Supporting Information

New Small-Molecule Alcohol Synthesis by Breaking the Space

Limitation of "Aromatic Cage" in Pseudomonas sp. AK1 BBOX

Zhiqin Xu^a, Yaling Mo^a, Zhengwen Li^a, Shurong Ban^{a*}, Heng song^{b,c*}.

^aSchool of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China

^bCollege of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China

^cWuhan University Shenzhen Research Institute, Shenzhen, Guangdong Province 518000, China

*Email: hengsong@whu.edu.cn; shurongban@sxmu.edu.cn

Contents

SDS-PAGE analysis of WT-psBBOX	2
Sequence alignment ¹	3
Homology modelling	4
Molecular docking	5
Construction of psBBOX mutants	6
SDS-PAGE analysis of mutants	7
Analysis of psBBOX-188A activity	7
kinetic analysis	
Synthesis of γ-BB analogues	10
Stereoselective synthesis of two configurations of 4a, 7a, 8a	11
NMR spectra	
References	28

SDS-PAGE analysis of WT-psBBOX

Figure S1 SDS-PAGE analysis of the WT-psBBOX (45.3 KD).

Sequence alignment¹

Figure S2 Sequence alignment of *Pseudomonas* sp. AK1 BBOX (psBBOX gi|231642) and human BBOX (hBBOX gi|158261239).

Homology modelling

Figure S3 hBBOX template (PDB: 3O2G) (left) and psBBOX model (right).

Molecular docking

Figure S4 Catalytic center of psBBOX is composed of His-350, His-209, Asp211 and Metal ion.

Figure S5 2D graphic of interaction between γ -BB and amino acid residues.

Construction of psBBOX mutants

Table S1 Primers used in this study						
Primers	Sequence					
184A-F	5'-CGAAAGCAACGCAGGCGTGCTGTTTGATGTGCG-3'					
184A-R	5'-CAGCACGCCTGCGTTGCTTTCGCGAATAAAGC-3'					
188A-F	5'-GGCGTGCTGGCAGATGTGCGCAGCAAAGCGG-3'					
188A-R	5'-GCGCACATCTGCCAGCACGCCAAAGTTGCTTTCG-3'					
201A-F	5'-GATAGCAACGCGGCAACCGCGTTTAACCTGCCGCTG-3'					
201A-R	5'-GTTAAACGCGGTTGCCGCGTTGCTATCCGCATCC-3'					
184Y-F	5'-GCAACTATGGCGTGCTGTTTGATGTGCG-3'					
184Y-R	5'-GCACGCCATAGTTGCTTTCGCGAATAAAGC-3'					
188Y-F	5'-CGTGCTGTATGATGTGCGCAGCAAAGCGGATG-3'					
188Y-R	5'-GCACATCATACAGCACGCCAAAGTTGCTTTCGC-3'					
201F-F	5'-CAACGCGTTTACCGCGTTTAACCTGCCGC-3'					
201F-R	5'-GCGGTAAACGCGTTGCTATCCGCATCCG-3'					
368A-F	5'-GCTGCGCAGTGGATCGCGATGAACTGC-3'					
368A-R	5'-CGATCCACTGCGCAGCCTTGAAAATGGC-3'					
184W-F	5'-GCAACTGGGGGCGTGCTGTTTGATG-3'					
184W-R	5'-CGCCCCAGTTGCTTTCGCGAATAAAG-3'					
188W-F	5'-GCTGTGGGATGTGCGCAGCAAAGC-3'					
188W-R	5'-CATCCCACAGCACGCCAAAGTTGC-3'					
188G-F	5'-GCTGGGTGATGTGCGCAGCAAAG-3'					
188G-R	5'-CATCACCCAGCACGCCAAAGTTGC-3'					
188V-F	5'-GCTGGTTGATGTGCGCAGCAAAG-3'					
188V-R	5'-CATCAACCAGCACGCCAAAGTTGC-3'					

Table S2 Construction of mutants based on PCR methods

For 184A, 188A, 201A:

	Reaction mixtures (20 µL)		PCR conditions
	0.6 µL	template DNA	95°C and 3 min,
	1µL	forward primer	95°C and 30 s
	1 µL	reverse primer	55°C and 30 s
	7.4 μL	H ₂ O	72°C and 4 min 30 s
	10 µL	Gloria Nova HS 2×	72°C and 5 min.
For the other n	nutants:		
	Reaction mixtures (20 µL)		PCR conditions
	0.6 uL	template DNA	95°C and 3 min,

0.6 µL	template DNA	95°C and 3 min,	
1 µL	forward primer	95°C and 30 s	
1 µL	reverse primer	52°C and 30 s $\times 30$ cycles	
7.4 μL	H ₂ O	72°C and 4 min	
10 µL	Gloria Nova HS 2×	72°C and 5 min.	

SDS-PAGE analysis of mutants

Figure S6 SDS-PAGE analysis of psBBOX mutants.

Analysis of psBBOX-188A activity

Figure S7 Comparison of conversion of quaternary ammonium analogs 4-6 catalyzed by WT and 188A.

7

Figure S8 Dependence of reaction rates on γ -BB, 4 and 7 concentration for wt-psBBOX.

Figure S9 Dependence of reaction rates on 7 and 8 concentration for 188A mutant.

Figure S10 Ratio of oxygen consumption to product formation.

Synthesis of **γ-BB** analogues

Figure S11 Synthetic routes of quaternary ammonium analogues 4~8.

Procedure a²

Ethyl 4-bromobutyrate (1.2equiv.); tertiary amine (1.0equiv. For (4), N,N-Dimethylethylamine; for(5), N,N-Dimethylisopropylamine; for (6), N,N-Diethylmethylamine; for (7), 1-Methylpyrrolidine; for (8), N-Methylpiperidine.) and acetone (10ml) was added to round-bottom flask, room temperature stirred for 12h. Solvents were evaporated in vacuo. Without purification, it can be directly used in the next reaction.

Procedure b²

3M hydrochloric acid was added until pH1, overnight at room temperature, the product was purified by cationic exchange resin.

Stereoselective synthesis of two configurations of 4a, 7a, 8a.

Figure S12 Synthetic routes of 4a-S, 7a-S, 8a-S.

Figure S13 Synthetic routes of 4a-R, 7a-R, 8a-R.

Procedure a³: Adding 193mg sodium hydroxide into 3.5ml water, stir to dissolve it, cool down in the ice bath, add 2.5mmol corresponding tertiary amine and 3mmol Ethyl (R)-(+)-4-chloro-3-hydroxybutyrate or Ethyl (S)-4-chloro-3-hydroxybutyrate successively, react in the ice bath for 1h, and temperature rise to room temperature for 12h.

Procedure b³: Adding 3M hydrochloric acid to pH 6, purification using cationic resin.

NMR spectra

Figure S17 ¹³CNMR spectra of 5.

Figure S19 ¹³CNMR spectra of 6.

Figure S21 ¹³CNMR spectra of 7.

Figure S23 ¹³CNMR spectra of 8.

Figure S25 ¹³CNMR spectra of 4a.

Figure S27 ¹³CNMR spectra of 7a.

Figure S29 ¹³CNMR spectra of 8a.

Figure S31 ¹³CNMR spectra of 4a-R.

Figure S33 ¹³CNMR spectra of 4a-S.

Figure S35 ¹³CNMR spectra of 7a-R.

Figure S37 ¹³CNMR spectra of 7a-S.

Figure S39 ¹³CNMR spectra of 8a-R.

Figure S41 ¹³CNMR spectra of 8a-S.

3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.9 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 f1 (spen)

Figure S42 ¹H NMR monitoring of the 2 hydroxylation by psBBOX.

Figure S43 ¹H NMR monitoring of the 2 hydroxylation by psBBOX.

Figure S44 The inhibitory effect of (5), (6), (8) on the transformation of original substrate (1).

References

1. Robert, X.; Gouet, P., Deciphering key features in protein structures with the new ENDscript server. *Nucleic acids research* **2014**, *42* (W1), W320-W324.

2. Rydzik, A. M.; Chowdhury, R.; Kochan, G. T.; Williams, S. T.; McDonough, M. A.;

Kawamura, A.; Schofield, C. J., Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ -butyrobetaine hydroxylase. *Chemical Science* **2014**, *5* (5), 1765–1771.

3. 吴静; 刘九知; 白洁; 孙德夫 一种左卡尼汀化合物的制备方法. CN104030934B, 2016-06-15.