Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Synthesis of 3-Aminoquinolines from α-Imino Rhodium Carbenes and 2-Aminobenzaldehydes

Jiani Li,^a Jing Feng,^a Tao Chen,^a Ze-Feng Xu,*^a and Chuan-Ying Li*^a

^aSchool of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China; Email: <u>xuzefeng@zstu.edu.cn</u>, <u>licy@zstu.edu.cn</u>

Table of Contents

1 General information	2
2 Preparation of triazoles	3
3 Preparation of 3-aminoquinoline	4
4 Large scale reaction	14
5 Further transformations	15
6 References	18
7 Copies of NMR spectra	19
8 X-ray data for compound 3a	54
 5 Further transformations	15 18 19 54

1 General information

All reactions were conducted in oven-dried glassware under an inert atmosphere of dry nitrogen unless otherwise noted. All commercial reagents were used without further purification unless otherwise noted. All solvents were freshly distilled prior to use in synthesis unless otherwise noted. Analytical thin layer chromatography (TLC) was performed using silica gel HSGF254 pre-coated plates. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H, ¹³C NMR spectra were measured on Brucker Avance IIDMX 400MHz spectrometers (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR). Chemical shifts are reported as δ values relative to internal tetramethylsilane (TMS: 0.00 ppm) or deuterated solvent (chloroform-d: 7.26 ppm, 77.16 ppm; DMSO-d₆:2.50 ppm, 39.52 ppm. Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and br, broad. Coupling constants (*J*) were taken from the spectra directly and are uncorrected. Melting points are uncorrected. High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization.

2 Preparation of triazoles

Procedure A:

Under a nitrogen atmosphere, to a triethylamine solution (20 mL) of $Pd(PPh_3)_2Cl_2$ (213 mg, 0.3 mmol) and CuI (190 mg, 1.0 mmol) was added **S1** (10.0 mmol) and stirred for 10 min, then trimethylsilylacetylene (1.80 mL, 12.0 mmol) was added dropwise over 30 min. The resulting suspension was allowed to be stirred for 4 h at 50 °C. After completion of the reaction, the mixture was filtered through a short celite bed and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE) to afford compound **S2**.

Procedure B:

To polysubstituted-trimethyl(phenylethynyl)silane S2 (5 mmol) a solution of K_2CO_3 (0.276 g, 2 mmol) in 10 mL MeOH was added and the mixture was stirred at room temperature, until TLC analysis showed that S2 was completely consumed. The reaction mixture was filtered through a short plug of silica gel. The filtration was concentrated and then purified by flash chromatography to give the corresponding product S3.

Procedure C:

Under a nitrogen atmosphere, dry toluene was added to a flask charged with copper (I) thiophene-2-carboxylate (CuTC,

0.1 equiv in regards to alkyne) and the alkyne (1 equiv, 0.33 M). The reaction mixture was cooled in an ice-water bath. Subsequently, the sulfonyl azide (1.2 equiv) was added slowly as the limiting reagent to avoid a run-away exotherm, and the reaction mixture was allowed to warm to room temperature and stirred until TLC analysis showed that alkyne was completely consumed. The reaction mixture filtered through a short plug of silica gel. The filtrate was concentrated and then purified by flash chromatography with PE/EtOAc (3:1) as eluent to give the corresponding product **1**.

1a, 1c, 1e, 1f, 1g, 1i, 1j, 1k, 1m, 1n, 1o and 1u were reported in ref. 1; 1b, 1h and 1v were reported in ref. 2; 1d was reported in ref. 3; 1l and 1p were reported in ref. 4; 1q was reported in ref. 5. 1r and 1s were reported in ref. 6.

1-(4-(1-tosyl-1*H***-1,2,3-triazol-4-yl)phenyl)pentan-1-one (1t):** White solid, m.p.: 196.3-197.3 °C, 398.8 mg, yield: 52%, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (s, 1H), 8.03 (q, *J* = 8.4, 6.5 Hz, 4H), 7.93 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 2.98 (t, *J* = 7.4 Hz, 2H), 2.45 (s, 3H), 1.76 – 1.69 (m, 2H), 1.47 – 1.35 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.78, 147.56, 146.20, 137.18, 132.97, 132.81, 130.50, 128.76, 126.05, 119.83, 38.36, 26.37, 22.42, 21.83, 13.90. ESI-HRMS *m/z* calcd for C₂₀H₂₂N₃O₃S⁺[M + H]⁺ 384.1376, found 384.1380.

General procedure:

Triazole 1 (0.2 mmol), 2 (0.24 mmol, 1.2 equiv), $Rh_2(adc)_4$ (0.001 mmol, 0.5 mol%) and activated 4Å MS were successively added to the reaction tube containing a stirring bar under a nitrogen atmosphere. Then dried TCE (2 mL) was added as the solvent, and the mixture was heated at 110 °C. The reaction was monitored by TLC, and when triazole 1 was completely consumed, Yb(OTf)₃ (0.02 mmol, 10 mol%) was added as a Lewis acid to facilitate the conversion of the N-H inserted intermediate to the target product 3. Upon completion, the mixture was filtered, the filtrate was concentrated, and the target product 3 was obtained by column chromatography.

4-methyl-*N***-(2-phenylquinolin-3-yl)benzenesulfonamide (3a)**: White solid, m.p.: 181.9-183.6 °C, 74.1 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-d) δ 8.46 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.18 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 6.7 Hz, 2H), 6.81 (s, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.17, 145.06, 144.39, 136.56, 135.77, 129.80, 129.37, 129.28, 129.15, 129.12, 128.37, 127.67, 127.46, 127.33, 127.09, 126.23, 21.52. ESI-HRMS *m/z* calcd for C₂₂H₁₉N₂O₂S⁺ [M + H]⁺ 375.1162 , found 375.1170.

2,4,6-trimethyl-N-(2-phenylquinolin-3-yl)benzenesulfonamide (3b): White solid, m.p.: 177.3-179.6 °C, 57.0 mg, 72% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.64 (t, *J* = 8.2 Hz, 1H), 7.64 (t, J = 8.2 Hz, 1H), Hz, 1H), 7.54 (d, J = 7.1 Hz, 1H), 7.52 - 7.47 (m, 3H), 7.38 - 7.33 (m, 2H), 7.00 (s, 1H), 6.82 (s, 2H), 2.31 (s, 6H), 2.25 (s, 2H), 2.31 (s, 6H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.21, 144.92, 142.94, 139.26, 136.85, 133.18, 132.20, 129.45, 129.40, 129.16, 129.01, 128.48, 127.57, 127.31, 127.25, 125.93, 22.87, 20.91. ESI-HRMS *m*/z calcd for C₂₄H₂₃N₂O₂S⁺ [M + H]⁺ 403.1475, found 403.1478.

4-methoxy-N-(2-phenylquinolin-3-yl)benzenesulfonamide (3c): White solid, m.p.: 220.5-223.8 °C, 71.1 mg, 91% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.66 (t, *J* = 7.1 Hz, 1H), 7.59 – 7.51 (m, 3H), 7.49 – 7.42 (m, 3H), 7.19 – 7.13 (m, 2H), 6.84 (d, J = 7.9 Hz, 2H), 6.78 (s, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.44, 153.21, 145.06, 136.62, 130.26, 129.39, 129.32, 129.25, 129.17, 129.10, 128.43, 128.38, 127.69, 127.45, 127.33, 126.24, 114.35, 55.62. ESI-HRMS m/z calcd for $C_{22}H_{19}N_2O_3S^+$ [M + H]⁺ 391.1111, found 391.1118.

4-fluoro-*N*-(**2**-phenylquinolin-3-yl)benzenesulfonamide (3d): White solid, m.p.: 199.1-201.7 °C, 65.1 mg, 86% yield, ¹H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.63 – 7.53 (m, 3H), 7.50 – 7.40 (m, 3H), 7.14 (d, J = 6.4 Hz, 2H), 7.04 (t, J = 8.4 Hz, 2H), 6.85 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.43 (d, J = 256.5 Hz), 153.42, 145.37, 136.57, 134.78, 129.78 (d, J = 9.5 Hz), 129.46, 129.38, 129.27, 128.25, 127.83, 127.61, 127.50, 127.38, 116.49 (d, J = 22.7 Hz)..¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.55. ESI-HRMS *m/z* calcd for C₂₁H₁₆FN₂O₂S⁺ [M + H]⁺ 379.0911, found 379.0917.

4-bromo-*N***-(2-phenylquinolin-3-yl)benzenesulfonamide (3e):** White solid, m.p.: 225.9-227.5 °C, 86.9 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-d) δ 8.45 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.52 – 7.41 (m, 5H), 7.38 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 6.3 Hz, 2H), 6.87 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.52, 145.47, 137.75, 136.58, 132.48, 129.54, 129.41, 129.35, 129.30, 128.49, 128.43, 128.24, 127.79, 127.68, 127.60, 127.51. ESI-HRMS *m/z* calcd for C₂₁H₁₆BrN₂O₂S⁺ [M + H]⁺439.0110, found 439.0114.

N-(2-phenylquinolin-3-yl)naphthalene-2-sulfonamide (3f): White solid, m.p.: 180.3-181.0 °C, 78.0 mg, 95% yield, ¹H NMR (400 MHz, Chloroform-d) δ 8.52 (s, 1H), 8.22 (s, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.88 – 7.79 (m, 4H), 7.68 – 7.61 (m, 2H), 7.60 – 7.54 (m, 2H), 7.49 (dd, J = 8.7, 1.9 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.03 (d, J = 7.3 Hz, 2H), 6.92 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.33, 145.21, 136.55, 135.65, 135.02, 132.02, 129.53, 129.31, 129.26, 129.21, 129.18, 128.72, 128.28, 128.19, 127.88, 127.71, 127.67, 127.48, 127.36, 126.84, 121.89. ESI-HRMS *m/z* calcd for C₂₅H₁₉N₂O₂S⁺ [M + H]⁺411.1162 , found 411.1169.

N-(2-phenylquinolin-3-yl)methanesulfonamide (3g): White solid, m.p.: 151.4-152.6 °C, 57.9 mg, 97% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.62 – 7.43 (m, 6H), 6.78 (s, 1H), 2.94 (d, *J* = 2.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.43, 144.98, 136.70, 129.70, 129.61, 129.20, 129.16, 128.54, 128.50, 127.64, 127.56, 127.29, 124.49, 39.72. ESI-HRMS *m/z* calcd for C₁₆H₁₅N₂O₂S⁺ [M + H]⁺ 299.0849, found 299.0857.

3h

1-phenyl-*N***-(2-phenylquinolin-3-yl)methanesulfonamide (3h)**: White solid, m.p.: 144.9-145.7 °C, 63.4 mg, 86% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.8 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 2.8 Hz, 3H), 7.40 (d, *J* = 3.6 Hz, 2H), 7.27 (t, 3H), 7.18 (d, *J* = 7.2 Hz, 2H), 6.56 (s, 1H), 4.40 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.27, 144.56, 136.39, 130.53, 129.61, 129.48, 129.20, 129.09, 129.01, 128.74, 128.51, 127.92, 127.61, 127.45, 127.20, 121.93, 57.97. ESI-HRMS *m/z* calcd for C₂₂H₁₉N₂O₂S⁺ [M + H]⁺ 375.1162, found 375.1167.

4-methyl-*N***-(2-(***p***-tolyl)quinolin-3-yl)benzenesulfonamide (3i):** White solid m.p.: 230.8-231.5 °C, 76.1 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 9.1 Hz, 3H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.83 (s, 1H), 2.42 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.16, 145.04, 144.38, 139.47, 135.82, 133.59, 129.96, 129.78, 129.15, 128.96, 128.50, 128.29, 127.61, 127.41, 127.21, 127.14, 125.60, 21.52, 21.31. ESI-HRMS m/z calcd for $C_{23}H_{21}N_2O_2S^+[M + H]^+$ 389.1318, found 389.1322.

N-(2-(4-ethylphenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3j): White solid, m.p.: 202.7-203.6 °C, 78.9 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.26 (s, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.84 (s, 1H), 2.72 (q, *J* = 7.6 Hz, 2H), 2.38 (s, 3H), 1.29 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.18, 145.78, 145.07, 144.37, 135.83, 133.84, 129.80, 129.18, 128.97, 128.86, 128.49, 128.37, 127.63, 127.42, 127.21, 127.14, 125.62, 28.74, 21.54, 15.54. ESI-HRMS *m*/*z* calcd for C₂₄H₂₃N₂O₂S⁺[M + H]⁺403.1475, found 403.1481.

N-(2-(4-methoxyphenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3k): White solid, m.p.: 220.1-221.5°C, 80.1 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.57 – 7.51 (m, 3H), 7.19 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.94 (d, *J* = 8.2 Hz, 2H), 6.90 (s, 1H), 3.87 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.52, 152.80, 144.85, 144.40, 135.88, 129.89, 129.80, 129.09, 128.91, 128.56, 127.55, 127.39, 127.22, 127.12, 125.95, 114.74, 55.45, 21.52. ESI-HRMS *m/z* calcd for C₂₃H₂₁N₂O₃S⁺ [M + H]⁺ 405.1267, found 405.1275.

4-methyl-*N***-(2-(4-(phenylethynyl)phenyl)quinolin-3-yl)benzenesulfonamide (3l)**: White solid, m.p.: 207.3-208.4 °C, 94.0 mg, 99% yield,¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.67 (t, *J* = 7.7 Hz, 1H), 7.61 – 7.48 (m, 7H), 7.38 (s, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.80 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.67, 145.24, 144.44, 136.25, 135.87, 132.23, 131.69, 129.84, 129.31, 129.16, 128.61, 128.53, 128.41, 128.21, 127.71, 127.51, 127.47, 127.22, 127.06, 124.49, 122.84, 91.10, 88.56, 21.54. ESI-HRMS *m/z* calcd for C₃₀H₂₃N₂O₂S⁺ [M + H]⁺ 475.1475, found 475.1480.

N-(2-(4-fluorophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3m): White solid, m.p.: 217.3-218.9 °C, 62 mg, 79% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.15 – 7.08 (m, 4H), 6.71 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.25 (d, *J* = 250.1 Hz), 152.29, 145.15, 144.50, 135.91, 132.72 (d, *J* = 3.3 Hz). 130.55, 130.47, 129.85, 129.31, 129.11, 128.27, 127.69, 127.48, 127.07, 126.92, 116.28 (d, *J* = 21.8 Hz)., 21.53. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.09. ESI-HRMS *m/z* calcd for C₂₂H₁₈FN₂O₂S⁺ [M + H]⁺ 393.1068, found 393.1076.

N-(2-(4-chlorophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3n): White solid, m.p.: 254.3-255.9 °C, 58.1 mg, 71% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.61 (t, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.59 (s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.15, 145.23, 144.56, 135.89, 135.66, 135.10, 129.93, 129.88, 129.41, 129.17, 128.19, 127.75, 127.57, 127.52, 127.16, 127.08, 21.56. ESI-HRMS *m/z* calcd for C₂₂H₁₈ClN₂O₂S⁺[M + H]⁺409.0772, found 409.0776.

O-(2-(4-bromophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3o): White solid, m.p.: 278.3-279.5 °C, 90.0 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.68 (t, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.65 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.16, 145.22, 144.58, 135.84, 135.53, 132.36, 130.16, 129.89, 129.43, 129.15, 128.12, 127.74, 127.59, 127.54, 127.23, 127.07, 123.88, 21.58. ESI-HRMS *m/z* calcd for C₂₂H₁₈BrN₂O₂S⁺[M + H]⁺453.0267, found 453.0270.

N-(2-(3-bromophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3p): White solid, m.p.: 221.3-222.5 °C, 86.1 mg, 95% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.51 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.59 (dd, *J* = 15.6, 7.9 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.30 – 7.24 (m, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 6.70 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.19, 145.28, 144.55, 138.63, 135.63, 132.36, 131.55, 130.50, 129.99, 129.56, 129.17, 128.31, 128.01, 127.80, 127.64, 127.59, 126.92, 126.75, 123.46, 21.63. ESI-HRMS *m/z* calcd for C₂₂H₁₈BrN₂O₂S⁺ [M + H]⁺ 453.0267, found 453.0267.

N-(2-(2-bromophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3q): White solid, m.p.: 104.6.3-106.5 °C, 68.9 mg, 76% yield,¹H NMR (400 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.68 (t, 2H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 8.7 Hz, 1H), 6.45 (s, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.63, 145.00, 144.31, 137.39, 135.84, 133.12, 130.96, 130.79, 129.77, 129.28, 129.21, 128.40, 128.07, 127.98, 127.66, 127.59, 127.27, 126.77, 122.29, 21.53. ESI-HRMS *m/z* calcd for C₂₂H₁₈BrN₂O₂S⁺ [M + H]⁺ 453.0267, found 453.0272.

N-(2-(4-cyanophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (3r): Yellow solid, m.p.: 212.3-213.5 °C, 79.1 mg, 99% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (s, 1H), 7.98 (dd, *J* = 17.6, 8.3 Hz, 2H), 7.84 (d, *J* = 7.9 Hz, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.16, 146.45, 144.12, 143.80, 137.92, 135.05, 132.62, 131.15, 131.11, 130.52, 129.66, 129.19, 128.59, 128.20, 127.46, 119.76, 111.82, 21.92. ESI-HRMS *m/z* calcd for C₂₃H₁₈N₃O₂S⁺ [M + H]⁺400.1114, found 400.1111.

4-methyl-*N***-(2-(4-(trifluoromethyl)phenyl)quinolin-3-yl)benzenesulfonamide (3s)**: White solid, m.p.: 243.4-244.6 °C, 72.5 mg, 82% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H),

7.70 (t, J = 7.7 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.60 (t, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 2.9 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.64 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.10, 145.38, 144.59, 140.40, 135.87, 129.91, 129.64, 129.23, 128.20, 128.05 (q, J = 205.7 Hz), 127.98, 127.85, 127.79, 127.59, 126.03 (q, J = 3.9 Hz), 21.54. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.79. ESI-HRMS *m/z* calcd for C₂₃H₁₈F₃N₂O₂S⁺ [M + H]⁺ 443.1036, found 443.1037.

4-methyl-*N***-(2-(4-pentanoylphenyl)quinolin-3-yl)benzenesulfonamide (3t)**: White solid, m.p.: 196.8-197.5 °C, 90.0 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 2H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 7.2 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.75 (s, 1H), 3.01 (t, *J* = 7.4 Hz, 2H), 2.42 (s, 3H), 1.85 – 1.74 (m, 2H), 1.51 – 1.41 (m, 2H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.81, 152.29, 145.15, 144.56, 140.88, 137.29, 135.80, 129.87, 129.43, 129.16, 128.84, 128.71, 128.11, 127.74, 127.65, 127.51, 127.32, 127.03, 38.49, 26.39, 22.42, 21.55, 13.93. ESI-HRMS *m/z* calcd for C₂₇H₂₇N₂O₃S⁺[M + H]⁺ 459.1737, found 459.1746.

4-methyl-*N***-(2-(naphthalen-2-yl)quinolin-3-yl)benzenesulfonamide (3u)**: White solid, m.p.: 260.7-261.6 °C, 84.3 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.94 – 7.87 (m, 3H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.62 – 7.54 (m, 4H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.24 (dd, *J* = 1.7 Hz, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.86 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.35, 145.29, 144.36, 135.89, 133.90, 133.31, 133.17, 129.81, 129.27, 129.26, 129.21, 128.50, 128.27, 128.11, 127.87, 127.75, 127.55, 127.40, 127.17, 127.09, 126.91, 125.42, 21.57. ESI-HRMS *m/z* calcd for C₂₆H₂₁N₂O₂S⁺ [M + H]⁺ 425.1318, found 425.1325.

4-methyl-*N***-(2-(thiophen-2-yl)quinolin-3-yl)benzenesulfonamide (3v)**: White solid, m.p.: 184.7-185.3 °C, 60.0 mg, 77% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.46 (s, 1H), 7.30 (s, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 4.9 Hz, 1H), 6.95 (s, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.53, 145.13, 144.45, 137.61, 135.92, 129.86, 129.12, 129.07, 128.53, 127.72, 127.58, 127.40, 127.33, 127.05, 126.13, 125.67, 21.52. ESI-HRMS *m/z* calcd for C₂₀H₁₇N₂O₂S₂⁺ [M + H]⁺ 381.0726, found 381.0730.

4-methyl-*N***-(6-methyl-2-phenylquinolin-3-yl)benzenesulfonamide (3w)**: White solid, m.p.: 167.8-168.6 °C, 75.5 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.92 (d, *J* = 8.6 Hz, 1H), 7.63 (s, 1H), 7.49 (d, *J* = 7.5 Hz, 3H), 7.43 (d, *J* = 7.8 Hz, 3H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.1 Hz, 2H), 6.76 (s, 1H), 2.56 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.24, 144.33, 143.72, 137.40, 136.67, 135.84, 131.51, 129.79, 129.26, 128.81, 128.42, 128.36, 127.76, 127.11, 126.27, 125.75, 21.63, 21.53. ESI-HRMS *m/z* calcd for C₂₃H₂₁N₂O₂S⁺ [M + H]⁺ 389.1318, found 389.1324.

N-(5,7-dibromo-2-phenylquinolin-3-yl)-4-methylbenzenesulfonamide (3x): White solid, m.p.: 192.4-193.5°C, 76.6 mg, 72% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (s, 1H), 8.04 (d, *J* = 2.0 Hz, 1H), 7.95 (d, *J* = 2.0 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 7.1 Hz, 3H), 7.30 (dd, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.98 (s, 1H), 2.38 (s, 3H). ¹³C NMR

(101 MHz, Chloroform-*d*) δ 153.31, 144.78, 140.63, 135.86, 135.55, 135.10, 130.08, 129.99, 129.83, 129.38, 129.08, 128.69, 127.08, 125.86, 123.80, 120.61, 21.56. ESI-HRMS *m*/*z* calcd for C₂₂H₁₇Br₂N₂O₂S⁺ [M + H]⁺ 530.9372, found 530.9382.

4-methyl-*N***-(4-methyl-2-phenylquinolin-3-yl)benzenesulfonamide (3y)**: White solid, m.p.: 167.8-168.6 °C, 75.5 mg, 97% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (t, 2H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.27 (t, 1H), 7.21 (t, *J* = 7.4 Hz, 2H), 7.00 (t, 4H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.84 (s, 1H), 2.95 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.45, 145.90, 145.56, 143.38, 138.36, 136.06, 129.93, 129.77, 129.57, 128.53, 128.21, 127.97, 126.88, 126.74, 125.20, 124.76, 21.48, 15.92. ESI-HRMS *m/z* calcd for C₂₃H₂₁N₂O₂S⁺[M + H]⁺ 389.1318, found 389.1324.

3z

N-(2,4-diphenylquinolin-3-yl)-4-methylbenzenesulfonamide (3z): White solid, m.p.: 84.7-85.4 °C, 88.3 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.65 (m, 3H), 7.45 – 7.41 (m, 5H), 7.31 – 7.28 (m, 3H), 7.20 (dd, *J* = 7.2, 2.3 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.1 Hz, 2H), 6.36 (s, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.94, 146.66, 146.47, 142.86, 139.61, 137.16, 133.88, 129.90, 129.71, 129.64, 129.29, 129.25, 128.62, 128.55, 128.29, 128.17, 127.00, 126.89, 126.64, 126.42, 125.16, 21.43. ESI-HRMS *m/z* calcd for C₂₈H₂₃N₂O₂S⁺ [M + H]⁺451.1475, found 451.1481.

O-(4-cyano-2-phenylquinolin-3-yl)methanesulfonamide (3aa): Yellow solid, m.p.: 130.2-131.3, 49.2 mg, 76% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (t, 2H), 7.86 (t, *J* = 7.8 Hz, 1H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 7.0 Hz, 2H), 7.56 (q, *J* = 11.1, 9.2 Hz, 3H), 6.79 (s, 1H), 3.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.38, 145.83, 136.16, 131.41, 131.21, 130.20, 129.98, 129.72, 129.42, 129.20, 125.82, 124.91, 115.78, 114.84, 43.83. ESI-HRMS *m/z* calcd for

 $C_{17}H_{14}N_3O_2S^+[M + H]^+$ 324.0801, found 324.0809.

4 Large scale reaction

Triazole **1a** (898 mg, 3 mmol), **2a** (436 mg, 3.6 mmol, 1.2 equiv), $Rh_2(adc)_4$ (69 mg, 0.0075 mmol, 0.25 mol%) and activated 4Å MS were successively added to the reaction tube containing a stirring bar under a nitrogen atmosphere. Then dried TCE (30 mL) was added as the solvent, and the mixture was heated at 110 °C. The reaction was monitored by TLC, and when triazole **1** was completely consumed, Yb(OTf)₃ (186 mg, 0.3 mmol, 10 mol%) was added as a Lewis acid to facilitate the conversion of the N-H inserted intermediate to the target product **3**. Upon completion, the mixture was filtered, the filtrate was concentrated, and the target product **3** was obtained by column chromatography in 99% yield (1.11 g).

5 Further transformation

5.1 Synthesis of 4

Procedure:

Under nitrogen atmosphere, **3a** (37.5 mg, 0.1 mmol) was added to a reaction tube containing a stirring bar. Then, the solvent THF (1 mL) was added to dissolve it, and a freshly prepared Na/naphthalene (5 equiv) mixed solution was slowly added into the reaction tube under ice-water bath conditions. The reaction was warmed to room temperature. TLC analysis monitored the reaction until **3a** was completely consumed. The reaction was then quenched with ethanol. Next, the mixture was filtered, concentrated and purified by column chromatography, affording the target product **4** in 72% yield.

5.2 Synthesis of 5

2-phenylquinolin-3-amine (4): Yellow oil liquid, m.p.: 118.7-119.4 °C, 15.9 mg, 72% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 7.5 Hz, 1H), 7.73 (d, *J* = 7.0 Hz, 2H), 7.60 (t, 1H), 7.51 (t, *J* = 7.3 Hz, 2H), 7.45 (d, *J* = 7.3 Hz, 2H), 7.40 (d, *J* = 5.4 Hz, 1H), 7.30 (s, 1H), 3.96 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.58, 142.69, 138.34, 138.10, 129.17, 129.05, 128.90, 128.81, 128.64, 126.68, 125.67, 125.31, 116.11. ESI-HRMS *m/z* calcd for C₁₅H₁₃N₂⁺ [M + H]⁺ 221.1073, found 221.1061.

Procedure:

Under nitrogen atmosphere, 3q (45.3 mg, 0.1 mmol), $Pd_2(dba)_3$ (18.3 mg, 0.02 mmol, 0.2 equiv), (o-Tol)_3P (30.4 mg, 0.1 mmol, 1 equiv) and Cs_2CO_3 (65.2 mg, 0.2 mmol, 2 equiv) were successively added to a reaction tube containing a stirring bar. PhCl (1 mL) was then added as the solvent. The reaction tube was heated at 130 °C. TLC analysis monitored the reaction until 3q was completely consumed. The reaction mixture was then filtered and the filtrate was concentrated and purified by column chromatography to afford the target product 5 in 84% yield.

10-tosyl-10*H***-indolo[3,2-b]quinoline (5)**: Yellow solid, m.p.: 188.3-189.4 °C, 29.8 mg, 80% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.96 (s, 1H), 8.37 (t, 2H), 8.23 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 147.42, 146.28, 145.34, 141.55, 134.28, 131.08, 130.80, 129.79, 129.00, 128.70, 128.40, 127.07, 126.57, 126.24, 125.65, 124.73, 121.89, 119.96, 115.23, 21.46. ESI-HRMS *m/z* calcd for C₂₂H₁₇N₂O₂S⁺, [M + H]⁺ 373.1005, found 373.1011.

5.2 Synthesis of 6

Procedure:

Under nitrogen atmosphere, **5** (37.2 mg, 0.1 mmol) and 'BuOK (57.2 mg, 0.5 mmol, 5 equiv) were added to a reaction tube, followed by the addition of the solvent DMF (1 mL). The reaction was carried out at 100 °C. TLC analysis monitored the reaction until **5** was completely consumed, and then the reaction was quenched with NH_4Cl saturated aqueous solution. The aqueous phase was extracted with ethyl acetate, and the combined organic phase was washed sequentially with water

and brine and then dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated and purified by column chromatography, affording the target product 6 in 80% yield.

10*H***-indolo**[**3**,**2-b**]**quinoline (6**): Yellow solid, m.p.: 250.3-251.4°C, 17.5 mg, 80% yield, ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.43 (s, 1H), 8.37 (d, J = 7.7 Hz, 1H), 8.29 (s, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.67 – 7.53 (m, 4H), 7.29 (t, J = 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 146.68, 144.99, 144.35, 133.40, 130.61, 129.64, 128.42, 127.67, 126.95, 125.77, 122.30, 121.93, 120.27, 113.95, 112.44. ESI-HRMS m/z calcd for C₁₅H₁₁N₂⁺, [M + H]⁺ 219.0917, found 219.0927.

5.3 Synthesis of 7

6, 0.1 mmol

Procedure:

Under atmosphere of nitrogen, 6 (21.9 mg, 0.1 mmol), CH₃I (28.0 mg, 0.2 mmol, 2 equiv) and K₂CO₃ (32.0 mg, 0.12 mmol, 1.2 equiv) were successively added to a reaction tube equipped with a stirring bar. DMF (1 mL) was used as the solvent. The reaction tube was stirred at room temperature. TLC analysis monitored the reaction until 6 was completely consumed. The mixture was filtered. The filtrate was concentrated and then purified by column chromatography to afford 7 in 52% yield.

5-methyl-5H-indeno[1,2-b]quinoline (7): Yellow solid, m.p.: 230.9-231.2 °C, 12.1 mg, 52% yield, ¹H NMR (400 MHz, Chloroform-d) δ 8.59 (d, J = 7.8 Hz, 1H), 8.36 (d, J = 8.6 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.91 (s, 1H), 7.65 (q, J = 7.1 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, 101 MHz) Chloroform-d) & 146.02, 144.98, 144.03, 134.13, 129.71, 129.24, 127.15, 126.86, 126.22, 125.26, 122.11, 121.60, 119.69, 110.70, 108.43, 29.12. ESI-HRMS m/z calcd for $C_{16}H_{13}N_2^+$, $[M + H]^+ 233.1073$, found 233.1078.

6 References

(1) W. Cheng, Y. Tang, Z.-F. Xu and C.-Y. Li, Synthesis of multifunctionalized 2-carbonylpyrrole by rhodium-catalyzed transannulation of 1-sulfonyl-1,2,3-triazole with β -diketone, *Org. Lett.*, 2016, **18**, 6168-6171.

(2) Y.-J. Kwon, S.-g. Lee and W.-S. Kim, Continuous Flow Synthesis of *N*-Sulfonyl-1,2,3-triazoles for Tandem Relay Cu/Rh Dual Catalysis, *J. Org. Chem.*, 2023, **88**, 1200-1214.

(3) G. Y. Kook, D. Kim, M. K. Chae and H. M. Ko, Rhodium(II)-Catalyzed Highly Selective 1,3-Insertion Reactions Using *N*-Sulfonyl-1,2,3-Triazoles with Heteroaryl Ethers or Heteroaryl Alcohols. *J. Org. Chem.*, 2022, **87**, 7253-7263.

(4) J. Li, S.-R. Zhu, Y. Xu, X.-C. Lu, Z.-B. Wang, L. Liu and D.-F. Xu, Synthesis of 2,5-diaryloxazoles through rhodiumcatalyzed annulation of triazoles and aldehydes, *RSC Adv.*, 2020, **10**, 24795-24799.

(5) S. Chuprakov, B. T. Worrell, N. Selander, R. K. Sit and V. V. Fokin, Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes, *J. Am. Chem. Soc.*, 2014, **136**, 195-202.

(6) Y. Shi, X. Yu and C.-Y. Li, Rhodium-catalyzed synthesis of 2,5-epoxybenzo[f][1,4] oxazepines by tandem reaction of 1-sulfonyl-1,2,3-triazoles and salicylaldehydes, *Eur. J. Org. Chem.*, 2015, **29**, 6429-6433.

7 Copies of NMR spectra

Figure 4. ¹³C NMR of 3a (CDCl₃, 101 MHz)

Figure S6. ¹³C NMR of 3b (CDCl₃, 101 MHz)

Figure S8. ¹³C NMR of 3c (CDCl₃, 101 MHz)

Figure S10. ¹³C NMR of 3d (CDCl₃, 101 MHz)

Figure S11. ¹⁹F NMRof 3d (CDCl₃, 376 MHz)

Figure S13. ¹³C NMR of 3e (CDCl₃, 101 MHz)

Figure S15. ¹³C NMR of 3f (CDCl₃, 101 MHz)

Figure S19. ¹³C NMR of 3h (CDCl₃, 101 MHz)

Figure S21. ¹³C NMR of 3i (CDCl₃, 101 MHz)

Figure S23 ¹³C NMR of 3j (CDCl₃, 101 MHz)

Figure S25. ¹³C NMR of 3k (CDCl₃, 101 MHz)

Figure S27. ¹³C NMR of 3l (CDCl₃, 101 MHz)

Figure S29. ¹³C NMR of 3m (CDCl₃, 101 MHz)

Figure S30. ¹⁹F NMRof 3m (CDCl₃, 376 MHz)

Figure S32. ¹³C NMR of 3n (CDCl₃, 101 MHz)

Figure S34. ¹³C NMR of 30 (CDCl₃, 101 MHz)

Figure S36. ¹³C NMR of 3p (CDCl₃, 101 MHz)

Figure S38. ¹³C NMR of 3q (CDCl₃, 101 MHz)

Figure S40. ¹³C NMR of 3r (DMSO-d6, 101 MHz)

Figure S42. ¹³C NMR of 3s (CDCl₃, 101 MHz)

Figure S43. ¹⁹F NMRof 3s (CDCl₃, 376 MHz)

Figure S45. ¹³C NMR of 3t (CDCl₃, 101 MHz)

Figure S47. ¹³C NMR of 3u (CDCl₃, 101 MHz)

Figure S49. ¹³C NMR of 3v (CDCl₃, 101 MHz)

Figure S51. ¹³C NMR of 3w (CDCl₃, 101 MHz)

Figure S53. ¹³C NMR of 3x (CDCl₃, 101 MHz)

Figure S55. ¹³C NMR of 3y (CDCl₃, 101 MHz)

Figure S57. ¹³C NMR of 3z (CDCl₃, 101 MHz)

Figure S59. ¹³C NMR of 3aa (CDCl₃, 101 MHz)

Figure S61. ¹³C NMR of 4 (CDCl 101 MHz)

Figure S63. ¹³C NMR of 5 (CDCl₃, 101 MHz)

Figure S65. ¹³C NMR of 6 (DMSO-d6, 101 MHz)

Figure S67. ¹³C NMR of 7 (CDCl₃, 101 MHz)

CCDC 2256590

Datablock: 20220603_0m_a

Bond precision:	C-C = 0.0039 A	Wavelength=0.71073	
Cell:	a=7.817(3)	b=12.371(5)	c=19.295(7)
	alpha=90	beta=90	gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1865.9(12)	1865.8(12))
Space group	P 21 21 21	P 21 21 21	1
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C22 H18 N2 O2 S	?	
Sum formula	C22 H18 N2 O2 S	C22 H18 N2	2 02 S
Mr	374.44	374.44	
Dx,g cm-3	1.333	1.333	
Z	4	4	
Mu (mm-1)	0.193	0.193	
F000	784.0	784.0	
F000'	784.80		
h,k,lmax	10,16,25	10,16,25	
Nref	4257[2436]	4197	
Tmin, Tmax	0.966,0.975		
Tmin'	0.966		
Correction metho	od= Not given		
Data completene	ss= 1.72/0.99	Theta(max) = 27.473	3
R(reflections)=	0.0373(3703)		wR2(reflections)= 0.0981(4197)
S = 1.031 Npar= 249		19	