Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Deuterated squalene and sterols from modified *Saccharomyces cerevisiae*

SUPPORTING INFORMATION: COPIES OF NMR SPECTRA

Carl Recsei,⁺ Robert Russell, ⁺ Marina Cagnes⁺ & Tamim Darwish⁺

[†]Australian Nuclear Science and Technology Organisation National Deuteration Facility New Illawarra Rd Lucas Heights, New South Wales, Australia 2234

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Page	Compound	Nucleus
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	squalene- <i>d</i> ₅₀ (81%- <i>d</i>)	¹ H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3		² H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		¹³ C{ ¹ H, ² H}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5		¹³ C{ ¹ H, ² H} expansions
7 cholesterol- d_{45} (79%- d) 1H 8 1H 1H 1H 9 13 13C{1H,2H} 13C{1H,2H} 11 13C{1H,2H} 13C{1H,2H} 13C{1H,2H} 12 13C{1H,2H} 13C{1H,2H} 13C{1H,2H} 14 cholesterol- d_{45} (98%- d) 2H 13C{1H,2H} 13C{1H,2H} 15 16 13C{1H,2H} 13C{1H,2H} 13C{1H,2H} 16 13C{1H,2H} 13C{1H,2H} 13C{1H,2H} 13C{1H,2H} 19 20 1H 14 expansions 2H 13C{1H,2H} 13C{1H,2H	6		¹³ C{ ¹ H}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	cholesterol- d_{45} (79%- d)	¹ H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		¹ H expansions
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		² H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		¹³ C{ ¹ H, ² H}
12 $1^{3}C(^{1}H)$ $1^{3}C(^{1}H)$ 13 $1^{3}C(^{1}H)$ $1^{3}C(^{1}H)$ 14 cholesterol- d_{45} (98%- d) $2^{1}H$ 15 $1^{2}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 16 $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 17 $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 18 O -TBS-22,23-dihydrobrassicasterol- d_{47} (87%- d) $1^{1}H$ 19 $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 20 $2^{1}H$ $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 21 $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 22 $2^{1}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 23 $2^{1}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ $1^{3}C(^{1}H,^{2}H)$ 24 $0^{-TBS-24-methylenecholesterol-d_{45} (87%-d) 1^{1}H 1^{3}C(^{1}H,^{2}H) 1^{3}C(^{1}H,^{2}H) 25 O-TBS-24-methylenecholesterol-d_{47} (87%-d) 1^{1}H 1^{3}C(^{1}H,^{2}H) 1^{3}C(^{1}H,^{2}H) 30 3^{2}C(^{1}H,^{2}H) 1^{3}C(^{1}H,^{2}H) 1^{3}C(^{1}H,^{2}H) 1^{3}C(^{1}H,^{2}H)$	11		¹³ C{ ¹ H, ² H} expansions
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12		¹³ C{ ¹ H}
14cholesterol- d_{45} (98%- d)2H1513C{1H,2H}1613C{1H,2H}170-TBS-22,23-dihydrobrassicasterol- d_{47} (87%- d)180-TBS-22,23-dihydrobrassicasterol- d_{47} (87%- d)1914191420142113C{1H,2H}2213C{1H,2H}2313C{1H,2H}2413C{1H,2H}250-TBS-24-methylenecholesterol- d_{45} (87%- d)262728242913C{1H,2H}3013C{1H,2H}3113C{1H,2H}3222,23-dihydrobrassicasterol- d_{47} (87%- d)1413C{1H,2H}3513C{1H,2H}3613C{1H,2H}3724-methylenecholesterol- d_{45} (87%- d)4114	13		¹³ C{ ¹ H} expansions
15 $13C\{^{1}H,^{2}H\}$ 16 $1^{3}C\{^{1}H,^{2}H\}$ 17 $1^{3}C\{^{1}H,^{2}H\}$ 18 $O-TBS-22,23$ -dihydrobrassicasterol- d_{47} (87%- d) $1^{1}H$ 19 $1^{3}C\{^{1}H,^{2}H\}$ 20 $2^{1}H$ 21 $1^{3}C\{^{1}H,^{2}H\}$ 22 $1^{3}C\{^{1}H,^{2}H\}$ 23 $1^{3}C\{^{1}H,^{2}H\}$ 24 $1^{3}C\{^{1}H,^{2}H\}$ 25 $O-TBS-24$ -methylenecholesterol- d_{45} (87%- d) $1^{1}H$ 26 $1^{1}H$ 27 $2^{1}H$ 28 $1^{3}C\{^{1}H,^{2}H\}$ 29 $1^{3}C\{^{1}H,^{2}H\}$ 30 $1^{3}C\{^{1}H,^{2}H\}$ 31 $1^{3}C\{^{1}H,^{2}H\}$ 32 $22,23$ -dihydrobrassicasterol- d_{47} (87%- d) $1^{1}H$ 34 $1^{3}C\{^{1}H,^{2}H\}$ 35 $1^{3}C\{^{1}H,^{2}H\}$ 36 $1^{3}C\{^{1}H,^{2}H\}$ 37 24 -methylenecholesterol- d_{45} (87%- d) $1^{1}H$ 41 $1^{3}C\{^{1}H,^{2}H\}$ $1^{3}C\{^{1}H,^{2}H\}$	14	cholesterol- d_{45} (98%- d)	² H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15		¹³ C{ ¹ H, ² H}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16		¹³ C{ ¹ H, ² H} expansions
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17		¹³ C{ ¹ H}
1911 <t< td=""><td>18</td><td>O-TBS-22,23-dihydrobrassicasterol-d_{47} (87%-d)</td><td>¹H</td></t<>	18	O -TBS-22,23-dihydrobrassicasterol- d_{47} (87%- d)	¹ H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		¹ H expansions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		² H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21		¹³ C{ ¹ H, ² H}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		¹³ C{ ¹ H, ² H} expansions
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23		¹³ C{ ¹ H}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24		¹³ C{ ¹ H} expansions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	O-TBS-24-methylenecholesterol-d ₄₅ (87%-d)	¹ H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26		¹ H expansions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27		² H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28		¹³ C{ ¹ H, ² H}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29		¹³ C{ ¹ H, ² H} expansions
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30		¹³ C{ ¹ H}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31		¹³ C{ ¹ H} expansions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	22,23-dihydrobrassicasterol- d_{47} (87%- d)	¹ H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33		² H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34		¹³ C{ ¹ H, ² H}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35		¹³ C{ ¹ H, ² H} expansions
37 24-methylenecholesterol- d_{45} (87%- d) 1H 38 2H 39 1 ³ C{ ¹ H. ² H} 40 1 ³ C{ ¹ H. ² H} expansions 41 1 ³ C{ ¹ H. ² H}	36		¹³ C{ ¹ H}
38 2H 39 1 ³ C{ ¹ H. ² H} 40 1 ³ C{ ¹ H. ² H} expansions 41 1 ³ C{ ¹ H}	37	24-methylenecholesterol- <i>d</i> ₄₅ (87%- <i>d</i>)	¹ H
$ \begin{array}{c} 39 \\ 40 \\ 41 \end{array} $ $ \begin{array}{c} ^{13}C\{^{1}H.^{2}H\} \\ ^{13}C\{^{1}H.^{2}H\} expansions \\ ^{13}C\{^{1}H\} \end{array} $	38		² H
40 ¹³ C{ ¹ H. ² H} expansions ¹³ C{ ¹ H}	39		¹³ C{ ¹ H. ² H}
41 ¹³ C{ ¹ H}	40		¹³ C{ ¹ H. ² H} expansions
	41		¹³ C{ ¹ H}

squalene- d_{50} (81%-d) ¹H NMR

F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	aisition Parameters 20220816 9.26 h spect 2108618_0117 (2g 180070 CDC13 3	7.263	5.111	2.036 1.974 1.955 1.579 1.560	
DS SWH FIDRES AQ RG DE TE D1 TD0 SF01 NUC1 P1 PLW1	6002.401 Hz 0.066667 Hz 14.9998312 sec 144 83.300 usec 16.70 usec 298.0 K 30.00000000 sec 1 400.1320007 MHz 1H 15.00 usec 14.03299999 W		$D_{3}C \xrightarrow{CD_{3}}{D} D_{2}C \xrightarrow{CD_{2}}{D}$		
F2 - Proc SI SF WDW SSB LB GB PC	cessing parameters 32768 400.1300088 MHz no 0 0 Hz 0 1.00		$\begin{array}{c} D_{3}C \\ D_{2}C \\ CD_{2} \\ D_{3}C \\ D_{2}C \\ CD_{2} \\ D_{2}C \\ CD_{3} \\ D_{2}C \\ CD_{3} \\ D_{2}C \\ CD_{3} \\ D_{2}C \\ CD_{2} \\ CD_{3} \\ D_{2}C \\ CD_{3} \\ D_{3} \\ CD_{3} \\ CD_{3}$	3	
				× steess ×	
L		9 8 7	7		ppm

squalene- d_{50} (81%-d) ²H NMR

squalene-*d*₅₀ (81%-*d*) ¹³C{¹H} NMR

cholesterol- d_{45} (79%-d) ¹H NMR

F2 - Acquisition Parameters Date_ 20220610 Time 17.45 h INSTRUM spect PROBHD 2108618_0117 (PULPROG zg TD 120046 SOLVENT CDC13 NS 4 DS 0 SWH 6002.401 Hz FIDRES 0.100002 Hz AQ 9.9998322 sec RG 18 DW 83.300 use DE 16.70 use TD 10.0000000 sec TD0 1 SF01 400.1320007 MHz NUC1 1H P1 15.00 use PLW1 14.03299999 W	c	—— 7.263	D ³ C ^{, D} -CD ³		2.252 2.191 2.191 1.776 1.445 1.445 1.441 1.445 1.441 0.042	
F2 - Processing parameters SI 32768 SF 400.1300000 MHz WDW no SSB 0 LB 0 Hz GB 0 PC 1.00		$HO = D_2 C =$	$\begin{array}{c} D_{3}C_{n} & D_{2}C - CD_{2} \\ CD_{3} & D \\ CD_{2} \\ D \\ D_{2} \end{array}$			
 r	9		 6 5	4 3	I`\/\/\''W\'I'\\\ 	

cholesterol- d_{45} (79%-d) ¹H NMR expansion

F2 - Acquisition Paramental Date_ 2021102 Time 10.4 INSTRUM spec PROBHD 2108618_0117 PULPROG zg2 TD 812 SOLVENT CDC NS 2 DS 2 SWH 921.33 FIDRES 0.22494 AQ 4.445521 RG 11 DW 542.66 DE 23.7 TE 298 D1 2.0000000 D1 0.0300000 TD0 SF01 61.422698 NUC1 2 2 P1 124.0 2	meters 27 42 h ct (29 92 13 20 0 76 Hz 45 Hz 52 sec 14 67 usec 73 usec .0 K 00 sec 1 0 sec 1 88 MHz 2H 00 usec 75 W	7.205		D³C, D° ℃D°	
F2 - Processing parame SI 1633 SF 61.42239 WDW SSB 0 LB 1.0 GB 0 PC 1.0	eters 84 31 MHz EM 00 Hz 00		$\mathcal{L}_{\mathcal{L}}_{\mathcal{L}_{\mathcal{L}}_{\mathcal{L}_{\mathcal{L}}_{\mathcal{L}}_{\mathcal{L}}_{\mathcal{L}_{\mathcal{L}}_{\mathcal{L}}}}}}}}}}$	$\begin{array}{c} C = C D_3 \\ D_2 C = C D_2 \\ D_3 \\ C D_2 \\ C D_2 \\ D_2 \end{array}$	
11	10 9	8 7	6 5	4 3	2 1 0 ppm

cholesterol- d_{45} (79%-d) ¹³C{¹H,²H} NMR

cholesterol- d_{45} (79%-d) ¹³C{¹H} NMR

cholesterol- d_{45} (98%-d) ¹³C{¹H,²H} NMR

PLW17 3.06999993 W PLW16 5536 SF 100.6127543 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	F2 - Acquisition Parameters Date_ 20210519 Time 16.31 h INSTRUM spect PROBHD Z108618_0117 (PULPROG zgig2h1h TD 65536 SOLVENT CDC13 NS 483 DS 2 SWH 22058.824 Hz FIDRES 0.673182 Hz AQ 1.4854827 sec RG 203 DW 22.667 usec DE 6.50 usec TE 298.0 K D1 20.00000000 sec D1 20.00002000 sec D1 0.0300000 sec D1 0.0300000 sec D1 100.6223263 MHz NUC1 13C P1 10.00 usec PLW1 84.53199768 W SFO2 400.1322007 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 14.03299999 W PLW12 0.38982001 W SFO3 61.4227600 MHz	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	
	PLW17 3.06999993 W F2 - Processing parameters SI 65536 SF 100.6127543 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40		

F2 - Acq Date_ Time INSTRUM PROBHD PULPROG	uisition 2 Z108618	Parame 0210521 11.12 spect _0117 (zgpg30	h									77.160	71.276 71.042	56.128		41.861	7 36.085 34.990 34.990 30.989 29.847				
TD SOLVENT NS DS SWH	22	65536 CDC13 3000 4 058.824	Hz																		
FIDRES AQ RG DW	0 1.	.673182 4854827 203 22.667	Hz sec usec																		
DE TE D1 D11	2.0	8.02 298.0 0000000 3000000	usec K sec sec																		
TD0 SF01 NUC1 P1	100.	1 6223248 13C 10.00	MHz usec						C	0 ₃ С, п											
PLW1 SFO2 NUC2 CPDPRG[2	84.5 400.	3199768 1320007 1H waltz16	W MHz					Da	C, D ₂ C	C = C C = C C = C C = C	D ₃										
PCPD2 PLW2 PLW12 PLW13	14.0 0.3 0.1	90.00 3299999 8982001 9607000	usec W W W							D ₂											
F2 - Pro SI SF WDW	cessing 100.	paramet 65536 6127546 EM	ers MHz						-C D ₂												
SSB LB GB PC	0	1.00	Hz				Ď ₂	D													
u	at contact at	16			•			 	. Liberate del						ι.			. whad t			
	a lin la blatta an a' An la blatta an a'	⁽¹¹ 10 balanta kadi Kalenta paliti ya	, na shekarar	Linkeriddenie Heritzeriddenie	n that four da		d and could which t	an a	anna chailteadh Igeadailteach	alan dalardan Tanggapatan	n an		hinn Hidden Tanri Niperea	halldada an an linn Malldada an linn					poposis ^{di} stabilis va pingo ^{n d} u singo	^{la} lladd ddalaet "Yl Ymyn y llyn	na párta de talenda na potencia de talenda
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	4 C	30	20	10	0	ppm

cholesterol-d₄₅ (98%-d)

¹³C{¹H} NMR

O-TBS-22,23-dihydrobrassicasterol-*d*₄₇ (87%-*d*)

|--|

O-TBS-22,23-dihydrobrassicasterol-*d*₄₇ (87%-*d*)

²H NMR

-TBS-22,23-dihydrobrassicasterol- <i>d</i> ₄₇ (87%- <i>d</i>)	¹³ C{ ¹ H} NMR			
F2 - Acquisition Parameters Date20230214 Time 13.42 h INSTRUM spect PROBHD Z108618_0117 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1284			55.730	 -4.414
NS 1284 DS 0 SWH 22058.824 Hz FIDRES 0.673182 Hz AQ 1.4854827 sec RG 203 DW 22.667 usec DE 8.02 usec TE 298.0 K D1 2.0000000 sec D1 0.0300000 sec D1 1 0.0300000 sec TD0 1 SF01 100.6223248 MHz NUC1 13C P1 10.00 usec PLW1 84.53199768 W SF02 400.1320007 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 14.0329999 W PLW12 0.38982001 W PLW12 0.38982001 W PLW13 0.19607000 W F2 - Processing parameters SI 65536 SF 100.6127540 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	$S_{i} = \begin{bmatrix} D_{2} C D_{3} \\ D_{2} C $	$D_{3}C, D_{-}CD_{3}$ $D_{2}C, D_{-}CD_{3}$ $D_{2}C, D_{-}CD_{3}$ $D_{-}CD_{2}$ $D_{-}CD_{2}$		

0.730

9.180

000

O-TBS-24-methylenecholesterol-*d*₄₅ (87%-*d*)

O-TBS-24-methylenecholesterol- d_{45} (87%-d) ²H

²H NMR

-TBS-24-methylenecholesterol-d ₄₅ (87	7%- <i>d</i>)	¹³ C{ ¹ H} NMR				
F2 - Acquisition Parameters Date_ 20230217 Time 10.35 h INSTRUM spect PROBHD Z108618_0117 (PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 16975	156.960 156.875 156.780	141.780	120.821	106.069	 	 -4.416
DS 0 SWH 22058.824 Hz FIDRES 0.673182 Hz AQ 1.4854827 sec RG 203 DW 22.667 usec DE 8.02 usec TE 298.0 K D1 2.0000000 sec D1 0.03000000 sec D1 0.03000000 sec TD0 1 SF01 100.6223248 MHz NUC1 13C P1 10.00 usec PLW1 84.53199768 W SF02 400.1320007 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 14.0329999 W PLW12 0.38982001 W PLW13 0.19607000 W F2 - Processing parameters SI 65536 SF 100.6127538 MHz			$D_{2}CD_{3}$ $D_{2}CD_{3}$ $D_{2}CD_{3}$ $D_{2}CD_{2}$ $D_{2}CD_{2}$ $D_{2}CD_{2}$ $D_{2}CD_{2}$	$D_{3}C, D_{2}C - CD_{3}$ $D_{2}C, D_{2}C - D_{2}$ $D_{3}C, D_{2}C - D_{2}$ $D_{2}C - D_{2}$ $D_{2}C - D_{2}$ $D_{2}C - D_{2}$		
WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40						

22,23-dihydrobrassicasterol-d₅₀ (87%-d)

¹H NMR

²H NMR

22,23-dihydrobrassicasterol-*d*₅₀ (87%-*d*)

ppm

¹³C{¹H} NMR 22,23-dihydrobrassicasterol-*d*₅₀ (87%-*d*)

24-methylenecholesterol- d_{45} (87%-d) ¹H

¹H NMR

F2 - Acquisition Parameters Date_ 20230303 Time 18.38 h INSTRUM spect PROBHD Z108618_0117 (PULPROG zg TD 120046 SOLVENT CDC13 NS 2 DS 0 SWH 6002.401 Hz FIDRES 0.100002 Hz AQ 9.9998322 sec RG 203 DW 83 300 Usec	7.263	5.340 4.703 4.703 4.702 4.702 4.690 4.690 4.636 4.636 4.636 4.636	2.265 1.801
DE 16.70 usec TE 297.8 K D1 10.0000000 sec TD0 1 SF01 400.1320007 MHz NUC1 1H P1 15.00 usec PLW1 14.03299999 W F2 - Processing parameters SI 32768 SF 400.1300085 MHz WDW no SSB 0 LB 0 Hz GB 0 PC 1.00		4.7 pppm	$\begin{array}{c} D_2C \\ D_$

D₃C_DCCD₃

D

ppm

0

 D_2C

^C D₂

* erease

1

- ĆD₂

24-methylenecholesterol- d_{45} (87%-d) ²

²H NMR

¹³C{¹H,²H} NMR expansions

