Design and Development of Intramolecular Doubly Vinylogous Michael Addition to Access 3-Aryl Substituted 2-Alkenyl-Benzofurans and -Indoles

Manyam Subbi Reddy, ${ }^{a, b}$ Jagadeesh Babu Nanubolu ${ }^{c}$ and Surisetti Suresh**ab
${ }^{a}$ Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
${ }^{b}$ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
${ }^{c}$ Laboratory of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT),
Hyderabad 500 007, India

Table of Contents:

1. Synthesis of the starting materials. 3
2. Step-wise and one-pot reactions of $p-\mathrm{QM} 1 \mathbf{1 a}$ and ethyl 4-bromocrotonoate 2a 10
3. General experimental procedure for the optimization study 14
4. Optimization survey 15
5. Experimental procedure for the gram-scale syntheses of $\mathbf{5 a}$ and $\mathbf{5 i}$. 20
6. Control experiments and mechanistic studies 21
7. Copies of ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{19} \mathrm{~F}$-NMR spectra. 26
8. Crystallographic data for compounds $\mathbf{5 i}$ and $\mathbf{7 m}$ 113
9. References 117

1. Synthesis of the starting materials

1.1. General procedure for synthesis of substrates $1 \mathrm{a}-1 \mathrm{~g}$. ${ }^{1}$

2-Hydroxybenzaldehyde derivatives SM-1 (1 equiv, 10 mmol), $\mathbf{T B S C l}(1.2$ equiv, $12 \mathrm{mmol}, 1.3 \mathrm{~g})$ and DMAP (0.2 equiv, $2 \mathrm{mmol}, 0.24 \mathrm{~g}$) were placed into a 50 mL reaction vial, and $\mathrm{DCM}(20 \mathrm{~mL})$ was added, then $\mathrm{Et}_{3} \mathrm{~N}(1.2$ equiv, $12 \mathrm{mmol}, 1.7 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred overnight at room temperature. To the reaction mixture were added water (5 mL) and DCM (5 mL). The resultant mixture was extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, resulting in a white viscous liquid, which was used directly in the next step without further purification.

A solution of 2,6-di-tert-butylphenol SM-3 (1.1 equiv, $11 \mathrm{mmol}, 2.3 \mathrm{~g}$) and benzaldehyde derivatives $\mathbf{S M}$-2 (1.0 equiv, 10 mmol) in toluene (40 mL) was placed in a Dean-Stark apparatus which was heated to reflux. Piperidine (2.0 equiv, $100 \mathrm{mmol}, 9.9 \mathrm{~mL}$) was added dropwise slowly. Then, the temperature was raised to $140^{\circ} \mathrm{C}$ and stirred for 12 h . After that, the reaction mixture was cooled to $120^{\circ} \mathrm{C}$ and acetic anhydride (2.0 equiv, $100 \mathrm{mmol}, 9.4 \mathrm{~mL}$) was added dropwise. The stirring was continued for 30 min and the solution was poured in icewater and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure to obtain the corresponding products $\mathbf{S M}-4$ after flash column chromatography (Hexane/EtOAc =99/1).
To a solution of SM-4 (1.0 equiv, 5 mmol) in THF ($10 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added TBAF (1.1 equiv, 1 M in THF). The reaction mixture was stirred for 15 min at room temperature. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added dropwise to the reaction. The resulting solution was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). Then the combined organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give the crude product which was purified by flash column chromatography ($\mathrm{Hexane} / \mathrm{EtOAc}=90 / 10$) to afford the desired ortho-hydroxy para-quinone methide (p-QM) derivatives $\mathbf{1 a}$ - $\mathbf{1 g}$. ${ }^{1}$

2,6-di-tert-butyl-4-(2-hydroxybenzylidene)cyclohexa-2,5-dien-1-one derivatives

$1 a^{\text {ref. 1a }}$

1b ${ }^{\text {ref. 1b }}$

$\mathbf{1 c}^{\text {ref. 1a }}$

$1 d^{\text {ref. } 1 a}$

$1 \mathrm{e}^{\text {ref. 1a }}$

$1 f^{\text {ref. } 1 c}$

$\mathbf{1 g}^{\text {ref. } 1 \mathrm{a}}$

1.2. Synthesis of halo substituted allyl derivatives 2 :

1.2.1. Synthesis of $\boldsymbol{\gamma}$-bromocrotonoate derivatives [2a, 2c, 2f and 2j]: ${ }^{2}$

To a solution of crotonate/crotononitrile (1 equiv, 10 mmol), AIBN (0.3 equiv, $3 \mathrm{mmol}, 492 \mathrm{mg}$) and N-bromosuccinimide (1.1 equiv, 11 mmol , 1.96 g) in benzene (50 mL) was stirred at reflux for 15 h under a nitrogen atmosphere. The mixture was allowed to cool to room temperature. The resulting mixture was filtered. The filtrate was washed with water ($2 \times 50 \mathrm{~mL}$) and brine (50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, using Hexane/EtOAc (90:10) as eluent to afford $\boldsymbol{\gamma}$-bromo crotonate $/ \boldsymbol{\gamma}$-bromo crotononitrile derivatives $\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 f}$ and $\mathbf{2 j} .{ }^{2}$

1.2.2. Phenyl/benzyl (\boldsymbol{E})-4-bromobut-2-enoate 2d-2e: ${ }^{3 \mathrm{a}}$

To a solution of 4-bromocrotonic acid $\mathbf{2 j}$ (1.0 equiv, $10 \mathrm{mmol}, 1.64 \mathrm{~g}$) in $\mathrm{DCM}(40 \mathrm{~mL})$ was added phenol/benzyl alcohol (1.1 equiv, 11 mmol) and DMAP (0.1 equiv, $1 \mathrm{mmol}, 122 \mathrm{mg}$). The solution was cooled to $0^{\circ} \mathrm{C}$, then DCC (1.05 equiv, $10.5 \mathrm{mmol}, 2.16 \mathrm{~g}$) was added portion wise. The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was filtered through a short celite-pad and the residue was washed with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Hexane: $\mathrm{EtOAc}=20: 80$) to give the corresponding crotonates 2d-2e.

1.2.3. Synthesis of (\boldsymbol{E})-4-bromo-1-morpholinobut-2-en-1-one 2 g : ${ }^{3 b}$

To a solution of (E)-4-bromobut-2-enoic acid $\mathbf{2 d}$ (1 equiv, $3 \mathrm{mmol}, 500 \mathrm{mg}$) in DCM (10 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. Then oxalyl chloride (1.5 equiv, $4.5 \mathrm{mmol}, 571 \mathrm{mg}$) and DMF (0.1 mL) were added. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 2 h , followed by the addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3 equiv, $9 \mathrm{mmol}, 954 \mathrm{mg}$) and morpholine (1.5 equiv, $4.5 \mathrm{mmol}, 10.4 \mathrm{~mL}$). The resulting reaction mixture 1 was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 6 h . To the reaction mixture were added water $(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The resultant mixture was extracted with DCM ($2 \times 30 \mathrm{~mL}$) The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by column chromatography (Hexane/Ethyl acetate $=70: 30$) to obtain the title compound $\mathbf{2 g}$ as a white solid ($358 \mathrm{mg}, 67 \%$ yield). ${ }^{3 b}$

1.2.4. Synthesis of (\boldsymbol{E})-((3-bromoprop-1-en-1-yl)sulfonyl)benzene derivatives $\mathbf{2 h}-2 \mathbf{i}^{3 \mathrm{c}}$

To a solution of substituted sodium benzenesulfinate $\mathbf{S M}-5$ (1 equiv, 10 mmol) in ethanol (40 mL) was added 3-bromoprop-1-ene (1.2 equiv, 12 $\mathrm{mmol}, 1.04 \mathrm{~mL}$) under argon atmosphere. The reaction mixture was refluxed for 4 h and then the solvent was removed. The residue was added to water (30 mL) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phase were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude residue SM-6 was used in the next step directly without further purification.

To a solution of SM-6 (1 equiv, 10 mmol) in benzene (15 mL) was added a solution of Br_{2} (1 . equiv, $11 \mathrm{mmol}, 0.57 \mathrm{~mL}$) in benzene (5 mL) dropwise. The reaction mixture was stirred at room temperature for 2 h . After the completion of the reaction, the reaction mixture was quenched with saturated aqueous NaHSO_{3} solution and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product $\mathbf{S M}-7$ was used in the next step without further purification.
$\mathrm{Et}_{3} \mathrm{~N}$ (1.1 equiv, 5.5 mmol) was added dropwise to a stirred solution of SM-7 (1 equiv, 5 mmol) in dry THF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 2 h . After completion of the reaction, the solvent was removed. The residue was added to water $(25 \mathrm{~mL})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash chromatography (Hexane/Ethyl acetate $=30: 1$) to give the desire compounds $\mathbf{2 h} \mathbf{- 2} \mathbf{.}^{3 \mathrm{c}}$

1.3. General procedure for the synthesis of 6a- 6i: ${ }^{4}$

To a solution of (4-bromo-2,6-di-tert-butylphenoxy)trimethylsilane SM-9 (1 equiv, $5 \mathrm{mmol}, 1.78 \mathrm{~g}$) in anhydrous THF (25 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-butyllithium 2.5 M (1.2 equiv, $6 \mathrm{mmol}, 2.4 \mathrm{~mL}$) slowly in a dropwise manner. After finishing the addition, the reaction mixture was stirred at the same temperature for 30 min . Then, a solution of aldehyde SM-8 (1.2 equiv, 6 mmol) in anhydrous THF (5 mL) was dropwise added. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to quench the reaction. Then the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure to obtained the crude $\mathbf{S M - 1 0}$, which was directly used in the next step without further purification.
To a solution of substrate $\mathbf{S M}-10$ (1 equiv, 5 mmol) and triethylsilane (1.5 equiv, $7.5 \mathrm{mmol}, 1.2 \mathrm{~mL}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere was slowly added boron trifluoride etherate (1.5 equiv, $7.5 \mathrm{mmol}, 0.89 \mathrm{~mL}$). The reaction mixture was stirred at room temperature overnight, and then the reaction was quenched with saturated aqueous NaHCO_{3} and stirred for 30 minutes. The resulting solution was extracted
with EtOAc ($3 \times 30 \mathrm{~mL}$). Then the combined organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give the crude product which was purified by silica gel flash chromatography (Hexane:EtOAc =90:10) to give compounds SM-11.

A 25 mL glass tube equipped with a stirring bar was charged with the precursors $\mathbf{S M} \mathbf{- 1 1}$ (1equiv, 1 mmol), MnO_{2} (5 equiv, $5 \mathrm{mmol}, 435 \mathrm{mg}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 20 h . Then the solvent was evaporated under reduced pressure to give a residue, which was directly purified by flash column chromatography (Hexane:EtOAc $=85: 15$) to provide p-QMs $\mathbf{6 a - 6 i}$ as a yellow solids. ${ }^{4}$

2. Step-wise and one-pot reactions of \boldsymbol{p}-QM 1a and ethyl 4-bromocrotonoate 2a

2.1. Sequential reaction of 1 a and 2a:

To a 15 mL clean and dry screw cap vial, a mixture of $p-\mathrm{QM} 1 \mathrm{a}$ (1 equiv, $1 \mathrm{mmol}, 310 \mathrm{mg}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv, $1.1 \mathrm{mmol}, 152 \mathrm{mg}$) and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ were added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added a solution of ethyl 4-bromobut-2-enoate 2a (1.3 equiv, $1.3 \mathrm{mmol}, 0.18 \mathrm{~mL}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ dropwise over 10 min , the temperature of the reaction mixture was maintained at $0{ }^{\circ} \mathrm{C}$ during addition. After complete addition, the reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 2 h . After the of the reaction, the reaction mixture was concentrated under reduced pressure. The resulting residue was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$) the combined organic phase was washed with water (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The organic phase was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel to afford the desired product $\mathbf{3 a}$ in 72% yield.

To a 15 mL clean and dry screw cap vial, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$) was added followed by a solution of para-quinone methide-allyl derivative 3a (1 equiv, $0.5 \mathrm{mmol}, 211 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The reaction vial was closed and the reaction mixture was allowed to stir at room
temperature for 4 h . The reaction mixture was quenched with water (10 mL), diluted with EtOAc (20 mL), and washed with water (10 mL) and brine (10 mL). Then the organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel to afford a mixture of compounds $\mathbf{4 a}$ and $\mathbf{5 a}$ in a 1:1.4 ratio.

2.2. One pot reaction of 1 a and $2 a$ followed by oxidation to access 2 -alkenyl benzofuran 5a:

To a solution of p-QM 1a (1 equiv, $0.5 \mathrm{mmol}, 155 \mathrm{mg}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$) followed by of 4-bromobut-2-enoate $\mathbf{2 a}$ (1.3 equiv, $0.65 \mathrm{mmol}, 125 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added. Then, the reaction mixture was allowed stir at rt for 4 h . Followed by DDQ (2 equiv, $1 \mathrm{mmol}, 227 \mathrm{mg}$) was added. This reaction mixture stirred for 2 h . The reaction mixture was quenched with water $(10 \mathrm{~mL})$, diluted with EtOAc (20 mL) the resulting mixture was washed with water (10 mL) and brine (10 mL). Then the organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel to afford benzofuran $\mathbf{5 a}$ in $\mathbf{5 8 \%}$ yield.

To a solution of p-QM 1a (1 equiv, $0.5 \mathrm{mmol}, 155 \mathrm{mg}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ were added anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$) and 4-bromobut-2-enoate $2 \mathbf{2 a}$ (1.3 equiv, $0.65 \mathrm{mmol}, 125 \mathrm{mg}$) in dry acetonitrile (5 mL) under argon atmosphere. After the addition, the reaction mixture was allowed to stir at rt for 2 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$) the combined organic phase was washed with water (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel to afford the desired dihydrobenzofuran $\mathbf{4 a}$ in 72% yield. The relative configuration of cis-dihydrobenzofuran $\mathbf{4 a}$ was confirmed by NOE.

2.3. Conversion of 4a to 5 a by using the oxidant DDQ:

To a 15 mL clean and dry screw cap vial, a solution of ethyl (E)-3-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,3-dihydrobenzofuran-2-yl)acrylate $\mathbf{4 a}$ (1 equiv, $0.25 \mathrm{mmol}, 106 \mathrm{mg}$) in acetonitrile (3 mL) followed by DDQ (2 equiv, $0.5 \mathrm{mmol}, 113 \mathrm{mg}$) was added. The reaction mixture was stir, at room temperature for 2 h . To this reaction mixture were added water (5 mL), and EtOAc (5 mL). The resulting mixture was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. Then the combined organic phase was washed with water (5 mL) and brine (5 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel to afford 2alkenyl benzofuran 5a in 90\% yield.

3. General experimental procedure for the optimization study

To a 15 mL clean and dry screw cap vial, p-QMs 1 (0.5 equiv, 0.5 mmol), γ-halo substituted activated allyl derivative $\mathbf{2}$ (1.3 equiv, 0.65 mmol) and solvent (5 mL) were added followed by base (3 equiv). The reaction mixture was allowed to stir at the indicated time and temperature. Upon completion of the starting material, the oxidant (2 equiv, 1 mmol) was added and the reaction contents were allowed to stir at the indicated time and temperature. To the cooled reaction mixture were added water $(5 \mathrm{~mL})$ and $\mathrm{EtOAc}(5 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. Then the combined organic phase was washed with water $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a crude residue. The resulting residue was purified by column chromatography using ethyl acetate in hexane as eluent to isolate the products 5a and 3a.

Note: please see tables T1-T5, for a screening of various bases, solvents, leaving group and their ratios/quantities, time and temperature reaction conditions

4. Optimization survey

Table T1: Screening of various bases

Entry	Base (3 equiv)	\% Yield of 3a	\% Yield of 5a
1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	76	-
2	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	56	-
$\mathbf{3}$	$\mathbf{C s}_{2} \mathbf{C O}_{3}$	-	$\mathbf{7 6}$
4	$1,4-$ Diazabicyclo[2.2.2]octane (DABCO)	75	-
5	$1,5,7-$ Triazabicyclo[4.4.0]dec-5-ene (TBD	trace	14
6	NaH	trace	-
7	1,8 -Diazabicyclo[5.4.0]undec-7-ene (DBU)	-	32
8	$\mathrm{KO}^{\prime} \mathrm{Bu}$	-	29
9	NaOH^{2}	$\mathrm{Et}_{3} \mathrm{~N}$	65
10	-	-	Trace
11		-	-

Table S2: Screening of various Solvents and leaving group (X)

Entry	Solvents (5 mL)	Leaving Group (X)	\% Yield of 3a	\% Yield of 5a
1.	$\mathrm{CH}_{3} \mathrm{CN}$	Br	-	76
2.	Dimethyl sulfoxide (DMSO)	Br	29	20
3.	Toluene	Br	24	-
4.	EtOH	Br	-	25
5.	1,4-Dioxane	Br	trace	-
6.	Tetrahydrofuran (THF)	Br	-	32
7.	Dimethylformamide (DMF)	Br	-	48
8.	Water	Br	NR	NR
9.	$\mathrm{CH}_{3} \mathrm{CN}$	Cl	-	42
10.	$\mathrm{CH}_{3} \mathrm{CN}$	I	-	58
11.	$\mathrm{CH}_{3} \mathrm{CN}$	OBoc	-	34

In DCM and DCE solvents the starting materials were found to be decomposed

Table T3: Optimization of oxidant

Entry	Oxidant (2 equiv)	\% Yeild of 5a
1	(Diacetoxyiodo)benzene	20%
2	$3,3^{\prime}, 5,55^{\prime}$-Tetra-tert-butyl-[1,1'-bi(cyclohexylidene)]-2,2',5,5'-	
	tetraene-4,4'-dione	Trace
3	MnO_{2}	28%
4	DDQ	$\mathbf{7 6 \%}$

Table T4: Optimization of amount of base and oxidant

Entry.	$\mathbf{C s}_{\mathbf{2}} \mathbf{C O}_{3}$ (equiv)	DDQ (equiv)	\% Yield of 5a
1	5	2	68
2	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{7 6}$
3	1	2	NR
4	3	1	68

Table T5: Optimization of Time and Temp.

Entry.	Temp	Time (h)	\% Yield of 5a
1	rt	$1+2$	48
$\mathbf{2}$	rt	$2+2$	76
3	$\mathbf{r t}$	$\mathbf{2 + 1}$	$\mathbf{8 0}$
4	$50^{\circ} \mathrm{C}$	$2+1$	62

5. Experimental procedure for the gram-scale syntheses of 5 a and 5 i

To a clean and oven-dried 100 mL round bottom flask were added p-QM $\mathbf{1 a}$ (1 equiv, $6 \mathrm{mmol}, 1.86 \mathrm{~g}$) and ethyl (E)-4-bromobut-2-enoate $\mathbf{2 a}$ (1.3 equiv, $7.8 \mathrm{mmol}, 1.07 \mathrm{~mL}$) (or) (E)-1-((3-bromoprop-1-en-1-yl)sulfonyl)-4-methylbenzene $\mathbf{2 f}$ (1.3 equiv, $7.8 \mathrm{mmol}, 2.14 \mathrm{~g}$), $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $18 \mathrm{mmol}, 5.89 \mathrm{~g}$). The reaction was stirred at room temperature for 2 h . Subsequently, DDQ (2 equiv, $12 \mathrm{mmol}, 2.72 \mathrm{~g}$) was added to the reaction mixture was allowed to stir at the same temperature for 1 h . To this reaction mixture were added water (30 mL) and EtOAc (30 mL). The resulting mixture was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). Then the combined organic phase was washed with water (30 mL) and brine (30 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a crude residue. The resulting residue was purified by column chromatographyon silica gel to afford substituted benzofuran derivative $\mathbf{5 a}$ (or) $\mathbf{5 i}$ in $\mathbf{6 7 \%}$ (or) $\mathbf{5 8 \%}$ yield, respectively.

6. Control experiments and mechanistic studies

To a clean and oven dried round bottom flask (10 mL) were added p-QM $\mathbf{1 a}$ (or) $\mathbf{6 a}$ (1 equiv, 1 mmol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv, 1.1 mmol , 152 mg) and dry acetone (10 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added a solution of ethyl 4-bromobut-2-enoate 2a (1.3 equiv, $1.3 \mathrm{mmol}, 0.18 \mathrm{~mL}$) in acetone (3 mL) dropwise over 10 min the temperature of the reaction mixture was maintained at $0^{\circ} \mathrm{C}$ during the addition. After the addition, the reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 h , then at room temperature for another period of 10 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic phase was washed with water (20 mL), 2 N NaOH solution (10 mL), brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel to afford the desired products $\mathbf{3 a}$ (or) $\mathbf{8}$ in 83% (or) 76% yield, respectively.

To a 15 mL clean and dry screw cap vial, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$) was added followed by the addition of a solution of para-quinone methide-allylcinnamate derivative $\mathbf{3 a}$ (or) $\mathbf{8}$ (0.5 equiv, 0.5 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The reaction vial was closed and allowed to stir, at room temperature for 2 h . Subsequently, DDQ (2 equiv, $1 \mathrm{mmol}, 227 \mathrm{mg}$) was added to the reaction mixture at the same temperature for and allowed
the reaction mixture to stir for 1 h . To this reaction mixture were added water (5 mL) and EtOAc (5 mL). The resulting mixture was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Then the combined organic phase was washed with water (5 mL) and brine (5 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel to afford 2-alkenyl benzofuran 5a (or) 2-alkenylindole 7a in 82% (or) 74% yield, respectively.

Step-1: In a reaction vial, to a solution of salicylaldehyde $\mathbf{S M}-12$ (1 equiv, $5 \mathrm{mmol}, 0.52 \mathrm{~mL}$) with cinnamyl bromide $\mathbf{S M}-13$ (1.2 equiv, 6 mmol , 0.89 mL) in DMF (10 mL) was added a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2$ equiv, $6 \mathrm{mmol}, 828 \mathrm{mg})$ in DMF (20 mL) at room temperature and the reaction mixture was stirred for 2 h . To the reaction mixture were added water (20 mL) and EtOAc (20 mL). The resulting mixture was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). Then the combined organic phase was washed with water (20 mL) and brine (20 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel to afford the O-allylated derivative SM-14 in 85% yield. ${ }^{5}$

Step-2: A solution of phenol SM-3 (1.1 equiv, 4.4 mmol) and aldehyde $\mathbf{S M - 1 4}$ (1 equiv, 4 mmol) in toluene (16 mL) was placed in a Dean-Stark apparatus which was heated to reflux. Piperidine (2 equiv, 8 mmol) was added slowly in a dropwise manner. Then, the temperature was raised to $140^{\circ} \mathrm{C}$ and stirred for 12 h . After that, the reaction mixture was cooled to $120^{\circ} \mathrm{C}$ and acetic anhydride (2.0 equiv, 8 mmol) was dropwise added.

The stirring was continued for 30 min and the solution was poured in ice-water and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic phases were combined, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure to afford the corresponding p-QM 12 after flash column chromatography (Hexane/EtOAc $=95 / 5$).

Spectral data for compound 12: Yellow solid, $315 \mathrm{mg}(0.74 \mathrm{mmol}), 74 \%, \mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/Hex, 10:90); MP 193-195 ${ }^{\circ} \mathrm{C}$; IR (CHCl_{3}) 2999, 2956, 2863, 1639, 1615, 1487, 1457, $1364 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{dt}, J=4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=17.1,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dt}, J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{dd}, J=5.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.7,157.4,149.0,147.4,138.9,136.2,135.4$, $133.4,132.0,131.7,130.8,128.7,128.4,128.1,126.6,126.0,125.4,124.1,120.8,112.3,69.3,35.4,35.1,29.6 ; \mathbf{M S}(\mathrm{ESI}, \mathrm{m} / z):[\mathrm{M}+\mathrm{Na}]^{+} 449$.

To a 15 mL clean screw cap vial, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$) was added followed by a solution of p-QM 10 (0.5 equiv, $0.5 \mathrm{mmol}, 213$ $\mathrm{mg})$ in a $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The reaction vial was closed and the reaction mixture was allowed to stir at room temperature for 2 h . The reaction was monitoring by TLC and found that starting material remained unreacted.

Cross-over experiments:

In a 15 mL clean and dry screw cap vial, p-QM 1a (or) 6a (1 equiv, 0.5 mmol), ethyl (E)-4-bromobut-2-enoate $\mathbf{2 a}(1$ equiv, $0.5 \mathrm{mmol}, 96 \mathrm{mg})$ and (E) -1-((3-bromoprop-1-en-1-yl)sulfonyl)-4-methylbenzene $\mathbf{2 f}$ (1 equiv, $0.5 \mathrm{mmol}, 137 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ were taken followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$). The reaction mixture was stirred at room temperature for 2 h . Subsequently, DDQ (2 equiv, $1 \mathrm{mmol}, 227 \mathrm{mg}$) was added to the reaction mixture at the same temperature and the reaction mixture was allowed to stir for 1 h . To the reaction mixture were added water $(10 \mathrm{~mL})$ and EtOAc (10 mL). The resulting mixture was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Then the combined organic phase was washed with water $(10 \mathrm{~mL})$ and brine (5 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a
crude residue. The resulting residue was purified by column chromatography on silica gel to afford the substituted benzofuran derivatives $\mathbf{5 a}$ and $\mathbf{5 i}$ in 33% and 45% yield, respectively (or) indole derivatives $7 \mathbf{a}$ and $7 \mathbf{i}$ in 25% and 42% yield, respectively.

In a 15 mL clean and dry screw cap vial, $p-\mathrm{QMs} \mathbf{1 a}$ (or) $\mathbf{6 a}$ (1 equiv, 0.5 mmol) and ethyl (E)-1-((3-bromoprop-1-en-1-yl)sulfonyl)-4-methylbenzene 2f (1 equiv, $0.5 \mathrm{mmol}, 137 \mathrm{mg}$) in $\mathrm{CH}_{3} \mathrm{CN}\left(5 \mathrm{~mL}\right.$) were taken followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv, $1.5 \mathrm{mmol}, 489 \mathrm{mg}$). The reaction mixture was stirred at room temperature for 2 h . Subsequently, DDQ (2 equiv, $1 \mathrm{mmol}, 227 \mathrm{mg}$) was added to the reaction mixture at the same temperature and allowed the reaction mixture to stir for 1 h . To the reaction mixture were added water (10 mL) and EtOAc (10 mL). The resulting mixture was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Then the combined organic phase was washed with water (10 mL) and brine (5 mL). The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a crude residue. The resulting residue was purified by column chromatography on silica gel to afford the products $\mathbf{5 i}$ and $\mathbf{7 i}$ in $48 \%, 30 \%$ yield, respectively.

7. Copies of ${ }^{1} \mathbf{H}$-NMR, ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{19} \mathrm{~F}$-NMR spectra

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $3 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR of $3 \mathrm{a}\left(135 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Crude ${ }^{1} \mathrm{H}$-NMR of 4 a and 5 a (1:1.4 ratio)

Crude ${ }^{1} \mathrm{H}$ NMR ratio $1: 14$

${ }^{1} \mathrm{H}$-NMR of $5 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{~b}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $5 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{~d}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $5 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{5 f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{~g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{~g}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR of $5 \mathrm{~g}\left(\mathbf{1 3 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{~h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{~h}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $5 \mathrm{i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR of $\mathbf{5 i}\left(\mathbf{1 3 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{5 j}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{j}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR of $\mathbf{5 j}\left(\mathbf{1 3 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $51\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $51\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $5 \mathrm{~m}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{5 m}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $5 \mathrm{n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $5 \mathrm{n}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $50\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $50\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $7 \mathrm{a}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{7 b}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{~d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{7 d}\left(\mathbf{1 2 6 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $7 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{f}\left(\mathbf{1 2 6 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{~g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{~g}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{~h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{of} \mathbf{7 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR of $\mathbf{7 i}\left(\mathbf{1 3 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $7 \mathbf{j}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{7 j}\left(\mathbf{1 0 1 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{k}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} H-N M R ~ o f ~ 71\left(400 ~ M H z, ~ \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $71\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{of} 7 \mathrm{~m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{7 m}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{7 n}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{7 n}\left(\mathbf{1 0 1 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $7 \mathrm{o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $7 \mathrm{p}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{7 p}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{7 q}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $7 \mathrm{q}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $8\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $12\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $12\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $9\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H}$-NMR of 10 (500 MHz , DMSO d d_{6})

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 10 (101 MHz , DMSO d6)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 11 (400 MHz, DMSO d6)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 11 (101 MHz , DMSO d6)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $4 \mathrm{a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8. Crystallographic data for compounds 5 i and 7 m

Compound 5i

Figure caption: ORTEP diagram of $\mathbf{5 i}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 5i: $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~S}+$ Solvent, $M=502.64$, Monoclinic, space group $P 2_{1} / c$ (No.14), $a=17.6839(9) \AA, b=11.2101(6) \AA, c=$ 15.0773(7) $\AA, \alpha=90^{\circ}, \beta=106.593(2)^{\circ}, \gamma=90^{\circ}, V=2864.4(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.166 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1072$, Bruker D8 QUEST PHOTON-100, Mo$\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA, T=293(2) \mathrm{K}, 2 \theta_{\max }=55^{\circ}, \mu=0.145 \mathrm{~mm}^{-1}, 55165$ reflections collected, 6585 unique ($\mathrm{R}_{\text {int }}=0.1018$), 335 parameters, $R 1=0.0571, w R 2=0.1314, R$ indices based on 3360 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right)$, Final GooF $=1.022$, largest difference hole and peak $=-0.4212$ and $0.227 \mathrm{e} . \AA^{-3}$. The CCDC deposition number 2182173 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Data collection and Structure solution details for 5i: Single crystal X-ray data were collected at room temperature on a Bruker D8 QUEST equipped with a four-circle kappa diffractometer and Photon 100 detector. An I μ s microfocus Mo source ($\lambda=0.71073 \AA$) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{[6]}$ The structures were solved by Direct Methods using SHELXS $97{ }^{[7]}$ and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. ${ }^{[7,8]}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C - H distances of $0.93--0.97$ \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ for methyl atoms. The compound crystallized with the solvent of crystallization dichloromethane; however, the solvent structure could not be resolved. Hence, the contributions of the solvent molecules were removed from the diffraction data using the SQUEEZE option in PLATON. The SQUEEZE estimated 83 electron counts in the voids of $257 \AA{ }^{\circ}{ }^{[8]}$ The files (.hkl and .ins) generated by PLATON after the SQUEEZE treatment were used for the final refinement of structure. ${ }^{[9]}$ The CCDC deposition number $\mathbf{2 1 8 2 1 7 3}$ contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Compound 7m

Figure caption: ORTEP diagram of $\mathbf{7 m}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. The phenyl ring (C1-C6 atoms) is disordered over two sites and only major component of the disordered atoms are shown in ORTEP picture for clarity.

Crystal data for 7m: $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{~S}_{2}, M=641.81$, Monoclinic, Space group $P 2{ }_{1} / c(\mathrm{No} .14), a=10.294(2) \AA, b=19.579(4) \AA, c=17.114(3) \AA, \alpha=$ $90^{\circ}, \beta=99.109(8)^{\circ}, \gamma=90^{\circ}, V=3405.9(11) \AA^{3}, Z=4, D_{\mathrm{c}}=1.252 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1360$, Bruker D8 QUEST PHOTON III C7 HPAD detector, Mo$\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA, T=294(2) \mathrm{K}, 2 \theta_{\max }=50^{\circ}, \mu=0.199 \mathrm{~mm}^{-1}, 37337$ reflections collected, 7766 unique $\left(\mathrm{R}_{\text {int }}=0.0710\right), 436$ parameters, $R 1=0.0523, w R 2=0.1050, R$ indices based on 4068 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), Final GooF $=0.994$, largest difference hole and peak $=-0.293$ and 0.185 e. \AA^{-3}. CCDC deposition number 2252885 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Data collection and Structure solution details for 7m: X-ray data for the compound were collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource ($\lambda=0.7107 \AA$) and a PHOTON-III C7 HPAD detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs ${ }^{[10]}$. The structure was solved using intrinsic phasing method ${ }^{[11]}$ and further refined with the SHELXL ${ }^{[11-13]}$ program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97$ \AA, and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$ for methyl H or $1.2 \mathrm{Ueq}(\mathrm{C})$ for other H atoms]. The phenyl ring carbon atoms were disordered over two sites, with site occupancy factor of 0.53 (2) for the major component of the disordered atoms ($\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$) and $0.47(2)$ for the minor component of the disordered atoms (C1D/C2D/C3D/C4D/C5D/C6D). PART, FVAR, DELU, and SIMU instructions were utilized for modelling the structural disorder and structural refinement. CCDC deposition number 2252885 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

9. References

1) (a) K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen and D. Enders, Angew. Chem., Int. Ed. 2016, 55, 12104; (b) S. Liu, X-C. Lan, K. Chen, W.-J. Hao, G. Li, S.-J. Tu and B. Jiang, Org. Lett. 2017, 19, 3831; (c) C. Duan, L. Ye, W. Xu, X. Li, F. Chen, Z. Zhao and X. Li, Chin. Chem. Lett. 2018, 29, 1273.
2) (a) A. Banerji and S. C. Pal, Phytochemistry 1983, 22, 1028; (b) F. Serpier, J.-L. Brayer, B. Folleas and S. Darses, Org. Lett. 2015, 17, 5496; (c) A. Padwa, S. S. Murphree, Z. Ni and S. H. Watterson, J. Org. Chem. 1996, 61, 3829; (d) X. Ji, T. Peng, X. Zhang, J. Li, W. Yang, L. Tong, R. Qu, H. Jiang, J. Ding and H. Xie, Bioorg. Med. Chem. 2014, 22, 2366.
3) (a) A. D. Gammack Yamagata, S. Datta, K. E. Jackson, L. Stegbauer, R. S. Paton and D. J. Dixon, Angew. Chem., Int. Ed. 2015, 54, 4899; (b) C. Bai, S. Wu, S. Ren, M. Zhu, G. Luo and H. Xiang, Bioorg. Med. Chem. 2021, 47, 116395; (c) Y. Du, A. Yu, J. Jia, Y. Zhang and X. Meng, Chem. Comm. 2017, 53, 1684.
4) (a) X. Tian, Y. Zhang, W. Ren and Y. Wang, Org. Chem. Front. 2022, 9, 615; (b) F. Luo, H. Dong, W. Ren and Y. Wang, Org. Lett. 2022, 24, 7727; (c) J. Wang, L. Zhao, C. Zhu, B. Ma, X. Xie, J. Liu, S. He, M. Rueping, K. Zhao and L. Hu, Chin. Chem. Lett. $2022,33,4549$.
5) F. Miege, C. Meyer and J. Cossy, Angew. Chem., Int. Ed. 2011, 50, 5932.
6) SMART \& SAINT. Software Reference manuals. Versions 6.28a \& 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
7) Sheldrick, G. M. SHELXS97 and SHELXL Version 2014/7, http://shelx.uni-ac.gwdg.de/SHELX/index.php
8) P. Muller, R. Herbst-Imer, A. L. Spek, T. R. Schneider and M. R. Sawaya, Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57-91.
9) A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
10) Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
11) G. M. Sheldrick, ActaCrystallogr. 2015, C71, 3.
12) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
