Supporting information

Site-selective introduction of thiols in unprotected glycosides

Niels R.M. Reintjens, Martin D. Witte, Adriaan J. Minnaard

Table of Contents

Substitution reactions on 3-chloro sugars	S2
Deoxy-thiolation	S4
General procedures	
Substitution reactions on chloroglycosides	S7
Synthesis of epoxides 5 and 6	
Synthesis of α -Glc derivatives	
Synthesis of Xylose derivatives	S11
Synthesis of Gal derivative	S12
Synthesis of maltose derivatives	S13
Synthesis of S13 and S14	S13
Synthesis of β-Glc derivative	S14
S-glycosides synthesis	S15
Supplemental references	S16
NMR spectra	S17
NMR spectra of substitution reactions on chloroglycosides	S17
NMR spectra of epoxides 5 and 6	S30
NMR spectra of α -Glc derivatives	S35
NMR spectra of Xyl derivatives	S40
NMR spectra of Gal derivative and side product S10	S51
NMR spectra of maltose derivative	S55
NMR spectra of S13 and S14	S59
NMR spectra of β -glucose derivative and sideproduct S15	S65
NMR of S16 , S17 , and S-glycosides 20 and 22	S67
HRMS spectra	S76
HRMS spectra of substitution reactions on chloroglycosides	S76
HRMS spectra of epoxides 5 and 6	S82
HRMS spectra of α -Glc derivatives	S84
HRMS spectra of Xyl derivatives	S86
HRMS spectra of Gal derivative	S91
HRMS spectra of maltose derivative	S92
HRMS spectra of S13 and S14	S94
HRMS spectra of β -Glc derivative	S97
HRMS of S16 , S17 , and S-glycosides 20 and 22	

Substitution reactions on 3-chloro sugars

After some experimentation, we found that heating **2**, as a mixture of epimers, with sodium azide in DMA at 130 °C, gave full conversion and provided from a black reaction mixture after column purification 3-azido-glucoside **4** in 37% yield and traces of 2-azido-altroside **S1** (Scheme S1). Similar results were obtained with the substitution of chloro-GlcNAc and chloromaltose.

Scheme S1. Substitution of 3-Cl Glc (2), 3-Cl GlcNAc (S1) and 3-Cl maltose (S4) with azide. For Glc 2, a mixture of eq/ax of 1/2.7 was used; for GlcNAc S1, a mixture of eq/ax of 1.4/1 was used; for maltose S4, a mixture of eq/ax of 1/4.4 was used

To gain insight in the reactivity difference between the axial chloride **2a** and the equatorial chloride **2b**, we separated the isomers and studied their behavior in the substitution reaction (Table S1). Heating 2a for 2 h at 130 °C in the presence of sodium azide gave a dark colored reaction mixture and, according to NMR analysis, full conversion and formation of 4 in 45% yield (entry 2). This confirms the results of Jones et al. that in the presence of sodium azide, the axial chloride substituent is prone to elimination and therefore part of the starting material degrades (Figure S1B).^[1] Treatment of **2b** in DMA or D₂O with sodium azide did not lead to the axial azide substituent, but surprisingly gave a mixture of 3-azido-glucoside 4 and 2-azido-altroside **S1** in a ratio of 2:1 (entry 4). The direct substitution reaction is unfavorable due to shielding of the σ_{C-Cl}^* in the 4C_1 chair and, apparently, inversion of the chair to the 4C_1 conformer leads to rapid intramolecular S_N2 reaction with the C2-hydroxy group (Figure S1B) forming epoxide 5. Epoxide 5 is subsequently ring-opened by azide providing 4 and S1.^[2-4] Epoxide **5** could be isolated by treatment of **2b** with KOtBu in D₂O followed by lyophilization. KOtBu was selected as a base for practical reasons, as the small amounts could be weighted out more accurately. Ring-opening of 5 with sodium azide gave a mixture of 4 and S1 (entry 6). Finally, when we subjected a mixture of 2a and 2b to these conditions, 4 and S1 were formed in a total NMR yield of 86% (entry 8), and could be separated via column chromatography.

Intrigued by the epoxide formation of **2b**, we also subjected chloro-maltoside to KOtBu in D_2O . This gave epoxide **6** in quantitative yield, which shows the potential of the deoxy-chlorination reaction to obtain epoxides in an unprotected manner.

While these results clearly demonstrate that $S_N 2$ substitution of chlorides with sodium azide is feasible, the reactions with thiols show that for some nucleophiles an $S_N 1$ substitution reaction on the more reactive chloro azo compounds may be more suitable.

Entry	Ratio	Solvent	Nucleophile	Temperature	Time	Conversion	NMR yield (%)		
	chloride		(eq.)	(°C)	(h)	SM (%)	Epoxide	3-N₃	2-N ₃
	eq/ax						5	4	S1
1	0/1	DMA	-	120	1	0	-	0	-
				130	1	2	-	0	-
2	0/1	DMA	NaN₃ (5)	130	2	100	-	45	-
3	0/1	D ₂ O	NaN₃ (5)	140	4	50	-	<20 ^[a]	-
4	1/0	DMA	NaN₃ (5)	130	2	100	-	65	23
5	1/0	D ₂ O	NaN₃ (5)	140	2	100	-	65	39
6	1/0	D ₂ O	KO <i>t</i> Bu (1.1)	50	1.5	91	87	-	-
		DMA	NaN₃ (5)	80	1	22	-	13	0
			NH4Cl (1)	100	2	84		52	30
7	1/0	D ₂ O	KOtBu (1.1)	50	1.5	100	89 ^[b]	-	-
8	1/1	D ₂ O	KO <i>t</i> Bu (1.1)	50	1.5	100 of ax-Cl	80	-	-
						12 of eq-Cl			
		DMA	NaN₃ (5)	120	3	100	-	67 ^[c]	19 ^[c]
			NH4CI (1)						

 Table S1. Screening of substitution reactions on 3-chloro glucose 2

^[a]Due to difficult analysis, the small amounts of **4** are estimated to be max. 20%.

^[b]This is the isolated yield after column purification.

^[c]The yields after column purification are: 31% for **4** and 10% for **S1**.

^[d]After heating for one h, 0.1 eq. DIPEA was added and heated again for an additional h.

Figure S1. A) Substitution of **2** (1/2.7 eq/ax ratio) with sodium azide; B) Substitution versus elimination of the axial chloride; C) The required ring flip of the equatorial chloride to form the epoxide; D) Isolated products after treatment of solely **2a** or **2b** with either KOtBu or NaN₃; E) Epoxide of maltose.

Scheme S2. Formation of 4 and S1 from 2-eq.

Deoxy-thiolation

Entry	Substrate	H-donor	Time	Temp.	Yield thiol	Yield Cl-product	Yield side-
		(eq.)	(min) ^[a]	(°C)	(Eq/Ax)	(Eq/Ax)	product
1 ^[b]	1 , α-Glc	<i>t</i> BuSH (80)	120	-20->60	-	66 (2)	-
						(1/3.5)	
2 ^[b]	1 , α-Glc	EtSH (80)	120	-20->40	74 (3a)	19 (2)	-
					(1/2.6)	(1/1.4)	
3	1 , α-Glc	EtSH (80)	310	-20->10	97 (3a)	-	-
					(1/3.7)		
4	1 , α-Glc	PhSH (80)	0.N.	-20->15	80 (3b)	-	-
					(1/1.5)		
5	1 , α-Glc	BnSH (80)	O.N.	-20->15	84 (3c)	-	-
					(1/5.1)		
6	1 , α-Glc	BnSH (80)	O.N.	-20->-5	77 (3c)	-	-
					(1/4.6)		
7	1 , α-Glc	AcSH (80)	300	-20->5	64 (3d)	-	-
					(1.3/1)		
8 ^[c]	1 , α-Glc	AcSH (80)	300	-20->5	58 (3d)	-	-
					(1.1/1)		
9	1 , α-Glc	AcSH (80)	0.N.	-20->-5	56 (3d)	-	-
					(1.2/1)		
10	1 , α-Glc	AcSH (80)	O.N.	-20->-10	52 (3d)	-	-
					(1/1.1)		

Table S2. Dehydroxy-chlorination and deoxy-thiolation reactions

^[a]After addition of the thiol.

^[b]Earlier published results.^[5]

^[c]Scale-up to 6 mmol.

Scheme S3. Failed deoxy-thiolation reactions on S7 and S8.

Entry	Substrate	H-donor	Time	Temp.	Yield thiol	Yield Cl-product	Yield side-
		(eq.)	(min) ^[a]	(°C)	(Eq/Ax)	(Eq/Ax)	product
1	7, Xylose	EtSH (80)	O.N.	-20->-5	41 (8a)	-	-
					(1/5)		
2	7, Xylose	BnSH (80)	O.N.	-20->-5	41 (8b)	-	-
					(1/5)		
3	7, Xylose	AcSH (80)	O.N.	-20->-5	36 (8c)	-	-
					(1.5/1)		
4	9,	EtSH (80)	O.N.	-20->15	-	20 (S9)	10 (S10)
	4-TrtHNN-Gal					(1.8/1)	
5	9,	AcSH (80)	O.N.	-20->-5	22 (10)	15 (S9)	40 (S10)
	4-TrtHNN-Gal				(1/3.7)	(1/1.4)	
6	11, Maltose	BnSH (80)	O.N.	-20->-5	57 (12)	-	-
					(1/5)		
7	S11 , GlcNAc	EtSH (80)	0.N.	-20->15	-	39 (S2)	15 (S12)
						(2/1)	
8	\$13 , Ac-α-Glc	BnSH (80)	0.N.	-20->15	-	44 (S14)	-
						(3/1)	
9	13 , β-Glc	BnSH (80)	0.N.	-20->15	21 (14)	54 (15)	5 (S15)
					(1/1.1)	(1.8/1)	
10	16, Cellobiose	AcSH (80)	0.N.	-20->15	-	-	47 (17)
11	16, Cellobiose	BnSH (80)	O.N.	-20->-5	-	-	50 (17)

Table S3.	Deoxy	y-thiolation	reactions

^[a]After addition of the thiol.

^[b]Scale-up to 6 mmol.

Scheme S4. Proposed mechanism formation of S10.

Scheme S5. Attempted deoxy-thiolation reactions on N-acetyl glucosamine **S11** and acetylated trityl hydrazone **S13**. The ratios behind the yield are the equatorial/axial ratios.

Experimental procedures

General procedures

General Information

All solvents used for reaction, extraction, filtration, and chromatography were of commercial grade and used without further purification. Automated flash chromatography was performed on a Reveleris[®] X2 Flash Chromatography, using Grace[®] Reveleris Silica flash cartridges (12 grams). ¹H-, ¹³C-, APT-, HSQC-, and COSY-NMR were recorded on a Varian AMX400 spectrometer (400, 101 MHz, respectively) using DMSO-*d*₆, chloroform-*d*, or methanol-*d*₄ as solvent. Chemical shifts are given in ppm (δ) relative to the solvent residual peak. Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, dd = doublet, ddd = double doublet, t = triplet, q =quartet, m = multiplet), coupling constants J (Hz), and integration. High Resolution Mass measurements were performed using a ThermoScientific LTQ OribitrapXL spectrometer. Microwave reactions were performed with Biotage[®] Initiator+.

Preparation of *tert*-butyl hypochlorite

10-15% aqueous NaOCI (100 mL) was diluted with water (150 mL). The solution was cooled to 0 °C and placed in the dark. AcOH (10 mL) and tBuOH (15.5 mL) were added in one single portion. The solution was stirred for 15 min. The formed *tert*-butyl hypochlorite formed an immiscible layer on top of the water. The reaction mixture was poured into a separatory funnel and the aqueous layer was discarded. The neat *tert*-butyl hypochlorite layer was washed with sat. aq. NaHCO₃ (1× 100 mL), water (1× 50 mL) and filtered over a pipet filled with CaCl₂. Neat yellow *tert*-butyl hypochlorite was obtained, which was stored over CaCl₂ under N₂ atmosphere in a fridge for a maximum period of one month. When used in a reaction, it was dissolved in the solvent mentioned.

General procedure of following experiments with qNMR.

The starting material was dissolved in a microwave vial with either D_2O or DMA to obtain a solution with a concentration of 0.1 M, followed by the addition of the internal standard. For experiments in D_2O DMSO was used as I.S., while for experiments in DMA 1,2-dichlorobenzene was used. In the case of D_2O , the reaction mixture was shaken and transferred to an NMR tube. ¹H-NMR was taken (t0 measurement) with 8 scans (nt=8) and a d1 value of 60 (d1=60). After the NMR measurement, the D_2O mixture was transferred to the microwave vial. When DMA was used, a small amount was taken and concentrated in vacuo before being dissolved in methanol- d_4 followed by t0 measurement. Next, the additive was added and the reaction mixture was heated to the given temperature. The reaction was followed by using the NMR-sample preparation method mentioned earlier.

Substitution reactions on chloroglycosides

Methyl 3-azido-3-deoxy-α-D-glucopyranoside (4)

 NaN_3 (71 mg, 1.1 mmol, 5.0 eq.) was added in a microwave vial, followed by the addition of a solution of compound **2** (46 mg, 0.22 mmol, 1.0 eq., ax/eq ratio: 1/1) in DMA (2.2 mL). The vial was closed with a cap and heated for two hours at 100 °C in a microwave. NMR analysis showed only 5% conversion, therefore the vial was heated once more for

two hours at 130 °C. NMR analysis showed full conversion and the reaction mixture was concentrated *in vacuo*. Purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave the title compound (19 mg, 80 μ mol, 73% starting from the axial chloride) as an oil. HRMS (ESI neg) m/z calcd for C₇H₁₂N₃O₅ [M-H]⁻: 218.0782, found: 218.0782. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 4.68 (d, *J*=3.6, 1H), 3.81 (dd, *J*=11.8, 1.9, 1H), 3.69 (dd, *J*=11.8, 5.3, 1H), 3.61 – 3.51 (m, 2H), 3.48 – 3.38 (m, 4H), 3.37 – 3.27 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 100.6, 73.5, 72.3, 70.2, 68.7, 62.3, 55.6.

Methyl 2-azido-2-deoxy-α-D-altropyranoside (S1)

Compound **2** (38.6 mg, 0.18 mmol, ax/eq ratio: 1/1) was dissolved in D_2O (1.8 mL). DMSO (13 μ L, 0.18 mmol, 1.0 eq.) was added as internal standard. qNMR (t0) was measured as described in the general procedure. The azide was introduced as described in the general procedure. KOtBu (20 mg, 0.18 mmol, 1.0 eq.) was added and the reaction mixture was heated for 1.5 hours at 50 °C in a microwave. qNMR analysis showed full

conversion of the equatorial chloride **2-eq** to epoxide **5**. After lyophilization, the crude was dissolved in DMA (1.8 mL) in a microwave vial, followed by the addition of 1,2-dichlorobenzene (20 μ L, 0.18 mmol, 1.0 eq.). qNMR (t0) was measured with 50 μ L of the reaction mixture. NaN₃ (59 mg, 0.91 mmol, 5.0 eq.) and NH₄Cl (9.7 mg, 0.18 mmol, 1.0 eq.) were added and the reaction mixture was heated to 120 °C for three hours, after which qNMR (t1) showed full conversion of **2-ax** and **5**. The reaction mixture was concentrated *in vacuo* and purified by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) to give **4** (12.5 mg, 57 μ mol, 31%) and **S1** (4.0 mg, 18 μ mol, 10%). The analysis of **4** is described *vide supra*. HRMS (ESI neg) m/z calcd for C₇H₁₂N₃O₅ [M-H]⁻: 218.0782, found: 218.0784. ¹H NMR (400 MHz, Methanol-*d*₄) δ 4.58 (d, *J* = 3.7 Hz, 1H), 3.84 (td, *J* = 6.6, 3.2 Hz, 1H), 3.80 – 3.75 (m, 3H), 3.75 – 3.72 (m, 1H), 3.71 – 3.64 (m, 2H), 3.43 (s, 3H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 101.4, 73.8, 70.6, 67.1, 64.3, 63.0, 55.9.

Isopropyl 2-acetmido-3-azido-2,3-dideoxy-α-D-glucopyranoside (S3)

NaN₃ (41 mg, 0.63 mmol, 5.0 eq.) was added in a microwave vial, followed by the addition of a solution of compound **S2**^[5] (36 mg, 0.13 mmol, 1.0 eq., ax/eq ratio: 1/1.4) in DMA (2.5 mL). The vial was closed with a cap and heated for two hours at 130 °C in a microwave. The reaction mixture was concentrated *in vacuo*. Purification by Grace

flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave two fractions. One was a mixture of the title compound (4.3 mg, 15 μ mol 29% starting from the axial chloride) and unreacted equatorial chloride **S2-eq** (17.4 mg, 62 μ mol, 83% recovered). The other fraction contained compound **S4** (4.7 mg, 19 μ mol). The analysis of **S4** is described *vide infra*. HRMS (ESI) m/z calcd for C₁₁H₂₀N₄O₅Na [M+Na]⁺: 311.1326, found: 311.1322. Because of the overlap with the spectrum of **S2-eq**, only two signals from **S3** can be observed in ¹H NMR. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 3.61 (dd, *J* = 11.2, 9.3 Hz, 1H), 3.41 (t, *J* = 9.3 Hz, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ = 173.3, 96.1, 73.8, 71.2, 71.1, 65.6, 62.4, 53.5, 23.6, 22.4, 21.6.

Side product of the azide introduction in GlcNAc (S4)

Compound **S4** (4.7 mg, 19 μ mol) was isolated during the synthesis of **S3**. HRMS (ESI) m/z calcd for C₁₁H₁₉NO₅Na [M+Na]⁺: 268.1155, found: 268.1151. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 6.12 (d, *J*=2.1, 1H), 5.28 (s, 1H), 4.13 (d, *J*=8.9, 1H), 4.02 (p, *J*=6.2, 1H), 3.82 (d, *J*=10.0, 1H), 3.75 – 3.64 (m, 2H), 2.01 (s, 3H), 1.25 (d, *J*=6.2, 3H), 1.18 (d, *J*=6.1, 1H) = 0.05 (d, *J*=6.2, 3H), 1.05 (d, *J*=6.2, 3H), 1.18 (d, *J*=6.1, 1H) = 0.05 (d, *J*=6.2, 3H), 1.18 (d, *J*=6.1, 1H) = 0.05 (d, J=6.2, 3H), 1.05 (d, J=6.2, 3H), 1.05 (d, J=6.2, 3H), 1.05 (d, J=6.2, 3H) = 0.05 (d, J=6.2, 3H)

3H). ¹³C NMR (101 MHz, Methanol- d_4) δ = 172.1, 134.8, 118.1, 94.0, 73.6, 72.0, 64.3, 62.7, 24.1, 23.5, 22.3.

NaN₃ (26 mg, 0.40 mmol, 5.3 eq.) was added in a microwave vial, followed by the addition of a solution of compound $S5^{[5]}$ (38 mg, 75 µmol, 1.0 eq., ax/eq ratio: 4.4/1) in DMA (1.5 mL). The vial was closed with a cap and heated for two hours at 130 °C in a microwave. NMR analysis showed full conversion and the reaction mixture was

concentrated *in vacuo*. Purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 25% MeOH in DCM) gave a mixture of the title compound (13 mg, 26 μ mol, 43% starting from the axial chloride) and side product **17** (7.6 mg, 23 μ mol, 38% starting from the axial chloride) which could not be separated. HRMS (ESI) m/z calcd for C₂₃H₃₅N₃O₁₀Na [M+Na]⁺: 536.2215, found: 536.2203. ¹H NMR (400 MHz,

Methanol- d_4) δ = 7.38 (q, J=8.4, 4H), 5.21 (d, J=3.7, 1H), 4.90 (d, J=11.7, 1H), 4.66 (d, J=11.6, 1H), 4.38 (dd, J=12.8, 7.7, 1H), 3.97 – 3.89 (m, 1H), 3.88 – 3.81 (m, 2H), 3.77 – 3.59 (m, 4H), 3.59 – 3.52 (m, 1H), 3.46 (dd, J=10.2, 3.6, 1H), 3.44 – 3.39 (m, 1H), 3.36 – 3.22 (m, 8H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Methanol- d_4) δ = 151.9, 136.0, 129.2, 126.2, 103.1, 102.0, 81.0, 77.8, 76.6, 74.8, 74.6, 72.8, 71.7, 70.0, 68.8, 62.4, 62.2, 35.4, 31.8.

4-tert-butylbenzyl-β-D-glucopyranoside (17)

Compound **17** was formed during the attempted deoxy-thiolation of **16** (Table S3, entry 10 & 11) and the synthesis of **S6**. HRMS (ESI) m/z calcd for $C_{17}H_{26}NO_6Na [M+Na]^+$: 349.1622, found: 349.1622. ¹H NMR (400 MHz, Methanol- d_4) δ = 7.43 - 7.33 (m, 4H), 4.91 (d, *J*=11.6, 1H), 4.66 (d, *J*=11.6, 1H), 4.37 (d, *J*=7.7, 1H), 3.92 (dd, *J*=11.9, 2.1, 1H), 3.72 (dd, *J*=11.9, 5.6, 1H), 3.39 - 3.24 (m, 4H), 1.33

(s, 9H). ¹³C NMR (101 MHz, Methanol- d_4) δ = 151.8, 135.9, 129.2, 126.1, 103.1, 78.0, 77.9, 75.1, 71.5, 62.8, 35.3, 31.8.

Synthesis of epoxides 5 and 6

Methyl 2,3-anhydro-α-D-glucopyranoside (5)

Compound **2-eq**^[5] (0.13 g, 0.62 mmol, 1.0 eq.) was dissolved in D₂O (6.2 mL). DMSO (44 μ L, 0.62 mmol, 1.0 eq.) was added as internal standard. KOtBu (76 mg, 0.68 mmol, 1.1 eq.) was added and the reaction mixture was heated for 1.5 hours at 50 °C in a microwave. qNMR analysis showed full conversion. After lyophilization, the crude was purified by Grace flash

chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) and lyophilization gave the title compound (83 mg, 0.44 mmol, 70%). HRMS (ESI neg) m/z calcd for $C_7H_{11}O_5$ [M-H]⁻: 175.0612, found: 175.0614. ¹H NMR (400 MHz, Methanol- d_4) δ 4.92 (d, J = 3.2 Hz, 1H), 3.87 – 3.78 (m, 2H), 3.68 – 3.59 (m, 2H), 3.54 (dd, J = 4.2, 3.2 Hz, 1H), 3.46 (s, 3H), 3.42 – 3.39 (m, 1H). ¹³C NMR (101 MHz, Methanol- d_4) δ 96.0, 70.9, 66.4, 62.5, 55.9, 55.7, 55.1. ¹H NMR (400 MHz, Deuterium Oxide) δ 5.07 (d, J = 3.1 Hz, 1H), 3.96 (dd, J = 9.6, 1.7 Hz, 1H), 3.87 (dd, J = 12.2, 2.1 Hz, 1H), 3.75 – 3.66 (m, 2H), 3.65 – 3.57 (m, 2H), 3.48 (s, 3H).

4-tert-butylbenzyl-2,3-anhydro-α-D-maltoside (6)

4-tert-butylbenzyl-3-chloro-3-deoxy-β-D-maltoside^[5] (5.0 mg, 9.9 μmol, 1.0 eq.) was dissolved in D₂O (0.47 mL) in an NMR tube. DMSO (1 μL, 9.9 μmol, 1.0 eq.) was added as internal standard. A solution of KOtBu in D₂O (0.5 M, 30 μg, 15 μmol, 1.5 eq.) was added and the reaction mixture was heated for 1.5 hours at 50 °C. NMR analysis

showed full conversion. After lyophilization, the title compound was obtained in quantitative yield (5.5 mg). HRMS (ESI pos) m/z calcd for $C_{23}H_{34}O_{10}Na$ [M+Na]⁺: 493.2044, found: 493.2041. ¹H NMR (400 MHz, Methanold₄) δ 7.36 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 5.56 (d, J = 3.0 Hz, 1H), 4.85 (d, J = 11.7 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.33 (d, J = 7.8 Hz, 1H), 3.85 – 3.76 (m, 3H), 3.75 – 3.67 (m, 3H), 3.58 – 3.51 (m, 3H), 3.36 (dd, J = 4.3, 1.1 Hz, 1H), 3.33 – 3.29 (m, 1H), 3.23 (dd, J = 9.3, 7.8 Hz, 1H), 1.29 (s, 9H). ¹³C NMR (101 MHz, Methanol-d₄) δ 134.5, 127.7, 124.7, 101.7, 93.9, 77.4, 75.0, 73.9, 73.9, 70.6, 70.1, 65.2, 61.6, 60.4, 54.6, 53.8, 30.3.

Synthesis of α -Glc derivatives

Methyl 3-S-ethyl-3-deoxy-α-D-allo/glucopyranoside (3a)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{1}^{[5]}$ (186 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl

hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise to the cooled solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 20 minutes. During this time EtSH was purged for 5 minutes with N₂. Excess EtSH (2.3 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 10 °C over 5 h, after which the reaction mixture was concentrated *in vacuo*. Purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave the title compound (93 mg, 0.39 mmol, 97%). The NMR shows the ratio of equatorial and axial is 1/3.7. Analysis was in agreement with literature.^[5]

Methyl 3-S-phenyl-3-deoxy-α-D-allo/glucopyranoside (3b)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{1}^{[5]}$ (189 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise to the cooled

solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 20 minutes. During this time PhSH was purged for 5 minutes with N₂. Excess PhSH (3.3 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 15 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* and the remaining crude was diluted with pentane/Et₂O (1/1 v/v) and extracted with H₂O (2x). The combined aqueous layers were concentrated *in vacuo* and purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave the title compound (92 mg, 0.32 mmol, 80%). The NMR shows the ratio of equatorial and axial is 1/1.5. HRMS (ESI) m/z calcd for C₁₃H₁₈O₅SNa [M+Na]⁺: 309.0767, found: 309.0767. Reported NMR data is for the major isomer. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 7.70 – 7.65 (m, 1H), 7.64 – 7.59 (m, 2H), 7.39 – 7.24 (m, 2H), 4.65 (d, *J*=3.5, 1H), 4.01 – 3.96 (m, 1H), 3.93 – 3.64 (m, 5H), 3.44 (s, 3H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ = 140.6, 135.8, 132.4, 129.7, 129.7, 100.5, 70.6, 69.0, 67.9, 62.4, 61.7, 55.4.

Methyl 3-S-benzyl-3-deoxy-α-D-allo/glucopyranoside (3c)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{1}^{[5]}$ (189 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise to the cooled

solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 20 minutes. During this time BnSH was purged for 5 minutes with N₂. Excess BnSH (3.8 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 15 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* and the remaining crude was diluted with pentane/Et₂O (1/1 v/v) and extracted with H₂O (2x). The combined aqueous layers were concentrated *in vacuo* and purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave the title compound (101 mg, 0.34 mmol, 84%). The NMR shows the ratio of equatorial and axial is 1/5.1. HRMS (ESI) m/z calcd for C₁₄H₂₀O₅SNa [M+Na]⁺: 323.0924, found: 323.0921. Reported NMR data is for the major isomer. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 7.45 – 7.37 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.18 (m, 1H), 4.54 (d, *J*=3.5, 1H), 3.92 – 3.84 (m, 2H), 3.84 – 3.79 (m, 2H), 3.79 – 3.71 (m, 3H), 3.41 – 3.38 (m, 1H), 3.36 (s, 3H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ = 139.9, 130.3, 129.4, 127.9, 100.4, 70.4, 68.9, 68.7, 62.5, 55.9, 55.3, 40.7.

Methyl 3-S-acetyl-3-deoxy-α-D-allo/glucopyranoside (3d)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{1}^{[5]}$ (186 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise to the cooled

solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 20 minutes. During this time AcSH was purged for 5 minutes with N₂. Excess AcSH (2.3 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 5 °C over 7.5 h in the dark, after which TLC analysis showed full conversion. The reaction mixture was concentrated *in vacuo* and purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave the title compound (65 mg, 0.26 mmol, 64%). The NMR shows the ratio of equatorial and axial is 1.3/1.0. Analysis was in agreement with literature.^[5]

Synthesis of Xylose derivatives

Methyl 3-deoxy-3-S-ethyl- α -D-riboso/xylopyranoside (8a)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $7^{[5]}$ (167 mg, 0.38 mmol, 1.0 eq.) and THF (4 mL). The resulting yellow solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature), *tert*-butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added

dropwise over 1 minute to the cooled solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N_2 bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 35 minutes. During this time EtSH was degassed in a separated flask by purging with N₂ for 5 minutes, after which 2.3 mL (30.4 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to -5 °C overnight in the dark. The reaction mixture was concentrated in vacuo and purified by Grace flash chromatography on a 15 g silica cartridge using heptane/EtOAc (0 to 100% EtOAc in heptane). The products were obtained as an oil (40 mg, 0.19 mmol, 50%). Two fraction were collected of which one fraction contains the axial product and the other contains a mixture of axial- and equatorial-product. The ratio between equatorialand axial-product is 1/5.3. 3-equatorial/3-axial mix: HRMS (ESI) m/z calcd for C₈H₁₆O₄SNa [M+Na]⁺: 231.0662, found: 231.0660. **3-equatorial:** ¹H NMR (400 MHz, Methanol-d₄) δ 4.61 (d, J = 3.5 Hz, 1H), 3.65 – 3.59 (m, 1H), 3.50 – 3.46 (m, 2H), 3.45 – 3.42 (m, 4H), 2.81 – 2.69 (m, 3H), 1.28 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Methanold₄) δ 100.6, 72.3, 69.9, 63.9, 55.5, 53.8, 49.6, 49.4, 49.2, 49.0, 48.8, 48.6, 48.4, 26.5, 15.3. **3-Axial:** HRMS (ESI) m/z calcd for C₆H₁₁ClO₄Na [M+Na]⁺: 231.06620, found: 231.0660. ¹H NMR (400 MHz, Methanol- d_4) δ 4.39 (d, J = 1.8 Hz, 1H), 3.92 (dd, J = 11.8, 4.7 Hz, 1H), 3.85 – 3.78 (m, 2H), 3.56 (dd, J = 11.8, 2.3 Hz, 1H), 3.48 (s, 3H), 3.12 (t, J = 3.3 Hz, 1H), 2.69 – 2.55 (m, 2H), 1.28 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Methanol-d₄) δ 102.8, 70.8, 68.7, 67.3, 56.4, 52.0, 27.2, 15.3.

Methyl 3-S-benzyl-3-deoxy-α-D-riboso/xylopyranoside (8b)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $7^{[5]}$ (167 mg, 0.38 mmol, 1.0 eq.) and THF (4 mL). The resulting yellow solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature), *tert*-butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added

dropwise over 1 minute to the cooled solution of hydrazone and stirred for 15 minutes. The resulting light yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 35 minutes. During this time BnSH was degassed in a separated flask by purging with N₂ for 5 minutes, after which

3.6 mL (30.4 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to -5 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* and the remaining crude was diluted with pentane/Et₂O (1/1 v/v) and extracted with H₂O (2x). The combined aqueous layers were concentrated *in vacuo* and the mixture was purified by Grace flash chromatography on a 15 g silica cartridge using heptane/EtOAc (0 to 70% EtOAc in heptane). The products were obtained as an oil (32 mg, 0.14 mmol, 38%). The equatorial- and axial-products were isolated separately with a ratio of 1/5. **3-equatorial**: HRMS (ESI) m/z calcd for C₁₃H₁₈O₄SNa [M+Na]⁺: 293.0818, found: 293.0814. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 7.42 – 7.12 (m, 5H), 4.59 (d, *J*=3.5, 1H), 3.97 (d, *J*=1.5, 2H), 3.61 – 3.55 (m, 1H), 3.52 – 3.42 (m, 4H), 3.41 (s, 3H), 2.86 – 2.79 (m, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ = 140.0, 130.2, 129.4, 127.9, 100.7, 72.5, 70.0, 64.0, 55.5, 53.9, 49.4, 49.2, 49.0, 48.8, 48.6, 37.0. **3-axial**: HRMS (ESI) m/z calcd for C₁₃H₁₈O₄SNa [M+Na]⁺: 293.0815. ¹H NMR (400 MHz, Methanol-*d*₄) δ = 7.39 – 7.19 (m, 5H), 4.26 (d, *J*=1.6, 1H), 3.90 (dd, *J*=11.9, 4.4, 1H), 3.85 – 3.75 (m, 2H), 3.75 – 3.68 (m, 2H), 3.47 (dd, *J*=11.9, 2.1, 1H), 3.43 (s, 3H), 2.99 (t, *J*=3.1, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ = 139.9, 130.1, 129.5, 128.0, 102.8, 70.8, 68.8, 56.5, 49.2, 49.0, 48.8, 48.6, 37.2.

Methyl 3-S-acetyl-3-deoxy-α-D-riboso/xylopyranoside (8c)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $7^{[5]}$ (167 mg, 0.38 mmol, 1.0 eq.) and THF (4 mL). The resulting yellow solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature), *tert*-butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added

dropwise over 1 minute to the cooled solution of hydrazone and stirred for 15 minutes. The resulting light yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 35 minutes. During this time AcSH was degassed in a separated flask by purging with N₂ for 5 minutes, after which 2.3 mL (30.4 mmol. 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to -5 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* and purified by Grace flash chromatography on a 15 g silica cartridge using heptane/EtOAc (0 to 100% EtOAc in heptane). The products were obtained as an oil (32 mg, 0.14 mmol, 38%). The product was isolated as a mixture of equatorial- and axial-product, with a ratio of 1.5/1. Reported NMR data is for the major isomer. HRMS (ESI) m/z calcd for C₈H₁₃O₆S [M-H]⁻: 221.0489, found: 221.0486. ¹H NMR (400 MHz, Methanol-*d*₄) δ 4.62 (d, *J* = 3.5 Hz, 1H), 3.72 – 3.65 (m, 1H), 3.64 – 3.56 (m, 2H), 3.56 – 3.49 (m, 2H), 3.44 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 197.5, 197.2, 100.5, 70.9, 68.9, 63.9, 55.5, 52.3, 49.4, 49.2, 49.0, 48.8, 48.6, 30.7.

Synthesis of Gal derivative

Methyl 4-S-acetyl-4-deoxy- α -D-galacto/glucopyranoside (10)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{9}^{[5]}$ (179 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting yellow solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature), *tert*-butyl hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise over 1 minute to the cooled solution of hydrazone and stirred for 25 minutes.

The resulting light yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 30 minutes. During this time AcSH was degassed in a separated flask by purging with N₂ for 5 minutes, after which 2.3 mL (32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to -5 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* purified by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM). Three fractions were obtained: I) 12 mg methyl 4-chloro-4-deoxy- α -D-galacto/glucopyranoside **S9**^[5] (58 µmol, 15%, eq/ax ratio: 1/1.4); II) 22 mg **10** (88 µmol, 22%, eq/ax 1/3.7); III) 28 mg **S10** (0.16 mmol, 40%). The equatorial and axial product could not be separated. HRMS (ESI) m/z calcd for C₉H₁₆O₆SNa [M+Na]⁺: 275.0560, found:

275.0554. Reported NMR data is for the major isomer (axial). ¹H NMR (400 MHz, Methanol- d_4) δ 4.77 (d, J = 3.7 Hz, 1H), 3.75 – 3.63 (m, 3H), 3.59 (dd, J = 12.1, 6.5 Hz, 1H), 3.48 (dd, J = 9.3, 3.6 Hz, 1H), 3.42 (s, 3H), 3.41 – 3.36 (m, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Methanol- d_4) δ 196.2, 101.2, 74.8, 73.0, 71.3, 63.4, 55.6, 48.0, 30.6.

Methyl 3-keto-3,4-deoxy-α-D-glucopyranoside (S10)

Compound **S10** was isolated during the synthesis of **10**. ¹H NMR (400 MHz, Methanol- d_4) δ 5.07 (d, J = 4.1 Hz, 1H), 4.33 (dd, J = 4.1, 1.3 Hz, 1H), 4.08 – 4.00 (m, 1H), 3.69 (dd, J = 11.8, 3.5 Hz, 1H), 3.62 (dd, J = 11.9, 5.2 Hz, 1H), 3.42 (s, 3H), 2.71 – 2.61 (m, 1H), 2.38 (dd, J = 13.9, 3.0 Hz, 1H). ¹³C NMR (101 MHz, Methanol- d_4) δ 206.4, 103.9, 76.9, 71.8, 65.0, 55.7, 43.3. NMR analysis in DMSO-d6 was in agreement with literature.^[6]

Synthesis of maltose derivatives

4-tert-butylbenzyl-3-S-benzyl-3-deoxy-α-D-maltoside (12)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone $\mathbf{11}^{[5]}$ (196 mg, 0.26 mmol, 1.0 eq.) and THF (2.6 mL). The resulting solution was evacuated and backfilled with N₂ (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl hypochlorite (1.24 M in DCM, 0.23 mL, 1.1 eq.) was added dropwise to the cooled solution of

hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature ≤ -15 °C for 20 minutes. During this time BnSH was degassed by purging with N₂ for 5 minutes. Excess BnSH (2.4 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to -5 °C overnight in the dark. The reaction mixture was concentrated in vacuo and the remaining crude was diluted with pentane/Et₂O (1/1 v/v) and extracted with H₂O (2x). The combined aqueous layers were concentrated in vacuo and the mixture was purified by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM). The title compound was obtained as an oil (86 mg, 0.15 mmol, 57%, eq/ax 1/5). The equatorial- and axial-products were partially isolated. **3-equatorial**: HRMS (ESI) m/z calcd for C₃₀H₄₂O₁₀SNa [M+Na]⁺: 617.2390, found: 617.2377. ¹H NMR (400 MHz, Methanol-d₄) δ 7.44 – 7.19 (m, 9H), 5.16 (d, J = 3.3 Hz, 1H), 4.90 (d, J = 11.7 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 7.8 Hz, 1H), 4.05 - 3.90 (m, 3H), 3.88 - 3.78 (m, 2H), 3.73 - 3.64 (m, 2H), 3.64 - 3.53 (m, 3H), 3.42 - 3.28 (m, 3H), 2.86 (t, J = 10.7 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Methanol-d₄) δ 139.8, 130.3, 129.4, 129.2, 128.0, 126.2, 103.1, 102.3, 81.4, 77.8, 76.7, 75.6, 74.7, 73.2, 71.6, 69.5, 62.9, 62.2, 53.5, 36.9, 35.4, 31.8. **3-axial**: HRMS (ESI) m/z calcd for C₃₀H₄₃O₁₀S [M+H]⁺: 595.2571, found: 595.2561. ¹H NMR (400 MHz, Methanol-d₄) δ 7.42 – 7.19 (m, 9H), 5.13 (d, J = 3.4 Hz, 1H), 4.90 (overlap with H₂O peak, 1H), 4.63 (d, J = 11.6 Hz, 1H), 4.36 (d, J = 7.8 Hz, 1H), 3.95 - 3.85 (m, 6H), 3.83 - 3.70 (m, 3H), 3.68 - 3.55 (m, 2H), 3.41 - 3.36 (m, 1H), 3.36 - 3.32 (m, 1H), 3.31 - 3.26 (m, 1H), 1.33 (d, J = 2.1 Hz, 9H). ¹³C NMR (101 MHz, Methanol- d_4) δ 151.8, 139.9, 135.9, 130.4, 129.4, 129.1, 127.9, 126.1, 103.1, 101.1, 79.2, 77.8, 76.7, 75.0, 71.7, 71.6, 69.4, 68.9, 62.6, 62.2, 55.2, 40.7, 35.3, 31.8.

Synthesis of S13 and S14

Methyl-2,4,6-O-acetyl-3-(trityl)hydrazone)-α-D-glucopyranoside (S13)

To a solution of $\mathbf{1}^{[5]}$ (0.30 g, 0.67 mmol, 1.0 eq.) in pyridine (3.3 mL) was added DMAP (11 mg, 90 µmol, 0.14 eq.) and Ac₂O (0.19 mL, 2.0 mmol, 3.0 eq.) at 0 °C, after which the reaction was allowed to warm-up to room temperature and stirred for three hours. The reaction mixture was guenched by the addition of MeOH at 0 °C and diluted with

EtOAc. The organic layer was washed with sat. aq. NaHCO₃ (1x), brine (1x), dried over Na₂SO₄, filtered, and concentrated in *vacuo*. Purification by Grace flash chromatography on a 15 g silica cartridge with heptane/EtOAc (0 to 100% EtOAc in heptane) gave the title compound (0.21 g, 0.32 mmol, 47%). HRMS (ESI pos) m/z calcd for

 $C_{32}H_{35}N_2O_8$ [M+H]⁺: 575.2388, found: 575.2374. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (s, 1H), 7.34 – 7.18 (m, 15H), 5.57 (d, *J* = 3.3 Hz, 1H), 5.04 (d, *J* = 9.3 Hz, 1H), 4.83 (d, *J* = 3.3 Hz, 1H), 4.18 (d, *J* = 3.8 Hz, 2H), 3.82 (dt, *J* = 9.0, 3.7 Hz, 1H), 3.32 (s, 3H), 2.08 (s, 6H), 1.54 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 169.4, 169.0, 145.8, 130.0, 129.3, 129.2, 127.7, 127.6, 126.7, 97.7, 73.2, 72.8, 70.3, 69.2, 62.6, 55.2, 20.8, 20.8, 20.3.

Methyl 2,4,6-tri-O-acetyl-3-chloro-3-deoxy-α-D-allo/glucopyranoside (S14)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone **S13** (113 mg, 0.20 mmol, 1.0 eq.) and THF (2.0 mL). The resulting solution was evacuated and backfilled with N_2 (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl hypochlorite (1.24 M in DCM, 0.18 mL, 1.1 eq.) was added dropwise to the cooled

solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N_2 bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature ≤ -15 °C for 20 minutes. During this time BnSH was degassed by purging with N₂ for 5 minutes. Excess BnSH (1.8 mL, 16 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 15 °C overnight in the dark. The reaction mixture was concentrated in vacuo and the remaining crude was dissolved in MeCN (+/- 5 mL) and washed several times with heptane (total of 150 mL) till TLC analysis showed that all benzyl thiol was removed. The MeCN layer was concentrated in vacuo and purification by Grace flash chromatography on a 15 g silica cartridge using heptane/EtOAc (0 to 40% EtOAc in heptane) gave the title compound (29 mg, 86 µmol, 44%, eq/ax 3/1). The equatorial- and axial-products were isolated separately. 3-equatorial: HRMS (ESI pos) m/z calcd for C13H19O8CINa $[M+Na]^+$: 361.0661 and 363.0631, found: 361.0662 and 363.0632. ¹H NMR (400 MHz, Chloroform-d) δ 5.16 (t, J = 10.1 Hz, 1H), 4.97 (dd, J = 10.9, 3.6 Hz, 1H), 4.90 (d, J = 3.5 Hz, 1H), 4.29 - 4.18 (m, 2H), 4.10 (dd, J = 12.3, 2.4 Hz, 1H), 3.89 (ddd, J = 10.0, 4.7, 2.4 Hz, 1H), 3.40 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.8, 170.1, 169.4, 96.9, 72.7, 70.4, 68.2, 62.1, 58.1, 55.6, 20.9, 20.8, 20.7. **3-axial**: HRMS (ESI pos) m/z calcd for C13H19O8CINa [M+Na]*: 361.0661 and 363.0631, found: 361.0660 and 363.0630. ¹H NMR (400 MHz, Chloroform-d) δ 5.09 (t, J = 4.1 Hz, 1H), 4.97 (dd, J = 9.3, 3.6 Hz, 1H), 4.88 (d, J = 4.2 Hz, 1H), 4.81 (t, J = 3.8 Hz, 1H), 4.40 – 4.31 (m, 2H), 4.27 – 4.18 (m, 1H), 3.45 (s, 3H), 2.18 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.8, 170.0, 169.6, 97.4, 67.8, 67.0, 63.4, 62.2, 56.8, 56.2, 20.9, 20.9, 20.8.

Synthesis of β-Glc derivative

Methyl 3-S-benzyl-3-deoxy-β-D-allo/glucopyranoside (14)

A 100 mL flask equipped with a magnetic stir bar was charged with trityl hydrazone **13**^[5] (193 mg, 0.40 mmol, 1.0 eq.) and THF (4 mL). The resulting solution was evacuated and backfilled with N_2 (3 times) and then cooled to -20 °C (external temperature). *tert*-Butyl

hypochlorite (1.24 M in DCM, 0.35 mL, 1.1 eq.) was added dropwise to the cooled solution of hydrazone and stirred for 15 minutes. The resulting light-yellow solution was then frozen in a liquid N₂ bath and degassed by two freeze-pump-thaw cycles, each time thawing in a -20 °C bath. After backfilling with N₂, the reaction was maintained at an external temperature \leq -15 °C for 20 minutes. During this time BnSH was purged for 5 minutes with N₂. Excess BnSH (3.8 mL, 32 mmol, 80 eq.) was added to the cooled reaction. The reaction flask was subsequently allowed to warm-up to 15 °C overnight in the dark. The reaction mixture was concentrated *in vacuo* and the remaining crude was diluted with pentane/Et₂O (1/1 v/v) and extracted with H₂O (2x). The combined aqueous layers were concentrated *in vacuo* and purification by Grace flash chromatography on a 15 g silica cartridge using DCM/MeOH (0 to 10% MeOH in DCM) gave a mixture of the title compound (25 mg, 83 µmol, 21%, eq/ax 1/1.1) and rearrangement side product **S15** (4 mg, 20 µmol, 5%). Methyl 3-chloro-3-deoxy- β -D-allo/glucopyranoside **15**^[5] (46 mg, 0.22 mmol, 54%, eq/ax 1.8/1) was also isolated. The reported NMR data is for the equatorial isomer, not all signals are given due to overlap. HRMS (ESI) m/z calcd for C₁₄H₂₀O₅SNa [M+Na]⁺: 323.0924, found: 323.0932. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.44 – 7.20 (m, 5H), 4.20 (d, *J* = 7.5 Hz, 1H), 4.00 (s, 2H), 3.83 – 3.76 (m, 1H), 3.74 – 3.67 (m, 2H), 3.55 (s, 3H), 3.40 – 3.31 (m, 1H), 3.27 (dd, *J* = 10.7, 7.6 Hz, 1H),

2.61 – 2.54 (m, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 139.8, 130.3, 129.4, 127.9, 106.6, 73.9, 62.9, 57.2, 56.8, 36.8.

Rearrangement side product (S15)

Compound **S15** was isolated as a minor product during the synthesis of **14**. Peaks of OMe are not given due to overlap with **14**. ¹H NMR (400 MHz, Methanol- d_4) δ 5.01 (d, J = 1.5 Hz, 1H), 4.96 (dd, J = 6.5, 3.5 Hz, 1H), 4.82 (s, 1H), 4.22 – 4.16 (m, 1H), 3.95 – 3.92 (m, 1H), 3.92 – 3.86 (m, 1H), 2.63 (d, J = 6.4 Hz, 1H). ¹³C NMR (101 MHz, Methanol- d_4) δ 111.8, 109.4, 85.3, 79.5, 74.0, 59.6.

S-glycosides synthesis

Methyl 2,3,4,6-tri-O-acetyl-3-S-acetyl-3-deoxy-α-D-allo/glucopyranoside (S16 + S17)

To a solution of compound **3d** (0.14 g, 0.54 mmol, 1.0 eq. eq/ax: 1.1/1) in pyridine (1.8 mL) was added Ac₂O (1.8 mL, 20 mmol, 36 eq.) at 0 °C. After 15 minutes, the reaction mixture was allowed to warm-up to room temperature and stirred for an additional hour. The reaction

mixture was quenched by the addition of methanol at 0 °C, diluted with EtOAc and the organic layer was washed with 1 M HCl (2x), sat. aq. NaHCO₃ (2x), brine (1x), dried over Na₂SO₄, filtered, and concentrated in *vacuo*. A mixture of the title compounds was obtained in 98% yield (0.20 g, 0.53 mmol). With flash chromatography pentane/EtOAc (0 to 60% EtOAc in pentane) the two compounds could partly be separated to give pure **S16** (32 mg, 85 µmol) and pure **S17** (31 mg, 82 µmol), together with a mix fraction (0.14 g) that contained both **S16** and **S17**. **S16**: ¹H NMR (400 MHz, Chloroform-*d*) δ 5.05 (dd, *J* = 11.0, 9.9 Hz, 1H), 4.93 (dd, *J* = 11.8, 3.6 Hz, 1H), 4.87 (d, *J* = 3.5 Hz, 1H), 4.21 (dd, *J* = 12.3, 4.7 Hz, 1H), 4.15 – 4.03 (m, 2H), 3.99 (ddd, *J* = 9.9, 4.7, 2.4 Hz, 1H), 3.42 (s, 3H), 2.31 (s, 3H), 2.06 (d, *J* = 8.5 Hz, 6H), 2.00 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.3, 170.8, 170.1, 169.5, 96.6, 69.8, 68.6, 67.6, 62.4, 55.4, 44.8, 30.8, 20.9, 20.8, 20.7. HRMS (ESI pos) m/z calcd for C₁₅H₂₂O₉SNa [M+Na]⁺: 401.0877, found: 401.0873. **S17**: ¹H NMR (400 MHz, Chloroform-*d*) δ 5.23 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.13 (dd, *J* = 10.3, 4.2 Hz, 1H), 4.79 (d, *J* = 3.4 Hz, 1H), 4.56 (t, *J* = 4.7 Hz, 1H), 4.26 (dd, *J* = 12.2, 4.7 Hz, 1H), 4.13 (dd, *J* = 12.2, 2.2 Hz, 1H), 4.02 – 3.93 (m, 1H), 3.42 (s, 3H), 2.34 (s, 3H), 2.07 (d, *J* = 4.0 Hz, 6H), 1.93 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.6, 170.8, 169.7, 169.1, 96.6, 77.5, 77.2, 76.8, 67.5, 65.6, 65.3, 62.1, 55.4, 44.0, 30.4, 20.9, 20.8, 20.7. HRMS (ESI pos) m/z calcd for C₁₅H₂₂O₉SNa [M+Na]⁺: 401.0877, found: 401.0875.

Methyl 3-deoxy-3-thio- α -D-glucopyranoside (18)

To a solution of **S16** (31 mg, 83 μ mol, 1.0 eq.) in MeOH (0.4 mL) was added a solution of sodium methoxide in methanol (4.4 M, 38 μ L, 0.24 mmol, 2.0 eq.). After stirring for one hour, TLC showed full conversion of the starting material. The reaction mixture was

neutralized with dowex H⁺ resin, filtered and concentrated *in vacuo* to give the title compound (15 mg, 69 μ mol, 83%). NMR analysis was in agreement with literature.^[7]

Methyl 3-S-β-D-glucopyranosyl-3-deoxy-3-thio-α-D-glucopyranoside (20)

Thiol **18** (15 mg, 69 μ mol, 1.0 eq.) was dissolved in MilliQ-H₂O (0.2 mL) and transferred to an Eppendorf containing α -D-glucopyranosyl fluoride^[7] (38 mg, 0.21 mmol, 3.0 eq.) and Ca(OH)₂ (15 mg, 0.21 mmol, 3.0 eq.). The reaction was stirred vigorously for five hours, after which

the reaction mixture was neutralized with 2 M HCl and concentrated *in vacuo*. Purification by Grace flash chromatography on a 15 g spherical silica cartridge using DCM/MeOH (0 to 30% MeOH in DCM) gave the title compound (12 mg, 32 μ mol, 47%). HRMS (ESI pos) m/z calcd for C₁₃H₂₄O₁₀SNa [M+Na]⁺: 395.0982, found: 395.0984. ¹H NMR (400 MHz, Methanol-d₄) δ 4.72 (d, *J* = 3.5 Hz, 1H), 4.59 (d, *J* = 9.8 Hz, 1H), 3.89 – 3.80 (m, 2H),

3.75 – 3.64 (m, 2H), 3.63 – 3.53 (m, 2H), 3.46 (s, 3H), 3.41 – 3.32 (m, 4H), 3.26 (dd, *J* = 9.6, 8.5 Hz, 1H), 3.06 (t, *J* = 10.7 Hz, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 100.5, 86.3, 81.9, 79.4, 74.3, 72.2, 71.2, 69.2, 62.8, 62.6, 55.4, 53.6.

Methyl 3-deoxy-3-thio-α-D-allopyranoside (21)

 $\begin{array}{c} \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{SH} \\ \text{HO} \\ \text{OMe} \end{array} \\ \begin{array}{c} \text{To a solution of $$17$ (46 mg, 0.12 mmol, 1.0 eq.) in MeOH (0.6 mL) was added a solution of sodium methoxide in methanol (4.4 M, 55 \muL, 0.24 mmol, 2.0 eq.). After stirring for one hour, TLC showed full conversion of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated$ *in vacuo* $to give the title compound (18 mg, 84 \mumol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated$ *in vacuo* $to give the title compound (18 mg, 84 \mumol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated$ *in vacuo*to give the title compound (18 mg, 84 µmol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated*in vacuo*to give the title compound (18 mg, 84 µmol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated*in vacuo*to give the title compound (18 mg, 84 µmol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material in MeOH (0.6 mL) was added a solution of the starting material. The reaction mixture was neutralized with dowex H⁺ resin, filtered and concentrated*in vacuo*to give the title compound (18 mg, 84 µmol, 10 eq.) in MeOH (0.6 mL) was added a solution of the starting material materia

70%). NMR analysis was in agreement with literature.^[7]

Methyl 3-S-β-D-glucopyranosyl-3-deoxy-3-thio-α-D-allopyranoside (22)

Thiol **21** (18 mg, 84 μ mol, 1.0 eq.) was dissolved in MilliQ-H₂O (0.1 mL) and transferred to an vial α -D-glucopyranosyl fluoride^[7] (46 mg, 0.25 mmol, 3.0 eq.) and Ca(OH)₂ (19 mg, 0.25 mmol, 3.0 eq.). The reaction was stirred vigorously for five hours, after which the reaction mixture was neutralized with 2 M HCl and concentrated *in vacuo*. Purification by Grace flash

chromatography on a 15 g spherical silica cartridge using DCM/MeOH (0 to 30% MeOH in DCM) gave the title compound (12 mg, 33 μ mol, 39%). HRMS (ESI pos) m/z calcd for C₁₃H₂₄O₁₀SNa [M+Na]⁺: 395.0982, found: 395.0982. ¹H NMR (400 MHz, Methanol-*d*₄) δ 4.61 (d, *J* = 3.4 Hz, 1H), 4.34 (d, *J* = 9.8 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.91 – 3.76 (m, 3H), 3.75 (t, 1H), 3.72 – 3.61 (m, 3H), 3.40 – 3.34 (m, 4H), 3.37 – 3.29 (m, 3H), 3.30 – 3.23 (m, 1H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 100.4, 87.7, 82.2, 79.4, 74.7, 71.3, 70.6, 68.9, 67.9, 62.7, 62.4, 55.3, 53.4.

Supplemental references

- [1] B. T. Lawton, W. A. Szarek, J. K. N. Jones, *Carbohydr. Res.* **1970**, *15*, 397–402.
- [2] A. H. Haines, *Chem. Commun.* **1998**, 817–818.
- [3] T. Morikawa, K. Tsujihara, M. Takeda, Y. Arai, *Chem. Pharm. Bull.* **1982**, *30*, 4365–4372.
- [4] H. Okazaki, K. Hanaya, M. Shoji, N. Hada, T. Sugai, *Tetrahedron* **2013**, *69*, 7931–7935.
- [5] J. Zhang, N. R. M. Reintjens, J. Dhineshkumar, M. D. Witte, A. J. Minnaard, Org. Lett. 2022, 24, 5339– 5344.
- [6] N. N. H. M. Eisink, M. D. Witte, A. J. Minnaard, ACS Catal. 2017, 7, 1438–1445.
- [7] P. Wen, P. Jia, Q. Fan, B. J. McCarty, W. Tang, *ChemSusChem* **2022**, *15*, No. e202102483.

NMR spectra

NMR spectra of substitution reactions on chloroglycosides

Comparison of ¹H-NMR between compounds **2-ax**, **2-eq**, **4**, **5**, **S1** in CD₃OD.

3.6 3.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 f1 (ppm) 4.3 4.2 4.1 4.0 3.9 3.8 3.7

Methyl 3-azido-3-deoxy-α-D-glucopyranoside (4)

¹H NMR, 400 MHz, CD₃OD of compound **4**

¹H-¹H COSY of compound **4**

Methyl 2-azido-2-deoxy-α-D-altropyranoside (S1)

¹H NMR, 400 MHz, CD₃OD of compound **S1**

Isopropyl 2-acetmido-3-azido-2,3-dideoxy-α-D-glucopyranoside (S3)

¹H NMR, 400 MHz, CD₃OD of compound **S3**

Sideproduct of the azide introduction in GlcNAc (S4)

 ^1H NMR, 400 MHz, CD₃OD of compound S4

110 · 10 f1 (ppm)

¹H-¹H COSY of compound **S4**

4-tert-butylbenzyl-3-azido-3-deoxy-α-D-maltoside (S6)

¹H NMR, 400 MHz, CD₃OD of compound **S6**

 ^{13}C NMR, 101 MHz, CD_3OD of compound S6

¹H-¹³C HSQC of compound **S6**

 ^{13}C NMR, 101 MHz, CD₃OD of compound 17

¹H-¹³C HSQC of compound **17**

 ^{13}C NMR, 101 MHz, CD₃OD of compound 5

96.0 70.9 55.9 55.9 55.7 55.7 55.7

4-tert-butylbenzyl-2,3-anhydro-α-D-maltoside (6)

¹H NMR, 400 MHz, CD₃OD of compound **6**

 $^1\text{H-}{}^1\text{H}$ COSY of compound $\boldsymbol{6}$ in CD_3OD

S-34

NMR spectra of α -Glc derivatives

Methyl 3-S-phenyl-3-deoxy-α-D-allo/glucopyranoside (3b)

 ^1H NMR, 400 MHz, CD₃OD of compound 3b

^{13}C NMR, 101 MHz, CD_3OD of compound 3b

¹H-¹³C HSQC of compound **3b**

Methyl 3-S-phenyl-3-deoxy- α -D-allo/glucopyranoside (3c) ¹H NMR, 400 MHz, CD₃OD of compound 3c

S-39

NMR spectra of Xyl derivatives

Methyl 3-deoxy-3-S-ethyl- α -D-riboso/xylopyranoside (8a)

Equatorial/axial mixture:

¹H NMR, 400 MHz, CD₃OD of compound 8a

¹H-¹³C HSQC of compound 8a

¹H-¹³H HSQC of compound **8a**

S-44

¹H-¹H COSY of compound **8b**

 ^1H NMR, 400 MHz, CD₃OD of compound 8b

¹H-¹H COSY of compound **8b**

Methyl 3-S-acetyl-3-deoxy-α-D-riboso/xylopyranoside (8c)

¹H NMR, 400 MHz, CD₃OD of compound **8c**

¹H-¹H COSY of compound **8c**

NMR spectra of Gal derivative and side product S10 Methyl 4-S-acetyl-4-deoxy-α-D-galacto/glucopyranoside (10)

¹H NMR, 400 MHz, CD₃OD of compound **10**

Methyl 3-keto-3,4-deoxy-α-D-glucopyranoside (S10)

 ^1H NMR, 400 MHz, CD₃OD of compound S10

¹H-¹H COSY of compound **S10**

110 100 f1 (ppm) ò

0.5

0.0

NMR spectra of S13 and S14

Methyl-2,4,6-O-acetyl-3-(trityl)hydrazone)-α-D-glucopyranoside (S13)

 ^1H NMR, 400 MHz, CDCl3 of compound S13

¹H-¹H COSY of compound **S13**

Methyl 2,4,6-tri-O-acetyl-3-chloro-3-deoxy- α -D-allo/glucopyranoside (S14)

Equatorial:

110 100 f1 (ppm) ò

¹H-¹H COSY of compound **S14**

Axial: ¹H NMR, 400 MHz, CDCl₃ of compound **S14**

¹H-¹H COSY of compound **S14**

S-65

^{13}C NMR, 101 MHz, CD₃OD of compounds **14** and **S15**

S-66

¹H-¹³C HSQC of compounds **14** and **S15**

^{13}C NMR, 101 MHz, CDCl3 of compound S16

¹H-¹³C HSQC of compound **S16**

 ^{13}C NMR, 101 MHz, CDCl3 of compound S17

¹H-¹³C HSQC of compound **S17**

Methyl 3-S- β -D-glucopyranosyl-3-deoxy-3-thio- α -D-glucopyranoside (20) ¹H NMR, 400 MHz, CDCl₃ of compound 20

ò

110 100 f1 (ppm)

Methyl 3-S- β -D-glucopyranosyl-3-deoxy-3-thio- α -D-allopyranoside (22) ¹H NMR, 400 MHz, CDCl₃ of compound 22

 ^{13}C NMR, 101 MHz, CDCl3 of compound 22

¹H-¹³C HSQC of compound **22**

HRMS spectra

HRMS spectra of substitution reactions on chloroglycosides Methyl 3-azido-3-deoxy- α -D-glucopyranoside (4)

Isopropyl 2-acetmido-3-azido-2,3-dideoxy-α-D-glucopyranoside (S3)

Sideproduct of the azide introruction on GlcNAc (S4)

4-tert-butylbenzyl-3-azido-3-deoxy-α-D-maltoside (S6)

4-tert-butylbenzyl-β-D-glucopyranoside (17)

m/z

HRMS spectra of epoxides 5 and 6 Methyl 2,3-anhydro-α-D-glucopyranoside (5)

HRMS spectra of α-Glc derivatives Methyl 3-S-phenyl-3-deoxy-α-D-allo/glucopyranoside (3b)

HRMS spectra of Xyl derivatives Methyl 3-deoxy-3-S-ethyl-α-D-riboso/xylopyranoside (8a)

Equatorial/axial mix:

Methyl 3-S-benzyl-3-deoxy-α-D-riboso/xylopyranoside (8b)

Equatorial:

Methyl 3-S-acetyl-3-deoxy-α-D-riboso/xylopyranoside (8c)

HRMS spectra of Gal derivative Methyl 4-S-acetyl-4-deoxy-α-D-galacto/glucopyranoside (10)

HRMS spectra of maltose derivative

4-tert-butylbenzyl-3-S-benzyl-3-deoxy-α-D-**maltoside (12)** Equatorial:

HRMS spectra of S13 and S14

Methyl-2,4,6-O-acetyl-3-(trityl)hydrazone)-α-D-glucopyranoside (S13)

Methyl 2,4,6-tri-O-acetyl-3-chloro-3-deoxy-α-D-allo/glucopyranoside (S14) Equatorial:

HRMS spectra of β -Glc derivative

Methyl 3-S-benzyl-3-deoxy-β-D-allo/glucopyranoside (14)

HRMS of S16, S17, and S-glycosides 20 and 22 Methyl 2,3,4,6-tri-O-acetyl-3-S-acetyl-3-deoxy-α-D-glucopyranoside (S16)

Methyl 2,3,4,6-tri-O-acetyl-3-S-acetyl-3-deoxy-α-D-allopyranoside (S17)

Methyl 3-S- β -D-glucopyranosyl-3-deoxy-3-thio- α -D-glucopyranoside (20)

Methyl 3-S- β -D-glucopyranosyl-3-deoxy-3-thio- α -D-allopyranoside (22)