Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A regioselective synthesis of 3,4-diaryl-1*H*-pyrazoles through a 1,3-dipolar cycloaddition of tosylhydrazones and nitroalkenes.

Carlos D. García-Mejía, Eduardo Hernández-Vázquez*, Javier Alejandro Ibarra-Hernández, Atl Tarbuck-Valle, María T. Ramírez-Apán.

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, CDMX, México.

*Corresponding author: ehervaz@iquimica.unam.mx

Table of Contents

¹ H-NMR and ¹³ C-NMR and HRMS spectra of the nitroalkenes	.S2
¹ H-NMR, ¹³ C-NMR, and HRMS spectra of the pyrazoles	.S23
Comparative TLC of the methodologies	. S 74
X-Ray Data	. S 76
Coordinates of optimized geometries	. S 79
Intrinsic Reaction Coordinate (IRC) of Transition States	. S 87
Results of Cytotoxicity screening	.S89

¹H-NMR and ¹³C-NMR and HRMS spectra of the nitroalkenes.

Spectrum 2. ¹³C-NMR of 6a.

Description: Mass Cal Ionization Mode:ESI+ Created: History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[... Created bill

Mass Calibration data:Cal_PEG_600 Created:6/2/2023 10:48:32 AM Created by:

Spectrum 3. HRMS of 6a.

Spectrum 4. ¹H-NMR of 6b.

Spectrum 6. HRMS of 6b.

Spectrum 7. ¹H-NMR of 6c.

Spectrum 8. ¹³C-NMR of 6c.

Description: Mass Calibr Ionization Mode:ESI+ Created:6/1. History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[... Created by:

Mass Calibration data:Cal_PEG_600 Created:6/1/2023 10:14:38 AM Created by:

Unsaturation Number:-1.0 .. 60.0 (Fraction:Both)

Charge number:1 Tolerance:5.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 22, ¹H:0 .. 28, ³⁵CI:0 .. 0, ¹⁰F:0 .. 0, ¹⁴N:0 .. 1, ¹⁶O:0 .. 2, ³²S:0 .. 0

Spectrum 9. HRMS of 6c.

Spectrum 10. ¹H-NMR of 6d.

Spectrum 12. HRMS of 6d.

Spectrum 14. ¹³C-NMR of 6e.

Mass	Intensity	Calc. Mass	Mass Difference (mmu)	Mass Difference (ppm)	Possible Formula	Unsaturation Number
198.03236	1682.79	198.03218	0.18	0.91	${}^{12}C_{9}{}^{1}H_{9}{}^{35}CI_{1}{}^{14}N_{1}{}^{16}O_{2}$	5.5

Spectrum 15. HRMS of 6e.

Spectrum 16. ¹H-NMR of 6f.

Spectrum 18. HRMS of 6f.

Spectrum 19. ¹H-NMR of 6g.

100 90 f1 (ppm)

Spectrum 20. ¹³C-NMR of 6g.

Description: Ma Ionization Mode:ESI+ Cr History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[... Cr

Mass Calibration data:Cal_PEG_600 Created:6/1/2023 10:17:34 AM Created by:

Unsaturation Number:-1.0 .. 60.0 (Fraction:Both)

Charge number:1 Tolerance:5.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 10, ¹H:0 .. 28, ³⁵Cl:0 .. 0, ¹⁹F:0 .. 3, ¹⁴N:0 .. 1, ¹⁶O:0 .. 2, ³²S:0 .. 0

Spectrum 21. HRMS of 6g.

Spectrum 24. HRMS of 6h.

Spectrum 26. ¹³C-NMR of 6j.

 Description:
 Mass Calibrat

 Ionization Mode:ESI+
 Created:6/2/2

 History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...
 Created by:

Mass Calibration data:Cal_PEG_600 Created:6/2/2023 10:06:47 AM Created by:

Unsaturation Number:-1.0 .. 60.0 (Fraction:Both)

Charge number:1 Tolerance:50.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 7, ¹H:0 .. 50, ³⁶Cl:0 .. 0, ¹⁴N:0 .. 1, ¹⁶O:0 .. 3, ³²S:0 .. 0

Spectrum 27. HRMS of 6j.

Spectrum 28. ¹H-NMR of 6k.

Spectrum 30. HRMS of 6k.

Spectrum 32. ¹³C-NMR of 6I.

Description: Ionization Mode:ESI+ History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Mass Calibration data:Cal_PEG_600 Created:6/2/2023 9:53:05 AM Created by:

Unsaturation Number:-1.0 .. 60.0 (Fraction:Both)

Charge number:1 Tolerance:50.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 8, ¹H:0 .. 50, ³⁶Cl:0 .. 0, ¹⁴N:0 .. 1, ¹⁶O:0 .. 2, ³²S:0 .. 1

Spectrum 33. HRMS of 6I.

Spectrum 34. ¹H-NMR of 6m.

Spectrum 36. HRMS of 6m.

Spectrum 37. ¹H-NMR of 6n.

S21

Spectrum 39. HRMS of 6n.

¹H-NMR, ¹³C-NMR, and HRMS spectra of the pyrazoles.

Spectrum 40. ¹H-NMR of 8a.

Spectrum 41. ¹³C-NMR of 8a.

Description: Ionization Mode:ESI+ History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Mass Calibration data:Cal_PEG_600 Created:11/28/2022 2:08:11 PM Created by:AccuTOF

Charge number:1 Element:¹²C:0 .. 16, ¹H:0 .. 50, ⁷⁹Br:0 .. 0, ¹⁴N:2 .. 2, ¹⁶O:0 .. 0

Tolerance:200.00(ppm), 5.00 .. 15.00(mmu)

Spectrum 42. HRMS of 8a.

Spectrum 48. HRMS of 8c.

Spectrum 51. HRMS of 8d.

Spectrum 53. ¹³C-NMR of 8e.

Mass	Intensity	Calc. Mass	Mass Difference (mmu)	Mass Difference (ppm)	Possible Formula	Unsaturation Number
311.15487	265293.61	311.15482	0.05	0.15	12C ₂₂ 1H ₁₉ 14N ₂	14.5

Spectrum 57. HRMS of 8f.

Mass	Intensity	Calc. Mass	Mass Difference (mmu)	Mass Difference (ppm)	Possible Formula	Unsaturation Number
253.11406	762947.17	253.11410	-0.04	-0.17	¹² C ₁₆ ¹ H ₁₄ ¹⁹ F ₁ ¹⁴ N ₂	10.5

Spectrum 60. HRMS of 8g.

Spectrum 61. ¹H-NMR of 8h.

Spectrum 63. HRMS of 8h.

Spectrum 64. ¹H-NMR of 8i.

Spectrum 66. HRMS of 8i.

Spectrum 69. HRMS of 8j.

Spectrum 71. ¹³C-NMR of 8k.

Ionization Mode:ESI+

40-

Relative Intensity

History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Created:1/25/2023 10:56:47 AM Created by:AccuTOF

Unsaturation Number:0.0 .. 45.0 (Fraction:Both)

Charge number:1 Tolerance:3.00(ppm), 5.00 .. 15.00(mmu) Element: ¹²C:0 .. 16, ¹H:0 .. 20, ³⁸CI:0 .. 1, ¹⁴N:0 .. 2, ¹⁶O:0 .. 0

Spectrum 72. HRMS of 8k.

Spectrum 75. HRMS of 8I.

Spectrum 77. ¹³C-NMR of 8m.

Spectrum 79. HRMS of 8m.

Spectrum 80. ¹H-NMR of 8n.

Description: Ionization Mode:ESI+

History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Mass Calibration data:Cal_PEG_600 Created:2/27/2023 2:14:34 PM Created by:AccuTOF

Charge number:1 Tolerance:200.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 16, ¹H:0 .. 20, ³⁵CI:0 .. 1, ¹⁹F:1 .. 1, ¹⁴N:2 .. 2 Unsaturation Number:0.0 .. 30.0 (Fraction:Both)

Spectrum 82. HRMS of 8n.

Spectrum 83. ¹H-NMR of 80.

Description: Ionization Mode:ESI+ History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Mass Calibration data:Cal_PEG_600 Created:1/25/2023 10:59:37 AM Created by:AccuTOF

Charge number:1 Tolerance:3.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 17, ¹H:0 .. 20, ³⁵CI:0 .. 1, ¹⁴N:0 .. 2, ¹⁵O:0 .. 0

Spectrum 88. HRMS of 80.

Spectrum 89. ¹H-NMR of 8p.

Spectrum 91. HRMS of 8p.

Spectrum 93. ¹³C-NMR of 8q.

Spectrum 98. ¹H-NMR of 8r.

S53

Description: Ionization Mode:ESI+

History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...

Mass Calibration data:Cal_PEG_600 Created:2/2/2023 10:33:12 AM Created by:AccuTOF

Charge number:1 Tolerance:50.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 17, ¹H:0 .. 50, ¹⁹F:0 .. 4, ¹⁴N:0 .. 2, ¹⁶O:0 .. 0

Unsaturation Number:0.0 .. 50.0 (Fraction:.5)

Spectrum 100. HRMS of 8r.

Spectrum 101. ¹H-NMR of 8s.

S55

 Ionization Mode:ESI+
 C

 History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[...
 C

Created:3/10/2023 9:26:52 AM Created by:AccuTOF

Charge number:1 Tolerance:50.00(ppm), 5.00 .. 15.00(mmu) Element:¹²C:0 .. 17, ¹H:0 .. 50, ³⁵CI:0 .. 1, ¹⁹F:0 .. 0, ¹⁴N:0 .. 2, ¹⁶O:0 .. 0, ³²S:0 .. 0 Unsaturation Number:0.0 .. 50.0 (Fraction:Both)

Spectrum 104. HRMS of 8s.

Spectrum 105. ¹H-NMR of 8t.

Spectrum 108. ¹H-NMR of 8u.

Spectrum 109. ¹³C-NMR of 8u.

Spectrum 110. HRMS of 8u.

Spectrum 113. HRMS of 8v.

Spectrum 115. ¹³C-NMR of 8w.

Spectrum 116. HRMS of 8w.

Spectrum 117. ¹H-NMR of 8x.

Spectrum 119. HRMS of 8x.

Spectrum 121. ¹³C-NMR of 8y.

Spectrum 123. HRMS of 8y.

Mass Calibration data:Cal_PEG_600 Created:1/27/2023 10:29:43 AM Description: . Ionization Mode:ESI+ History:Determine m/z[Peak Detect[Centroid,30,Area];Correct Base[];Smooth[5]];Correct Base[5.0%];Average(MS[... Created by:AccuTOF Charge number:1 Tolerance:5.00(ppm), 5.00 .. 15.00(mmu) Unsaturation Number:0.0 .. 45.0 (Fraction:Both) Element:¹²C:0 .. 15, ¹H:0 .. 22, ³⁵Cl:0 .. 0, ¹⁴N:3 .. 3, ¹⁶O:0 .. 0 Relative Intensity 100 236.11878 50 237.12234 237.86128 0 238.00 236.00 237.00 237.50 236.50 m/z Mass Difference Mass Difference (ppm) Possible Formula Mass Intensity Calc. Mass Unsaturation Number (mmu)

236.11878

11340.26

236.11877

0.01

10.5

Spectrum 127. ¹H-NMR of 8aa.

Spectrum 129. HRMS of 8aa.

Spectrum 130. ¹H-NMR of 8ab.

Spectrum 132. HRMS of 8ab.

Spectrum 133. ¹H-NMR of 8ac.

Spectrum 135. HRMS of 8ac.

Spectrum 138. HRMS of 11.

Comparative TLC of the methodologies.

Although Tang's and our conditions are similar, TLC outcomes reveal a different pattern. In our methodology, the 3,4-diaryl-1*H*-pyrazole (Rf = 0.06; Hex-AcOEt 8:2) is more polar than the 3,5-isomer (Rf = 0.48), which was obtained only traces (< 5%). It is noteworthy to mention that the yield of 3,4-regioisomer decreases when our protocol is carried out at 80 °C, while 3,5-regiosomer increases (Figure S1).

Figure S1. Comparative TLC of the methodologies (Eluent: Hex-AcOEt 8:2).

To bring a proof about the mechanism of 3,4-aza-heterocyclic synthesis, we tested our conditions without base (K_2CO_3). The result indicated the importance of the base for converting the *N*-tosylhydrazones to the corresponding diazo compounds; thus, the reaction proceeds *via* a [3+2] cycloaddition. Moreover, we identified that the most abundant byproduct as the tosylated pyrazole.

Figure S2. Comparative TLC of the methodologies (Eluent: Hex-AcOEt 7:3).

X-Ray Data.

	Table S1. X-ray data.		
Identification code	089HVE23		
Empirical formula	C15 H12 C1 N3		
Formula weight	269.73		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 14.1324(5) Å	α= 90°.	
	b = 8.3919(3) Å	β=103.5870(10)°.	
	c = 11.1269(4) Å	γ = 90°.	
Volume	1282.69(8) Å ³		
Z	4		
Density (calculated)	1.397 Mg/m ³		
Absorption coefficient	0.286 mm ⁻¹		
F(000)	560		
Crystal size	0.360 x 0.261 x 0.208 r	nm ³	
Theta range for data collection	2.844 to 27.948°.		
Index ranges	-18<=h<=18, -11<=k<	=11, -14<=1<=14	
Reflections collected	18891		
Independent reflections	3087 [R(int) = 0.0187]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from ec	quivalents	
Max. and min. transmission	0.7456 and 0.7186		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	3087 / 1 / 176		
Goodness-of-fit on F ²	1.070		
Final R indices [I>2sigma(I)]	R1 = 0.0304, wR2 = 0.	0845	
R indices (all data)	R1 = 0.0323, wR2 = 0.0323, w	0861	
Largest diff. peak and hole	0.407 and -0.222 e.Å-3		

Figure S3. X-Ray of 8aa.

Coordinates of optimized geometries.

Nitroalkene (6a).

@<TRIPOS>MOLECULE 21 21 SMALL NO_CHARGES @<TRIPOS>ATOM 1 C1 -3.7717 0.1353 0.0155 C 2 C2 -3.2296 -1.1239 0.2943 C 3 C3 -1.8505 -1.3157 0.2381 C 4 C4 -0.9791 -0.2471 -0.0677 C 5 C5 -1.5427 1.0120 -0.3651 C
 6 C6
 -2.9247
 1.1958
 -0.3245 C

 7 H7
 -4.8468
 0.2864
 0.0482 H

 8 H8
 -3.8805
 -1.9565
 0.5448 H
 9 H9 -1.4323 -2.2979 0.4415 H 10 H10 -0.9097 1.8387 -0.6648 H 11 H11 -3.3425 2.1686 -0.5673 H 12 C12 0.4528 -0.5442 -0.0989 C 13 C13 1.5067 0.2822 0.0863 C 14 H14 0.6963 -1.5879 -0.2748 H 15 N15 2.8346 -0.3380 -0.0696 N 16 O16 2.9358 -1.5514 -0.3012 O 17 017 3.8190 0.4075 0.0335 O 18 C18 1.5375 1.7302 0.4586 C 19 H19 1.7567 2.3724 -0.4024 H 20 H20 0.5749 2.0279 0.8762 H 21 H21 2.3106 1.9171 1.2075 H @<TRIPOS>BOND 112Ar 216Ar 3171 423Ar 5281 634Ar 7391 845Ar 94121 10 5 6 Ar 11 5 10 1 126111 13 12 13 2 14 12 14 1 15 13 15 1 16 13 18 1 17 15 16 Ar 18 15 17 Ar 19 18 19 1 20 18 20 1 21 18 21 1

Diazo compound.

@<TRIPOS>MOLECULE 15 15 SMALL NO_CHARGES

@ <tf< th=""><th>RIPOS>A7</th><th>ГОМ</th><th></th></tf<>	RIPOS>A7	ГОМ	
1 C1	-0.1288	-0.3729	0.0000 C
2 C2	0.9303	-1.3039	-0.0000 C
3 C3	0.1822	1.0026	0.0000 C
4 C4	2.2563	-0.8713	-0.0000 C
5 H5	0.7062	-2.3674	-0.0000 H
6 C 6	-1.4979	-0.8781	0.0000 C
7 C7	1.5116	1.4258	0.0000 C
8 H8	-0.6138	1.7427	0.0000 H
9 C 9	2.5572	0.4954	-0.0000 C

10 H10 3.0570 -1.6061 -0.0000 H 11 H11 -1.7300 -1.9370 0.0001 H 12 H12 1.7308 2.4902 0.0000 H 13 H13 3.5903 0.8304 -0.0000 H 14 N14 -2.5235 -0.0826 0.0000 N 15 N15 -3.4202 0.6342 -0.0000 N @<TRIPOS>BOND 11 2 Ar 112 Ar 2 1 3 Ar 3161 424Ar 5251 6 3 7 Ar 7381 849Ar 94101 10 6 11 1 11 6 14 2 12 7 9 Ar 137121 149131 15 14 15 2

TS-1.

@<TRIPOS>MOLECULE 36 38 SMALL NO_CHARGES

@ <tri< th=""><th>POS>AT</th><th>ЮМ</th><th></th></tri<>	POS>AT	ЮМ	
1 C1	3.3870	-2.9826	-0.2050 C
2 C2	2.6110	-2.7105	-1.3351 C
3 C3	1.7508	-1.6096	-1.3472 C
4 C4	1.6600	-0.7477	-0.2389 C
5 C5	2.4339	-1.0442	0.8981 C
6 C 6	3.2900	-2.1471	0.9129 C
7 H7	4.0542	-3.8397	-0.1910 H
8 H8	2.6690	-3.3563	-2.2069 H
9 H9	2.3594	-0.4236	1.7859 H
10 H10	3.877	4 -2.357	0 1.8025 H
11 C11	0.7212	2 0.408	8 -0.3366 C
12 C12	1.123	1 1.748	8 -0.1544 C
13 H13	-0.027	4 0.286	7 -1.1130 H
14 N14	0.331	7 2.731	5 -0.8427 N
15 015	-0.800	3 2.424	8 -1.2798 O
16 016	0.804	7 3.878	1 -0.9774 O
17 C17	2.4492	2 2.245	4 0.3440 C
18 H18	2.338	7 3.162	0 0.9276 H
19 H19	2.930	7 1.494	1 0.9681 H
20 H20	3.124	0 2.470	2 -0.4922 H
21 C21	-1.968	1 -0.578	88 0.6024 C
22 C22	-2.146	1 -1.972	24 0.5604 C
23 C23	-2.957	8 0.259	0 0.0579 C
24 C24	-3.292	5 -2.519	96 -0.0193 C
25 H25	-1.386	5 -2.624	43 0.9834 H
26 C26	-0.707	4 -0.051	3 1.1693 C
27 C27	-4.107	8 -0.292	28 -0.5048 C
28 H28	-2.823	6 1.336	0.0685 H
29 C29	-4.278	1 -1.682	21 -0.5494 C
30 H30	-3.418	5 -3.598	31 -0.0472 H
31 H31	-0.150	4 -0.755	55 1.7869 H
32 H32	-4.870	1 0.362	-0.9159 H
33 H33	-5.173	8 -2.107	70 -0.9932 H
34 N34	-0.718	9 1.178	6 1.7702 N
35 N35	-0.255	0 2.231	7 1.7577 N
36 H36	1.146	9 -1.407	'9 -2.2280 H
@ <tripos>BOND</tripos>			
112A	r		
216A	r		

3171
4 2 3 Ar
5281
634Ar
7 3 36 1
845Ar
94111
10 5 6 Ar
11 5 9 1
126101
13 11 12 Ar
14 11 13 1
15 11 26 Wk
16 12 14 1
17 12 17 1
1 / 12 1 / 1 18 12 25 W/lz
10 12 55 WK
19 14 13 Ar
20 14 10 Af
21 1/ 18 1
22 17 19 1
23 1/20 1
24 21 22 Ar
25 21 23 Ar
26 21 26 1
27 22 24 Ar
28 22 25 1
29 23 27 Ar
30 23 28 1
31 24 29 Ar
32 24 30 1
33 26 31 1
34 26 34 Ar
35 27 29 Ar
36 27 32 1
37 29 33 1
38 34 35 2

TS-1´.

@<TRIPOS>MOLECULE 36 38 SMALL NO_CHARGES

@ <tri< th=""><th>POS>AT</th><th>OM</th><th></th></tri<>	POS>AT	OM	
1 C1	0.1519	0.5779	0.7236 C
2 C2	-1.2716	-0.3034	-0.9733 C
3 C3	2.5856	-0.3659	0.3146 C
4 C4	3.5608	-0.5269	1.3189 C
5 C5	3.0194	-0.2448	-1.0178 C
6 C6	4.9223	-0.5244	1.0106 C
7 H7	3.2458	-0.6475	2.3524 Н
8 C8	1.1598	-0.4199	0.7509 C
9 C9	4.3815	-0.2567	-1.3273 C
10 H10	2.295	-0.1461	-1.8161 H
11 C11	5.3389	-0.3877	-0.3171 C
12 H12	5.6544	4 -0.6364	1.8057 H
13 H13	1.0480	0 -1.0452	2 1.6344 H
14 H14	4.6932	2 -0.1644	-2.3642 H
15 H15	6.3972	2 -0.3923	-0.5627 H
16 N16	0.4749	9 -1.8574	-0.5281 N
17 N17	-0.4972	2 -1.4090) -1.0049 N
18 H18	-1.0192	2 0.3954	-1.7702 H
19 C19	-2.671	-0.3864	-0.5591 C
20 C20	-3.5182	2 0.6981	-0.8595 C
21 C21	-3.1829	9 -1.4741	0.1765 C
22 C22	-4.8429	9 0.7002	-0.4227 C
23 H23	-3.132	4 1.5362	2 -1.4337 H
24 C24	-4.510	7 -1.4706	5 0.5985 C

25 H25	-2.5485	-2.3264	0.4034 H
26 C26	-5.3441	-0.3835	0.3056 C
27 H27	-5.4848	1.5441	-0.6582 H
28 H28	-4 8987	-2 3183	1 1559 H
20 H20	-6 3782	-0 3859	0.6374 H
30 N30	0.3632	1 8068	-0.0033 N
31 031	1 0202	1 7917	-1 0602 O
32 032	-0 1471	2 8481	0.4505.0
33 C33	-0.7998	0.6926	1 8880 C
31 H31	1 7330	1 1863	1.6050 C
35 H35	1 0320	0.3080	2 2500 H
36 H36	0 3/02	1 2613	2.2399 H
	-0.3492 005580N	D	2.710011
	03/BON	D	
1 1 0 Af			
2 1 30 1			
3 1 33 1			
412Wk	2		
521/A	r		
62181			
72191			
834Ar			
935Ar			
10381			
11 4 6 A	r		
12471			
13 5 9 A	r		
14 5 10 1	l		
15 6 11 A	Ar		
16 6 12 1	l		
17 8 13 1	l		
18816	Wk		
19911 <i>A</i>	Ar		
20 9 14 1	l		
21 11 15	1		
22 16 17	2		
23 19 20	Ar		
24 19 21	Ar		
25 20 22	Ar		
26 20 23	1		
27 21 24	Ar		
28 21 25	1		
29 22 26	Ar		
30 22 27	1		
31 24 26	Ar		
32 24 28	1		
33 26 29	1		
34 30 31	Ar		
35 30 32	Ar		
36 33 34	1		
37 33 35	1		
38 33 36	1		

PS-1 (8a).

@<TRIPOS>MOLECULE 32 34 SMALL NO_CHARGES

 @<TRIPOS>ATOM

 1 C1
 2.7777
 -2.8764
 0.2604 C

 2 C2
 3.1791
 -1.9363
 -0.6932 C

 3 C3
 2.5221
 -0.7059
 -0.7893 C

 4 C4
 1.4543
 -0.3865
 0.0698 C

 5 C5
 1.0645
 -1.3416
 1.0281 C

 6 C6
 1.7162
 -2.5731
 1.1200 C

 7 H7
 3.2864
 -3.8335
 0.3346 H

 8 H8
 4.0004
 -2.1611
 -1.3685 H

 9 H9
 0.2500
 -1.1131
 1.7090 H

 10 H10
 1.3982
 -3.2938
 1.8687 H

$\begin{array}{c} 11 \ C11 \\ 12 \ C12 \\ 13 \ C13 \\ 14 \ H14 \\ 15 \ H15 \\ 16 \ H16 \\ 17 \ C17 \\ 18 \ C18 \\ 19 \ C19 \\ 20 \ C20 \\ 21 \ H21 \\ 22 \ C22 \\ 23 \ C23 \\ 24 \ H24 \\ 25 \ C25 \\ 26 \ H26 \\ 26 \ H26 \\ 27 \ H27 \\ 28 \ H28 \\ 29 \ N29 \end{array}$	0.7764 1.4020 2.8402 3.2680 2.9547 3.4311 -1.7877 -2.9657 -1.7571 -4.0792 -3.0009 -0.6249 -2.8709 -0.8650 -4.0357 -4.9787 -2.8290 -4.9005 -0.8328	0.9263 2.1755 2.5786 2.7152 3.5225 1.8153 0.3093 0.6265 -0.8717 -0.2143 1.5340 1.2229 -1.7129 -1.1275 -1.3898 0.0461 -2.6191 -2.0462 2.5471	-0.0133 C 0.0048 C 0.0689 C -0.9315 H 0.6119 H 0.5818 H -0.1043 C 0.5966 C -0.8667 C 0.5382 C 1.1916 H -0.0508 C -0.9222 C -1.4289 H -0.2188 C 1.0896 H -1.5204 H -0.2613 H -0.0535 N
30 N30	0.4020	3.0915	-0.0162 N
31 H31	2.8311	0.0082	-1.5474 H
32 H32	0.5014	4.0987	-0.0094 H
(a) < TRIP	OS>BON	D	
112 Ar 216 Ar			
3171			
423Ar			
5281			
634Ar			
73311			
845Ar			
94111			
10 5 6 A	r		
11 5 9 1			
12 0 10 1	٨r		
14 11 22	1		
15 12 13	1		
16 12 30	Ar		
17 13 14	1		
18 13 15	1		
19 13 16	1		
20 17 18	Ar		
21 17 19	Ar 1		
22 17 22	l Δr		
24 18 21	1		
25 19 23	Ar		
26 19 24	1		
27 20 25	Ar		
28 20 26	1		
29 22 29	Ar		
30 23 25	Ar 1		
32 25 28	1		
33 29 30	Ar		
34 30 32	1		

PS-1´.

@<TRIPOS>MOLECULE 32 34 SMALL NO_CHARGES

 @<TRIPOS>ATOM

 1 C1
 0.0092
 0.4407
 -0.0319 C

 2 C2
 1.1186
 -0.4539
 0.0026 C

 3 C3
 -2.5600
 -0.1225
 -0.0204 C

 4 C4
 -3.0969
 0.9930
 -0.6902 C

5.05	3 4429	-0.9869	0.6574 C
6 C 6	4 4720	1 2361	-0.6787 C
7 H7	2 1120	1.2501	1 2380 H
2 C2	1 1140	0.2046	-1.2380 II
	1 9172	0.3940	-0.0293 C
101110	2 052	-0./444	6 1 2010 II
11 C11	-5.052	9 -1.042 5 0.260	0 1.2019 H
	-3.3383	0.309	-0.0055 C
12 HI2	-4.866	4 2.101	5 -1.2044 H
13 H13	-5.4/9	9 -1.421	4 1.1924 H
14 H14	-6.40/	8 0.561	0 0.0013 H
15 NI5	-0.630	8 -1.009	8 0.0028 N
16 NI6	0./12	1 -1./34	6 0.0119 N
17 CI7	2.569	0.1550	J 0.0192 C
18 C18	3.1123	0.7847	0.9129 C
19 C19	3.4393	5 -0.838.	3 -0.8491 C
20 C20	4.485	9 1.0420) 0.9292 C
21 H21	2.461	8 1.2994	4 1.6135 H
22 C22	4.8120	5 -0.584.	3 -0.8285 C
23 H23	3.0320	0 -1.567	1 -1.5434 H
24 C24	5.3409	0.3602	2 0.0576 C
25 H25	4.8882	2 1.768	1 1.6304 H
26 H26	5.469	0 -1.120	9 -1.5083 H
27 H27	6.408	7 0.5604	4 0.0714 H
28 C28	0.0320) 1.9416	5 -0.0969 C
29 H29	1.012	7 2.334'	7 0.1771 H
30 H30	-0.188	9 2.308	1 -1.1071 H
31 H31	-0.706	3 2.386	3 0.5792 H
32 H32	-1.167	6 -2.527	0 -0.0203 H
@ <tri< td=""><td>POS>BC</td><td>OND</td><td></td></tri<>	POS>BC	OND	
112A	r		
218 A	r		
3 1 28 1	l		
4 2 16 A	Ar		
5 2 1 7 1	l		
634A	r		
735A	r		
8381			
946A	r		
10471	l		
11 5 9 A	Ar		
12 5 10	1		
13 6 11	Ar		
14 6 12	1		
15815	Ar		
16911	Ar		
17913	1		
18 11 1	41		
19 15 1	61		
20 15 3	21		
21 17 1	8 Ar		
22 17 1	9 Ar		
23 18 2	0 Ar		
24 18 2	11		
25 19 2	2 Ar		
26 19 2	31		
27 20 2	4 Ar		
28 20 2	51		
29 22 2	4 Ar		
30 22 2	61		
31 24 2	71		
32 28 2	91		
33 28 3	01		
34 28 3	11		

Table 02. Calculated chergy values.					
Molecules	G	Н	E-opt		
Diazo Compound	-379.751428	-379.710897	-379.833602		
Nitroalkene (6a)	-553.394375	-553.345723	-553.521571		
TS-1	-933.093703	-933.026443	-933.325866		
TS-1′	-933.082648	-933.015308	-933.314513		
PS-1 (8a)	-727.488152	-727.430168	-727.706292		
PS-1′	-727.486576	-727.428357	-727.704591		

Table S2. Calculated energy values

Values shown at Hartree at 298.15 K

Intrinsic Reaction Coordinate (IRC) of Transition States.

Negative frequency magnitude: -409.46

IRC TS-1'.

Results of Cytotoxicity screening.

Compound -	% growth inhibition by cell line ^a			
Compound -	PC-3 ^b	HCT-15°	MCF-7 ^d	COS-7 ^e
8a	12.29	0.13	4.35	NC ^f
8b	13.71	5.66	11.78	8.50
8c	18.22	10.92	9.90	16.20
8d	NC	0.14	20.68	12.37
8e	24.21	29.69	30.23	32.80
8f	25.08	NC	6.09	2.55
8g	11.94	1.86	NC	1.17
8h	11.72	8.22	45.56	28.46
8i	36.34	27.27	26.38	18.50
8j	4.04	8.08	35.47	31.39
8k	28.59	12.91	15.52	30.07
81	7.06	NC	21.93	15.80
8m	14.41	2.50	2.90	4.40
8n	6.57	NC	NC	NC
80	27.07	21.88	36.78	42.52
8p	8.98	7.29	34.90	34.33
8q	11.54	9.97	35.82	23.37
8r	4.84	5.12	27.68	12.92
8s	23.37	10.74	NC	16.83
8t	5.29	16.03	1.45	NC
8u	8.83	3.61	NC	NC
8v	18.91	21.14	20.14	7.42
8w	5.88	NC	9.81	4.85
8x	17.74	1.14	22.28	6.94
8y	6.82	0.40	NC	NC
8aa	10.68	2.73	5.90	7.26
8ab	6.42	NC	0.32	3.19
8ac	15.69	10.09	10.63	10.61

 Table S3. Cytotoxicity activity of pyrazoles in different cell lines.

a) Concentration: 25 μ M; Vehicle: DMSO. b) Prostate cancer. c) Colon cancer.

d) Breast cancer. e) Monkey's kidney cell line (not cancerous). f) Non-cytotoxic.