined by comparison of major enantiomer's retention times to previous work. ${ }^{12,13}$


Benzyl (1R,2R)-2-butyl-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (15)
Colorless oil (147 mg, 79\%); e.r. 97:3; [a]d ${ }^{20}+24.3$ (c 1.2, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.35 $-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.45$ (brs, 1H), 5.09* (s, 2H), 1.90 (s, 3H), $1.56-1.31$ (m, 2H), 1.38 (s, 3H), 1.13 (s, 3H), $1.11-0.95(\mathrm{~m}, 4 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.2, 171.4, 150.2, 146.8, 135.4, 128.5, 128.2, 128.1, 66.8, 59.5, 48.2, 36.8, 26.8, 23.3, 21.6, 19.4, 13.9, 10.2; IR (neat, cm ${ }^{-1}$ ) 3354, 3066, 3034, 2957, 2872, 1736, 1702, 1656, 1586, 1498, 1455, 1406, 1385, 1359, 1234, 1191, 1157, 1080, 1030; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 331.1904$; found 331.1893. HPLC (Chiralpak AD-H ${ }^{\circledR}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=7.1 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=9.0 \mathrm{~min}$ (major).
*The benzylic protons coincidentally have the same chemical shift and appear as a singlet.


Benzyl (1R,2R)-2-(4-chlorobutyl)-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (16)

Colorless oil ( $135 \mathrm{mg}, 66 \%$ ) e.r. 97:3; $[\alpha]_{\mathrm{D}}{ }^{20}+14.1\left(c 0.98, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.37-7.27(\mathrm{~m}, 5 \mathrm{H}) 5.15(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$ 1.90 (s, 3H), $1.54-1.21$ (m, 6H), 1.39 (s, 3H), 1.14 (s, 3H); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 199.7, 171.4, 149.0, 146.7, 135.3, 128.6, 128.4, 67.0, 59.4, 48.2, 44.52, 36.3, 32.9, 22.1, 21.6, 19.4, 10.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3343, 3034, 2954, 2874, 1702, 1658, 1498, 1455, 1405, 1386, 1360, 1259, 1235, 1156, 1076, 1029; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 387.1334; found 387.1330; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/$ i- $\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=10.4 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=15.0 \mathrm{~min}$ (major).
*One carbon signal is not observed in the ${ }^{13} \mathrm{C}$ NMR.


Benzyl (1R,2R)-4-hydroxy-2-isobutyl-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (17)
Colorless oil (261 mg, 75\%); e.r. 97:3; [ $\alpha]_{\mathrm{D}}{ }^{20}-33.8$ (c 1.1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.36 - 7.26 (m, 5H), 6.48 (brs, 1H), 5.15 (d, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.11 (d, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ (s, 3H), $1.53-1.34$ (m, 3H), 1.40 (s, 3H), 1.18 (s, 3H), 0.77 (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.69$ (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 199.9, 171.1, 148.9, 146.5, 135.5, 128.6, 128.2, 127.9, 66.7, 59.5, 49.0, 46.5, 25.3, 24.7, 24.5, 21.6, 20.9, 10.6; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 3066, 3034, 2957, 2870, 1741, 1702, 1656, 1587, 1498, 1455, 1406, 1386, 1365, 1306, 1250, 1231, 1191, 1155, 1124, 1080, 1049, 1031; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1904; found: 331.1909; HPLC (Chiralpak AD-H ${ }^{\circledR}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, \mathrm{UV} 261 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=12.0$ $\min ($ minor $), \mathrm{t}_{R}=12.8 \mathrm{~min}$ (major).


Benzyl (1R,2R)-2-(((tert-butyldimethylsilyl)oxy)methyl)-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (18)

Colorless oil (135 mg, 69\%); e.r. 96:4; [ $\alpha]_{\mathrm{D}}{ }^{20}+34.8$ (c 0.14, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.38 - 7.26 (m, 5H), 6.04 (brs, 1H), 5.17 (d, J = $12.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.07 (d, J = $12.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.65 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, -0.07 (s, 3H), $-0.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 199.4, 170.8, 147.0, 143.8, 135.8, 128.5, 128.0, 127.6, 66.8, 66.4, 56.8, 50.5, 25.7, 21.0, 18.1, 16.8, 10.0, -5.7; IR (neat, $\mathrm{cm}^{-1}$ ) 3350, 2953, 2929, 2884, 2857, 1719, 1666, 1472, 1407, 1360, 1257, 1199, 1167, 1091, 1067; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 441.2068; found: 441.2073; HPLC (Chiralpak AD-H ${ }^{\circledR}$, 4.6 $\mathrm{mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=5.3 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=6.3$ $\min$ (major).


Benzyl (1R,2R)-4-hydroxy-2-isopropyl-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (19)
Colorless oil (132 mg, 73\%); e.r. 99:1; [a] ${ }^{20}-20.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.37 $-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.07$ (brs, 1H), $5.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$, 1.92 (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.39 (s, 3H), 1.20 (s, 3H), 0.84 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.79 (d, J=7.0 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.1, 171.7, 147.3, 147.2, 135.3, 128.5, 128.2, 128.0, 66.8, $59.8,52.3,35.3,21.8,19.3,18.9,11.8$; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 3065, 3033, 2984, 2883, 1699, 1656, 1456, 1405, 1383, 1372, 1360, 1266, 1234, 1193, 1140, 1121, 1078; HRMS (ESI $) ~ m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 339.1572$; found: 339.1572; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=8.2 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=9.8 \mathrm{~min}$ (major).


Benzyl (1R,2R)-2-cyclohexyl-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (20)
Colorless oil (144 mg, 61\%); e.r. 99:1 [a] ${ }_{\mathrm{D}}{ }^{20}-40.4$ (c 0.96, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.38-7.26$ (m, 5H), 6.34 (brs, 1H), 5.22 (d, J = $12.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.05 (d, J = $12.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.91 (s, 3H), $1.72-1.41$ (m, 6H), 1.38 (s, 3H), 1.19 (s, 3H), $1.05-0.68$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 200.0, 171.4, 147.1, 146.9, 135.1, 128.6, 128.3, 128.2, 66.7, 60.3, 52.2, 46.2, 30.1, 29.4, 27.4, 26.8, 26.2, 22.7, 17.5, 12.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3344, 3065, 3033, 2929, 2853, 1698, 1656, 1498, 1448, 1404, 1386, 1362, 1264, 1249, 1219, 1195, 1148, 1129, 1046, 1061; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 279.1880$; found 379.1878 ; HPLC (Chiralpak OD-H ${ }^{\circledR}$, 4.6 mm $x 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=5.9 \mathrm{~min}($ minor $), \mathrm{t}_{R}=6.8 \mathrm{~min}$ (major).


Benzyl (1R,2S)-2-cyclohexyl-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (21)
Colorless oil ( $170 \mathrm{mg}, 59 \%$ ); e.r. $97.5: 2.5$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.37 - 7.19 (m, 5H), 6.62 (brs, 1 H ), $5.06(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.59(\mathrm{~m}, 5 \mathrm{H})$, $1.53-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.31-0.96(\mathrm{~m}, 5 \mathrm{H}) .0 .99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 200.5, 172.2, 149.4 (br), 147.5 (br), 135.3, 128.5, 128.1, 127.6, 66.7, 62.2 (br), 50.7, 44.8 (br), 32.2 (br), 29.3, 27.7, 26.5, 26.3, 17.6 (br), 15.2 (br), 12.1 (br); IR (neat, cm ${ }^{-1}$ ) 3339, 2932, 2853, 1737, 1697, 1655, 1455, 1406, 1362, 1233, 1188, 1105, 1080, 1066; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 379.1880; found: 379.1885; HPLC (Chiralpak Al-3 ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$, UV 300 nm , hexane $/ \mathrm{EtOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=6.4 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=7.1 \mathrm{~min}$ (major).
*some ${ }^{13} \mathrm{C}$ NMR signals appear broadened due to hindered rotation at room temperature.


Benzyl (1R,2R)-2-ethyl-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (22)
Colorless oil ( $257 \mathrm{mg}, 78 \%$ ); e.r. $97: 3$ (> 1/99, recryst. from hex); [ $\alpha]_{\mathrm{D}}{ }^{20}-25.9$ (c 1.0, $\mathrm{CHCl}_{3}$ ) (of the $3 / 97$ er); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.37-7.27$ (m, 5H), 5.96 (brs, 1H), 5.12 (d, J = 12.3 Hz , 1H), 5.09 (d, J = $12.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.89 (s, 3H), $1.64-1.41$ (m, 2H), 1.38 (s, 3H), 1.13 (s, 3H), 0.69 (t, J = 7.5 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.0, 171.5, 149.4, 146.7, 135.4, 128.5, 128.2, 128.1, 66.8, 59.2, 48.5, 29.6, 21.1, 19.5, 10.1, 9.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3348, 3065, 3034, 2974, 2945, 2883, 1701, 1655, 1586, 1498, 1456, 1406, 1361, 1261, 1235, 1196, 1161, 1078, 1029, 970; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 325.1410; found: 325.1414; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=85 / 15$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=7.0 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=8.1 \mathrm{~min}$ (major).


Benzyl (1R,2S)-2-ethyl-4-hydroxy-1,2,3-trimethyl-5-oxocyclopent-3-ene-1-carboxylate (23)
Colorless oil ( $76 \mathrm{mg}, 83 \%{ }^{*}$ ); e.r. 83:17; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.38-7.25$ (m, 5H), 5.11 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dq}$, $\left.J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right)$ 200.2, 171.9, 148.3, 147.6, 135.4, 128.5, 128.2, 127.9, 66.7, 60.0, 48.0, 29.5, 21.1, 16.0, 10.3, 10.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3348, 3065, 3034, 2972, 2944, 2883, 1735, 1701, 1656, 1498, 1456, 1407, 1360, 1338, 1234, 1198, 1152, 1077, 1029; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 325.1410; found: 325.1414; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane/i$\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=9.1 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=10.9 \mathrm{~min}$ (major).
*Isolated as an inseparable mixture of diastereomers.


Benzyl (1R,8aR)-3-hydroxy-1,8a-dimethyl-2-oxo-1,2,4,5,6,7,8,8a-octahydroazulene-1carboxylate (24)

Pale yellow oil ( $241 \mathrm{mg}, 67 \%$ ); e.r. 85:15; [ $\alpha]_{\mathrm{D}}{ }^{20}-0.9\left(c 0.72, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.47-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.29$ (brs, 1H), $5.21-5.12$ (m, 2H), 3.02 (ddd, $J=14.2,7.3,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.20 (ddd, $J=14.2,10.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (s, 3H), $1.18-1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 201.1, 172.0, 154.0, 146.7, 135.2, 128.5, 128.2, 127.9, 66.8, 60.3, 48.8, 37.0, 30.7, 27.0, 25.8, 25.4, 24.6, 16.7; IR (neat, $\mathrm{cm}^{-1}$ ) 3343,3034 , 2932, 2878, 1732, 1697, 1655, 1455, 1398, 1382, 1349, 1236, 1154, 1126, 1070, 1053, 1006; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 351.1572; found: 351.1567; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=10.6 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min}$ (major).


Benzyl (1S,2S)-3-ethyl-4-hydroxy-2-isopropyl-1,2-dimethyl-5-oxocyclopent-3-ene-1-carboxylate (25)

Colorless oil (161 mg, 70\%, 81\% BRSM); e.r. 95:5*; [a]d ${ }^{20}-22.4$ (c 1.1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.01$ (brs, 1 H ), $5.13(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{dq}, J=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19 (dq, $J=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.3 , 171.5, 151.7, 146.9, 135.3, 128.5, 128.2, 128.0, 66.7, 59.8, 52.8, 36.1, 22.7, 20.3, 19.4, 19.2, 17.7, 12.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 2969, 2880, 1736, 1694, 1652, 1465, 1456, 1400, 1371, 1313, 1265, 1225, 1193, 1193, 1136, 1093, 1009; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 353.1723; found: 353.1722. HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane/i$\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=7.5 \mathrm{~min}$ (major), $\mathrm{t}_{R}=8.8 \mathrm{~min}$ (minor).
*prepared using $\Delta-11$


Benzyl (1S,7aS)-1-butyl-3-hydroxy-7a-methyl-2-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-1carboxylate (26)

Pale yellow oil ( $26 \mathrm{mg}, 14 \%, 47 \%$ BRSM); e.r. 88:12*; [ $\alpha]_{\mathrm{D}}{ }^{20}-3.6$ (c 0.79, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (ddt, $J=13.5,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.07(\mathrm{~m}, 9 \mathrm{H}), 0.84(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 198.8, 170.6, 150.8, 143.7, 135.5, 128.5, 128.3, 128.3, $66.5,62.8,45.1,38.1,33.2,26.8,26.7,23.4,22.9,22.0,18.7,13.9$; IR (neat, $\mathrm{cm}^{-1}$ ) 3445, 2955, 2935, 2870, 1779, 1756, 1727, 1654, 1456, 1377, 1325, 1259, 1212, 1158, 1108, 1060; HRMS $\left(E S I^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 379.1880 ; found: 379.1885; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, \mathrm{UV} 261 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=4.5 \mathrm{~min}$ (major), $\mathrm{t}_{R}=$ 12.1 min (minor).
*prepared using $\Delta-11$


Benzyl (1S,2S)-4-hydroxy-1,2,3-trimethyl-5-oxo-2-phenylcyclopent-3-ene-1-carboxylate (27)
Thick pale-yellow oil (124 mg, 81\%); e.r. 87.5/12.5*; [ $\alpha]_{\mathrm{D}}{ }^{20}+1.8$ (c 0.95, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.34-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.24$ (brs, 1H), $4.39(\mathrm{~d}, \mathrm{~J}=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (s, 3H), 1.65 (s, 3H), 1.53 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.3, 170.7, 148.4, 147.9, 141.4, 135.2, 128.4, 127.99, 127.97, 127.93, 127.7, 127.2, 66.4, 61.8, 52.9, 21.4, 18.3, 11.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 3062, 3033, 2984, 2946, 1774, 1709, 1660, 1601, 1496, 1446, 1404, 1386, 1362, 1266, 1192, 1120, 1081, 1030; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 351.1591; found: 351.1600; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} x$ 250 mm , UV 261 nm , hexane $/$ i-PrOH $=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=9.2 \mathrm{~min}$ (major), $\mathrm{t}_{R}=10.4 \mathrm{~min}$ (minor).
*prepared using $\Delta-11$


Benzyl (1R,7aR)-3-hydroxy-1-methyl-2-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-1-carboxylate (28)

Colorless oil (182 mg, 79\%); e.r. 95:5; [a] ${ }_{\mathrm{D}}{ }^{20}-13.1$ (c 1.2, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.36 $-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.23(\mathrm{brs}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.08-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, \mathrm{J}=12.7,5.0,1.8 \mathrm{~Hz}$, 1H) $2.05-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.7, 171.0, 148.1, 144.5, 135.4, 128.5, 128.2, 128.1, 66.6, 55.3, 49.0, 28.9, 25.6, 25.4, 25.2, 20.6; IR (neat, $\mathrm{cm}^{-1}$ ) 3344, 2937, 2861, 1736, 1707, 1658, 1456, 1398, 1259, 1216, 1176, 1075, 1032; HRMS (ESI $) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.1259; found: 323.1254; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=12.6 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=17.4 \mathrm{~min}$ (major).


Benzyl (1R,5R)-3-hydroxy-1,4,5-trimethyl-2-oxocyclopent-3-ene-1-carboxylate (29)
Colorless oil ( $141 \mathrm{mg}, 66 \%$ ); e.r. 94:6; [ $\alpha]_{\mathrm{D}}{ }^{20}-69.7$ (c 1.02, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{brs}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{qq}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}$ ), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.5, 171.2, 147.3, 146.7, 135.4, 128.5, 128.2, 128.1, 66.7, 56.3, 46.2, 20.6, 13.7, 12.1; IR (neat, $\mathrm{cm}^{-1}$ ) 3348, 3065, 3034, 2976, 2937, 2879, 1705, 1656, 1498, 1456, 1406, 1360, 1309, 1253, 1209, 1178, 1124, 1075, 1049, 1029, 991; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.1103; found: 297.1102; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=92 / 8$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=12.6 \mathrm{~min}($ minor $), \mathrm{t}_{R}=18.2 \mathrm{~min}$ (major).


Benzyl (1R,2R)-2-ethyl-4-hydroxy-1,3-dimethyl-5-oxocyclopent-3-ene-1-carboxylate (30)
Pale yellow oil ( $128 \mathrm{mg}, 74 \%$ ); e.r. 92:8; $[\alpha]_{\mathrm{D}}{ }^{20}-3.5$ (c 1.2, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.12(\mathrm{brs}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddq, $J=9.9,4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (d, J = $1.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.76-1.62$ (m, 1H), 1.45 (s, 3H), $1.41-1.23$ $(\mathrm{m}, 1 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.3, 171.1, 147.4, 146.4, 135.3, 128.5, 128.2, 128.2, 66.9, 56.0, 53.9, 22.0, 21.4, 12.8, 12.7; IR (neat, cm ${ }^{-1}$ ) 3353, 3066, 3035, 2970, 2936, 2878, 1737, 1703, 1655, 1456, 1406, 1362, 1267, 1228, 1206, 1179, 1129, 1081; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 311.1259; found: 311.1259; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, \mathrm{UV} 261 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=8.7 \mathrm{~min}$ (minor), $\mathrm{t}_{R}=13.3 \mathrm{~min}$ (major).


Benzyl (1R,2R)-2-cyclohexyl-4-hydroxy-1,3-dimethyl-5-oxocyclopent-3-ene-1-carboxylate (31)
Colorless oil ( $110 \mathrm{mg}, 71 \%$ ); e.r. 92:8; [ $\alpha]_{\mathrm{D}}{ }^{20}-51.4$ (c 1.2, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 7.37 $-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{brs}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.35-0.82(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 200.4, 171.4, 148.0, 144.8, 135.2, 128.6, 128.4, 128.3, 67.0, 58.5, 56.7, 39.4, 33.8, 29.3, 27.2, 26.4, 26.2, 24.0, 15.2; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 3034, 2929, 2853, 1735, 1698, 1654, 1452, 1406, 1363, 1296, 1251, 1207, 1179, 1078; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 365.1723; found 365.1706; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ \mathrm{i}$ $\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=8.5 \mathrm{~min}($ minor $), \mathrm{t}_{R}=9.8 \mathrm{~min}$ (major).


Benzyl (1R,2S)-2-cyclohexyl-4-hydroxy-1,3-dimethyl-5-oxocyclopent-3-ene-1-carboxylate (32)
Pale yellow oil (96 mg, 64\% BRSM); e.r. 97:3 ( $\wedge-9)$ and 3:97 ( $\Delta-9$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.39-7.21$ (m, 5H), 5.76 (brs, 1H), 5.14 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.86-$ 2.82 (m, 1H), 2.08 (d, J= $1.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.86-1.54$ (m, 6H), 1.44 (s, 3H), $1.38-1.00$ (m, 4H), 0.93 $-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl 3 ) 199.3, 172.1, 148.2, 146.3, 135.6, 128.5, 128.2, 127.6, $67.1,56.8,53.4,38.7,33.6,30.0,27.5,26.3,26.2,15.8,15.3$; IR (neat, $\mathrm{cm}^{-1}$ ) $3351,3065,3034$, 2929, 2853, 1737, 1702, 1655, 1454, 1404, 1363, 1210, 1176, 1111, 1083; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 365.1723 ; found: 365.1739; HPLC (Chiralpak AD-H ${ }^{\circledR}$, 4.6 mm x 250 mm , UV 261 nm , hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) From $\wedge-11$ : $\mathrm{t}_{R}=11.0 \mathrm{~min}$ (major), $\mathrm{t}_{R}=12.3 \mathrm{~min}(\mathrm{~min})$.


Benzyl (1R,5R)-3-hydroxy-1,4-dimethyl-2-oxo-5-phenylcyclopent-3-ene-1-carboxylate (33)
Pale yellow oil (294 mg, 90\%); e.r. 89:11; [ $\alpha]_{D^{20}}-20.1$ (c 0.96, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.36-7.25$ (m, 6H), $7.17-7.07$ (m, 4H), 6.85 (brs, 1H), 4.54 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.38 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) 200.6, 170.0, 149.2, 143.6, 136.6, 135.2, 129.3, 128.4, 128.4, 128.0, 127.87, 127.85, 66.6, 58.7, 58.6, 21.7, 13.0; IR (neat, $\mathrm{cm}^{-1}$ ) 3346, 3064, 3032, 2979, 2934, 2874, 1705, 1659, 1497, 1455, 1406, 1361, 1297, 1273, 1241, 1206, 1173, 1079, 910; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 359.1259; found: 359.1256; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=9.8 \mathrm{~min}($ minor $), \mathrm{t}_{R}=17.7 \mathrm{~min}$ (major).


Ethyl (1R,5S)-3-hydroxy-1-methyl-2-oxo-5-phenylcyclopent-3-ene-1-carboxylate (34)
Pale yellow oil (15 mg, 83\%); e.r. 86:14; [ $\alpha]_{D^{20}}+5.0\left(c 0.69, \mathrm{CHCl}_{3}\right.$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dq, J = 10.8, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.41 (dq, $J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (s, 3H), $0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 201.9, 169.7, 151.8, 137.8, 129.3, 128.6, 128.2, 127.8, 61.1, 58.6, $53.4,20.2,13.1$; IR (neat, $\mathrm{cm}^{-1}$ ) 3376, 3061, 3031, 2984, 2935, 1716, 1658, 1634, 1602, 1555, 1496, 1455, 1394, 1377, 1289, 1219, 1106, 1014; HRMS (EI ${ }^{+}$) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 260.1043; found 260.1048; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ \mathrm{i}$ PrOH = 85/15, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=5.9 \mathrm{~min}($ minor $), \mathrm{t}_{R}=7.1 \mathrm{~min}$ (major).


Benzyl (1S,5S)-1-ethyl-3-hydroxy-4-methyl-2-oxo-5-(p-tolyl)cyclopent-3-ene-1-carboxylate (35)
Pale-yellow oil ( $78 \mathrm{mg}, 82 \%$ yield); e.r. 88:12*; d.r. 9:1; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.36-7.28$ (m, 3H), $7.14-6.92(\mathrm{~m}, 6 \mathrm{H}), 6.28(\mathrm{brs}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dq}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dq}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 199.8, 169.8, 149.7, 143.4, 137.4, 135.3, 133.7, 129.2, 129.0, 128.4, 128.0, 127.9, 66.4, 62.7, 55.3, 28.2, 21.2, 12.8, 8.3; IR (neat, $\mathrm{cm}^{-1}$ ) 3347, 3065, 3033, 2972, 2940, 2882, 1785, 1735, 1660, 1514, 1456, 1227, 1155, 1131, 1114, 1084; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 387.1567; found: 387.1563. HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=9.9 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.7 \mathrm{~min}($ minor $)$.
*prepared using $\Delta-11$


Benzyl (1S,5S)-1-butyl-3-hydroxy-4-methyl-2-oxo-5-phenylcyclopent-3-ene-1-carboxylate (36)
Pale-yellow oil ( $94 \mathrm{mg}, 84 \%$ ); e.r. 91:9*; d.r. 9.1:1; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.34-7.22$ (m, $6 \mathrm{H}), 7.13-7.06$ (m, 4H), 6.24 (brs, 1H), 4.48 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ ( $\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.28-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.09$ (m, 4H), $0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 199.8, 169.8, 149.6, 143.0, 136.9, 135.2, 129.3, 128.4, 128.3, 128.0, 127.9, 127.8, 66.4, 62.4, 56.1, 35.1, 25.8, 23.1, 13.9, 12.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3347, 3062, 3033, 2958, 2932, 2872, 1716, 1664, 1494, 1456, 1403, 1380, 1360, 1325, 1270, 1238; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 402.1723; found: 402.1728; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=90 / 10$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=7.7 \mathrm{~min}$ (major), $\mathrm{t}_{R}=10.4 \mathrm{~min}$ (minor).
*prepared using $\Delta-11$

## 11. Modifications to the Cyclopentenone

## Oxidative Cleavage of the Alkene



Benzyl (3S,4S,5R)-4-cyclohexyl-5-hydroxy-3,4,5-trimethyl-2-oxotetrahydrofuran-3-carboxylate (37)

To a vigorously stirred suspension of cyclopentenone 20 ( $54 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in methanol ( 1 mL ) was added an aqueous solution of $\mathrm{NaIO}_{4}(160 \mathrm{mg}, 0.75 \mathrm{mmol}, 5.0$ equiv, 5 mL $\mathrm{H}_{2} \mathrm{O}$ ). The heterogenous reaction mixture was allowed to stir vigorously for 5 days at which point the reaction was still incomplete. The reaction mixture was extracted with diethyl ether (x3). The combined organic extracts were washed with water and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to provide a crude oil. Compound 37 was isolated by purification of the crude oil using silica gel column chromatography (load with PhMe, $0,5,7,10,15 \%$ ethyl acetate in hexane) as a colorless oil ( $26 \mathrm{mg}, 48 \%$ yield, or $55 \%$ yield BRSM).
$[\alpha]_{\mathrm{D}}{ }^{20}+30.9\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.14(\mathrm{~m}, 5 \mathrm{H})$, $\left.1.58(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.16-0.69(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right)$ 173.9, 173.3, 134.0, 129.1, 129.0, 128.9, 110.6, 69.1, 60.9, 54.2, 41.4, 28.1, 27.9, 26.4, 26.3, 26.0, 24.7, 18.0, 15.9; IR (neat, $\mathrm{cm}^{-1}$ ) 3390, 2961, 2931, 2855, 1775, 1748, 1689, 1455, 1396, 1262, 1220, 1125, 1108, 1098, 1052; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1829$; found: 383.1834.

The relative stereochemistry of compound 37 was determined by NOESY experiments.


## Negishi Cross Coupling



Benzyl (1R,7aR)-1,3,7a-trimethyl-2-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-1-carboxylate (38)
To a solution of cyclopentenone 14 ( $100 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0$ equiv) and pyridine ( $50 \mathrm{mg}, 0.64$ mmol, 2.0 equiv) in DCM ( 10 mL ) at $0^{\circ} \mathrm{C}$ was added triflic anhydride ( $0.08 \mathrm{~mL}, 0.48 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred for 15 min before quenching with $\mathrm{NaHCO}_{3}$ (sat. aq.). The
phases were separated and the aqueous phase was extracted with DCM (x2). The combined organic extracts were dried over anhydrous magnesium sulfate and filtered. The solvent was removed in vacuo and the crude enol triflate was used in the next step without further purification.

A stirred degassed solution of the crude enol triflate, $\mathrm{Pd}(\mathrm{OAc})_{2}(3.5 \mathrm{mg}, 0.016 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and DavePhos ( $13 \mathrm{mg}, 0.032 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ) in THF ( 5 mL ) was added a solution of $\mathrm{MeZnCl} \cdot \mathrm{LiCl}$ ( $0.64 \mathrm{~mL}, 0.64 \mathrm{mmol}, 2.0$ equiv, 1.0 M in THF) dropwise at room temperature. The reaction was allowed to stir at room temperature for 48 hours before being quenched by the addition of 1 M HCl and diethyl ether. The phases were separated and the aqueous phase extracted with diethyl (x2). The combined organic extracts were washed with water and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to afford a crude oil. Compound 38 could be isolated from the crude using silica gel chromatography (eluent: load with PhMe , then $0,5,7,10 \%$ ethyl acetate in hexanes) as a pale-yellow oil ( $40 \mathrm{mg}, 40 \%$ yield).
$[\alpha]_{\mathrm{D}}{ }^{20}-31.3\left(c 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.70 (ddt, $J=14.2,4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.22 (tdd, $J=13.8,5.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.31-$ 1.18 (m, 2H), 1.15 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ) 206.1, 176.2, 172.3, 135.6, 131.1, 128.5, 128.1, 127.9, 66.4, 61.8, $48.2,35.4,26.6,25.3,21.9,21.1,16.5,8.0$; IR (neat, $\mathrm{cm}^{-1}$ ) 3065, 3033, 2981, 2941, 2861, 1735, 1703, 1653, 1455, 1233, 1162; HRMS (ESI $) ~ m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1798; found: 313.1804 .

## Oxidative Rearrangement



Benzyl ( $R, Z$ )-2-ethylidene-1,3,3-trimethyl-4,5-dioxocyclopentane-1-carboxylate (39)
To a solution of cyclopentenone 22 ( $58 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}(3 \mathrm{~mL})$ at room temperature is added PIFA ( $124 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.5$ equiv). After 5 minutes, the reaction mixture was diluted with diethyl ether and was quenched by the addition of saturated sodium bicarbonate. The phases were separated and the aqueous phase extracted with diethyl ether (x2). The combined organic extracts were washed with water and brine, and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to provide a crude oil. Compound 39 could be isolated from the crude oil using silica gel chromatography (eluent: load with $\mathrm{PhMe}, 0$, $5,7,10 \%$ ethyl acetate in hexane gradient) as a yellow oil ( $23 \mathrm{mg}, 40 \%$ yield).
 $[\alpha]_{D^{20}}+6.1\left(c ~ 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.40-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21$ $-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63$ (s, 3H), 1.59 (d, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.30 (s, 3H), 1.23 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 205.3, 201.6, 168.7, 143.0, 134.9, 128.5, 128.5, 128.1, 124.4, 67.7, 55.9, 47.5, 27.7, 25.4, 19.8, 13.6; IR
(neat, $\mathrm{cm}^{-1}$ ) 3066, 3034, 2975, 2935, 2868, 1769, 1740, 1456, 1377, 1256, 1214, 1105, 1063; HRMS (EI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 300.1356; found: 300.1362.

## Esterification of $\alpha$-hydroxycyclopentenone


(3R,4S)-4-((benzyloxy)carbonyl)-3-cyclohexyl-2,3,4-trimethyl-5-oxocyclopent-1-en-1-yl 4bromobenzoate (E1)

To a solution of cyclopentenone 21 ( $46 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) and 4-bromobenzoic acid ( 40 $\mathrm{mg}, 0.19 \mathrm{mmol}, 1.5$ equiv) in DCM ( 5 mL ) was added DCC ( $40 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.5$ equiv) and DMAP (spatula tip) at once. The reaction mixture was allowed to stir at room temperature for 15 min before being diluted with diethyl ether and filtered through Celite. The organic phase was washed with 1 M HCl and brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was removed in vacuo and the crude oil dry loaded onto a silica gel column. 4bromobenzoate E1 could be isolated from silica gel chromatography (eluent: 2, 4\% ethyl acetate in hexanes) as a white solid ( $55 \mathrm{mg}, 77 \%$ yield).
er 97/3; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $8.00(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31$ (m, 5H), 5.15 (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (d, J = $12.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.91 (s, 3H), $1.85-1.46$ (m, 9H), 1.22 - 1.08 (m, 5H), 1.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~T}=-20^{\circ} \mathrm{C}$ ) 197.6, 171.8, 163.0, 162.4, 146.0, 135.1, 129.1, 128.4, 128.2, 127.8, 127.1, 66.8, 62.6, 51.2, 43.6, 32.1, 29.7, 29.0, $27.5,26.2,26.0,17.2,14.6,14.2,13.5$; IR (neat, $\mathrm{cm}^{-1}$ ) 2927, 2852, 1743, 1717, 1661, 1589, 1485, 1455, 1398, 1382, 1327, 1256, 1175, 1089, 1031, 1011; HRMS (ESI ${ }^{+}$m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{OBr}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 539.1428 ; found: 539.1436; HPLC (Chiralpak AD-H ${ }^{\circledR}$, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, UV 261 nm , hexane $/ i-\mathrm{PrOH}=70 / 30$, flow $1 \mathrm{~mL} / \mathrm{min}$ ) $\mathrm{t}_{R}=6.3 \mathrm{~min}$ (major), $\mathrm{t}_{R}=8.4 \mathrm{~min}$ (minor).

(3S,4R)-4-((benzyloxy)carbonyl)-3-cyclohexyl-2,4-dimethyl-5-oxocyclopent-1-en-1-yl (1R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (E2)

Compound E2 was prepared in a similar way as E1 using (R)-camphanic acid. Only a single diastereomer was detectable by analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR. Crystals suitable for single crystal analysis were grown by DCM/pentane vapor diffusion which provided colorless needles of E2 ( 73 mg , quant.).
$[\alpha]_{\mathrm{D}}{ }^{20}+47.1\left(c 0.32, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (brs, 1H), 2.54 (ddd, $J=13.5,10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.15 (ddd, J $=13.7,9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{ddd}, J=13.1,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.51(\mathrm{~m}, 8 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.06(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 195.5, 178.0, 171.3, 164.3, 162.7, 144.5, 135.5, 128.5, 128.2, 127.8, 90.8, 67.4, $58.1,54.9,54.9,53.7,38.5,33.4,30.7,29.8,29.7,28.8,27.4,26.2,16.6,16.5,16.1,15.6,9.8$; IR
(neat, $\mathrm{cm}^{-1}$ ) 2928, 2854, 1793, 1762, 1721, 1664, 1455, 1379, 1312, 1260, 1226, 1194; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 523.2690$; found: 523.2696.

(3S,4R)-4-((benzyloxy)carbonyl)-3-cyclohexyl-2,3,4-trimethyl-5-oxocyclopent-1-en-1-yl (1R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (E3)

Compound E3 was prepared in a similar way as E1 using (R)-camphanic acid. Only a single diastereomer was detectable by analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR. Crystals suitable singly crystal analysis were grown by slow evaporation from an acetonitrile solution which provided needles of E3 ( 27 mg , quant.)
$[\alpha]_{\mathrm{D}}{ }^{20}-6.3$ (c 0.52, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $7.35-7.25$ (m, 5 H ), 5.10 (d, J = 12.5 Hz , $1 \mathrm{H}), 5.05$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.56 (ddd, $J=13.5,10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.15 (ddd, $J=13.7,9.3,4.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 1.97 (ddd, $J=13.1,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.71$ (m, 2H), $1.67-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{brs}, 3 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{brs}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, 3H), 1.11 (s, 3H), 1.21 - 1.05 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 196.5, 178.1, 171.4, 164.2, 135.1, 128.4, 128.2, 127.9, 90.9, 66.9, 54.9, 54.8, 51.5, 30.6, 29.2, 28.8, 27.7, 26.2, 16.6, 16.5, 9.8; IR (neat, $\mathrm{cm}^{-1}$ ) 2935, 2858, 1789, 1760, 1738, 1716, 1665, 1455, 1313, 1261; HRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 537.2847$; found: 537.2852.

## 12. X-Ray Crystallography

X-ray structural analysis for $\mathbf{\Delta}$-C6a, E2, and E3: Crystal data and refinement details are summarized in Table S5. Candidate crystals of $\boldsymbol{\Delta}$-C6a, E2, and E3, grown by slow evaporation in ethyl acetate/hexane, by vapor diffusion of pentane into dichloromethane, and, by slow evaporation of acetonitrile, respectively, were selected, mounted using viscous oil onto plastic loops and cooled to the data collection temperature. Data were collected on a D8 Venture Photon diffractometer with $\mathrm{Cu}-\mathrm{Ka}$ radiation $(\lambda=1.54178 \AA$ ) focused with Goebel mirrors. Unit cell parameters were obtained from fast scan data frames, $1 \% \omega$, of an Ewald hemisphere. The unitcell dimensions, equivalent reflections and systematic absences in the diffraction data were consistent with $C 2, C m$ and $C 2 / m$ for $\boldsymbol{\Delta}$-C6a, and, uniquely, for $P 2_{1} 2_{1} 2_{1}$ for E2 and E3. For $\boldsymbol{\Delta}$-C6a, after an exploration of the space group options, only $C 2$ yielded chemically reasonable and computationally stable results of refinement consistent with the enantiomerically pure chiral compound. The anomalous dispersion factors refined to nil within experimental error in each case indicating the true hand of the data was determined. For E2 and E3, the ( $R$ )-camphanic acid moiety of each ester, introduced by chirally retentive esterification, confirms the enantiomeric assignation. The data were treated with multi-scan absorption corrections. ${ }^{14}$ Structures were solved using intrinsic phasing methods ${ }^{15}$ and refined with full-matrix, least-squares procedures on $F^{2 .}{ }^{16}$

The penultimate difference map in $\Delta$-C6a showed features in a void that could not be modeled that were treated as diffused contributions, using Squeeze ${ }^{17}$, arising from a severely disordered ethyl acetate molecule of solvation. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were treated as idealized contributions with geometrically calculated positions and with $U_{\text {iso }}$ equal to $1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl) of the attached atom. Atomic scattering factors are contained in the SHELXTL program library. ${ }^{15}$ The structures have been deposited at the Cambridge Structural Database under CCDC 2154234-2154236.

Table S5. Crystal data and structure refinement details.

| Sum Formula | $\mathrm{C}_{65} \mathrm{FH}_{63} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Rh}$ | $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{7}$ | $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{7}$ |
| :---: | :---: | :---: | :---: |
| Moiety Formula | $\mathrm{C}_{61} \mathrm{H}_{55} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{Rh},\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$ | $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{7}$ | $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{7}$ |
| Formula Weight, g/mol | 1104.09 | 522.61 | 536.64 |
| Temperature, K | 100(2) | 100(2) | 100(2) |
| Crystal system | monoclinic | orthorhombic | orthorhombic |
| Space group | C2 | $P 2_{1} 2_{12}{ }_{1}$ | P2 $1_{1} 1_{1} 2_{1}$ |
| Cell dimensions |  |  |  |
| a, $\AA$ A | 28.8510(17) | 6.4651(2) | 6.7321(2) |
| $b, \AA$ | 15.3005(9) | 9.9755(3) | 9.8995(3) |
| c, Å | 12.0037(7) | 41.8034(12) | 41.9029(12) |
| $\alpha$, ${ }^{\circ}$ | 90 | 90 | 90 |
| $\beta,{ }^{\circ}$ | 96.747(2) | 90 | 90 |
| $\mathrm{V}^{\circ}{ }^{\circ}$ | 90 | 90 | 90 |
| Volume, $\AA^{3}$ | 5262.2(5) | 2696.01(14) | 2792.59(14) |
| Z | 4 | 4 | 4 |
| $\rho_{\text {calc }}, \mathrm{g} / \mathrm{cm}^{3}$ | 1.394 | 1.288 | 1.276 |
| $\mu / \mathrm{mm}^{-1}$ | 3.119 | 0.733 | 0.721 |
| F(000) | 2304.0 | 1120.0 | 1152.0 |
| Reflections collected | 29351 | 26912 | 27183 |
| Independent reflections | 8808 | 4722 | 4710 |
| Data/restraints/parameters | 8808/0/630 | 4722/0/348 | 4710/0/358 |
| Goodness-of-fit | 1.043 | 1.090 | 1.199 |
| $\mathrm{R}[1>=2 \sigma(\mathrm{I}) \mathrm{R} 1 / \mathrm{wR} 2$ | 0.0506/0.1296 | 0.0285/0.0694 | 0.0505/0.1025 |
| R indexes [all data] R1/wR2 | 0.0483/0.1340 | 0.0300/0.0704 | 0.0622/0.1059 |
| Absolute structure paramete | -0.007(8) | 0.05(8) | -0.01(12) |
| CCDC | 2154234 | 2154235 | 2154236 |



Figure S1. Molecular diagram and labelling scheme for $\boldsymbol{\Delta}$-C6a with ellipsoids at $30 \%$ probability. Ethyl acetate solvent molecule not depicted. H -atoms omitted for clarity. Selected bond distances (Å) and angles ( ${ }^{\circ}$ ): Rh1-N1 2.166(5); Rh1-N2 2.017(8); Rh1-N3 2.046(8); Rh1-O1 2.125(6); Rh1C16 2.005(9); Rh1-C39 2.009(7); N1-Rh1-O1 81.9(3); N2-Rh1-C16 80.8(3); N3-Rh1-C39 81.0(4).


Figure S2. Molecular diagram and labelling scheme for E2 with ellipsoids at 30\% probability. Hatoms omitted for clarity.


Figure S3. Molecular diagram and labelling scheme for E3 with ellipsoids at 30\% probability. Hatoms omitted for clarity.

## 13. References

1. Dielectric constant data from CRC Handbook of Chemistry and Physics 76ed, 1995.
2. Wang, C.; Chen, L.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. Chem. Sci. 2015, 6, 1094.
3. Ma, J.; Zhang, X.; Huang, X.; Luo, S.; Meggers, E. Nat. Prot. 2018, 13, 605.
4. Jolit, A.; Dickinson, C. F.; Kitamura, K.; Walleser, P. M.; Yap, G. P.; Tius, M. A. Eur. J. Org. Chem. 2017, 2017, 6067.
5. Jolit, A.; Walleser, P. M.; Yap, G. P.; Tius, M. A. Angew. Chem. Int. Ed. 2014, 53, 6180.
6. Volpe, R.; Lepage, R. J.; White, J. M.; Krenske, E. H.; Flynn, B. L. Chem. Sci. 2018, 9, 4644.
7. Peters, B. B. C.; Jongcharoenkamol, J.; Krajangsri, S.; Andersson, P. G. Org. Lett. 2021, 23, 242.
8. Franzoni, I.; Guénée, L.; Mazet, C. Chem. Sci. 2013, 4, 2619.
9. Baker, A. E. G.; Marchal, E.; Lund, K.-I. A. R.; Thompson, A. Can. J. Chem. 2014, 92, 1175.
10. Theis, A. B.; Townsend, C. A. Synthetic Commun. 1981, 11, 157.
11. Hill, J. G.; Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1983, $48,3607$.
12. Basak, A. K.; Shimada, N.; Bow, W. F.; Vicic, D. A.; Tius, M. A. J. Am. Chem. Soc. 2010, 132, 8266.
13. Kitamura, K.; Shimada, N.; Stewart, C.; Atesin, A. C.; Atesin, T. A.; Tius, M. A. Angew. Chem. Int. Ed. 2015, 54, 6288.
14. Apex4 [Computer Software]; Bruker AXS Inc.: Madison, WI, USA, 2021.
15. Sheldrick, G. M. Acta Cryst. 2015, A71, 3.
16. Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
17. Spek, A. L. Acta Cryst. 2015, C71, 9.

## 14. HPLC Traces





















## Racemate



Asymmetric

| Peak \# | RetTime <br> [min] | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.287 | 0.1096 | 8.23185 | 1.02570 | 0.7757 |  |
| 2 | 2.888 | 0.0957 | 9.27655 | 1.42878 | 0.8742 |  |
| 3 | 3.107 | 0.1458 | 27.07973 | 2.72710 | 2.5518 |  |
| 4 | 3.506 | 0.1651 | 14.36393 | 1.36122 | 1.3536 |  |
| 5 | 6.405 | 0.1514 | 24.45308 | 2.38939 | 2.3043 | $\%=2.44$ |
| 6 | 7.118 | 0.1775 | 977.79602 | 82.96968 | 92.1405 | $\%=97.56$ |

Note: HPLC data collection for compound 28 and its racemate was performed as a courtesy by Daicel (operator: Jay Ferraro).

































15. NMR Spectra




${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





[^0]
${ }^{19} \mathrm{~F}$ NMR $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 30 | 20 | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 |  | -100 | ${ }_{-110}$ | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 | -20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | (ppm) | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 |  |











$\Delta$-C6a
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$\Delta$-C6a
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{19} \mathrm{~F}$ NMR $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






A-11
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



入-11
${ }^{19} \mathrm{~F}$ NMR $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





S-106



S-108



S-110



[^1]

5
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


S-113



${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
f1 (ppm)




| 23 | 22 |  |  |  |  |  |  |  | 140 | 130 |  |  |  | 1 | 1 | 7 | 10 | 50 | 10 | 1 | 1 | 1 |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |



${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





S-118



${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


S-119






A11
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



A11
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


S-123







${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




S-127


S-128









S-133

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ contaminated with benzyl propiolate



${ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
contaminated with benzyl propiolate



${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^2]


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{gathered} 110 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |


NT
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




[^3]
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


1




${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) isolated as an inseparable



DK10
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


DK10
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




DK11
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





DK11
${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





[^4]S-148


DK15
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | f1 (pp |  |  |  |  |  |  |  |  |  |  |  |  |









DK22
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




$\iint$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Nin $\underbrace{\text { Nion }}_{1}$


| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 |  | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |





S-161


${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




dia-8
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





S-166


[^5]

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


|  |  |  |  |  |  | 17 | 1 |  |  |  |  |  |  | 1 |  | 1 | 1 |  |  | 1 | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |






18
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


S-174




20










23
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






[^6]





30
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


S-192





[^7]



${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



35
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^8]
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




36
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


















S-213



[^0]:    $\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}$

[^1]:    

[^2]:    

[^3]:    

[^4]:    

[^5]:    

[^6]:    $\begin{array}{lllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^7]:    

[^8]:    $\begin{array}{lllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & & & & & & & & \mathrm{f1}(\mathrm{ppm})\end{array}$

