Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Mechanochemical Arylative Detrifluoromethylation of Trifluoromethylarenes

Satenik Mkrtchyan,^a Mohanad Shkoor,^b Sehrish Sarfaraz,^c Khurshid Ayub,^c Viktor O. Iaroshenko.^a*

^aDepartment of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica (Slovakia). ^bDepartment of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha (Qatar). ^c Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060 (Pakistan).

Table of Contents

(A)	Experimental Section	<u>S3</u>
I.	Scope of substrates used	<u>S3</u>
II.	Reaction condition screening	<u>S5</u>
III.	Reaction procedures with optimized reaction conditions	<u>. S7</u>
(B)	Characterization of products	<u>S8</u>
(C)	Copies ¹ H and ¹³ C NMR spectra	<u>S29</u>
(D)	Computational study	<u>\$96</u>

(A) Experimental Section.

A-1. Scope of substrates used.

Commercially available starting materials, reagents, catalysts, anhydrous and degassed solvents were used without further purification. Flash column chromatography was performed with Merck Silica gel 60 (230-400 mesh). The solvents for column chromatography were distilled before the use. Thin layer chromatography was carried out using Merck TLC Silica gel 60 F₂₅₄ and visualized by short-wavelength ultraviolet light or by treatment with potassium permanganate (KMnO₄) stain. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 250, 400 and 500 MHz at 20°C. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl₃ (7.26 ppm) and DMSO (2.50 ppm). All ¹³C{¹H} NMR spectra were reported in pertre reported in pertre reported in pertre reported in the trace (Hz). Gas chromatographic analyses was performed on Gas Chromatograph Mass Spectrometer GCMS-QP2010 Ultra instrument. Mechanochemical synthesis was performed using the Retsch MM400 mill using the standard kit. Liquid chemicals were dosed using gas tight micro syringes. Isolation of obtained compounds was achieved by column chromatography on Silica gel. All commercially available compounds were purchased from appropriate vendors.

S3

Scheme S1. List of ArCF₃ used.

Scope of benzonitriles:

Scheme S2. Nitriles used in this study.

Scope of boronic acids:

Scheme S3. List of boronic acids used.

A-2. Reaction condition screening.

Table S1			
Entr.	Reaction components	Frequency/Time	Yield (%) 2 9
1	ArCF ₃ (1 equiv.), N(SiMe ₃) ₃ (1.3 equiv.), ZrO ₂ (1 equiv.), NaHCO ₃ (4 equiv.), r.t.	30Hz/60min	0
2	ArCF₃ (1 equiv.), N(SiMe₃)₃ (1.3 equiv.), ZrN (1 equiv.), NaHCO₃ (4 equiv.), r.t.	30Hz/60min	0
3	ArCF ₃ (1 equiv.), N(SiMe ₃) ₃ (1.3 equiv.), La ₂ O ₃ (1 equiv.), NaHCO ₃ (4 equiv.), r.t.	30Hz/60min	37
4	ArCF₃ (1 equiv.), N(SiMe₃)₃ (1.3 equiv.), Dy₂O₃ (1 equiv.), NaHCO₃ (4 equiv.), r.t.	30Hz/60min	32
5	ArCF3 (1 equiv.), N(SiMe3)3 (1.3 equiv.), Yb2O3 (1 equiv.), NaHCO3 (4 equiv.), r.t.	30Hz/60min	95
6	ArCF ₃ (1 equiv.), N(SiMe ₃) ₃ (1.3 equiv.), Eu ₂ O ₃ (1 equiv.), NaHCO ₃ (4 equiv.), r.t.	30Hz/60min	14
7	ArCF ₃ (1 equiv.), N(SiMe ₃) ₃ (1.3 equiv.), Ce ₂ O ₃ (1 equiv.), NaHCO ₃ (4 equiv.), r.t.	30Hz/60min	17

Table S2			
Entr.	Reaction components	Frequency/Time	Yield (%) 4a
1	ArB(OH) ₂ (1.2 equiv.), NiCl ₂ (0.1 equiv.), dppe (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	0
2	ArB(OH) ₂ (1.2 equiv.), NiCl ₂ (0.1 equiv.), dppp (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	0
3	ArB(OH) ₂ (1.2 equiv.), NiBr ₂ (0.1 equiv.), dppe (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	11
4	ArB(OH) ₂ (1.2 equiv.), NiBr ₂ (0.1 equiv.), dppp (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	13

5	ArB(OH) ₂ (1.2 equiv.), NiCl ₂ (0.1 equiv.), PCy ₃ (0.3 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	27
6	ArB(OH) ₂ (1.2 equiv.), NiBr ₂ (0.1 equiv.), 1,1'-bis(dialkyl/diarylphosphino)ferrocene (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	45
7	ArB(OH) ₂ (1.2 equiv.), Ni[PCy ₃] ₂ Br ₂ (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	71
8	ArB(OH) ₂ (1.2 equiv.), NiBr ₂ (0.1 equiv.), PCy ₃ (0.3 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	91
9	ArB(OH) ₂ (1.5 equiv.), NiBr ₂ (0.1 equiv.), PCy ₃ (0.3 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/60min	92

Table S3			
Entr.	Reaction components	Frequency/Time	Yield (%)
	Reaction components	пециенсулние	4a
1	ArB(OH)₂ (1.2 equiv.), NiBr₂ (0.1 equiv.), PCy₃ (0.3 equiv.), Yb₂O₃ (1 equiv.), Na₂CO₃ (4 equiv.), r.t.	30Hz/90min	87
2	ArB(OH) ₂ (1.5 equiv.), NiBr ₂ (0.1 equiv.), PCy ₃ (0.3 equiv.), Yb ₂ O ₃ (1 equiv.), Na ₂ CO ₃ (4 equiv.), r.t.	30Hz/90min	72
3	ArB(OH) ₂ (1.2 equiv.), Ni[PCy ₃] ₂ Br ₂ (0.1 equiv.), Na ₂ CO ₃ (2 equiv.), r.t.	30Hz/90min	53

A-3. Reaction procedure with optimised reaction conditions.

General procedure for the synthesis of nitriles 2 starting from trifluoromethyl arenes 1:

In air, to 5 mL grinding vessel (made of stainless) equipped with two balls (made of stainless, diameter: 5 mm) was placed consequently $N(SiMe_3)_3$ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.); then the appropriate CF₃ substrate (1 mmol, 1 equiv.) was added and the reaction vessel was properly capped. Finally, the reaction vessel was installed on the mill and subjected to milling at 30 Hz for 60 minutes at room temperature. After completion of the reaction, the resulted crude was directly subjected to gradient flash chromatography on silica gel to isolate the desired nitrile derivative.

The gram scale synthesis was performed on 10 mmol of the starting nitro substrate in a 25 mL grinding vessel by using three 10 mm balls.

General procedure for the synthesis of biphenyls 4 starting from nitriles 2:

In glovebox under the Ar atmosphere, to 5 mL grinding vessel (made of stainless) equipped with two balls (made of stainless, diameter: 5 mm) was placed consequently Na₂CO₃ (212 mg, 2 mmol, 2 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (84 mg, 0.3 mmol, 0.3 equiv.); then the appropriate nitrile (1 mmol, 1 equiv.) and the appropriate boronic acid (1.2 mmol, 1.2 equiv.) was added and the reaction vessel was properly capped. Finally, the reaction vessel was installed on the mill and subjected to milling at 30 Hz for 60 minutes at room temperature. After completion of the reaction, the resulted crude was directly subjected to gradient flash chromatography on silica gel to isolate the desired biphenyl derivative.

The gram scale synthesis was performed on 10 mmol of the starting nitro substrate in a 25 mL grinding vessel by using three 10 mm balls.

General procedure for the synthesis of biphenyls 4 starting from trifluoromethyl arenes 1:

In glovebox under the Ar atmosphere, to 5 mL grinding vessel (made of stainless) equipped with two balls (made of stainless, diameter: 5 mm) was placed consequently N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (84 mg, 0.3 mmol, 0.3 equiv.); then the appropriate CF₃ substrate (1 mmol, 1 equiv.) and the appropriate boronic acid (1.2 mmol, 1.2 equiv.) was added and the reaction vessel was properly capped. Finally, the reaction vessel was installed on the mill and subjected to milling at 30 Hz for 90 minutes at room temperature. After completion of the reaction, the resulted crude was directly subjected to gradient flash chromatography on silica gel to isolate the desired biphenyl derivative.

The gram scale synthesis was performed on 10 mmol of the starting nitro substrate in a 25 mL grinding vessel by using three 10 mm balls.

(B) Characterization of products

4-methylbenzonitrile 2a.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1a** (160 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2a** (106 mg, 0.91 mmol, 91%). The gram scale synthesis was performed on 10 mmol of the starting **1a** and the nitrile **2a** was prepared in 87% yield (1.01 g, 8.7 mmol).

Low melting white solid. ¹H NMR (500 MHz, CDCl₃): δ 2.36 (s, 3H, Me), 7.21 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 7.46 (d, 2H, ³J = 8.2 Hz, CH_{Ar}).

 ^{13}C NMR (126 MHz, CDCl₃): δ 21.5, 108.9, 117.9, 129.6, 131.7, 143.5.

MS (GC, 70eV): m/z (%) = 117 (M⁺, 100), 90 (38).

Anal. calcd. for C₈H₇N: C 82.02; H, 6.02; N 11.96. Found: C 82.19; H, 6.30; N 11.51.

3-fluoro-4-methylbenzonitrile 2b.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1b** (178 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography

on silica gel to provide the desired nitrile **2b** (121 mg, 0.90 mmol, 90%). The gram scale synthesis was performed on 10 mmol of the starting **1b** and the nitrile **2b** was prepared in 82% yield (1.10 g, 8.2 mmol).

White solid, mp 83 - 84 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.34 (d, 3H, ⁴*J* = 1.8 Hz, Me), 7.28 – 7.31 (m, 2H, CH_{Ar}), 7.35 (dd, 1H, ³*J* = 7.8 Hz, ⁴*J* = 1.3 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 14.9, 110.9 (d, *J_{CF}* = 10.2 Hz), 117.8 (d, *J_{CF}* = 3.0 Hz), 118.1 (d, *J_{CF}* = 25.7 Hz), 127.9 (d, *J_{CF}* = 3.8 Hz), 131.3 (d, *J_{CF}* = 16.9 Hz), 132.4 (d, *J_{CF}* = 5.5 Hz), 160.7 (d, ¹*J_{CF}* = 251.7 Hz).

MS (GC, 70eV): m/z (%) = 135 (M⁺, 100), 108 (34).

Anal. calcd. for C₈H₆NF: C 71.10; H, 4.48; N 10.36. Found: C 71.23; H, 4.43; N 10.42.

4-(benzyloxy)benzonitrile 2c.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1c** (252 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2c** (186 mg, 0.89 mmol, 89%).

White solid, mp 94 - 96 °C. ¹H NMR (500 MHz, CDCl₃): δ 5.12 (s, 2H, CH₂), 7.02 (d, 2H, ³*J* = 8.8 Hz, CH_{Ar}), 7.36 – 7.39 (m, 3H, CH_{Ar}), 7.41 (d, 2H, *J* = 4.8 Hz, CH_{Ar}), 7.58 (dd, 2H, ³*J* = 8.8 Hz, ⁴*J* = 1.8 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 70.2, 104.2, 115.5, 119.1, 127.4, 128.4, 128.7, 134.0, 135.7, 161.9.

MS (GC, 70eV): m/z (%) = 209 (M⁺, 4), 91 (100).

Anal. calcd. for C₁₄H₁₁NO: C 80.36; H, 5.30; N 6.69. Found: C 80.46; H, 5.28; N 6.73.

4-(pentafluoro-l6-sulfanyl)benzonitrile 2d.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1d** (272 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2d** (183 mg, 0.80 mmol, 80%). Yellowish solid, mp 103 - 104 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, 2H, ³J = 8.5 Hz, CH_{Ar}), 7.89 (d, 2H, ³J = 8.7 Hz, CH_{Ar}). ¹³C NMR (126 MHz, CDCl₃): δ 115.9, 116.9, 127.0 (m), 132.7, 156.5 (q, ²J_{CF} = 19.5 Hz).

MS (GC, 70eV): m/z (%) = 229 (M⁺, 100), 121 (80), 102 (67).

Anal. calcd. for C₇H₄NSF₅: C 36.69; H, 1.76; N 6.11. Found: C 36.61; H, 1.63; N 6.19.

4-fluoro-1-naphthonitrile 2e.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1e** (214 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2e** (150 mg, 0.88 mmol, 88%).

White solid, mp 89 - 91 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.11 – 7.15 (m, 1H, CH_{Ar}), 7.60 – 7.63 (m, 1H, CH_{Ar}), 7.67 – 7.70 (m, 1H, CH_{Ar}), 7.80 – 7.83 (m, 1H, CH_{Ar}), 8.07 (dd, 1H, ³J = 8.3 Hz, ⁴J = 2.3 Hz, CH_{Ar}), 8.13 (d, 1H, ³J = 8.3 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 106.0 (d, J_{CF} = 4.3 Hz), 109.3 (d, J_{CF} = 21.6 Hz), 117.0, 121.0 (d, J_{CF} = 4.6 Hz), 123.2 (d, J_{CF} = 16.9 Hz), 124.8, 127.7, 129.4, 133.1(d, J_{CF} = 10.6 Hz), 133.9 (d, J_{CF} = 6.6 Hz), 161.3 (d, ¹ J_{CF} = 263.2 Hz).

[1,1'-biphenyl]-4-carbonitrile 2f.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1f** (222 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2f** (168 mg, 0.94 mmol, 94%).

White solid, mp 85 - 87 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.42 – 7.45 (m, 1H, CH_{Ar}), 7.49 – 7.52 (m, 2H, CH_{Ar}), 7.18 – 7.73 (m, 2H, CH_{Ar}), 7.85 –

7.86 (m, 2H, CH_{Ar}), 7.90 – 7.91 (m, 2H, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 110.0, 118.9, 127.1, 127.6, 128.7, 129.2, 132.8, 138.3, 144.6.

MS (GC, 70eV): m/z (%) = 179 (M⁺, 100), 151 (13).

Anal. calcd. for $C_{13}H_9N$: C 87.12; H, 5.06; N 7.82. Found: C 87.31; H, 5.11; N 7.58.

4'-methyl-[1,1'-biphenyl]-4-carbonitrile 2g.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1g** (236 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2g** (183 mg, 0.95 mmol, 95%).

White solid, mp 110 - 111 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.42 (s, 3H, Me), 7.29 (d, 2H, ³*J* = 7.09 Hz, CH_{Ar}), 7.50 (d, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 7.66 (d, 2H, ³*J* = 8.5 Hz, CH_{Ar}), 7.70 (d, 2H, ³*J* = 8.6 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 21.1, 110.4, 119.0, 127.0, 127.4, 129.8, 132.5, 136.2, 138.7, 145.5.

MS (GC, 70eV): m/z (%) = 193 (M⁺, 100), 151 (13).

Anal. calcd. for C₁₄H₁₁N: C 87.01; H, 5.74; N 7.25. Found: C 87.31; H, 5.11; N 7.58.

4-(2-methylthiazol-4-yl)benzonitrile 2h.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1h** (243 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2h** (174 mg, 0.87 mmol, 87%).

Yellowish solid, mp 154 - 155 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 2.78 (s, 3H, Me), 7.46 (s, 1H, CH_{Ar}), 7.68 (d, 2H, ³*J* = 8.7 Hz, CH_{Ar}), 7.98 (d, 2H, ³*J* = 8.5 Hz, CH_{Ar}), 7.70 (d, 2H, ³*J* = 8.7 Hz, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 19.3, 111.2, 115.2, 118.9, 126.7, 132.6, 138.5, 153.1, 166.6.

MS (GC, 70eV): m/z (%) = 200 (M⁺, 69), 159 (100).

Anal. calcd. for C₁₁H₈N₂S: C 65.98; H, 4.03; N 13.99. Found: C 66.06; H, 4.09; N 14.07.

4-((1s,4r)-4-propylcyclohexyl)benzonitrile 2i.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1i** (270 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2i** (193 mg, 0.85 mmol, 85%). White solid, mp 45 - 46 °C. ¹H NMR (500 MHz, CDCl₃): δ 0.90 (t, 3H, CH₃), 1.04 – 1.10 (m, 2H, Cy), 1.20 – 1.45 (m, 7H, Cy), 1.86 (br, s, 2H, CH₂), 1.89

(br, s, 2H, CH₂), 2.51 (tt, 1H, ³J = 12.7 Hz, ⁴J = 3.0 Hz, Cy), 7.29 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 7.56 (d, 2H, ³J = 8.2 Hz, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 14.4, 20.0, 33.2, 33.9, 36.9, 39.6, 44.8, 109.6, 119.2, 127.7, 132.2, 153.4.

MS (GC, 70eV): m/z (%) = 227 (M⁺, 93), 142 (50), 129 (100), 122 (44), 116 (87).

Anal. calcd. for C₁₆H₂₁N: C 84.53; H, 9.31; N 6.16. Found: C 84.63; H, 9.26; N 6.11.

CN N

nicotinonitrile 2j.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1j** (147 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2j** (83 mg, 0.80 mmol, 80%).

Yellowish solid, mp 49 - 50 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 7.39 – 7.42 (m, 1H, CH_{Ar}), 7.92 – 7.95 (m, 1H, CH_{Ar}), 8.76 – 8.77 (m, 1H, CH_{Ar}), 8.83 (s, 1H, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 110.1, 116.6, 123.7, 139.3, 152.5, 153.0.

MS (GC, 70eV): m/z (%) = 104 (M⁺, 100), 77 (65).

Anal. calcd. for C₆H₄N₂: C 69.22; H, 3.87; N 26.91. Found: C 69.31; H, 3.79; N 26.90.

6-methylnicotinonitrile 2k.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1k** (161 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2k** (97 mg, 0.82 mmol, 82%).

Yellowish solid, mp 84 - 86 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.54 (s, 3H, Me), 7.21 (d, 1H, ³J = 8.1 Hz, CH_{Ar}), 7.76 (dd, 1H, ³J = 8.2 Hz, ⁴J = 2.0 Hz, CH_{Ar}), 8.66 (s, 1H, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 24.7, 106.7, 116.7, 123.1, 139.0, 151.7, 162.9.

Anal. calcd. for C₇H₆N₂: C 71.17; H, 5.12; N 23.71. Found: C 71.23; H, 5.19; N 23.58.

pyrazine-2-carbonitrile 21.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1** (148 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2I** (83 mg, 0.79 mmol, 79%).

Colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ 8.67 (br. s, 1H, CH_{Ar}), 7.75 (d, 1H, ⁴J = 2.4 Hz, CH_{Ar}), 8.86 (s, 1H, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 115.1, 130.5, 145.3, 147.3, 148.0.

Anal. calcd. for C₅H₃N₃: C 57.14; H, 2.88; N 39.98. Found: C 57.23; H, 2.61; N 40.16.

1H-indole-6-carbonitrile 2m.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1m** (185 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2m** (116 mg, 0.82 mmol, 82%). Yellow solid, mp 126 - 127 °C. ¹H NMR (500 MHz, CDCl₃): δ 6.63 (s, 1H, CH_{Ar}), 7.35 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.70 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.70 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.70 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.70 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.43 (s, 1H, CH_{Ar}), 7.44 (s, 1H, CH_{Ar}), 7.45 (s, 1H, CH_{Ar}),

Hz, CH_{Ar}), 7.78 (s, 1H, CH_{Ar}), 8.78 (br. s, 1H, NH).

¹³C NMR (126 MHz, CDCl₃): δ 103.3, 104.0, 116.1, 120.8, 121.5, 122.6, 128.2, 131.2, 134.6.

HRMS (TOF MS ES+) m/z: $[M + H]^+$: Calcd for C₉H₇N₂ 143.0615. Found 143.0609.

NC

1H-indole-5-carbonitrile 2n.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (336 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1n** (185 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2n** (113 mg, 0.80 mmol, 80%). Yellowish solid, mp 106 - 107 °C. ¹H NMR (500 MHz, CDCl₃): δ 6.62 (s, 1H, CH_{Ar}), 7.36 (t, 1H, ⁴*J* = 2.7 Hz, CH_{Ar}), 7.41 (dd, 1H, ³*J* = 8.6 Hz, ⁴*J* = 1.4 Hz, CH_{Ar}), 7.50 (d, 1H, ³*J* = 8.6 Hz, CH_{Ar}), 7.99 (s, 1H, CH_{Ar}), 9.07 (br. s, 1H, NH). ¹³C NMR (126 MHz, CDCl₃): δ 102.1, 103.0, 121.0, 124.5, 126.2, 126.7, 127.5, 137.5. Anal. calcd. for C₉H₆N₂: C 76.04; H, 4.25; N 19.71. Found: C 75.96; H, 4.12; N 19.92.

1H-indole-4-carbonitrile 2o.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), NaHCO₃ (348 mg, 4 mmol, 4 equiv.) and appropriate CF₃ substrate **1o** (185 mg, 1 mmol, 1 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired nitrile **2o** (119 mg, 0.84 mmol, 84%).

Yellowish solid, mp 118 - 120 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 6.75 (s, 1H, CH_{Ar}), 7.22 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.41 (d, 1H, ⁴*J* = 2.8 Hz, CH_{Ar}), 7.47 (d, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.67 (d, 1H, ³*J* = 8.2 Hz, CH_{Ar}), 8.94 (br. s, 1H, NH).

¹³C NMR (126 MHz, CDCl₃): δ 116.2, 119.0, 121.4, 125.2, 127.1, 129.1, 135.5.

Anal. calcd. for C₉H₆N₂: C 76.04; H, 4.25; N 19.71. Found: C 76.16; H, 4.29; N 19.55.

4,4'-dimethyl-1,1'-biphenyl 4a.

The title compound was prepared starting from Na₂CO₃ (212 mg, 2 mmol, 2 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), nitrile **2a** (117 mg, 1 mmol, 1 equiv.) and boronic acid **3a** (136 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4a** (165 mg, 0.91 mmol, 91%). The gram scale synthesis was performed on 10 mmol of the starting nitrile **2a** and the biphenyl **4a** was prepared in 83% yield (1.51 g, 8.3 mmol).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1a** (160 mg, 1 mmol, 1

equiv.) and boronic acid **3a** (163 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4a** (158 mg, 0.87 mmol, 87%). The gram scale synthesis was performed on 10 mmol of the starting **1a** and the biphenyl **4a** was prepared in 80% yield (1.45 g, 8.0 mmol).

White solid, mp 118 - 119 °C. ¹H NMR (500 MHz, DMSO-*d₆*): δ 2.33 (s, 6H, 2xMe), 7.24 (d, 4H, ³*J* = 7.2 Hz, CH_{Ar}), 7.51 (d, 4H, ³*J* = 8.1 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 20.6, 126.2, 129.4, 136.3, 137.2.

MS (GC, 70eV): m/z (%) = 182 (M⁺, 100), 167 (68), 152 (14).

Anal. calcd. for C₁₄H₁₄: C 92.26; H, 7.74. Found: C 92.33; H, 7.67.

4-butyl-1,1'-biphenyl 4b.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1q** (146 mg, 1 mmol, 1 equiv.) and boronic acid **3b** (214 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4b** (155 mg, 0.74 mmol, 74%).

Colorless liquid. ¹**H NMR** (500 MHz, DMSO-*d*₆): δ 0.89 (t, 3H, ³*J* = 7.7 Hz, Me), 1.29 – 1.33 (m, 2H, CH₂), 1.55 – 1.57 (m, 2H, CH₂), 2.59 (t, 2H, ³*J* = 7.8 Hz, CH₂), 7.25 (d, 2H, ³*J* = 7.3 Hz, CH_{Ar}), 7.33 (t, 1H, ³*J* = 7.3 Hz, CH_{Ar}), 7.45 (t, 2H, ³*J* = 7.3 Hz, CH_{Ar}), 7.55 (d, 2H, ³*J* = 7.8 Hz, CH_{Ar}), 7.62 (d, 2H, ³*J* = 7.8 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 13.8, 21.8, 33.1, 34.5, 126.4, 126.5, 127.1, 128.8, 137.5, 140.1, 141.6.

Anal. calcd. for C₁₄H₁₄: C 91.37; H, 8.63. Found: C 91.29; H, 8.71.

methyl 4'-methyl-[1,1'-biphenyl]-2-carboxylate 4c.

The title compound was prepared starting from Na₂CO₃ (212 mg, 2 mmol, 2 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), nitrile **2p** (166 mg, 1 mmol, 1 equiv.) and boronic acid **3a** (163 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4c** (165 mg, 0.73 mmol, 73%).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1r** (204 mg, 1 mmol, 1 equiv.) and boronic acid **3a** (163 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4c** (144 mg, 0.64 mmol, 64%).

Alternatively, title compound was prepared starting from Na₂CO₃ (212 mg, 2 mmol, 2 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), nitrile **2a** (117 mg, 1 mmol, 1 equiv.) and boronic acid **3c** (216 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4c** (169 mg, 0.75 mmol, 75%).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1a** (160 mg, 1 mmol, 1 equiv.) and boronic acid **3c** (216 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4c** (150 mg, 0.65 mmol, 65%).

White solid, mp 60 - 61 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 2.34 (s, 3H, Me), 3.59 (s, 3H, OMe), 7.17 (d, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 7.22 (d, 2H, ³*J* = 7.8 Hz, CH_{Ar}), 7.40 (d, 1H, ³*J* = 7.7 Hz, CH_{Ar}), 7.46 (t, 1H, ³*J* = 7.5 Hz, CH_{Ar}), 7.59 (dd, 1H, ³*J* = 7.4 Hz, ⁴*J* = 1.1 Hz, CH_{Ar}), 7.70 (d, 1H, ³*J* = 7.7 Hz, CH_{Ar}). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 20.7, 51.9, 127.2, 128.0, 128.9, 129.1, 130.4, 130.9, 131.4, 136.6, 137.5, 141.0, 168.8. Anal. calcd. for C₁₅H₁₄O₂: C 79.62; H, 6.24. Found: C 79.83; H, 6.11.

4-propoxy-1,1'-biphenyl 4d.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1q** (146 mg, 1 mmol, 1 equiv.) and boronic acid **3d** (216 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4d** (176 mg, 0.83 mmol, 83%).

White solid, mp 76 - 77 °C. ¹H NMR (500 MHz, DMSO- d_6): δ 1.04 (t, 3H, ³J = 7.7 Hz, Me), 1.79 – 1.83 (m, 2H, CH₂), 2.98 (t, 2H, ³J = 7.5 Hz, OCH₂), 7.39 – 7.42 (m, 1H, CH_{Ar}), 7.46 – 7.49 (m, 2H, CH_{Ar}), 7.62 – 7.64 (m, 2H, CH_{Ar}), 7.68 (dt, 1H, ³J = 8.5 Hz, ⁴J = 1.8 Hz, CH_{Ar}), 8.04 (dt, 1H, ³J = 8.5 Hz, ⁴J = 1.7 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 13.9, 17.7, 40.5, 127.1, 127.2, 128.1, 128.6, 128.9, 135.7, 139.8, 145.4, 199.9. Anal. calcd. for C₁₅H₁₆O: C 84.87; H, 7.60. Found: C 84.96; H, 7.32.

4'-bromo-[1,1'-biphenyl]-4-ol 4e.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1s** (225 mg, 1 mmol, 1 equiv.) and boronic

acid **3e** (165 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4e** (193 mg, 0.78 mmol, 78%).

Yellow solid, mp 164 - 166 °C. ¹**H NMR** (500 MHz, DMSO-*d*₆): 6.85 (d, 2H, ³*J* = 7.9 Hz, CH_{Ar}), 7.47 (d, 2H, ³*J* = 7.9 Hz, CH_{Ar}), 7.51 (d, 2H, ³*J* = 7.6 Hz, CH_{Ar}), 7.56 (d, 2H, ³*J* = 8.0 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 115.8, 119.6, 127.7, 128.0, 129.5, 131.6, 139.4, 157.5.

MS (GC, 70eV): m/z (%) = 249 (90), 248 (M⁺, 100), 168 (13), 141 (34), 139 (23).

Anal. calcd. for C₁₂H₉BrO: C 57.86; H, 3.64. Found: C 58.01; H, 3.59.

2,4-difluoro-1,1'-biphenyl 4f.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1p** (182 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4f** (167 mg, 0.88 mmol, 88%).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1q** (146 mg, 1 mmol, 1 equiv.) and boronic acid **3g** (190 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4f** (163 mg, 0.86 mmol, 86%).

White solid, mp 61 - 63 °C. ¹**H NMR** (500 MHz, CDCl₃): 6.91 – 6.99 (m, 2H, CH_{Ar}), 7.37 – 7.42 (m, 2H, CH_{Ar}), 7.44 – 7.47 (m, 2H, CH_{Ar}), 7.51 (d, 2H, ³J = 7.4 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, CDCl₃): δ 104.4 (t, J_{CF} = 26.1 Hz), 111.5 (d, J_{CF} = 21.0 Hz, J_{CF} = 3.9 Hz), 125.4 (m), 127.7, 128.5, 128.9, 131.4 (m), 135.0, 159.7 (dd, $^{1}J_{CF}$ = 250.0 Hz, J_{CF} = 11.4 Hz), 162.2 (dd, $^{1}J_{CF}$ = 249.1 Hz, J_{CF} = 11.4 Hz). HRMS (TOF MS ES+) m/z: [M]⁺: Calcd for C₁₂H₈F₂ 190.0591. Found 190.0594.

9-([1,1'-biphenyl]-3-yl)-9H-carbazole 4g.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1t** (311 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4g** (252 mg, 0.79 mmol, 79%). The gram scale synthesis was performed on 10 mmol of the starting CF₃ substrate **1t** and the biphenyl **4g** was prepared in 73% yield (2.32 g, 7.3 mmol).

White solid, mp 128 - 129 °C. ¹H NMR (500 MHz, CDCl₃): 7.33 – 7.36 (t, 2H, ³*J* = 7.7 Hz, CH_{Ar}), 7.42 – 7.54 (m, 7H, CH_{Ar}), 7.58 (d, 1H, ³*J* = 7.3 Hz, CH_{Ar}), 7.69 (d, 3H, ³*J* = 8.8 Hz, CH_{Ar}), 7.72 – 7.73 (m, 1H, CH_{Ar}), 7.85 (s, 1H, CH_{Ar}), 8.21 (d, 2H, ³*J* = 7.7 Hz, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 109.8, 120.0, 120.3, 123.3, 125.7, 125.8, 126.0, 126.1, 127.1, 127.8, 128.9, 130.2, 138.2, 140.1, 140.8, 143.1.

Anal. calcd. for C₂₄H₁₇N: C 90.25; H, 5.36; N, 4.39. Found: C 90.33; H, 5.62; N 4.05.

[1,1'-binaphthalene]-2,2'-diol 4h.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1u** (212 mg, 1 mmol, 1 equiv.) and boronic acid **3h** (226 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biaryl **4h** (183 mg, 0.64 mmol, 64%).

White solid, mp 205 - 208 °C. ¹H NMR (500 MHz, DMSO- d_6): 6.98 (d, 2H, ³J = 8.6 Hz, CH_{Ar}), 7.17 (dt, 2H, ³J = 6.9 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.24 (dt, 2H, ³J = 7.9 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.36 (d, 2H, ³J = 8.8 Hz, CH_{Ar}), 7.87 (t, 4H, ³J = 7.4 Hz, CH_{Ar}), 9.26 (s, 2H, 2xOH).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 115.5, 118.6, 122.3, 124.5, 125.9, 127.9, 128.1, 128.7, 134.2, 153.1.

Anal. calcd. for C₂₀H₁₄O₂: C 83.90; H, 4.93. Found: C 83.97; H, 5.03.

[1,1'-biphenyl]-4-yl(piperidin-1-yl)methanone 4i.

The title compound was prepared starting from Na₂CO₃ (212 mg, 2 mmol, 2 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), nitrile **2q** (214 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4i** (235 mg, 0.89 mmol, 89%).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1v** (257 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4i** (220 mg, 0.83 mmol, 83%).

White solid, mp 98 - 99 °C. ¹H NMR (500 MHz, CDCl₃): 1.61 – 1.69 (m, 6H, Piperidine), 3.40 – 3.70 (m, 4H, Piperidine), 7.37 (t, 1H, ³*J* = 7.3 Hz, CH_{Ar}), 7.44 (d, 2H, ³*J* = 7.6 Hz, CH_{Ar}), 7.47 (d, 2H, ³*J* = 7.3 Hz, CH_{Ar}), 7.59 (d, 2H, ³*J* = 7.3 Hz, CH_{Ar}), 7.61 (d, 2H, ³*J* = 7.9 Hz, CH_{Ar}). ¹³C NMR (126 MHz, CDCl₃): δ 24.6, 127.1, 127.4, 127.6, 128.8, 135.2, 140.3, 142.2, 170.1. HRMS (TOF MS ES+) m/z: [M + H]⁺: Calcd for C₁₈H₁₉NO 266.1550. Found 266.1545.

[1,1'-biphenyl]-4-yl(pyrrolidin-1-yl)methanone4j.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1w** (243 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4j** (213 mg, 0.85 mmol, 85%). The gram scale synthesis was performed on 10 mmol of the starting **1x** and the biphenyl **4j** was prepared in 80% yield (2.01g, 8.0 mmol).

White solid, mp 139 – 140 °C. ¹**H NMR** (500 MHz, DMSO-*d*₆): 1.78 – 1.82 (m, 2H, Pyrrolidine), 1.83 – 1.87 (m, 2H, Pyrrolidine), 3.42 (t, 2H, ³*J* = 6.4 Hz, Pyrrolidin), 3.48 (t, 2H, ³*J* = 6.8 Hz, Pyrrolidine), 7.39 (t, 1H, ³*J* = 7.2 Hz, CH_{Ar}), 7.48 (d, 2H, ³*J* = 7.8 Hz, CH_{Ar}), 7.60 (d, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 7.70 (t, 4H, ³*J* = 7.5 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 23.9, 26.0, 46.0, 48.9, 126.4, 126.8, 127.8, 127.9, 129.0, 136.1, 139.3, 141.3.

MS (GC, 70eV): m/z (%) = 251 (M⁺, 46), 181 (100), 152 (57.5).

Anal. calcd. for C₁₇H₁₇NO: C 81.24; H, 6.82. Found: C 82.52; H, 6.76.

N-propyl-[1,1'-biphenyl]-4-carboxamide 4k.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1x** (231 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4k** (193 mg, 0.81 mmol, 81%).

White solid, mp 160 - 161 °C. ¹H NMR (500 MHz, DMSO-*d*₆): 0.90 (t, 3H, CH₃), 1.53 − 1.58 (m, 2H, CH₂), 3.25 (q, 2H, ³J = 6.6 Hz, CH₂N), 7.40 (t, 1H,

³*J* = 7.2 Hz, CH_{Ar}), 7.48 (t, 2H, ³*J* = 7.7 Hz, CH_{Ar}), 7.71 – 7.73 (m, 2H, CH_{Ar}), 7.75 (d, 2H, ³*J* = 8.4 Hz, CH_{Ar}), 7.95 (d, 2H, ³*J* = 8.2 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 11.5, 22.5, 41.0, 126.5, 126.9, 127.8, 128.0, 129.0, 133.5, 139.2, 142.5, 165.8.

MS (GC, 70eV): m/z (%) = 239 (M⁺, 36), 197 (19), 181 (100), 152 (44).

Anal. calcd. for C₁₆H₁₇NO: C 80.30; H, 7.16; N, 5.85. Found: C 80.36; H, 7.23; N, 5.91.

[1,1'-biphenyl]-4-yl(phenyl)methanone 4l.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1y** (250 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4l** (211 mg, 0.82 mmol, 82%).

White solid, mp 99 - 101 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.43 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.51 (t, 2H, ³*J* = 7.8 Hz, CH_{Ar}), 7.57 (t, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 7.70 (t, 2H, ³*J* = 7.5 Hz, CH_{Ar}), 7.67 – 7.70 (m, 1H, CH_{Ar}), 7.76 (t, 4H, ³*J* = 7.6 Hz, CH_{Ar}), 7.84 (q, 4H, ³*J* = 6.0 Hz, CH_{Ar}). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 126.8, 127.0, 128.4, 128.6, 129.1, 129.6, 130.5, 132.6, 135.7, 137.2, 138.9, 144.2, 195.3. MS (GC, 70eV): m/z (%) = 258 (M⁺, 52), 181 (100), 152 (50). Anal. calcd. for C₁₉H₁₄O: C 88.34; H, 5.46. Found: C 88.41; H, 5.55.

N-(4-chlorobenzyl)-[1,1'-biphenyl]-2-amine 4m.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1z** (286 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired biphenyl **4m** (231 mg, 0.79 mmol, 79%).

Yellowish solid, mp 154 - 155 °C. ¹H NMR (500 MHz, *CDCl*₃): 4.33 (s, 2H, CH₂), 4.47 (br. s, 1H, NH), 6.63 (d, 1H, ³*J* = 8.0 Hz, CH_{Ar}), 6.84 (t, 1H, ³*J* = 7.2 Hz, CH_{Ar}), 7.17 (d, 1H, ³*J* = 7.3 Hz, CH_{Ar}), 7.22 (t, 1H, ³*J* = 7.0 Hz, CH_{Ar}), 7.28 (d, 2H, ³*J* = 8.3 Hz, CH_{Ar}), 7.32 (d, 2H, ³*J* = 8.5 Hz, CH_{Ar}), 7.36 – 7.42 (m, 1H, CH_{Ar}), 7.49 – 7.53 (m, 4H, CH_{Ar}).

¹³**C NMR** (126 MHz, *CDCl*₃): δ 47.4, 110.7, 117.4, 127.3, 127.7, 128.3, 128.7, 129.0, 129.3, 130.2, 132.6, 138.0, 139.3, 144.5.

Anal. calcd. for C₁₉H₁₆NCI: C 77.68; H, 5.49; N, 4.77. Found: C 77.62; H, 5.29; N, 4.71.

1-methyl-2-phenyl-1H-indole 4n.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1aa** (199 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired phenylindole **4n** (149 mg, 0.72 mmol, 72%).

Yellowish solid, mp 102 - 103 °C. ¹**H NMR** (500 MHz, DMSO- d_6): δ 3.04 (s, 3H, Me), 6.73 (s, 1H, CH_{indole}), 7.31 (dt, 1H, ³*J* = 7.1 Hz, ⁴*J* = 0.8 Hz, CH_{Ar}), 7.40 (dt, 1H, ³*J* = 7.3 Hz, ⁴*J* = 0.8 Hz, CH_{Ar}), 7.49 (d, 1H, ³*J* = 8.2 Hz, CH_{Ar}), 7.51 – 7.54 (m, 1H, CH_{Ar}), 7.59 (t, 2H, ³*J* = 8.0 Hz, CH_{Ar}), 7.64 – 7.66 (m, 2H, CH_{Ar}), 7.80 (d, 1H, ³*J* = 7.8 Hz, CH_{Ar}).

¹³**C NMR** (126 MHz, DMSO-*d*₆): δ 31.1, 101.6, 109.6, 119.8, 120.4, 121.6, 127.8, 127.9, 128.4, 129.3, 132.8, 138.3, 141.5.

HRMS (TOF MS ES+) m/z: [M + H]⁺: Calcd for C₁₅H₁₄N 208.1131. Found 208.1126.

2-(4-fluorophenyl)-1H-indole 4o.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1ab** (185 mg, 1 mmol, 1 equiv.) and boronic acid **3i** (168 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired phenylindole **4o** (158 mg, 0.75 mmol, 75%).

Yellowish solid, mp 190 - 192 °C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 6.85 (s, 1H, CH_{indole}), 7.01 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.11 (t, 1H, ³*J* = 7.3 Hz, CH_{Ar}), 7.31 (t, 2H, ³*J* = 8.6 Hz, CH_{Ar}), 7.42 (d, 1H, ³*J* = 8.0 Hz, CH_{Ar}), 7.53 (d, 1H, ³*J* = 8.0 Hz, CH_{Ar}), 7.89 – 7.92 (m, 2H, CH_{Ar}), 11.6 (s, 1H, NH).

¹³**C NMR** (126 MHz, DMSO- d_6): δ 98.7, 111.3, 115.8 (d, J_{CF} = 21.5 Hz), 119.4, 120.1, 121.6, 127.0 (d, J_{CF} = 7.9 Hz), 128.7, 128.9 (d, J_{CF} = 3.0 Hz), 137.0 (d, J_{CF} = 49.8 Hz), 161.6 (d, ¹ J_{CF} = 247.4 Hz).

HRMS (TOF MS ES+) m/z: [M + H]⁺: Calcd for C₁₄H₁₁NF 212.0878. Found 212.0876.

3-phenylpyridine 4p.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1q** (146 mg, 1 mmol, 1 equiv.) and boronic acid **3j** (147 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired phenylpyridine **4p** (116 mg, 0.75 mmol, 75%).

Alternatively, the title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1ac** (147 mg, 1 mmol, 1 equiv.) and boronic acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired phenylpyridine **4p** (119 mg, 0.77 mmol, 77%).

Yellow solid. ¹H NMR (500 MHz, DMSO- d_6): δ 7.28 – 7.31 (m, 1H, CH_{Ar}), 7.35 – 7.38 (m, 1H, CH_{Ar}), 7.43 (t, 2H, ³J = 7.8 Hz, CH_{Ar}), 7.53 (d, 2H, ³J = 8.6 Hz, CH_{Ar}), 7.42 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 8.56 (dd, 1H, ³J = 4.8 Hz, ⁴J = 1.3 Hz, CH_{Ar}), 8.83 (d, 1H, ⁴J = 2.2 Hz, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 123.3, 126.9, 127.9, 128.8, 134.1, 136.3, 137.6, 148.1, 148.2.

HRMS (TOF MS ES+) m/z: $[M + H]^+$: Calcd for C₁₁H₁₀N 156.0816. Found 156.0813.

2-phenylpyridine 4q.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1ad** (147 mg, 1 mmol, 1 equiv.) and boronic

acid **3f** (146 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired phenylpyridine **4p** (104 mg, 0.67 mmol, 67%).

Yellowish solid. ¹**H NMR** (500 MHz, DMSO- d_6): δ 7.15 – 7.18 (m, 1H, CH_{Ar}), 7.41 (t, 1H, ³J = 7.5 Hz, CH_{Ar}), 7.47 (t, 2H, ³J = 7.8 Hz, CH_{Ar}), 7.66 – 7.68 (m, 2H, CH_{Ar}), 8.00 – 8.02 (m, 2H, CH_{Ar}), 8.69 (d, 1H, ³J = 4.8 Hz, CH_{Ar}).

¹³C NMR (126 MHz, CDCl₃): δ 120.3, 121.9, 126.7, 128.5, 128.8, 136.5, 139.2, 149.4, 157.2.

HRMS (TOF MS ES+) m/z: $[M + H]^+$: Calcd for C₁₁H₁₀N 156.0816. Found 156.0813.

3-(3,5-dimethoxyphenyl)-4H-chromen-4-one 4r.

The title compound was prepared starting from N(SiMe₃)₃ (304 mg, 1.3 mmol, 1.3 equiv.), Yb₂O₃ (394 mg, 1 mmol, 1 equiv.), Na₂CO₃ (424 mg, 4 mmol, 4 equiv.), NiBr₂ (22 mg, 0.1 mmol, 0.1 equiv.), PCy₃ (83 mg, 0.3 mmol, 0.3 equiv.), CF₃ substrate **1ae** (214 mg, 1 mmol, 1 equiv.) and boronic acid **3k** (218 mg, 1.2 mmol, 1.2 equiv.). The purification was accomplished by column chromatography on silica gel to provide the desired 3-arylchromone **4r** (206 mg, 0.73 mmol, 73%).

Yellow solid, mp 140 - 142 °C. ¹**H NMR** (500 MHz, DMSO-*d*₆): δ 3.81 (s, 6H, 2xOMe), 6.48 (t, 1H, *J* = 2.4 Hz, CH_{Ar}), 6.72 (d, 2H, *J* = 2.4 Hz, CH_{Ar}), 7.42 (t, 1H, ³*J* = 7.5 Hz, CH_{Ar}), 7.47 (d, 1H, ³*J* = 8.3 Hz, CH_{Ar}), 7.66 – 7.68 (m, 2H, CH_{Ar}), 8.03 (s, 1H, CH_{Ar}), 8.30 (dd, 1H, ³*J* = 7.9 Hz, ⁴*J* = 1.8 Hz, CH_{Ar}). ¹³C NMR (126 MHz, CDCl₃): δ 55.4, 100.5, 107.0, 124.5, 125.2, 125.2, 126.3, 133.6, 153.2, 156.0, 160.7, 176.1. HRMS (TOF MS ES+) m/z: [M + H]⁺: Calcd for C₁₇H₁₅O₄ 283.0970. Found 283.0979. (C) Copies ¹H and ¹³C NMR spectra.

Compound 2a

SpinWorks 4: IVA 2193 1H CDCl3

width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt

number of scans: 24

Hz/cm: 187.216 ppm/cm: 0.37433

Compound 2b

SpinWorks 4: SVS 4 1H CDCl3

transmitter freq.: 400.132471 MHz time domain size: 65536 points width: 8196.72 Hz = 20.4850 ppm = 0.125072 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130008 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 274.554 ppm/cm: 0.68616 Compound 2b

SpinWorks 4: SVS 4 13C CDCL3

number of scans: 3700

Compound 2c

SpinWorks 4: SVS 37 1H CDCl3

width: 8196.72 Hz = 20.4850 ppm = 0.125072 Hz/pt number of scans: 16

Hz/cm: 242.275 ppm/cm: 0.60549

Compound 2c

Compound 2d

SpinWorks 4: SVS 39 1H CDCL3

time domain size: 65536 points width: 8196.72 Hz = 20.4850 ppm = 0.125072 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 264.399 ppm/cm: 0.66078
SpinWorks 4: SVS 39 13C CDCl3

Compound 2e

SpinWorks 4: IVA 2625 1H CDCl3

Compound 2e

SpinWorks 4: IVA 2625 13C CDCl3

file: D:\NAPO\NMR\500-2\mkr10706\4\fid expt: <zgpg30: transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt number of scans: 512 freq. of 0 ppm: 125.757813 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 899.847 ppm/cm: 7.15454 Compound 2f

SpinWorks 4: IVA 1961 1H DMSO

S40

Compound 2f

Compound 2g

SpinWorks 4: IVA 1926 1H CDCl3

file: D:\NAPO\NMR\500-2\mkr11502\29\fid expt: <zg3U transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 freq. of 0 ppm: 500.130023 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 378.799 ppm/cm: 0.75740 Compound 2g

Compound 2h

S44

Compound 2h

Compound 2i

SpinWorks 4: SVS 34 1H CDCl3

file: ...\NAPO\NMR\JELA\nmr\jn-SVS-34\1\fid expt: <zg30> transmitter freq.: 400.132471 MHz time domain size: 65536 points width: 8196.72 Hz = 20.4850 ppm = 0.125072 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 313.361 ppm/cm: 0.78314 Compound 2i

time domain size: 65536 points width: 23809.52 Hz = 236.6215 ppm = 0.363305 Hz/pt

number of scans: 4000

LB: 1.000 GF: 0.0000 Hz/cm: 821.184 ppm/cm: 8.16101

Compound 2j

SpinWorks 4: IVA 2202 1H CDCl3

S48

Compound 2j

Compound 2k

transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 freq. of 0 ppm: 500.130024 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 493.421 ppm/cm: 0.98658

Compound 2k

Compound 2I

file: D:\NAPO\NMR\500-2\mkr100201\12\fid expt: <zgpg30> transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt number of scans: 512

freq. of 0 ppm: 125.757800 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 1003.553 ppm/cm: 7.97909 Compound 2n

SpinWorks 4: IVA 2624 1H CDCl3

Compound 2n

Compound 20

SpinWorks 4: IVA 2626 1H CDCl3

SpinWorks 4: IVA 2626 13C CDCL3

number of scans: 512

Compound 4a

SpinWorks 4: IVA 1962 1H DMSO

Compound 4a

Compound 4b

SpinWorks 4: IVA 1978 1H DMSO

transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 rreq. of 0 ppm: 500.130006 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 443.751 ppm/cm: 0.88727 Compound 4b

SpinWorks 4: IVA 1978 13C DMSO

Compound 4c

SpinWorks 4: IVA 1959 1H DMSO

file: D:\NAPO\NMR\500-2\mkr11903\17\fid expt: <zg30: transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 freq. of 0 ppm: 500.130005 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 350.962 ppm/cm: 0.70174 Compound 4c

SpinWorks 4: IVA 1959 13C DMSO

number of scans: 512

Hz/cm: 1006.744 ppm/cm: 8.00446

Compound 4d

SpinWorks 4: IVA 1531 1H CDCl3

transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24

freq. of 0 ppm: 500.130023 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 330.767 ppm/cm: 0.66136

Compound 4d

S67

Compound 4e

SpinWorks 4: IVA 1928 1h DMSO

transmitter freq.: 500.133001 MHztime domain size: 65536 pointswidth: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/ptnumber of scans: 24 freq. of 0 ppm: 500.130004 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 326.946 ppm/cm: 0.65372 Compound 4e

SpinWorks 4: IVA 1928 13C DMSO

157.516	127.735 128.007 129.564 131.646 139.406	115.859 119.654	39,186 39,353 39,687 39,8854
1	144	11	Y

Compound 4f

SpinWorks 4: IVA 1529 1H CDCl3

Compound 4f

SpinWorks 4: IVA 1529 13C CDCL3

S71

Compound 4g

SpinWorks 4: IVA 1942 1H CDCl3

width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt

number of scans: 24

Hz/cm: 300.201 ppm/cm: 0.60024
Compound 4g

SpinWorks 4: IVA 1942 13c CDCl3

Compound 4h

SpinWorks 4: IVA 2575 1H DMSO

Compound 4h

SpinWorks 4: IVA 2575 13C DMSO

Compound 4i

SpinWorks 4: IVA 1409 1H CDCl3

S76

Compound 4i

Compound 4j

Compound 4j

Compound 4k

time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 freq. of 0 ppm: 500.130005 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 380.982 ppm/cm: 0.76176 Compound 4k

SpinWorks 4: IVA 1996 13C DMSO

file: D:\NAPO\NMR\500-2\mkr10804\10\fid expt: <zgpg30: transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt number of scans: 512 freq. of 0 ppm: 125.757844 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 1088.113 ppm/cm: 8.65141 Compound 4I

Compound 4I

SpinWorks 4: IVA 1958 13C DMSO

file: D:\NAPO\NMR\500-2\mkr10103\4\fid expt: <zgpg30> transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt number of scans: 512 freq. of 0 ppm: 125.757846 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 1068.967 ppm/cm: 8.49919 Compound **4m**

Compound 4m

SpinWorks 4: IVA 2869 13C CDCL3

transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt number of scans: 512 freq. of 0 ppm: 125.757804 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 1008.339 ppm/cm: 8.01714 Compound **4n**

SpinWorks 4: IVA 1492 1H CDCl3

Compound 4n

Compound 4o

transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24 freq. of 0 ppm: 500.130004 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 362.970 ppm/cm: 0.72575 Compound 4o

SpinWorks 4: IVA 1523 13C DMSO

Compound **4p**

 $\begin{array}{c} 7.284\\7.300\\7.310\\7.310\\7.37\\7.3361\\7$ LLLLLLJJJJJ 8.828 8.832 8.554 8.557 8.564 7.797 7.800 7.812 7.815 44 SI. SILVE Ph 8.80 8.70 8.60 8.50 7.90 7.80 7.70 7.60 7.50 7.40 7.30 7.20 1.000 1.03 13.0 12.0 11.0 PPM 15.0 14.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 file: D:\NAPO\NMR\500-2\mkr10403\11\fid expt: <zg30> freq. of 0 ppm: 500.130023 MHz transmitter freq.: 500.133001 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt Hz/cm: 347.141 ppm/cm: 0.69410 number of scans: 24

SpinWorks 4: IVA 1893 1H CDCl3

Compound 4p

SpinWorks 4: IVA 1893 13C CDCL3

transmitter freq.: 125.772879 MHz time domain size: 65536 points width: 36057.69 Hz = 286.6889 ppm = 0.550197 Hz/pt

number of scans: 512

freq. of 0 ppm: 125.757820 MHz processed size: 32768 complex points LB: 2.000 GF: 0.0000 Hz/cm: 1009.934 ppm/cm: 8.02983 Compound 4q

Tile: D:\NAPO\NMR\500-2\mkr12311\19\tid expt: <zg30> transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 32 freq. of 0 ppm: 500.130025 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 324.763 ppm/cm: 0.64935 Compound 4q

SpinWorks 4: IVA 1319 13C CDCL3

number of scans: 512

Hz/cm: 1021.103 ppm/cm: 8.11862

Compound 4r

transmitter freq.: 500.133001 MHz time domain size: 65536 points width: 12335.53 Hz = 24.6645 ppm = 0.188225 Hz/pt number of scans: 24

rreq. of 0 ppm: 500.130024 MHz processed size: 65536 complex points LB: 0.300 GF: 0.0000 Hz/cm: 358.604 ppm/cm: 0.71702

S94

Compound 4r

(D) Computational study

Computational methodology

In current study, all the simulations of mechanistic part are performed using Gaussian09 software.¹ B3LYP/6-31G(d,p) level of theory is used to perform the geometry optimization of ground states as well as for transition states. B3LYP is a cost effective DFT functional which is not only reliable for mechanistic studies, but also frequently implemented for geometric optimization of various compounds.^{2–4}

Nature of optimized structures is confirmed via frequency analysis i.e., absence of negative frequency confirms the true minima nature of reactants, intermediates, and products. On the other hand, transition states are confirmed from the presence of one imaginary frequency. Furthermore, imaginary frequency of transition states is also analyzed to validate that eigen vector of these states correspond to motion along the reaction coordinates.⁵ All the energy values are reported in kcal/mol while bond distances for all structures are in angstrom (Å).

Cartesian Coordinates of optimized geometries

Table S4: Summary of electronic energy (SCF energy), zero-point vibrational energy (ZPVE) and Gibbs free energyof optimized reacting species				
Optimized Geometry	SCF energy (au)	ZPVE (au)	Gibbs free energy (au)	
Trifluoromethylbenzene	-569.29	-569.19	-569.22	
Tris(trimethylsilyl)amine	-1282.66	-1282.32	-1282.36	
TS1	-1851.84	-1851.29	-1851.35	
TS1 ^{•-}	-1851.78	-1851.30	-1851.35	
TS1 ^{•–} (step I)	-1851.92	-1851.29	-1851.35	
TS1 ^{•−} (step II)	-1851.95	-1851.26	-1851.34	
Int1	-1106.84	-1106.68	-1106.72	
TS2	-1106.79	-1106.64	-1106.68	
TS2•-	-1106.11	-1106.93	-1106.97	
TS2'	-2153.43	-2153.19	-2153.24	
TS2'•-	-2153.36	-2153.03	-2153.07	
Int2	-833.67	-833.54	-833.58	
TS3	-833.62	-833.49	-833.53	
TS3•-	-833.63	-833.52	-833.55	
TS3'	-1762.24	-1762.09	-1762.13	
TS3′•-	-1762.25	-1761.96	-1762.00	
Benzonitrile	-324.50	-324.40	-324.43	

Trifluoromethyl benzene

01

C -0.03418200 2.83637500 0.00000000

С	-0.03508700	2.13872200	-1.20921700
С	-0.03508700	0.74448100	-1.21200900
С	-0.03556900	0.04904200	0.00000000
С	-0.03508700	0.74448100	1.21200900
С	-0.03508700	2.13872200	1.20921700
Н	-0.03587700	3.92244300	0.00000000
Н	-0.03907000	2.67959000	-2.15068900
Н	-0.04322800	0.19596700	-2.14763600
Н	-0.04322800	0.19596700	2.14763600
Н	-0.03907000	2.67959000	2.15068900
С	0.02352400	-1.45511600	0.00000000
F	-0.57682200	-1.98331200	1.09038900
F	-0.57682200	-1.98331200	-1.09038900
F	1.30030200	-1.90602100	0.00000000

Tris(trimethylsilyl)amine

01

- N 0.00035600 0.00012500 -0.00038000
- Si -0.97372700 1.45852100 0.00003400
- Si -0.77653400 -1.57237700 0.00003100
- Si 1.75015400 0.11381800 0.00003400
- Н -0.71609000 2.29681200 -1.20101800

H -2.40151900	1.04434400	-0.00050100
---------------	------------	-------------

- Н -0.71682900 2.29584600 1.20194100
- Н -1.63199200 -1.76759800 -1.20068400
- Н 0.29543700 -2.60243400 -0.00116800
- Н -1.62977100 -1.76829400 1.20223300
- H 2.34724200 -0.52941500 -1.20055800
- H 2.10603100 1.55724900 -0.00133500
- H 2.34649500 -0.52685900 1.20236400

TS1

v_i = -326.77

Energy = -1851.84

01

С	5.06503300	0.41712400	0.10035300
С	4.17365300	1.42814300	-0.25744100
С	2.87245700	1.10834300	-0.63917900
С	2.46539100	-0.23180300	-0.63935300
С	3.35397500	-1.25087700	-0.25793300
С	4.65535800	-0.92160200	0.09137000
н	6.08053500	0.66876700	0.39020300
н	4.49030300	2.46573600	-0.24666600
н	2.17945200	1.88830600	-0.93088300

Н	3.01327400 -	2.27826000	-0.24092100
Н	5.35111700 -	1.70583900	0.37099100
С	1.12327300 -	0.57277200	-1.11209600
F	0.85325400 -:	1.77817500	-1.52755200
F	0.83802800 -2	1.32056000	0.77003100
F	0.67417900 (0.27220400	-2.01332400
Ν	-0.95227100	0.04623900	-0.02700700
Si	-2.09719200 -	1.18032900	-0.58931200
Si	-1.43624600	1.71844900	-0.36609700
Si	-0.32969200 -	0.21202000	1.71581200
С	-0.82360400 -	1.81537800	2.68992300
Н	-0.48877000 -	2.67723900	2.15142300
Н	-0.36702000 -	1.79974000	3.65749100
Н	-1.88743700 -	1.85348300	2.79812400
С	-1.66030300	0.97909000	2.47365800
Н	-1.71440000	0.82661100	3.53135500
Н	-1.38622100	1.99376800	2.27313800
Н	-2.61418300	0.77384400	2.03446700
С	1.22697400 (0.80289900	2.27288300
Н	1.57900100	0.42939900	3.21175200
Н	1.99849700	0.70465500	1.53803700
н	0.96199700	1.83441800	2.37611100

С	0.08712000	2.88007800	-0.06019600
н	0.06329900	3.24187200	0.94650000
н	0.99175700	2.33168200	-0.22079900
Н	0.04650900	3.70737100	-0.73757100
С	-2.92323800	2.32637800	0.72150500
н	-2.54936500	2.85468000	1.57357100
н	-3.54550700	2.97699900	0.14325300
Н	-3.49498700	1.48275700	1.04755300
С	-1.95136200	1.84626600	-2.23208700
н	-1.95415900	2.87343800	-2.53176800
н	-1.25349700	1.30134600	-2.83287500
н	-2.93054100	1.43451000	-2.36079700
С	-3.85323100	-0.91229000	0.19048300
Н	-4.32128000	-0.06587900	-0.26713900
н	-4.45287000	-1.78324000	0.02683900
Н	-3.75408000	-0.73991600	1.24184200
С	-2.27957200	-1.04016400	-2.51562700
Н	-3.08477800	-0.37571000	-2.75024400
Н	-1.37057000	-0.66042900	-2.93325900
н	-2.48396000	-2.00704500	-2.92583000
С	-1.46466100	-2.95295500	-0.11888200
Н	-0.39903300	-2.93772500	-0.02346800

H -1.90174200 -3.25256900 0.81068300

H -1.74433900 -3.64625400 -0.88439900

TS1•⁻

v_i = -351.19

Energy = -1851.78

-12

С	5.06281500	0.41850800	0.09793500
С	4.17079500	1.42699100	-0.26587400
С	2.87042400	1.10437800	-0.64675100
С	2.46383800	-0.23591900	-0.64048300
С	3.35258900	-1.25231600	-0.25249000
С	4.65362000	-0.92041900	0.09588800
н	6.07794600	0.67230000	0.38703700
н	4.48707300	2.46476000	-0.26063700
н	2.17691200	1.88228700	-0.94320700
н	3.01227600	-2.27971600	-0.22998600
н	5.34939200	-1.70317500	0.38079600
С	1.12297700	-0.57976900	-1.11271800
F	0.85309900	-1.78729100	-1.52164600
F	0.83589100	-1.31974400	0.77421200
F	0.67243500	0.26054900	-2.01725900
N	-0.95301700	0.04556800	-0.02794200

Si	-2.09777600	-1.18676800	-0.57694000
Si	-1.44034200	1.71498000	-0.37582000
Si	-0.32368200	-0.19828900	1.71436300
С	-1.45084900	-2.95655500	-0.11548800
Н	-1.71309900	-3.17921000	0.89770000
Н	-1.89591400	-3.67990900	-0.76631500
Н	-0.38672400	-2.98666600	-0.22333700
С	-0.82284900	-1.79015600	2.70451000
Н	-0.29915600	-2.63517500	2.30879600
Н	-0.56764800	-1.66334200	3.73586300
Н	-1.87705700	-1.94994000	2.61498100
С	-3.84586600	-0.92871100	0.22380100
Н	-4.44157000	-0.30815000	-0.41254900
Н	-4.32521900	-1.87734300	0.34716400
Н	-3.73496200	-0.45830900	1.17843300
С	-1.64431500	1.00795700	2.46569400
Н	-1.72009100	0.84191800	3.52001400
Н	-1.34720900	2.01977100	2.28442100
Н	-2.59403400	0.82748100	2.00704300
С	1.24052300	0.81326900	2.25622500
Н	1.60614300	0.43321000	3.18723400
Н	2.00142000	0.72060600	1.50966800
Н	0.97673500	1.84391300	2.37063700
---	-------------	-------------	-------------
С	0.07773100	2.88238400	-0.06562600
Н	0.03350900	3.71182700	-0.74013900
Н	0.05211900	3.24057800	0.94231300
Н	0.98485400	2.33862400	-0.22796400
С	-2.93658500	2.32213900	0.69945500
Н	-2.57533100	2.93057600	1.50207600
Н	-3.60434800	2.89485800	0.09036900
Н	-3.45532200	1.47586000	1.09898400
С	-1.94443500	1.83397500	-2.24540000
Н	-1.90346800	2.85538600	-2.56153600
Н	-1.26826700	1.25075500	-2.83493600
Н	-2.93959900	1.46141500	-2.37088900
С	-2.30385400	-1.04630300	-2.50084300
Н	-3.09287600	-0.35948100	-2.72583200
Н	-1.39041200	-0.69403100	-2.93261700
Н	-2.54193500	-2.00792200	-2.90520100

TS1^{•-} (Step I)

v_i = -171.80

Energy = -1851.92

-12

C 5.36966100 1.03860000 -0.50767900

С	5.02621000	-0.25660500	-1.00640700
С	3.84092100	-0.85143900	-0.67628600
С	2.89326000	-0.20527700	0.22042800
С	3.25299900	1.11870200	0.70186500
С	4.45670100	1.69961200	0.35181700
Н	6.31362700	1.50385800	-0.78173100
Н	5.70250200	-0.76849500	-1.68766500
Н	3.58225500	-1.82847200	-1.07579900
Н	2.57119800	1.62738700	1.38086000
н	4.70881400	2.67215200	0.76660700
С	1.63659100	-0.75779900	0.46639900
F	0.98902800	-0.31399900	1.58937900
F	1.55409100	-2.12844000	0.43648800
F	0.50984900	-0.44939500	-0.56056200
Ν	-3.65342000	0.22047900	-0.14784400
Si	-4.71004300	-1.16118500	-0.01720300
Si	-4.18600000	1.87616900	-0.12666200
Si	-1.86790700	-0.10029400	-0.32933600
С	-1.13256974	1.64724887	0.08172731
Н	-0.06563653	1.58274182	0.13063900
Н	-1.41325677	2.34115478	-0.68287021
н	-1.51324351	1.98170056	1.02413357

С	-1.56428869	-1.52468397	0.95227593
н	-1.92462650	-2.44865970	0.55062245
н	-0.51637394	-1.60722105	1.15218170
н	-2.08440613	-1.30378796	1.86089180
С	-1.67231300	-0.65360548	-2.17844103
Н	-0.64656504	-0.56641818	-2.47022775
Н	-1.98720739	-1.67101338	-2.28150748
Н	-2.27528749	-0.02856167	-2.80345463
С	-4.29842815	-2.49944663	-1.36004663
Н	-5.09680565	-3.20993701	-1.41197728
Н	-4.18060801	-2.02512676	-2.31190748
н	-3.39084616	-3.00138920	-1.09689536
С	-4.60069884	-2.06113091	1.69794749
Н	-5.57523342	-2.39333478	1.98919125
Н	-3.94592912	-2.90357955	1.61759259
Н	-4.22062559	-1.38284008	2.43304332
С	-6.55896926	-0.62670507	-0.26093011
н	-7.18324085	-1.49567421	-0.26973971
н	-6.85336383	0.01582499	0.54242968
н	-6.66007126	-0.10547562	-1.18990710
С	-6.12454383	1.95096892	-0.11939581
Н	-6.50331511	1.47029494	-0.99711151

Н -6.49750483 1	1.45115178	0.75007697
-----------------	------------	------------

- Н -6.44200795 2.97271568 -0.10714526
- C -3.58811467 2.85870838 1.43562782
- H -2.81898485 3.54628187 1.15175812
- H -4.41183043 3.39804544 1.85456442
- H -3.20376736 2.17371361 2.16223591
- C -3.59411305 2.88911566 -1.67172151
- H -4.30127935 3.66397341 -1.88246139
- H -2.63816016 3.32446000 -1.46793394
- H -3.51644666 2.23760037 -2.51694087

TS1^{•-} (Step II)

v_i = -334.33

Energy = -1851.95

-12

С	4.49531500	-0.40387900	0.23141800
С	3.94679000	0.78936500	-0.29871200
С	2.62034700	0.87767500	-0.66393100
С	1.73868400	-0.25491800	-0.52895700
С	2.30624000	-1.46254200	0.01615100
С	3.63767200	-1.51972600	0.37534800
н	5.53974900	-0.45844700	0.52423600

H 4.58762500 1.66086000 -0.43112600

н	2.23078400	1.80085400	-1.08198600
Н	1.67558800	-2.34018300	0.11842300
Н	4.03570000	-2.45510000	0.76810000
С	0.34159800	-0.14392400	-0.79235400
F	-0.27599100	-1.33491000	-1.05655000
F	0.02155900	0.74145400	-1.80751600
F	-5.07268268	-1.23638722	-0.62830301
Ν	-0.88693232	0.62441068	0.64530491
Si	-3.58790868	-0.62334122	-0.27624401
Si	-1.24601532	2.31899068	0.45005691
Si	-0.61305732	-0.00169532	2.24941691
С	0.30304736	3.42353057	0.07058829
Н	0.97718174	2.88665391	-0.56360906
Н	-0.01048030	4.32092839	-0.42061183
Н	0.79682023	3.67221415	0.98669136
С	-2.53974093	2.67871721	-0.95011125
Н	-2.75332545	3.72682138	-0.97766656
Н	-2.13903925	2.37145311	-1.89347064
Н	-3.44040750	2.13628290	-0.75145391
С	-2.00565700	3.05385112	2.07687117
н	-2.83468512	2.45251437	2.38672030
н	-1.26228551	3.06019164	2.84645459

н	-2.33897782	4.05415684	1.89470176
С	0.90232883	0.75111968	3.19835019
н	1.27275455	0.03625956	3.90309113
Н	1.67467457	0.99633132	2.49959894
Н	0.59536275	1.63598043	3.71574103
С	-0.36107479	-1.92420620	2.18572447
Н	0.52696370	-2.14940872	1.63293928
Н	-0.26759713	-2.30485001	3.18135101
Н	-1.20361099	-2.37871337	1.70775377
С	-2.15157909	0.32423879	3.38533844
Н	-2.01042048	1.23827804	3.92339651
Н	-3.03164627	0.39822175	2.78126205
Н	-2.26123629	-0.48401577	4.07786993
С	-2.64296982	-2.12101816	0.51600238
н	-2.58930659	-2.92286239	-0.19044371
н	-1.65332176	-1.81613925	0.78534526
н	-3.16510373	-2.45009080	1.39006610
С	-3.96958402	0.79180085	0.99469928
н	-3.05147502	1.22678735	1.33050072
н	-4.56855174	1.54267377	0.52318307
Н	-4.49923689	0.38645759	1.83139795
С	-2.91278986	0.00993491	-1.98117096

Н	-1.94398379	0.44253287	-1.84270142
Н	-2.84262366	-0.81080137	-2.66408286
Н	-3.57940296	0.74735429	-2.37707453
Int 1			
01			
С	3.73749500	-2.83638300	-0.38371100
С	3.77101100	-1.73803400	-1.24598300
С	2.86872700	-0.68994300	-1.07633400
С	1.92600200	-0.73594000	-0.04280300
С	1.88828100	-1.83807600	0.81528000
С	2.79693100	-2.88350300	0.64534000
Н	4.44345000	-3.65128900	-0.51379300
Н	4.50040100	-1.69707500	-2.04927100
Н	2.89447700	0.16843400	-1.73989700
Н	1.15680300	-1.87016900	1.61347100
Н	2.76852900	-3.73438100	1.31928100
С	0.92132900	0.39311800	0.08487300
F	0.19773900	0.22675500	1.26075300
F	-0.02442800	0.25753900	-0.92915000
Ν	1.43490600	1.71377400	0.00082600
Si	2.56124500	2.28940200	1.23960500
Si	0.61976100	2.86548000	-1.06968300

С	-1.26485374	3.09811321	-0.67255698
Н	-1.56989714	4.08395694	-0.95533011
Н	-1.83619275	2.37736997	-1.21936674
Н	-1.42792334	2.96132065	0.37605930
С	1.54239686	4.53705164	-0.72589334
Н	2.58974305	4.40952239	-0.90394458
Н	1.15987201	5.29585993	-1.37611231
Н	1.38645177	4.82772150	0.29199278
С	0.83900146	2.39682102	-2.93941356
Н	0.61702995	3.24784639	-3.54882679
Н	1.84825818	2.08697793	-3.11347718
Н	0.17263746	1.59715166	-3.18717944
С	3.96365626	3.32362351	0.38682806
Н	3.79194118	4.36593362	0.55713244
Н	4.91167783	3.04642984	0.79831169
Н	3.96084431	3.12892797	-0.66530584
С	1.67327812	3.41889004	2.54320447
Н	1.97101604	3.12792913	3.52889909
Н	1.94584754	4.43983850	2.37506714
Н	0.61321602	3.31186727	2.44464246
С	3.31690116	0.74648653	2.14071300
Н	2.52703556	0.13737851	2.52801100

Н	3.89848559	0.17716913	1.44606400
	5.05040555	0.17710515	1.44000400

H 3.94196161 1.07392290 2.94506670

TS2

v_i = -361.60

Energy = -1106.79

С	3.68343200	0.35340300	0.50310500
С	3.40214500	-0.55743900	-0.51802400
С	2.08217500	-0.84863700	-0.84872100
С	1.03434200	-0.21224000	-0.16380800
С	1.32168100	0.69534900	0.86891800
С	2.64308500	0.97600300	1.19869600
Н	4.71464300	0.57454900	0.76158000
Н	4.21186500	-1.04193500	-1.05418500
Н	1.85435000	-1.55493700	-1.63783500
Н	0.50841200	1.15228600	1.42197900
Н	2.86338800	1.67201300	2.00157400
С	-0.36389600	-0.49162500	-0.51107100
F	-1.06559900	-1.55459700	0.93702700
F	-0.48733400	-1.49748900	-1.38999700
Ν	-1.40329600	0.30954100	-0.35898400
Si	-2.64822100	-0.64669300	0.78342700

Si	-1.54677700	2.03087700	-0.68634700
С	-0.04964788	2.54198310	-1.80927841
н	0.79381752	2.77662526	-1.19412869
Н	0.19946157	1.73167694	-2.46215544
Н	-0.31648694	3.39954574	-2.39089963
С	-1.50874971	3.09435821	0.93573858
Н	-0.68181106	3.77235456	0.89841016
Н	-2.42039548	3.64806482	1.02065614
Н	-1.40306880	2.44921419	1.78280454
С	-3.21675828	2.34572867	-1.62209854
Н	-4.03125875	2.27468805	-0.93185061
Н	-3.20270373	3.32288423	-2.05783868
Н	-3.33738412	1.61326890	-2.39271654
С	-3.82294038	0.88346761	0.57789626
н	-3.32737382	1.76355774	0.93110321
Н	-4.07266603	1.00515298	-0.45541385
н	-4.71669328	0.72564630	1.14463974
С	-2.79012903	-0.77096469	2.71423477
Н	-3.78607223	-0.52144455	3.01546034
Н	-2.56306910	-1.76933861	3.02502942
Н	-2.09951456	-0.09065246	3.16714417
С	-3.60170479	-2.04523361	-0.16449325

- H -3.12950061 -2.98738909 0.02061826
- H -4.61499887 -2.08086068 0.17736319
- H -3.58650521 -1.83881076 -1.21428303

TS2●-

v_i = -506.96

Energy = -1106.11

-12

С	-3.74594200	0.38490200	-0.49124500
С	-3.42185000	-0.59587100	0.48655600
С	-2.09268700	-0.87423900	0.80236800
С	-0.99273900	-0.17239100	0.16443500
С	-1.35896600	0.80879900	-0.83984000
С	-2.69224700	1.07684100	-1.14960300
н	-4.77850800	0.59778300	-0.73407200
н	-4.22158000	-1.12784700	0.98714800
н	-1.86986700	-1.62518800	1.54942800
н	-0.57582300	1.34287000	-1.36168800
н	-2.93530500	1.81940100	-1.89966800
С	0.34892600	-0.50867100	0.42787600
F	1.06226700	-1.69683800	-0.59856000
F	0.54904500	-1.24000800	1.58181100
N	1.46645600	0.33486200	0.06530900

Si	2.48288900	-0.64123100	-0.99724400
Si	1.72310500	1.88353000	0.77044300
С	2.09396580	-0.90399660	-2.87960767
н	3.00908312	-0.92155009	-3.43382078
н	1.57941139	-1.83287397	-3.01121537
н	1.47889377	-0.10249305	-3.23199732
С	3.84449526	0.72343119	-1.21478824
н	3.40378349	1.60317837	-1.63516667
н	4.26968912	0.95821071	-0.26137923
н	4.61100191	0.36157864	-1.86780455
С	3.64938392	-2.04496747	-0.33966243
н	4.58079964	-2.01005889	-0.86515853
н	3.82441039	-1.90247855	0.70626426
н	3.18631749	-2.99659046	-0.49740645
С	1.80658617	3.30706552	-0.54491913
н	1.15230594	4.10163890	-0.25256569
н	2.80909174	3.67563918	-0.60844891
н	1.50440453	2.92906399	-1.49922574
С	3.39123479	1.98623726	1.75552889
н	4.16313929	2.35432075	1.11242860
Н	3.27395837	2.64885383	2.58744566
Н	3.65665730	1.01218495	2.11003276

С	0.30890702	2.33953491	2.01772148

- H -0.58786604 2.55717448 1.47612098
- H 0.13586668 1.51523872 2.67764028
- H 0.59872498 3.19769933 2.58733484

TS2'

v_i = -506.96

Energy = -2153.35

С	-5.03515300	-0.60621900	-0.33467100
С	-4.51889900	-0.77294700	0.95093100
С	-3.14945200	-0.63627900	1.17911700
С	-2.29287400	-0.31991900	0.11869200
С	-2.80970100	-0.16167800	-1.17218200
С	-4.17770900	-0.30316000	-1.39514500
Н	-6.10146300	-0.71679500	-0.51172400
Н	-5.18011600	-1.01485200	1.77827200
Н	-2.74442900	-0.77275600	2.17637300
Н	-2.13853000	0.05513300	-1.99602200
Н	-4.57367400	-0.18384700	-2.39969700
С	-0.83615200	-0.11774800	0.40300800
F	-0.13260500	-1.00376700	-0.87701400
F	-0.41985600	-0.99010200	1.38578100

Ν	-0.21778500	1.04914600	0.44370900
Si	-0.93352300	2.61846500	0.05841200
Н	-0.41508600	3.15147700	-1.22762900
Н	-2.40905200	2.51719900	-0.01328000
Н	-0.57537600	3.56633100	1.14231700
Ν	2.27668100	-0.25527600	-0.09859500
Si	4.08329100	0.12595100	-0.30931800
Н	4.26014700	1.54774000	-0.66160300
Н	4.82247400	-0.25823400	0.91335600
Н	4.56489300	-0.75663900	-1.39991000
Si	2.24103700	-1.92575700	0.68732700
Н	2.12954800	-1.74487000	2.15016000
Н	1.20743900	-2.81393700	0.13940600
Н	3.57046100	-2.51591900	0.38210400
Н	2.73288900	0.44089800	-2.45106500
Н	0.51262600	0.83567100	-2.19601600
Н	1.48331600	-1.50816700	-2.50483800
Si	1.50903200	-0.18934000	-1.83011400
Н	3.16167400	1.21461800	1.57906100
Н	1.15136700	0.93938600	2.50969800
Н	1.70657100	2.54769600	0.55057000
Si	1.69400800	1.18248700	1.14706800

TS2′•-

v_i = -265.78

Energy = -2153.36

-12

С	-5.23232500	0.72845300	-0.35397600
С	-4.83350400	-0.37157100	-1.10313300
С	-3.49292100	-0.76001500	-1.12816200
С	-2.54742000	-0.05955700	-0.36552300
С	-2.95572600	1.04097400	0.39416800
С	-4.29047600	1.43986700	0.39159200
Н	-6.27126300	1.03723400	-0.35077900
Н	-5.55207000	-0.93756100	-1.68780600
Н	-3.17728000	-1.61221400	-1.72379100
Н	-2.24675800	1.57093400	1.01783600
Н	-4.59182100	2.30045800	0.98462700
С	-1.12506400	-0.53574700	-0.37099800
F	-0.25074000	0.97051900	-0.63373400
F	-0.79597100	-1.03359800	-1.60621000
Ν	-0.49999900	-1.12381000	0.62471600
Si	-1.10511700	-1.43071600	2.25287900
Ν	2.04129200	-0.29679100	-0.40797300
Si	3.85384400	-0.44673300	-0.03640400

Si	1.92662400	-0.25058700	-2.25632200
Si	1.43424500	1.31008400	0.44057300
Si	1.34205500	-1.99159400	0.32957400
С	1.53434600	2.86103400	-0.72103900
н	0.59924300	2.93183600	-1.30649000
н	1.70678400	3.77370800	-0.10987500
н	2.38976200	2.71355300	-1.40912900
С	3.09626300	1.53692500	1.42430900
н	3.53278100	0.55646500	1.74263800
н	3.79242900	2.03638000	0.72316500
н	2.91042500	2.11641500	2.33818900
С	0.12354500	1.37810400	1.87906900
н	0.47350400	2.03633000	2.70363300
н	-0.79982500	1.76443700	1.38712600
н	-0.04222900	0.36299700	2.28993800
С	0.09960547	-0.61115153	3.53372163
н	-0.30572536	-0.71081229	4.51894985
н	1.05193749	-1.09691483	3.48902548
н	0.21706434	0.42630020	3.29963337
С	-2.90237874	-0.73528304	2.47609024
Н	-2.88375642	0.33191569	2.40098975
н	-3.53697910	-1.13549903	1.71319474

н	-3.27767350	-1.01870242	3.43719756
С	-1.10078052	-3.34661998	2.55766274
н	-0.13239646	-3.74156014	2.33148895
Н	-1.33660318	-3.54531120	3.58226484
Н	-1.83095018	-3.80969809	1.92733669
С	0.42378928	-3.34564360	-0.71298907
Н	1.10236740	-3.77005791	-1.42313288
Н	0.06299201	-4.11376128	-0.06128318
н	-0.40045752	-2.89993244	-1.22957281
С	1.41931357	-2.11740832	2.26394777
Н	0.47721597	-1.82474348	2.67831404
н	1.63567580	-3.12624208	2.54739410
Н	2.18766064	-1.47063176	2.63303158
С	4.11129905	-1.05359403	1.78816077
Н	4.09830285	-2.12321586	1.81346370
Н	5.05314262	-0.69963214	2.15222349
н	3.32444998	-0.67264594	2.40512681
С	4.65488645	1.30073271	-0.29773632
н	5.01641931	1.67102528	0.63878779
н	5.46878510	1.22042288	-0.98767784
Н	3.92126678	1.97455799	-0.68845575
С	4.65519142	-1.67096269	-1.31025798

Н	4.87230204	-1.14884443	-2.21863868
н	5.56096280	-2.06814159	-0.90193564
н	3.97428947	-2.47112128	-1.51278890
С	1.60627555	-2.05593917	-2.89010462
н	0.56842755	-2.29289515	-2.78229279
н	1.88292843	-2.12627918	-3.92132500
н	2.19078376	-2.74437827	-2.31625641
С	0.64320240	1.04538012	-2.91730478
н	1.12396066	1.99357900	-3.03850866
н	0.25855170	0.71737704	-3.86036247
н	-0.16077143	1.13997000	-2.21760568
С	3.69233654	0.32334527	-2.81887063
н	3.93087206	-0.12706643	-3.75968417
н	3.70585302	1.38849456	-2.91973827
н	4.41415654	0.02515779	-2.08746096
С	3.12524404	-2.69082327	0.02149079
н	3.34001841	-2.67089817	-1.02654307
Н	3.83948503	-2.08889202	0.54344730
Н	3.17973976	-3.69833686	0.37764605
Int2			

01

C -3.42419900 -0.34042000 -0.00004200

С	-2.91750000	0.96020700	-0.00008700
С	-1.54057400	1.17455100	-0.00005700
С	-0.66236300	0.08106100	0.00002000
С	-1.17564300	-1.22555000	0.00007000
С	-2.55093200	-1.43245800	0.00003700
Н	-4.49783300	-0.50438700	-0.00006800
Н	-3.59478000	1.80875100	-0.00014700
Н	-1.14078300	2.18137200	-0.00009100
Н	-0.48020700	-2.05760900	0.00013200
Н	-2.94474200	-2.44424600	0.00007500
С	0.79924600	0.27271900	0.00005600
F	1.13390800	1.61033900	0.00014300
Ν	1.67748900	-0.62083500	0.00002000
Si	3.41304300	-0.36622600	-0.00007100
С	3.98365546	0.60385628	1.58010044
Н	4.98994722	0.33188432	1.82157125
Н	3.93428561	1.65569064	1.39008175
Н	3.34145264	0.35903903	2.40018583
С	4.25912991	-2.11200287	-0.00031452
Н	3.94818387	-2.65892805	-0.86581173
Н	5.32237346	-1.99304856	-0.01653245
н	3.97348836	-2.64690855	0.88126635

- C 3.98334459 0.60420654 -1.58013960
- H 5.02069234 0.41380626 -1.76057624
- H 3.40947921 0.28126890 -2.42351959
- H 3.83440987 1.65278282 -1.42780373

TS3

v_i = -425.27

Energy = -833.62

С	3.43585500	-0.16294500	0.00007500
С	2.60784900	-1.28707600	0.00009400
С	1.22290000	-1.13965200	0.00003000
С	0.66732500	0.14709200	-0.00004400
С	1.49860200	1.28142600	-0.00007600
С	2.87993200	1.11948200	-0.00001500
Н	4.51481100	-0.28475600	0.00012100
Н	3.04074400	-2.28238700	0.00015000
Н	0.56615800	-1.99999100	0.00001000
Н	1.05155600	2.26970700	-0.00015300
Н	3.52346700	1.99352400	-0.00004200
С	-0.76249400	0.38092600	-0.00009600
F	-1.55339700	-1.10826500	0.00015300

Ν	-1.66052400	1.18976900	-0.00021300
Si	-3.21796300	0.00540400	0.00000400
С	-3.93044595	0.78452648	1.62755929
Н	-3.88280177	1.85150080	1.56278404
Н	-4.94848924	0.47991368	1.75285451
Н	-3.35301404	0.45188695	2.46471120
С	-3.93105759	0.78513745	-1.62699073
Н	-3.37594227	0.42534989	-2.46800196
Н	-4.95931712	0.50916335	-1.73385810
Н	-3.85121795	1.85095816	-1.57647480
С	-3.98982183	-1.77443696	-0.00032688
Н	-3.66843712	-2.30240961	-0.87374359
Н	-3.66949471	-2.30227580	0.87355909
н	-5.05724948	-1.70028990	-0.00097864

TS3•-

v_i = -296.12

Energy = -833.631

-1 2

С	4.38597100	-0.10085600	0.10367700
С	3.53125900	-1.22503700	0.02403100
С	2.16488600	-1.09332700	-0.09943500

C 1.56022900 0.21267100 -0.15289000

С	2.43961000	1.35757700	-0.06211200
С	3.80307100	1.18379300	0.06121400
Н	5.46108900	-0.22208300	0.20035800
Н	3.95933000	-2.22605100	0.06505400
Н	1.50338100	-1.94926600	-0.14287500
Н	2.00823000	2.35372800	-0.09512100
Н	4.44008600	2.06544300	0.12556400
С	0.20049900	0.41978600	-0.27972700
F	-0.68815000	-1.26916500	0.08333500
Ν	-0.83784300	1.05252900	-0.48962400
Si	-2.26202500	0.04561000	0.02585600
С	-2.46079600	-0.44433300	1.86161300
Н	-3.37261900	-0.03796500	2.31517900
Н	-2.45541000	-1.53241800	1.97712700
Н	-1.60307700	-0.06649700	2.42971900
С	-3.56009000	1.48626200	-0.09784600
Н	-3.58501400	1.91495600	-1.10844500
Н	-4.57821700	1.14585400	0.14161300
Н	-3.31795800	2.30567600	0.59222000
С	-2.97232000	-1.15384400	-1.27733700
Н	-2.43569100	-1.00850900	-2.22232700
н	-2.81241300	-2.19371700	-0.97821900

H -4.03903500 -0.98905800 -1.47159800

TS3'

v_i = -249.98

Energy = -1762.24

С	-5.19630700	-0.23627100	0.04699800
С	-4.69616600	1.06391200	-0.06334200
С	-3.32309400	1.28160600	-0.10611400
С	-2.43644100	0.18997700	-0.04042500
С	-2.93937800	-1.11380100	0.07198600
С	-4.31708800	-1.31827800	0.11499100
Н	-6.26927600	-0.40415500	0.08043900
Н	-5.37608300	1.90933500	-0.11565300
Н	-2.92199800	2.28599100	-0.19142000
н	-2.24915000	-1.94338000	0.12758000
Н	-4.70395100	-2.32950000	0.20187000
С	-1.02220800	0.51546400	-0.09121900
F	-0.22715600	-1.12092900	0.02478900
Ν	-0.22649200	1.38766800	-0.17046500
Ν	2.17634300	-0.05939400	0.03189200
Si	3.99768300	-0.14292000	-0.26336300
Н	4.36355900	0.49744700	-1.53816600

Н	4.72679000	0.43666500	0.88424900
н	4.30885700	-1.59580600	-0.29550000
Si	1.78397700	-0.56173100	1.75471600
н	2.83347700	0.08220600	2.58331500
н	0.48138300	-0.08664700	2.24174600
н	1.92399800	-2.03098100	1.84315900
н	2.55774600	-1.22597400	-2.20880300
н	0.37023000	-0.69176000	-2.19665700
н	1.34606000	-2.63980700	-0.83213000
Si	1.38037200	-1.22485600	-1.26246500
н	3.23277400	2.12166800	-0.05536500
н	1.37040600	2.67692700	1.04584100
н	1.54167600	2.35253600	-1.53758600
Si	1.72675500	1.86379500	-0.14940600

TS3'•-

v_i = -249.98

Energy = -1762.25

-1 2

- C 4.98560200 -0.89142400 -0.44894000
- C 3.63386900 -1.19295700 -0.53390100
- C 2.67666400 -0.28989700 -0.02294000

С	3.09274400	0.90941000	0.57925100
С	4.44992000	1.19902200	0.65907900
Н	6.45972600	0.54007100	0.21722400
Н	5.71734100	-1.58264000	-0.85336900
Н	3.29677900	-2.11704000	-0.99091500
Н	2.34595900	1.58399800	0.96581000
Н	4.77802300	2.12766700	1.12641000
С	1.30688300	-0.71417300	-0.16976600
F	0.35724400	0.76671800	0.59398000
Ν	0.53894900	-1.53084000	-0.53086700
Ν	-1.91660700	-0.46622100	0.28417100
Si	-3.75882000	-0.41046000	0.13582400
Si	-1.41053500	-0.60137700	2.05516400
Si	-1.26216200	1.16084800	-0.49277600
Si	-1.39948800	-2.12949900	-0.61567000
С	-1.32704400	2.69064700	0.71191200
Н	-0.69943500	2.48438900	1.57890500
Н	-0.92461900	3.56463600	0.14583500
Н	-2.38118900	2.89165300	1.01602600
С	-2.87352600	1.57066700	-1.53965300
Н	-3.41152400	0.67491300	-1.93923400
н	-3.54063900	2.13933500	-0.84656400

Н	-2.55060100	2.19806800	-2.39248100
С	0.00643000	1.07613800	-1.97044000
Н	0.15341900	2.13737000	-2.29877700
Н	0.96375800	0.65214700	-1.64103500
Н	-0.44219000	0.47577300	-2.81967300
С	-4.33302232	-0.74631515	-1.68656263
Н	-4.85753758	-1.67795805	-1.72928560
Н	-4.98062081	0.04264044	-2.00760041
Н	-3.47760761	-0.78886747	-2.32793223
С	-4.26847879	1.37157775	0.70870216
Н	-4.52819359	1.96038966	-0.14613628
Н	-5.10978427	1.30770342	1.36674863
Н	-3.44855882	1.82951625	1.22146289
С	-4.55175931	-1.68059144	1.36936094
Н	-4.50841009	-1.28702237	2.36340532
Н	-5.57244261	-1.85190968	1.09778100
Н	-4.01176784	-2.60337841	1.32724904
С	-1.72163849	1.12487635	2.88393658
Н	-1.94957138	0.98709087	3.92025785
Н	-0.84389252	1.72941760	2.78911105
Н	-2.54303955	1.61022900	2.39954716
С	-2.64462608	-1.89059875	2.81577327

Н	-3.53890921	-1.38992027	3.12314721
Н	-2.88471172	-2.63078162	2.08134273
Н	-2.19091548	-2.36215970	3.66234103
С	0.38876615	-1.26930487	2.33798504
Н	0.70574042	-1.03059705	3.33168816
Н	0.40005143	-2.33099533	2.20537276
Н	1.05290425	-0.81471525	1.63288302
С	-3.26451662	-2.65841798	-0.54142065
Н	-3.73450170	-2.19145032	0.29879077
Н	-3.75771023	-2.35381678	-1.44079720
Н	-3.32998729	-3.72171011	-0.44130357
С	-0.73214291	-3.64724161	0.39165711
Н	-0.82979194	-4.53608818	-0.19597920
Н	0.29854982	-3.49022052	0.63231635
Н	-1.29711503	-3.75252122	1.29422163
С	-1.23880964	-2.00392134	-2.54492185
Н	-0.20874277	-1.88784502	-2.81023022
Н	-1.62443724	-2.89542033	-2.99372126
Н	-1.79462740	-1.15923676	-2.89488553

Benzonitrile

01

C 2.18023600 0.0000000 0.0000000

С	1.48383400	-1.21067300	0.00000000
С	0.09156900	-1.21743300	0.00000000
С	-0.60995200	0.00000000	0.00000000
С	0.09156900	1.21743300	0.00000000
С	1.48383400	1.21067300	0.00000000
н	3.26607400	0.00000000	0.00000000
н	2.02591200	-2.15115600	0.00000000
н	-0.45848600	-2.15226000	0.00000000
н	-0.45848600	2.15226000	0.00000000
н	2.02591200	2.15115600	0.00000000
С	-2.04487500	0.00000000	0.00000000
N	-3.20831600	0.00000000	0.00000000

References

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E. .; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V. . M.; B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.; P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M. .; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M. . N.; T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., J. .; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N. .; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J. .; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S. .; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E. .; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R. .; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C. .; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G. .; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.; D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*. Gaussian, Inc.: Wallingford, CT,.

- (2) Arshad, M. N.; Asiri, A. M.; Alamry, K. A.; Mahmood, T.; Gilani, M. A.; Ayub, K.; Birinji, A. S. Synthesis, Crystal Structure, Spectroscopic and Density Functional Theory (DFT) Study of N-[3-Anthracen-9-Yl-1-(4-Bromo-Phenyl)-Allylidene]-N-Benzenesulfonohydrazine. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2015. https://doi.org/10.1016/j.saa.2015.01.101.
- (3) Mkrtchyan, S.; Jakubczyk, M.; Lanka, S.; Yar, M.; Ayub, K.; Shkoor, M.; Pittelkow, M.; Iaroshenko, V. O. Mechanochemical Transformation of CF₃ Group: Synthesis of Amides and Schiff Bases. *Adv. Synth. Catal.* **2021**, *363* (24), 5448–5460. https://doi.org/10.1002/adsc.202100538.
- (4) Tirado-Rives, J.; Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. *J. Chem. Theory Comput.* **2008**, 4, 2, 297–306. https://doi.org/10.1021/ct700248k.
- (5) Mukhtar, A.; Sarfaraz, S.; Ayub, K. Organic Transformations in the Confined Space of Porous Organic Cage CC₂; Catalysis or Inhibition. *RSC Adv.* **2022**, *12* (37), 24397–24411. https://doi.org/10.1039/D2RA03399B.