# **Supporting Information**

# Rearrangement of 2-(Benzofuran-2-yl)-3-Phenylpyridines *via* Photoinduced 6π-Electrocyclization

Jin Xi, Ding Wang, Jinxia Hu, Huan Shen, Tao Wang and Zunting Zhang\*

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.

## Contents

| 1. General information                                | \$3   |
|-------------------------------------------------------|-------|
| 2. Synthetic schemes                                  | S4    |
| 3. UV absorption spectra of 1a, 1l, 2l, 3l and 4a     | S6    |
| 4. Conditions optimization                            | S8    |
| 5. Characterization data for products                 | S9    |
| The data of 5a-5d                                     | S9    |
| The data of 1a-1u                                     | S9    |
| The data of 2a-2u                                     | S14   |
| The data of 3a-3u                                     | S18   |
| The data of 4a-4j, 6a-6b                              | S23   |
| 6. References                                         | S25   |
| 7. <sup>1</sup> H NMR and <sup>13</sup> C NMR Spectra | S26   |
| 8. Two-dimensional NMR of <b>2l</b>                   | S102  |
| 9. 1D-NOE of <b>2l</b> and <b>3l</b>                  | \$109 |

## **1.** General information

<sup>1</sup>H NMR and <sup>13</sup>C NMR were recorded on a Bruker - 400 MHz, 600 MHz Spectrometer (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 101 MHz), (<sup>1</sup>H: 600 MHz, <sup>13</sup>C: 151 MHz), using CDCl<sub>3</sub> and DMSO- $d_6$  as the solvent at room temperature. The chemical shifts ( $\delta$ ) were expressed in ppm and the coupling constants (*J*) were expressed in Hz. High-resolution mass spectra (HRMS) were recorded on a Bruker MAXIS spectrometer. The irradiation experiments were performed in a photo-chemical reactor equipped with 64 W (8 x 8 w) of 313 nm UV light and 64 W of 254 nm UV light under an argon atmosphere in quartz tubes.





Figure S1. 313 nm ultraviolet lamp (64 W)





Figure S2. 254 nm ultraviolet lamp (64 W)

## 2. Synthetic schemes





A mixture of 2, 3-dibromopyridine (3 mmol, 708 mg), benzofuran-2-ylboronic acid (1.1 eq, 3.3 mmol) was dissolved in a mixed solvent of MeCN : MeOH = 2:1 (20 mL : 10 mL) followed with the addition of PPh<sub>3</sub> (20%, 0.6 mmol, 157 mg), Pd(OAc)<sub>2</sub> (10%, 0.3 mmol, 68 mg) and K<sub>2</sub>CO<sub>3</sub> (2 eq, 6 mmol, 828 mg). The resulting mixture was flushed with argon, sealed, and stirred at 50 °C for 12-24 h in an oil bath. The volatiles was removed under reduced pressure after being cooled at room temperature. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and washed with water (40 mL × 3). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>), concentrated and the residue was purified by column chromatography (EtOAc / Petroleum ether = 1/200 ~ 1/100) to give 2-(benzofuran-2-yl)-3-bromopyridine **5**.<sup>[1]</sup>

| Scheme S | 52. Sy | ynthesis | of | 2-( | benzof | uran-2 | -yl | )-3- | pheny | lpyrio | lines | (1a | <b>-1</b> 1 | <b>u)</b> , |
|----------|--------|----------|----|-----|--------|--------|-----|------|-------|--------|-------|-----|-------------|-------------|
|----------|--------|----------|----|-----|--------|--------|-----|------|-------|--------|-------|-----|-------------|-------------|



The mixture of 2-(benzofuran-2-yl)-3-bromopyridine **5** (1 mmol), arylboronic acid (3 eq, 3 mmol) was dissolved in a mixed solvent of dioxane :  $H_2O = 4$ :1 (12 mL : 3mL) followed with the addition of Pd(PPh<sub>3</sub>) (5% mmol, 58 mg) and Cs<sub>2</sub>CO<sub>3</sub> (5 eq, 5 mmol,

1.63 g). The resulting mixture was stirred at 85 °C for 12 h under an argon atmosphere. The volatiles was removed under reduced pressure after the reaction mixture was cooled at room temperature. The residue was dissolved in ethyl acetate (20 mL) and washed with water (30 mL  $\times$  3). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>), concentrated and the residue was purified by column chromatography (EtOAc / Petroleum ether = 1/75~ 1/25) to give the desired product **1**. <sup>[2]</sup>

## 3. UV absorption spectra of 1a, 1l, 2l, 3l and 4a



*Figure S3.* UV absorption spectra of 1a in DCM (10<sup>-5</sup> M).



*Figure S4.* UV absorption spectra of **11** in DCM ( $10^{-5}$  M).



*Figure S5.* UV absorption spectra of **2l**, **3l** and **4a** in DCM ( $10^{-5}$  M).

## 4. Conditions optimization

The solution **11** (0.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL, 5 mM) was irradiated by 254 nm UV light for 2 hours under an argon atmosphere at room temperature to give **4a** in 62% yield (Table 1, entry 1). Various solvents were explored, such as ethanol, acetonitrile, 1,2-dichloroethane, **4a** was obtained in 50%, 57% and 56% yield (entries 2-4). Extending the irradiation time to 3 hours led to the formation of **4a** in higher yield (65%, entry 5). Further increase of the exposure time to 9 h boosted the yield of **4a** to 79% (entry 6). However, either higher or lower substrate (**11**) concentrations resulted in a lower yield of **4a** (entries 7-9). In consequence, irradiation of **11-1u** (5 mM) in CH<sub>2</sub>Cl<sub>2</sub> with a 254 nm UV lamp under an argon atmosphere at room temperature is the optimal condition for the synthesis of **4**.

 $\sim$ 

Table 1
Optimization of reaction conditions for the synthesis of  $4a^{[a]}$ 

|       |                                 | solvent<br>Ar, 254 nm |          | Ha                              |
|-------|---------------------------------|-----------------------|----------|---------------------------------|
| Entry | Solvent                         | C (mol/L)             | Time (h) | <b>Yield</b> <sup>[b]</sup> (%) |
| 1     | $CH_2Cl_2$                      | 0.005                 | 2        | 62                              |
| 2     | EtOH                            | 0.005                 | 2        | 50                              |
| 3     | CH <sub>3</sub> CN              | 0.005                 | 2        | 57                              |
| 4     | DCE                             | 0.005                 | 2        | 56                              |
| 5     | $CH_2Cl_2$                      | 0.005                 | 3        | 65                              |
| 6     | $CH_2Cl_2$                      | 0.005                 | 9        | 79                              |
| 7     | CH <sub>2</sub> CL <sub>2</sub> | 0.003                 | 9        | 76                              |
| 8     | $CH_2Cl_2$                      | 0.007                 | 9        | 70                              |
| 9     | $CH_2Cl_2$                      | 0.01                  | 9        | 64                              |

<sup>[a]</sup> Irradiation of **11** (0.2 mmol) in various solvents (40 mL, 5 mM) with a 254 nm UV lamp (64 W) under an argon atmosphere at r.t. <sup>[b]</sup> Isolated yield.

## 5. Characterization data for products

### The data of 5a-5d

#### 2-(Benzofuran-2-yl)-3-bromopyridine (5a)



Yield: 74% (608 mg). Yellow solid.  $R_f = 0.39$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, *J* = 16.5 Hz, 1H), 8.06 – 7.92 (m, 1H), 7.89 – 7.78 (m, 1H), 7.67 (s, 2H), 7.38 (d, *J* = 6.4 Hz, 1H), 7.29 (s, 1H), 7.16 – 7.02 (m, 1H). <sup>[3]</sup>

#### 2-(Benzofuran-2-yl)-3-bromo-5-methylpyridine (5b)



Yield: 67% (579 mg). White solid. m.p. 76.5-77.9 °C.  $R_f = 0.40$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (s, 1H), 7.87 – 7.75 (m, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.28 (s, 1H), 2.37 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.8, 152.4, 148.8, 144.8, 142.5, 133.9, 128.4, 125.7, 123.2, 121.8, 117.9, 111.9, 109.4, 17.8. HRMS

(ESI) m/z calcd for.  $C_{14}H_{11}BrNO^+$  [M+H]<sup>+</sup>288.0019, found 288.0018.

#### 3-Bromo-2-(3-methylbenzofuran-2-yl)pyridine (5c)



Yield: 60% (519 mg). Colorless oil.  $R_f = 0.39$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (dd, J = 4.6, 1.3 Hz, 1H), 8.00 (dd, J = 8.1, 1.2 Hz, 1H), 7.61 (s, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.33 – 7.28 (m, 1H), 7.17 (dd, J = 8.1, 4.6 Hz, 1H), 2.40 (s, 3H).<sup>[3]</sup>

#### 3-Bromo-5-methyl-2-(3-methylbenzofuran-2-yl)pyridine (5d)



Yield: 40% (363 mg). White solid. m.p. 81.2-82.7 °C.  $R_f = 0.40$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (d, J = 1.2 Hz, 1H), 7.88 (d, J = 1.0 Hz, 1H), 7.62 (d, J = 7.1 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.33 – 7.28 (m, 1H), 2.42 (s, 3H), 2.39 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.4, 148.9, 148.8, 147.0, 141.7, 134.8,

130.0, 125.1, 122.6, 120.8, 120.0, 115.9, 111.6, 18.0, 9.5. HRMS (APCI) m/z calcd for.  $C_{15}H_{13}BrNO^+$  [M+H]<sup>+</sup> 302.0175, found 302.0171.

### The data of 1a-1u

#### 2-(Benzofuran-2-yl)-3-phenylpyridine (1a)



Yield: 90% (244 mg). Colorless oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.79 – 8.75 (m, 1H), 7.64 – 7.58 (m, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.33 (dd, J = 3.6, 1.9 Hz, 2H), 7.26 (ddd, J = 7.5, 3.3, 2.0 Hz, 2H), 7.18 – 7.11 (m, 1H), 6.31 (s, 1H).<sup>[3]</sup>

2-(Benzofuran-2-yl)-3-(p-tolyl)pyridine (1b)



Yield: 93% (265 mg). White solid. m.p. 76.9-78.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.76 (dd, J = 4.6, 1.4 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.31 – 7.22 (m, 6H), 7.16 (t, J = 7.5 Hz, 1H), 6.30 (s, 1H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.6, 153.8, 148.5, 146.8, 138.8, 137.9, 136.6, 136.4, 129.5, 128.8, 128.4, 125.1, 122.9, 122.4, 121.5, 111.7, 108.5, 21.3.

HRMS (ESI) m/z calcd for. C<sub>20</sub>H<sub>16</sub>NO<sup>+</sup> [M+H]<sup>+</sup>286.1226, found 286.1224.

#### 2-(Benzofuran-2-yl)-3-(4-fluorophenyl)pyridine (1c)



Yield: 97% (280 mg). Yellow oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (dd, J = 2.9, 1.8 Hz, 1H), 7.58 (d, J = 7.7Hz, 1H), 7.46 (dd, J = 13.7, 8.0 Hz, 2H), 7.27 (dt, J = 7.3, 4.5 Hz, 4H), 7.18 – 7.08 (m, 3H), 6.39 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.6 (d, <sup>1</sup>J = 247.4Hz), 154.6 (s), 153.7 (s), 148.8 (s), 146.8(s), 138.8 (s), 135.5 (d, <sup>4</sup>J = 3.5 Hz), 135.1, 130.6 (d, <sup>3</sup>J = 8.2 Hz), 128.2, 125.2, 123.0, 122.4, 121.5, 115.7 (d, <sup>2</sup>J =

21.5 Hz), 111.6, 108.4. HRMS (ESI) m/z calcd for.  $C_{19}H_{13}FNO^+$  [M+H]<sup>+</sup> 290.0976, found 290.0972.

#### 2-(Benzofuran-2-yl)-3-(4-methoxyphenyl)pyridine (1d)



Yield: 92% (277 mg). White solid. m.p. 94.7-96.6 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.76 (d, J = 3.7 Hz, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.29 (dd, J = 14.1, 6.5 Hz, 4H), 7.18 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.33 (s, 1H), 3.88 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 154.6, 153.9, 148.5, 147.0, 139.0, 136.1, 131.9, 130.1, 128.5, 125.2, 122.9,

122.5, 121.5, 114.2, 111.7, 108.5, 55.4. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+$  [M+H]<sup>+</sup> 302.1176, found 302.1172.

#### 2-(Benzofuran-2-yl)-3-(3-methoxyphenyl)pyridine (1e)



Yield: 90% (271 mg). Colorless oil.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.65 (dd, J = 4.7, 0.8 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 7.15 (dd, J = 14.4, 7.4 Hz, 2H), 7.03 (t, J = 7.5 Hz, 1H), 6.86 (dd, J = 8.3, 2.4 Hz, 1H), 6.78 (dd, J = 10.0, 4.7 Hz, 2H), 6.24 (s, 1H), 3.63 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 154.6, 153.6, 148.7, 146.7, 140.9, 138.6, 136.1, 129.8, 128.4, 125.2, 122.9, 122.3, 121.5, 121.3, 114.3, 113.7, 111.7,

108.5, 55.3. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+$  [M+H]<sup>+</sup> 302.1176, found 302.1171.

#### 2-(Benzofuran-2-yl)-3-(3,4-dimethylphenyl)pyridine (1f)



Yield: 93% (278 mg). White solid. m.p. 88-89.6 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (dd, J = 4.7, 1.6 Hz, 1H), 7.54 (dd, J = 7.7, 1.6 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.22 – 7.17 (m, 2H), 7.14 – 7.04 (m, 3H), 6.99 (dd, J = 7.7, 1.4 Hz, 1H), 6.22 (d, J = 0.4 Hz, 1H), 2.28 (s, 3H), 2.22 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.6, 153.8, 148.5, 146.8, 138.9, 137.1, 137.1, 136.6, 130.0, 130.0, 128.5, 126.3, 125.1, 122.9, 122.4, 121.5, 111.8, 108.5, 19.9, 19.7. HRMS (ESI)

m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1377.

2-(Benzofuran-2-yl)-5-methyl-3-phenylpyridine (1g)



Yield: 90% (257 mg). White solid. m.p. 99.5-101.8 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (s, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.46 (dd, J = 7.6, 4.7 Hz, 4H), 7.41 (d, J = 7.7 Hz, 1H), 7.36 (dd, J = 6.3, 2.8 Hz, 2H), 7.27 (t, J = 7.1 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 6.23 (s, 1H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.6, 154.0, 149.3, 144.3, 139.8, 139.3, 136.0, 132.4, 129.0, 128.8, 128.6, 128.1, 125.0,

122.9, 121.4, 111.7, 107.8, 18.2. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^+ \ \left[M+H\right]^+ 286.1226,$  found 286.1222.

#### 2-(Benzofuran-2-yl)-5-methyl-3-(p-tolyl)pyridine (1h)



Yield: 98% (293 mg). White solid. m.p. 115.4-118.1 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 1.7 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.44 (dd, J = 12.5, 4.6 Hz, 2H), 7.31 – 7.23 (m, 5H), 7.17 (t, J = 7.5 Hz, 1H), 6.25 (s, 1H), 2.46 (s, 3H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.6, 154.0, 149.1, 144.4, 139.4, 137.8, 136.8, 136.0, 132.3, 129.5, 128.8, 128.6, 124.9, 122.8, 121.4, 111.7, 107.8,

21.4, 18.2. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1379.

#### 2-(Benzofuran-2-yl)-5-methyl-3-(4-(trifluoromethyl)phenyl)pyridine (1i)



Yield: 95% (335 mg). White solid. m.p. 105.3-107.4 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.65 (s, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 7.5 Hz, 4H), 7.43 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 6.3 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 6.46 (s, 1H), 2.46 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 154.7, 153.9, 149.9, 144.2, 143.6, 139.2, 134.4, 132.7, 130.2 (q, <sup>2</sup>J = 32.8 Hz), 129.6, 128.4, 125.6 (q, <sup>3</sup>J = 3.7 Hz), 125.2,

123.1, 121.5, 111.7, 107.9, 18.3. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}F_3NO^+ \left[M+H\right]^+ 354.1100,$  found 354.1097.

#### 2-(Benzofuran-2-yl)-3-(4-fluorophenyl)-5-methylpyridine (1j)



Yield: 90% (273 mg). White solid. m.p. 77.8-80.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 1.5 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.46 (dd, J = 3.9, 2.3 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.20 – 7.11 (m, 3H), 6.33 (s, 1H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.7 (d, <sup>1</sup>J = 247.3 Hz), 154.6, 153.9, 149.4, 144.3, 139.4, 135.7 (d, <sup>4</sup>J = 3.5 Hz), 134.8, 132.4, 130.7 (d, <sup>3</sup>J = 8.1 Hz), 128.5, 125.0, 123.0,

121.4, 115.7 (d,  ${}^{2}J = 21.5$  Hz), 111.7, 107.7, 18.2. HRMS (ESI) m/z calcd for.  $C_{20}H_{15}FNO^{+}$  [M+H]<sup>+</sup> 304.1132, found 304.1128.

#### 2-(Benzofuran-2-yl)-3-(3,4-dimethylphenyl)-5-methylpyridine (1k)



Yield: 91% (285 mg). White solid. m.p. 116.1-118.2 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.58 (d, J = 1.7 Hz, 1H), 7.53 (dd, J = 8.3, 0.5 Hz, 1H), 7.42 (dt, J = 12.9, 5.5 Hz, 2H), 7.26 – 7.10 (m, 4H), 7.05 (dd, J = 7.6, 1.6 Hz, 1H), 6.21 (dd, J = 4.5, 0.7 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 2.28 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 154.6, 154.1, 149.0, 144.3, 139.5, 137.3, 137.1, 136.5, 136.2, 132.2, 130.1, 130.0, 128.7, 126.4, 124.9, 122.8, 121.4, 111.8, 107.8, 19.9, 19.7, 18.2. HRMS

(ESI) m/z calcd for.  $C_{22}H_{20}NO^{+}\left[M+H\right]^{+}314.1539,$  found 314.1536.

2-(3-Methylbenzofuran-2-yl)-3-phenylpyridine (11)



Yield: 91% ( 260 mg). Colorless oil.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (dd, J = 4.7, 1.4 Hz, 1H), 7.80 (dd, J = 7.8, 1.5 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.37 (dd, J = 8.5, 6.2 Hz, 2H), 7.28 – 7.23 (m, 6H), 7.20 (t, J = 7.3 Hz, 1H), 1.91 (s, 3H).<sup>[3]</sup>

#### 2-(3-Methylbenzofuran-2-yl)-3-(p-tolyl)pyridine (1m)



Yield: 83% (248 mg). White solid. m.p. 85.9-87.1 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (dd, J = 4.7, 1.7 Hz, 1H), 7.81 (dd, J = 7.9, 1.7 Hz, 1H), 7.46 – 7.37 (m, 3H), 7.30 – 7.26 (m, 1H), 7.23 (dd, J = 7.5, 1.0 Hz, 1H), 7.20 – 7.15 (m, 2H), 7.09 (d, J = 7.9 Hz, 2H), 2.33 (s, 3H), 1.86 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 149.9, 148.3, 148.0, 138.5, 137.8, 137.3, 136.3, 130.2, 129.3, 128.6, 124.7, 123.3,

122.3, 119.8, 114.8, 111.5, 21.2, 8.5. HRMS (APCI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1380.

#### 3-(4-Methoxyphenyl)-2-(3-methylbenzofuran-2-yl)pyridine (1n)



Yield: 70% (220 mg). Colorless oil.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (dd, J = 4.6, 1.3 Hz, 1H), 7.82 – 7.78 (m,1H), 7.47 (dd, J = 11.0, 8.0 Hz, 2H), 7.38 (dd, J = 7.8, 4.7 Hz, 1H), 7.30 (dd, J = 10.4, 4.5 Hz, 1H), 7.23 (d, J = 8.8 Hz, 3H), 6.84 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H), 1.92 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 154.4, 149.8, 148.0, 147.8, 138.2, 137.3, 131.5, 130.1, 129.8, 124.6, 123.2, 122.3,

119.7, 114.6, 113.9, 111.4, 55.2, 8.4. HRMS (APCI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup> 316.1332, found 316.1330.

#### 3-(4-(Tert-butyl)phenyl)-2-(3-methylbenzofuran-2-yl)pyridine (10)



Yield: 85% (290 mg). Colorless oil.  $R_f = 0.45$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (dd, J = 4.7, 1.6 Hz, 1H), 7.85 (dd, J = 7.8, 1.7 Hz, 1H), 7.48 (dd, J = 7.6, 0.6 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.35 (dd, J = 9.2, 2.4 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.26 (ddd, J = 4.5, 3.4, 1.5 Hz, 2H), 7.24 (d, J = 2.3 Hz, 1H), 1.88 (s, 3H), 1.34 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 150.6, 149.9, 148.3, 148.1, 138.5, 137.6, 136.3, 130.2, 128.5, 125.4, 124.7, 123.2, 122.3, 119.8, 114.9, 111.5, 34.6, 31.4, 8.4. HRMS (APCI)

m/z calcd for.  $C_{24}H_{24}NO^+$   $[M+H]^+$  342.1852, found 342.1853.

#### 4-(2-(3-Methylbenzofuran-2-yl)pyridin-3-yl)benzonitrile (1p)



Yield: 90% (279 mg). White solid. m.p. 112.1-113.1 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (dd, J = 4.6, 1.4 Hz, 1H), 7.80 (dd, J = 7.8, 1.4 Hz, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.54 – 7.50 (m, 1H), 7.44 (dd, J = 7.8, 4.7 Hz, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.31 – 7.24 (m, 3H), 2.16 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 154.2, 149.4, 148.9, 148.1, 144.4, 138.3, 135.5, 132.2, 130.0, 129.5, 125.3, 123.1, 122.7, 120.0,

118.8, 116.2, 111.3, 111.3, 8.9. HRMS (APCI) m/z calcd for.  $C_{21}H_{15}N_2O^+\ [M+H]^+\ 311.1179,$  found 311.1179.

2-(3-Methylbenzofuran-2-yl)-3-(4-(trifluoromethyl)phenyl)pyridine (1q)



Yield: 92% (325 mg). Colorless oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.83 (dd, J = 4.7, 1.6 Hz, 1H), 7.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.32 – 7.23 (m, 3H), 2.10 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.3, 149.1, 148.2, 143.2, 138.4, 136.0, 130.0, 129.6 (q, <sup>2</sup>J = 32.5 Hz), 129.1, 125.4 (q, <sup>3</sup>J = 3.7 Hz), 125.1, 124.2 (q, <sup>1</sup>J = 272.1 Hz), 123.1, 122.6,

119.9, 115.8, 111.4, 8.8. HRMS (APCI) m/z calcd for.  $C_{21}H_{15}F_3NO^+ \ \left[M+H\right]^+$  354.1100, found 354.1093.

#### 3-(3-Methoxyphenyl)-2-(3-methylbenzofuran-2-yl)pyridine (1r)



Yield: 90% (284 mg). Yellow oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (d, J = 4.7 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.40 (dd, J = 11.4, 5.9 Hz, 2H), 7.29 (t, J = 7.7Hz, 1H), 7.22 (dt, J = 12.0, 7.6 Hz, 2H), 6.89 (d, J = 7.7 Hz, 1H), 6.85 (d, J =7.3 Hz, 2H), 3.61 (s, 3H), 1.97 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  159.5, 154.3, 149.5, 148.5, 148.0, 140.5, 138.4, 137.6, 130.0, 129.5, 124.7, 123.2, 122.3, 121.2, 119.7, 115.1, 114.0, 113.4. 111.3, 55.1, 8.4. HRMS (APCI) m/z

calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup> 316.1332, found 316.1331.

#### 5-Methyl-2-(3-methylbenzofuran-2-yl)-3-phenylpyridine (1s)



Yield: 91% (272 mg). Colorless oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 – 8.61 (m, 1H), 7.65 (d, J = 1.4 Hz, 1H), 7.43 (dd, J = 14.8, 7.8 Hz, 2H), 7.31 – 7.27 (m, 6H), 7.22 (t, J = 7.3 Hz, 1H), 2.47 (s, 3H), 1.86 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.4, 149.8, 149.1, 145.3, 139.3, 138.9, 137.2, 133.1, 130.2, 128.8, 128.5, 127.4, 124.5, 122.3, 119.6, 114.5, 111.4, 18.4, 8.4. HRMS (APCI) m/z calcd

for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1380.

#### 5-Methyl-2-(3-methylbenzofuran-2-yl)-3-(p-tolyl)pyridine (1t)



Yield: 96% (300 mg). White solid. m.p.  $85.9-87.1 \,^{\circ}$ C. R<sub>f</sub> = 0.47 (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.61 (s, 1H), 7.64 (s, 1H), 7.45 (d, *J* = 7.8 Hz, 2H), 7.32 – 7.27 (m, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 2.47 (s, 3H), 2.35 (s, 3H), 1.83 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 150.0, 148.9, 145.3, 138.9, 137.3, 137.2, 136.4, 133.1, 130.3, 129.1, 128.6, 124.5, 122.2, 119.6,

114.3, 114.5, 21.2, 18.4, 8.4. HRMS (APCI) m/z calcd for.  $C_{22}H_{20}NO^+ \ [M+H]^+ \ 314.1539,$  found 314.1536.

#### 5-Methyl-2-(3-methylbenzofuran-2-yl)-3-(4-(trifluoromethyl)phenyl)pyridine (1u)



Yield: 92% (338 mg). Colorless oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (d, J = 1.1 Hz, 1H), 7.63 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 8.1 Hz, 2H), 7.35 – 7.22 (m, 3H), 2.49 (s, 3H), 2.03 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.3, 149.8, 149.3, 145.4, 143.3, 138.8, 135.6, 133.1, 130.1, 129.5 (q, <sup>2</sup>J = 32.5 Hz), 129.1, 125.3 (q, <sup>3</sup>J = 3.6 Hz), 124.9, 124.2

(q,  ${}^{1}J = 272.0$  Hz), 122.5, 119.8, 115.2, 111.3, 18.3, 8.7. HRMS (APCI) m/z calcd for.  $C_{22}H_{17}F_{3}NO^{+}$  [M+H]<sup>+</sup> 368.1257, found 368.1257.

#### The data of 2a-2u

#### *trans*-8b,13a-Dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2a)



Yield: 85% (69 mg). White solid.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (s, 1H), 8.08 (d, J = 6.9 Hz, 1H), 7.92 (s, 1H), 7.82 – 7.69 (m, 2H), 7.43 (d, J = 23.4 Hz, 3H), 7.30 (d, J = 7.0 Hz, 1H), 7.20 – 7.06 (m, 2H), 5.31 (d, J = 16.1 Hz, 1H), 4.63 (d, J = 16.2 Hz, 1H). <sup>[3]</sup>

#### *trans*-7-Methyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2b)



Yield: 90% (78 mg). White solid. m.p. 184.3-185.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (d, J = 4.5 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.71 – 7.59 (m, 3H), 7.32 (dd, J = 7.6, 5.0 Hz, 1H), 7.21 (dd, J = 12.6, 8.3 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 5.21 (d, J = 16.3 Hz, 1H), 4.53 (d, J = 16.3 Hz, 1H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 155.5, 148.1, 139.2, 135.5, 131.7, 130.3,

129.3, 128.7, 128.5, 127.7, 125.4, 125.0, 124.7, 123.3, 121.7, 111.6, 86.2, 48.3, 21.7. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^+$  [M+H]<sup>+</sup> 286.1226, found 286.1223.

#### trans-7-Fluoro-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2c)



Yield: 74% (67 mg). White solid. m.p. 184.3-186.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (d, J = 4.4 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.74 (dd, J = 8.3, 5.5 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.38 (dd, J = 7.4, 5.1 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.18 – 7.06 (m, 3H), 5.26 (d, J = 16.3 Hz, 1H), 4.57 (d, J = 16.3 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.9 (d, <sup>1</sup>J = 250.1 Hz), 161.4, 155.2, 148.4, 138.0

(d,  ${}^{3}J = 8.1$  Hz), 131.9, 129.3 (d,  ${}^{4}J = 3.5$  Hz), 129.0, 128.6, 127.3 (d,  ${}^{3}J = 8.8$  Hz), 126.9, 124.3, 123.4, 122.0, 114.8 (d,  ${}^{2}J = 21.8$  Hz), 112.2, 112.0, 85.7, 48.4. HRMS (ESI) m/z calcd for. C<sub>19</sub>H<sub>13</sub>FNO<sup>+</sup> [M+H]<sup>+</sup> 290.0976, found 290.0976.

#### trans-7-Methoxy-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2d)



Yield: 75% (67 mg). White solid. m.p. 156.5-157.6 °C.  $R_f = 0.46$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (dd, J = 4.8, 1.2 Hz, 1H), 7.95 (dd, J = 7.9, 1.2 Hz, 1H), 7.68 (dd, J = 7.9, 3.3 Hz, 2H), 7.42 (d, J = 1.3 Hz, 1H), 7.36 – 7.26 (m, 2H), 7.15 (d, J = 7.9 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.93 (dd, J = 8.5, 2.4 Hz, 1H), 5.24 (d, J = 16.3 Hz, 1H), 4.54 (d, J = 16.3 Hz, 1H), 3.90 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 161.4,

160.1, 154.8, 147.5, 137.2, 131.2, 129.2, 128.7, 127.5, 126.8, 125.6, 124.4, 123.2, 121.7, 112.3, 111.8, 110.9, 86.0, 55.5, 48.4. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+$  [M+H]<sup>+</sup> 302.1176, found 302.1173.

#### *trans*-8-Methoxy-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2e)



Yield: 76% (68 mg). White solid. m.p. 121.5-123 °C. R<sub>f</sub> = 0.47 (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 (d, *J* = 4.3 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.60 (d, *J* = 7.3 Hz, 1H), 7.30 (dd, *J* = 7.7, 5.0 Hz, 1H), 7.20 (dd, *J* = 14.8, 4.9 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.88 (dd, *J* = 8.3, 2.1 Hz, 1H), 5.16 (d, *J* = 16.2 Hz, 1H), 4.44 (d, *J* = 16.2 Hz, 1H), 3.80 (s, 3H). <sup>13</sup>C NMR (101

MHz, CDCl<sub>3</sub>) δ 161.4, 159.3, 155.8, 148.5, 134.4, 132.1, 129.1, 128.6, 127.9, 127.8, 125.2, 124.5,

123.3, 121.7, 113.5, 111.9, 111.8, 86.3, 55.6, 47.7. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+$  [M+H]<sup>+</sup> 302.1176, found 302.1173.

#### *trans*-6,7-Dimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2f)



Yield: 75% (68 mg). White solid. m.p. 188.2-190.1 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (d, J = 4.7 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.3 Hz, 1H), 7.63 (s, 1H), 7.53 (s, 1H), 7.35 (dd, J = 7.7, 5.0 Hz, 1H), 7.27 (d, J = 6.5 Hz, 1H), 7.14 (d, J = 7.9 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 5.22 (d, J = 16.3 Hz, 1H), 4.53 (d, J = 16.3 Hz, 1H), 2.37 (s, 3H), 2.35 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 155.6, 147.9, 137.8, 136.1, 133.0, 131.6, 130.6, 129.4, 128.6, 128.0, 126.7, 125.6, 124.6,

123.2, 121.7, 111.8, 86.4, 48.0, 20.0, 19.9. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup>300.1383, found 300.1381.

#### $trans \hbox{-} 3 \hbox{-} Methyl \hbox{-} 8b, 13a \hbox{-} dihydrobenzo[f] benzofuro[3, 2-h] quinoline~(2g)$



Yield: 73% (63 mg). Yellow solid. m.p. 105.7-108.2 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (s, 1H), 7.89 – 7.81 (m, 2H), 7.73 (dd, J = 5.4, 3.6 Hz, 1H), 7.68 (d, J = 7.4 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.23 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 7.9 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 5.22 (d, J = 16.3 Hz, 1H), 4.54 (d, J = 16.3 Hz, 1H), 2.41 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 152.9, 148.6, 135.6, 133.2, 132.7,

128.8, 128.7, 128.6, 128.6, 127.8, 127.6, 125.3, 124.5, 124.2, 121.6, 111.8, 85.9, 48.5, 18.6. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^+$  [M+H]<sup>+</sup> 286.1226, found 286.1223.

#### *trans*-3,7-Dimethyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2h)



Yield: 83% (75 mg). White solid. m.p. 182.6-184.5 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (s, 1H), 7.84 (s, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.69 (s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 5.22 (d, J = 16.3 Hz, 1H), 4.53 (d, J = 16.2 Hz, 1H), 2.47 (s, 3H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 152.7, 148.2,

138.9, 135.5, 132.6, 132.4, 130.4, 128.7, 128.6, 128.4, 127.8, 125.3, 125.0, 124.6, 121.6, 111.8, 86.1, 48.4, 21.7, 18.7. HRMS (ESI) m/z calcd for. C<sub>21</sub>H<sub>18</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 300.1383, found 300.1386. *trans*-3-Methyl-7-(trifluoromethyl)-8b,9,10,13a-tetrahydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2i)



Yield: 70% (74 mg). White solid. m.p. 255.7-257.9 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.50 (s, 1H), 8.11 (s, 1H), 7.93 – 7.85 (m, 2H), 7.71 (t, *J* = 7.8 Hz, 2H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.14 (dd, *J* = 16.5, 7.9 Hz, 2H), 5.27 (d, *J* = 16.3 Hz, 1H), 4.61 (d, *J* = 16.3 Hz, 1H), 2.47 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 153.3, 149.8, 136.9, 136.6, 133.3, 133.2, 130.6 (q, <sup>2</sup>*J* = 32.5 Hz), 129.1, 127.5, 126.8,

125.8, 125.0 (q,  ${}^{3}J = 4.1$  Hz), 124.5, 124.0 (q,  ${}^{1}J = 271.8$  Hz), 122.1, 121.3 (dd, J = 7.2, 3.5 Hz), 112.1, 85.5, 48.6, 18.7. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}F_{3}NO^{+}$  [M+H]<sup>+</sup> 354.1100, found 354.1100. *trans*-7-Fluoro-3-methyl-8b,11,12,13a-tetrahydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2j)



Yield: 80% (73 mg). White solid. m.p. 165.3-167.5 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (s, 1H), 7.82 (s, 1H), 7.74 (dd, J = 8.5, 5.4 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.17 – 7.07 (m, 3H), 5.23 (d, J = 16.3 Hz, 1H), 4.54 (d, J = 16.3 Hz, 1H), 2.45 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.8 (d, <sup>1</sup>J = 249.8 Hz), 161.5, 152.4, 148.6, 138.1 (d, <sup>3</sup>J = 8.1 Hz), 132.9,

132.6, 129.4 (d,  ${}^{4}J$  = 3.3 Hz), 128.9, 128.0, 127.2 (d,  ${}^{3}J$  = 8.7 Hz), 127.0, 124.3, 121.9, 114.6 (d,  ${}^{2}J$  = 21.6 Hz), 112.2, 112.0, 85.7, 48.6, 18.7. HRMS (ESI) m/z calcd for. C<sub>20</sub>H<sub>15</sub>FNO<sup>+</sup> [M+H]<sup>+</sup> 304.1132, found 304.1132.

#### *trans*-3,6,7-Trimethyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2k)



Yield: 58% (54.5 mg). White solid. m.p. 169-171 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.33 (s, 1H), 7.77 (s, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.56 (s, 1H), 7.46 (s, 1H), 7.21 – 7.15 (m, 1H), 7.11 – 6.91 (m, 2H), 5.12 (d, J = 16.2 Hz, 1H), 4.43 (d, J = 16.2 Hz, 1H), 2.36 (s, 3H), 2.31 (s, 3H), 2.28 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.6, 152.9, 148.2, 137.6, 136.0, 133.1, 132.6, 132.4, 130.7, 128.8, 128.6, 128.1, 126.7, 125.6, 124.6, 121.6, 111.8, 86.4, 48.2, 20.0, 19.9, 18.7. HRMS

(ESI) m/z calcd for.  $C_{22}H_{20}NO^+$  [M+H]<sup>+</sup> 314.1539, found 314.1531.

#### trans-8b-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2l)



Yield: 93% (79 mg). White solid. m.p. 131.5-132.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (dd, J = 4.9, 1.3 Hz, 1H), 8.05 (dd, J = 7.9, 1.3 Hz, 1H), 7.91 (dd, J = 5.8, 3.1 Hz, 1H), 7.80 (dd, J = 6.0, 3.1 Hz, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.38 (ddd, J = 7.8, 5.0, 0.7 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.09 (td, J = 7.5, 0.9 Hz, 1H), 5.45 (s, 1H), 1.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

160.1, 153.5, 148.6, 142.3, 134.5, 132.0, 131.6, 129.5, 129.2, 128.6, 127.8, 126.1, 124.2, 123.9, 123.1, 122.1, 112.4, 87.9, 49.7, 24.5. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^+$  [M+H]<sup>+</sup> 286.1226, found 286.1226.

#### *trans*-7,8b-Dimethyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2m)



Yield: 76% (68 mg). White solid. m.p. 119.3-121.3 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (d, J = 3.9 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.37 – 7.31 (m, 1H), 7.23 (dd, J = 17.6, 7.2 Hz, 2H), 7.14 (d, J = 7.8 Hz, 1H), 7.08 (t, J = 7.3 Hz, 1H), 5.39 (s, 1H), 2.45 (s, 3H), 1.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 153.3, 148.2, 142.2, 139.3, 134.6, 131.2, 129.6, 129.2, 128.5,

128.4, 126.0, 124.6, 124.2, 123.0, 122.0, 112.3, 88.0, 49.6, 24.5, 21.7. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^{+}\left[M+H\right]^{+}300.1383,$  found 300.1383.

#### trans-7-Methoxy-8b-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2n)



Yield: 91% (86 mg). Colorless oil.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (d, J = 4.7 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.41 (d, J = 2.5 Hz, 1H), 7.31 (dd, J = 7.7, 5.0 Hz, 1H), 7.23 (d, J = 5.9 Hz, 1H), 7.12 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.89 (dd, J = 8.6, 2.4 Hz, 1H), 5.36 (s, 1H), 3.88 (s, 3H), 0.99 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.2, 160.1, 152.8, 147.7, 144.0, 134.4, 130.8, 129.5, 128.6, 127.4, 124.5, 124.0, 123.0, 122.1, 112.3, 112.1, 110.7, 88.0, 55.6, 49.8, 24.4. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup>316.1332, found 316.1332.

#### trans-7-(Tert-butyl)-8b-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (20)



Yield: 87% (89 mg). White solid. m.p. 152-153.9 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.61 (d, J = 4.9 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 1.8 Hz, 1H), 7.76 (dd, J = 14.1, 7.8 Hz, 2H), 7.47 (dd, J = 8.2, 1.9 Hz, 1H), 7.37 (dd, J = 7.8, 5.0 Hz, 1H), 7.30 (dd, J = 13.5, 5.7 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 5.46 (s, 1H), 1.44 (s, 9H), 1.07 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 153.4, 152.5, 148.2, 141.9, 134.8, 131.2, 129.5, 129.1, 128.5, 125.7, 124.7, 124.1,

123.0, 122.1, 120.7, 112.3, 88.1, 49.8, 35.1, 31.4, 24.6. HRMS (ESI) m/z calcd for.  $C_{24}H_{24}NO^+$  [M+H]<sup>+</sup> 342.1852, found 342.1851.

#### *trans*-8b-Methyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline-7-carbonitrile (2p)



Yield: 84% (78 mg). White solid. m.p. 211.4.1-212.6 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (dd, J = 4.9, 1.1 Hz, 1H), 8.14 (d, J = 1.3 Hz, 1H), 8.07 (dd, J = 7.9, 1.2 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.73 – 7.68 (m, 2H), 7.43 (dd, J = 7.8, 5.0 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.17 – 7.11 (m, 2H), 5.39 (s, 1H), 1.02 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 153.7, 150.1, 143.3, 136.6, 133.0, 132.3, 131.6, 129.1, 127.8,

127.6, 126.6, 123.9, 123.4, 122.5, 118.6, 112.5, 112.4, 87.1, 49.6, 24.1. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}N_2O^+ \left[M+H\right]^+ 311.1179,$  found 311.1182.

trans-8b-Methyl-7-(trifluoromethyl)-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2q)



Yield: 90% (95.4 mg). White solid. m.p. 169.1-170 °C.  $R_f = 0.47$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (dd, J = 4.9, 1.1 Hz, 1H), 8.12 (s, 1H), 8.08 (dd, J = 7.9, 1.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.1 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.42 (dd, J = 7.6, 5.1 Hz, 1H), 7.30 (dd, J = 11.5, 4.1 Hz, 1H), 7.18 – 7.10 (m, 2H), 5.43 (s, 1H), 1.05 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.9, 153.7, 149.6, 143.0, 135.6, 133.5,

132.1, 130.9 (q,  ${}^{2}J$  = 32.5 Hz), 128.9, 128.3, 126.4, 124.8 (dd,  ${}^{3}J$  = 7.7,  ${}^{4}J$ =3.8 Hz), 124.0, 124.0 (q,  ${}^{1}J$  = 272.4 Hz), 123.3, 122.4, 120.9 (q,  ${}^{4}J$  = 3.5 Hz), 112.5, 87.4, 49.7, 24.2. HRMS (ESI) m/z calcd for. C<sub>21</sub>H<sub>15</sub>F<sub>3</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 354.1100, found 354.1104.

#### *trans*-8-Methoxy-8b-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2r)



Yield: 52% (49 mg). Yellow solid. m.p. 59.6-62.8 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 – 8.62 (m, 1H), 8.06 – 8.01 (m, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.1 Hz, 1H), 7.40 (dd, J = 7.6, 5.1 Hz, 1H), 7.35 (d, J = 2.5 Hz, 1H), 7.30 (dd, J = 9.5, 1.9 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 8.4, 2.5 Hz, 1H), 5.43 (s, 1H), 3.91 (s, 3H), 1.02 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)

δ 160.1, 159.1, 153.7, 148.7, 134.8, 134.7, 133.3, 131.6, 129.4, 128.5, 124.9, 124.0, 123.0 122.0, 113.7, 112.4, 112.3, 88.3, 55.6, 49.1, 24.7. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup>316.1332, found 316.1335.

trans-3,8b-Dimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2s)



Yield: 90% (81 mg). White solid. m.p. 147.3-148.4 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (s, 1H), 7.81 (d, J = 3.1 Hz, 1H), 7.76 (s, 1H), 7.69 (d, J = 4.1 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.32 (d, J = 3.2 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 5.30 (s, 1H), 2.35 (s, 3H), 0.93 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 150.7, 148.7, 142.3, 134.6, 132.5, 132.3,

132.1, 129.0, 128.4, 127.7, 125.9, 124.1, 123.9, 122.0, 112.3, 87.9, 49.7, 24.5, 18.7. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1386.

#### *trans*-3,7,8b-Trimethyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2t)



Yield: 73% (69 mg). White solid. m.p. 230.8-232.5 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (s, 1H), 7.83 (s, 1H), 7.78 (d, J = 7.3 Hz, 1H), 7.73 – 7.66 (m, 2H), 7.28 (d, J = 7.1 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 7.12 (d, J = 7.4 Hz, 1H), 5.38 (s, 1H), 2.48 (s, 3H), 2.45 (s, 3H), 1.03 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 150.5, 148.3, 142.3, 139.1, 134.6, 132.4, 131.9, 129.2,

129.0, 128.4, 128.3, 125.9, 124.6, 124.2, 121.9, 112.2, 88.0, 49.6, 24.5, 21.7, 18.7. HRMS (ESI) m/z calcd for.  $C_{22}H_{20}NO^+$  [M+H]<sup>+</sup> 314.1539, found 314.1543.

*trans*-3,8b-Dimethyl-7-(trifluoromethyl)-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (2u)



Yield: 89% (98 mg). White solid. m.p. 208.9-210.3 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (s, 1H), 8.11 (s, 1H), 7.89 (d, J = 6.4 Hz, 2H), 7.74 (d, J = 7.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.18 – 7.10 (m, 2H), 5.40 (s, 1H), 2.47 (s, 3H), 1.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.0, 150.9, 149.9, 143.1, 135.8, 133.7, 132.9, 130.7 (q, <sup>2</sup>J = 34.5 Hz), 128.9, 127.8, 126.3, 124.7 (q, <sup>3</sup>J = 3.7 Hz), 124.0 (q, <sup>1</sup>J = 272.4 Hz), 124.0, 122.4, 120.9 (q, <sup>3</sup>J = 3.5 Hz),

112.5, 87.4, 49.8, 24.3, 18.7. HRMS (ESI) m/z calcd for  $C_{22}H_{17}F_3NO^+ \ \left[M+H\right]^+$  368.1257, found 368.1263.

#### The data of 3a-3u

#### cis-8b,13a-Dihydrobenzo[f]benzofuro[3,2-h]quinoline (3a)



Yield: 64% (17 mg). White solid.  $R_f = 0.46$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (s, 1H), 8.15 (d, J = 7.4 Hz, 1H), 7.83 (d, J = 6.3 Hz, 1H), 7.55 (d, J = 5.9 Hz, 1H), 7.35 (d, J = 20.3 Hz, 4H), 7.13 (t, J = 7.0 Hz, 1H), 6.91 (d, J = 7.5 Hz, 2H), 6.02 (d, J = 8.8 Hz, 1H), 4.91 (d, J = 8.8 Hz, 1H). <sup>[3]</sup>

#### cis-7-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3b)



Yield: 50% (15 mg). White solid. m.p. 184.5-185.3 °C.  $R_f = 0.46$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 3.1 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.2 Hz, 3H), 7.15 (dd, J = 15.9, 7.8 Hz, 2H), 6.91 (d, J = 5.7 Hz, 2H), 6.00 (d, J = 9.0 Hz, 1H), 4.86 (d, J = 8.9 Hz, 1H), 2.41 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)

δ 158.8, 150.4, 149.2, 139.3, 132.7, 130.3, 130.2, 130.2, 128.9, 128.8, 128.7, 126.9, 125.0, 124.3, 123.7, 121.1, 110.4, 82.5, 44.8, 21.5. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^+$  [M+H]<sup>+</sup> 286.1226, found 286.1222.

#### *cis*-7-Fluoro-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (3c)



Yield: 57% (16.5 mg). White solid. m.p. 182.3-183.5 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (d, J = 3.3 Hz, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.88 – 7.79 (m, 1H), 7.39 (d, J = 7.0 Hz, 2H), 7.28 (s, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 6.95 (dd, J = 16.0, 7.7 Hz, 2H), 6.00 (d, J = 8.7 Hz, 1H), 4.87 (d, J = 8.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.2 (d, <sup>1</sup>J = 249.8 Hz), 158.9, 150.0, 149.5, 135.6 (d, <sup>3</sup>J = 7.3

Hz), 130.5, 129.5, 129.1, 128.0, 125.9 (d,  ${}^{4}J = 3.2$  Hz), 125.7 (d,  ${}^{3}J = 8.6$  Hz), 125.0, 124.5, 121.4, 116.3 (d,  ${}^{2}J = 22.2$  Hz), 115.2 (d,  ${}^{2}J = 21.7$  Hz), 110.5, 82.4, 44.7. HRMS (ESI) m/z calcd for.  $C_{19}H_{13}FNO^{+}$  [M+H]<sup>+</sup> 290.0976, found 290.0972.

#### cis-7-Methoxy-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3d)



Yield: 45% (13.5 mg). Yellow solid. m.p. 151.5-153.2 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (d, *J* = 4.2 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.24 - 7.19 (m, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 2.3 Hz, 1H), 6.87 - 6.77 (m, 3H), 5.91 (d, *J* = 9.0 Hz, 1H), 4.77 (d, *J* = 9.0 Hz, 1H), 3.79 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.4, 158.8, 149.7, 148.6, 134.6,

130.0, 129.9, 128.9, 128.6, 125.2, 124.9 124.3, 122.4, 121.2, 114.9, 113.4, 110.4, 82.6, 55.5, 45.0. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+$  [M+H]<sup>+</sup> 302.1176, found 302.1171.

#### cis-8-Methoxy-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3e)



Yield: 54% (16.2 mg). Yellow solid. m.p. 151.6-153.6 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (d, J = 3.9 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.33 (dd, J = 18.8, 7.5 Hz, 3H), 7.13 (t, J = 7.5 Hz, 1H), 6.92 (dd, J = 20.2, 6.7 Hz, 3H), 5.99 (d, J = 9.0 Hz, 1H), 4.86 (d, J = 8.8 Hz, 1H), 3.87 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.5, 158.8, 151.0, 149.7, 130.8, 130.7, 130.7, 130.5, 128.7,

128.5, 125.1, 124.9, 124.3, 121.2, 114.7, 110.4, 109.4, 82.5, 55.6, 44.2. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO_2^+ \ [M+H]^+$  302.1176, found 302.1174.

#### cis-6,7-Dimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3f)



Yield: 43% (13 mg). White solid. m.p. 176.3-177.2 °C.  $R_f = 0.44$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.61 (dd, J = 4.6, 1.4 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.58 (s, 1H), 7.35 – 7.28 (m, 3H), 7.13 (t, J = 7.7 Hz, 1H), 6.90 (dd, J = 7.4, 5.6 Hz, 2H), 5.98 (d, J = 9.0 Hz, 1H), 4.83 (d, J = 9.0 Hz, 1H), 2.32 (s, 3H), 2.31 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.9, 150.5, 149.0, 138.1, 136.3, 130.7, 130.5, 130.3, 130.2, 128.8, 128.7, 127.1, 125.0, 124.8, 124.2, 121.1, 110.3, 82.7, 44.4, 19.9, 19.8. HRMS (ESI) m/z

calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1382.

cis-3-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3g)



Yield: 40% (12 mg). White solid. m.p. 172.3-172.7 °C.  $R_f = 0.44$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (s, 1H), 7.94 (s, 1H), 7.85 – 7.79 (m, 1H), 7.55 – 7.50 (m, 1H), 7.39 – 7.33 (m, 2H), 7.30 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 7.5 Hz, 2H), 6.00 (d, J = 9.0 Hz, 1H), 4.88 (d, J = 9.0 Hz, 1H), 2.39 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.8, 150.2, 147.9, 133.9, 133.0, 131.0, 130.2, 129.7, 129.6,

129.1, 128.8, 127.9, 127.9, 124.9, 123.6, 121.1, 110.4, 82.3, 44.9, 18.6. HRMS (ESI) m/z calcd for.  $C_{20}H_{16}NO^{+}\left[M+H\right]^{+}286.1226,$  found 286.1225.

#### cis-3,7-Dimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3h)



Yield: 43% (13 mg). White solid. m.p. 189.8-190.8 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.91 (s, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.32 (d, J = 8.7 Hz, 2H), 7.14 (dd, J = 16.9, 8.4 Hz, 2H), 6.96 – 6.83 (m, 2H), 5.98 (d, J = 9.0 Hz, 1H), 4.83 (d, J = 9.0 Hz, 1H), 2.41 (s, 3H), 2.39 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.9, 149.8, 147.6, 139.1, 133.9, 132.7, 130.7, 130.3, 130.1, 128.8, 128.7, 128.1,

127.0, 125.0, 123.6, 121.0, 110.4, 82.5, 44.9, 21.5, 18.6. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1382.

#### cis-3-Methyl-7-(trifluoromethyl)-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3i)



Yield: 40% (14 mg). White solid. m.p. 229.1-230.1 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (s, 1H), 7.98 – 7.91 (m, 2H), 7.78 (s, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 6.95 – 6.89 (m, 2H), 6.02 (d, J = 9.0 Hz, 1H), 4.92 (d, J = 9.0 Hz, 1H), 2.42 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.8, 151.4, 148.3, 134.3, 133.9, 133.4, 131.5, 130.9 (q, <sup>2</sup>J = 32.9 Hz),

129.3, 129.19 (s), 126.69 (s), 126.43 (q,  ${}^{3}J = 3.7$  Hz), 124.8, 124.8 (q,  ${}^{3}J = 3.6$  Hz), 124.1, 124.0 (q,  ${}^{1}J = 272.5$  Hz), 121.5, 110.6, 82.0, 44.8, 18.6. HRMS (ESI) m/z calcd for. C<sub>21</sub>H<sub>15</sub>F<sub>3</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 354.1100, found 354.1097.

#### cis-7-Fluoro-3-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3j)



Yield: 40% (12 mg). White solid. m.p. 190.3-191.3 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (s, 1H), 7.93 (s, 1H), 7.85 (dd, J = 8.5, 5.6 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 4.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 6.95 (dd, J = 16.7, 7.8 Hz, 2H), 5.99 (d, J = 8.8 Hz, 1H), 4.86 (d, J = 8.6 Hz, 1H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.2 (d, <sup>1</sup>J = 248.6 Hz), 159.0, 150.1, 147.2,

135.7 (d,  ${}^{3}J = 7.4$  Hz), 134.2, 130.9, 129.7, 129.1, 127.4, 126.1 (d,  ${}^{4}J = 3.0$  Hz), 125.6 (d,  ${}^{3}J = 8.6$  Hz), 125.0, 121.3, 116.2 (d,  ${}^{2}J = 22.1$  Hz), 115.1 (d,  ${}^{2}J = 21.9$  Hz), 110.5, 82.3, 44.8, 18.7. HRMS (ESI) m/z calcd for. C<sub>20</sub>H<sub>15</sub>FNO<sup>+</sup> [M+H]<sup>+</sup> 304.1132, found 304.1129.

#### cis-3,6,7-Trimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3k)



Yield: 53% (17 mg). Yellow solid. m.p. 188.4-189.3 °C.  $R_f = 0.45$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (s, 1H), 7.86 (s, 1H), 7.51 (s, 1H), 7.26 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.81 (t, J = 7.1 Hz, 2H), 5.89 (d, J = 9.0 Hz, 1H), 4.73 (d, J = 8.9 Hz, 1H), 2.32 (s, 3H), 2.25 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.9, 149.7, 147.7, 137.9, 136.2, 133.8, 130.7, 130.6, 130.4, 128.6, 128.2,

127.2, 125.0, 124.7, 121.0, 110.3, 82.6, 44.5, 19.9, 19.8, 18.6. HRMS (ESI) m/z calcd for.  $C_{22}H_{20}NO^+$  [M+H]<sup>+</sup> 314.1539, found 314.1537.

#### cis-8b-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3l)



Yield: 92% (26 mg). White solid. m.p. 112.1-113.1 °C.  $R_f = 0.49$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (dd, J = 4.6, 1.1 Hz, 1H), 8.26 (d, J = 7.9 Hz, 1H), 7.84 (dd, J = 6.3, 2.8 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.52 (dd, J = 6.3, 2.7 Hz, 1H), 7.47 (dd, J = 8.0, 4.7 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.18 (dd, J = 11.1, 4.3 Hz, 1H), 7.04 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 5.41 (s, 1H), 1.67 (s, 3H).<sup>[3]</sup>

#### *cis*-7,8b-Dimethyl-8b,13a-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (3m)



Yield: 80% (24 mg). White solid. m.p. 163.5-164.9 °C.  $R_f = 0.49$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.65 (d, J = 4.0 Hz, 1H), 8.21 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.43 (dd, J = 7.9, 4.7 Hz, 1H), 7.29 (s, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.12 – 7.01 (m, 2H), 6.86 (d, J = 7.8 Hz, 1H), 5.39 (s, 1H), 2.32 (s, 3H), 1.65 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 149.1, 148.5, 139.6, 138.7, 135.0, 130.7,

129.4, 128.9, 128.5, 128.4, 126.0, 125.1, 124.4, 123.6, 121.4, 110.4, 90.2, 48.1, 25.9, 21.6. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1388.

#### cis-7-Methoxy-8b-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3n)



Yield: 90% (28 mg). White solid. m.p. 138.8-140.5 °C.  $R_f = 0.49$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 – 8.60 (m, 1H), 8.15 (dd, J = 8.1, 1.1 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.60 (s, 1H), 7.42 (dd, J = 8.1, 4.7 Hz, 1H), 7.18 (s, 1H), 7.06 – 7.00 (m, 2H), 6.88 – 6.80 (m, 2H), 5.38 (s, 1H), 3.79 (s, 3H), 1.65 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.6, 159.5, 148.6, 148.0, 140.7, 134.8, 130.4, 129.3, 128.5, 125.1, 124.2, 121.7,

121.4, 114.2, 112.8, 110.4, 90.2, 55.4, 48.4, 25.7. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup> 316.1332, found 316.1341.

#### cis-7-(Tert-butyl)-8b-methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (30)



Yield: 81% (27.6 mg). White solid. m.p. 113.5-114.7 °C.  $R_f = 0.50$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (dd, J = 4.7, 1.3 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.57 (d, J = 1.8 Hz, 1H), 7.43 (dd, J = 8.0, 4.7 Hz, 1H), 7.32 (dd, J = 8.3, 2.0 Hz, 1H), 7.17 (td, J = 7.8, 1.1 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 7.9 Hz, 1H), 5.41 (s, 1H), 1.68 (s, 3H), 1.29 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.5, 152.6, 149.1, 148.7, 138.3, 135.1, 130.8, 129.3, 128.3, 126.0,

125.2, 125.1, 124.7, 124.2, 123.2, 121.3, 110.4, 90.2, 48.3, 34.9, 31.3, 26.2. HRMS (ESI) m/z calcd for.  $C_{24}H_{24}NO^+$  [M+H]<sup>+</sup> 342.1852, found 342.1861.

#### cis-8b-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline-7-carbonitrile (3p)



Yield: 76% (24 mg). White solid. m.p. 197.7-199 °C.  $R_f = 0.50$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (s, 1H), 8.26 (d, *J* = 7.4 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.78 (s, 1H), 7.62 (d, *J* = 6.8 Hz, 1H), 7.55 (dd, *J* = 14.4, 6.3 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 6.8 Hz, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 5.41 (s, 1H), 1.67 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 151.0, 149.4, 140.2, 133.4, 133.2, 132.7, 131.8, 130.9, 129.0,

127.5, 125.4, 124.4, 124.3, 122.1, 118.6, 113.0, 110.6, 89.4, 48.0, 25.3. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}N_2O^+$  [M+H]<sup>+</sup>311.1179, found 311.1175.

#### cis-8b-Methyl-7-(trifluoromethyl)-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3q)



Yield: 90% (32 mg). White solid. m.p. 159.6-161.1 °C.  $R_f = 0.49$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (dd, J = 4.6, 1.0 Hz, 1H), 8.27 (d, J = 7.9 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.75 (s, 1H), 7.64 (d, J = 7.3 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 5.43 (s, 1H), 1.69 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 150.6, 149.3, 139.7, 133.9, 132.2, 131.6, 131.4 (q,

 ${}^{2}J = 32.7$  Hz), 128.8, 127.9, 125.5 (q,  ${}^{4}J = 3.7$  Hz), 125.3, 124.4 (dd,  ${}^{3}J = 7.2$ ,  ${}^{4}J = 3.5$  Hz), 124.3, 124.1, 123.9 (q,  ${}^{1}J = 272.6$  Hz), 121.9, 110.6, 89.6, 48.2, 25.6. HRMS (ESI) m/z calcd for. C<sub>21</sub>H<sub>15</sub>F<sub>3</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 354.1100, found 354.1096.

#### ${\it cis-8-Methoxy-8b-methyl-8b, 13a-dihydrobenzo[f] benzofuro[3,2-h] quinoline~(3r)}$



Yield: 75% (24 mg). White solid. m.p. 189.6-190.3 °C.  $R_f = 0.48$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.0 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.33 (s, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.03 (t, *J* = 7.0 Hz, 1H), 6.86 (dd, *J* = 13.8, 8.4 Hz, 2H), 5.38 (s, 1H), 3.83 (s, 3H), 1.64 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 158.9, 150.2, 149.6, 149.3, 135.1, 131.1, 129.9, 129.7, 129.2, 128.3,

125.1, 124.2, 121.3, 115.3, 110.4, 108.9, 90.2, 55.5, 47.7, 25.8. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^{\phantom{2}+}\,[M+H]^+\,316.1332,$  found 316.1329.

#### cis-3,8b-Dimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3s)



Yield: 85% (25 mg). White solid. m.p. 175.3-177 °C.  $R_f = 0.50$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (s, 1H), 8.05 (s, 1H), 7.84 (d, J = 6.2 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.32 – 7.26 (m, 2H), 7.17 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.3 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 5.39 (s, 1H), 2.46 (s, 3H), 1.65 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 150.1, 146.1, 138.9, 134.9, 134.9, 131.4, 129.4,

 $128.8,\ 128.6,\ 128.4,\ 128.4,\ 127.4,\ 124.4,\ 123.5,\ 121.3,\ 110.4,\ 90.0,\ 48.1,\ 25.7,\ 18.8.\ HRMS\ (ESI)\ m/z\ calcd\ for.\ C_{21}H_{18}NO^+\ [M+H]^+\ 300.1383,\ found\ 300.1378.$ 

#### cis-3,7,8b-Trimethyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3t)



Yield: 74% (23 mg). White solid. m.p. 170.6-172 °C.  $R_f = 0.50$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (s, 1H), 8.01 (s, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.29 (s, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.06 (dd, J = 19.7, 7.7 Hz, 2H), 6.85 (d, J = 7.8 Hz, 1H), 5.37 (s, 1H), 2.45 (s, 3H), 2.32 (s, 3H), 1.64 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 149.7, 145.8, 139.4, 138.8, 135.1, 134.8, 131.1, 128.9,

128.7, 128.4, 128.3, 126.1, 124.4, 123.5, 121.2, 110.4, 90.1, 48.1, 25.9, 21.6, 18.8. HRMS (ESI) m/z calcd for.  $C_{22}H_{20}NO^+$  [M+H]<sup>+</sup> 314.1539, found 314.1536.

cis-3,8b-Dimethyl-7-(trifluoromethyl)-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (3u)



Yield: 80% (29 mg). White solid. m.p. 249.1-251 °C.  $R_f = 0.50$  (Acetone / Petroleum ether = 1/5). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (s, 1H), 8.04 (s, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.74 (s, 1H), 7.63 (d, J = 7.4 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 5.41 (s, 1H), 2.45 (s, 3H), 1.66 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 151.2, 146.5, 139.8, 135.2, 134.0, 132.3, 131.9,

131.1 (q,  ${}^{2}J$  = 33.0 Hz), 128.8, 127.3, 125.4 (dd,  ${}^{3}J$  = 7.3,  ${}^{4}J$ = 3.6 Hz), 124.3, 124.3, 124.0, 124.0 (q,  ${}^{1}J$  = 272.1 Hz), 121.8, 110.5, 89.6, 48.2, 25.6, 18.7. HRMS (ESI) m/z calcd for. C<sub>22</sub>H<sub>17</sub>F<sub>3</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 368.1257, found 368.1253.

#### The data of 4a-4j, 6a-6b

#### 8b-Methyl-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline (4a)



Yield: 79% (45 mg). White solid. m.p. 212.9-213.5 °C.  $R_f = 0.45$  (EtOAc / CH<sub>2</sub>Cl<sub>2</sub> = 1/15). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.23 (d, J = 8.1 Hz, 1H), 8.99 (s, 1H), 8.92 (d, J = 4.9 Hz, 1H), 8.77 (d, J = 2.6 Hz, 1H), 8.21 (d, J = 3.2 Hz, 1H), 7.77 (s, 2H), 7.59 (dd, J = 7.9, 4.0 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 7.1 Hz, 1H), 6.97 – 6.86 (m, 2H), 2.46 (s, 3H).<sup>[3]</sup>

#### 7,8b-Dimethyl-1,8b-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (4b)



Yield: 56% (34 mg). White solid. m.p. 203.6-205 °C.  $R_f = 0.45$  (EtOAc / CH<sub>2</sub>Cl<sub>2</sub> = 1/15). <sup>1</sup>H NMR (400 MHz, DMSO) δ 9.16 (d, J = 8.2 Hz, 1H), 8.96 (s, 1H), 8.84 – 8.76 (m, 1H), 8.73 (d, J = 3.0 Hz, 1H), 8.00 (s, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 8.1, 4.1 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.1 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.89 (t, J = 7.2 Hz, 1H), 2.59 (s, 3H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 154.9, 148.6, 146.9, 137.0, 135.3,

134.2, 131.7, 131.3, 130.5, 128.4, 127.9, 127.0, 126.8, 124.7, 123.9, 123.3, 120.7, 118.5, 115.3, 21.5, 17.1. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1385.

#### 7-Methoxy-8b-methyl-1,8b-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (4c)



Yield: 55% (35 mg). White solid. m.p. 206.3-207.2 °C.  $R_f = 0.45$  (EtOAc /  $CH_2CI_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.12 (d, J = 8.2 Hz, 1H), 8.97 (s, 1H), 8.83 (d, J = 9.1 Hz, 1H), 8.69 (d, J = 4.0 Hz, 1H), 7.55 (dd, J = 6.5, 3.1 Hz, 2H), 7.40 (dd, J = 9.0, 2.3 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 7.1 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 3.97 (s, 3H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  158.7, 154.9, 148.1, 148.0, 134.0 (d, J = 1.7 Hz), 132.8, 131.6, 127.9, 126.9, 125.1, 124.0, 123.7, 123.0, 120.8,

118.5, 116.6, 115.3, 106.2, 55.4, 17.2. HRMS (ESI) m/z calcd for.  $C_{21}H_{17}NO_2$  [M+H]<sup>+</sup> 316.1332, found 316.1334. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup> 316.1332, found 316.1334.

#### $\label{eq:constraint} 7-(Tert-butyl)-8b-methyl-1,8b-dihydrobenzo[f] benzofuro[3,2-h] quinoline~(4d)$



Yield: 49% (33 mg). Yellow solid. m.p. 78-80.2 °C.  $R_f = 0.44$  (EtOAc /  $CH_2Cl_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.18 (d, J = 8.1 Hz, 1H), 8.94 (s, 1H), 8.84 (d, J = 8.8 Hz, 1H), 8.74 (d, J = 3.2 Hz, 1H), 8.11 (d, J = 1.4 Hz, 1H), 7.86 (dd, J = 8.7, 1.5 Hz, 1H), 7.57 (dd, J = 8.3, 4.3 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 6.4 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.90 (t, J = 7.3 Hz,

1H), 2.47 (s, 3H), 1.45 (s, 9H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  154.9, 149.9, 148.7, 135.3, 134.6, 131.7, 130.9, 130.6, 127.9, 127.0, 126.8, 124.9, 123.7, 123.2, 120.7, 120.5, 118.5, 115.3, 34.9, 31.2, 17.1. HRMS (ESI) m/z calcd for. C<sub>24</sub>H<sub>24</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 342.1852, found 342.1854.

#### 8b-Methyl-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline-7-carbonitrile (4e)



Yield: 50% (31 mg). White solid. m.p. 305.2-306.7 °C.  $R_f = 0.45$  (EtOAc /  $CH_2Cl_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.30 (d, J = 8.0 Hz, 1H), 9.09 (d, J = 8.8 Hz, 2H), 8.87 (d, J = 3.9 Hz, 1H), 8.72 (s, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.66 (dd, J = 8.2, 4.2 Hz, 1H), 7.25 (dd, J = 11.2, 4.1 Hz, 1H), 7.04 (d, J = 6.8 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.92 (t, J = 7.3 Hz, 1H), 2.50 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  154.9, 150.7, 148.0, 137.3, 134.4, 131.9, 131.8,

131.5, 130.9, 130.7, 128.3, 128.2, 126.1, 124.8, 123.2, 121.4, 119.2, 118.6, 115.4, 110.0, 17.0. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}N_2O^+$  [M+H]<sup>+</sup>311.1179, found 311.1180.

#### 8b-Methyl-7-(trifluoromethyl)-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline (4f)



Yield: 46% (33 mg). White solid. m.p. 175.3-176.9 °C.  $R_f = 0.46$  (EtOAc /  $CH_2Cl_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.31 (d, J = 8.2 Hz, 1H), 9.15 (d, J = 8.5 Hz, 1H), 9.02 (s, 1H), 8.86 (d, J = 3.5 Hz, 1H), 8.50 (s, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.67 (dd, J = 7.6, 4.0 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.91 (t, J = 7.2 Hz, 1H), 2.52 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  154.8, 150.3, 147.8, 137.09 (s),

134.6, 131.6, 131.5, 131.4, 130.7, 128.2, 126.3, 125.0, 123.2, 123.0 (d, J = 29.8 Hz), 122.2 (dd, J = 5.9, 2.5 Hz), 121.3, 121.2 (q, J = 250.1 Hz), 118.5, 115.3, 17.0. HRMS (ESI) m/z calcd for.  $C_{21}H_{15}F_3NO^+$  [M+H]<sup>+</sup> 354.1100, found 354.1102.

#### 8-Methoxy-8b-methyl-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline (4g)



Yield: 35% (22 mg). White solid. m.p. 112.1-113.1 °C.  $R_f = 0.46$  (EtOAc /  $CH_2Cl_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.25 (d, J = 8.2 Hz, 1H), 8.93 (d, J = 3.0 Hz, 1H), 8.75 (d, J = 3.5 Hz, 1H), 8.31 (d, J = 1.9 Hz, 1H), 8.13 (d, J = 9.0 Hz, 1H), 7.55 (dd, J = 8.2, 4.2 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.3 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.88 (t, J = 7.2 Hz, 1H), 4.03 (s, 3H), 2.42 (s, 3H). <sup>13</sup>C NMR (101 MHz,

DMSO)  $\delta$  158.3, 155.1, 149.1, 147.6, 134.4, 132.9, 131.9, 131.2, 130.7, 127.9, 127.0, 126.8, 125.7, 123.5, 120.3, 118.5, 117.3, 115.3, 104.8, 55.6, 17.1. HRMS (ESI) m/z calcd for.  $C_{21}H_{18}NO_2^+$  [M+H]<sup>+</sup> 316.1332, found 316.1335.

#### 3,8b-Dimethyl-1,8b-dihydrobenzo[*f*]benzofuro[3,2-*h*]quinoline (4h)



Yield: 61% (37 mg). White solid. m.p. 193.6-194.1 °C.  $R_f = 0.47$  (EtOAc /  $CH_2Cl_2 = 1/15$ ). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.05 – 8.85 (m, 3H), 8.62 (s, 1H), 8.18 (s, 1H), 7.75 (s, 2H), 7.22 (s, 1H), 7.03 – 6.84 (m, 3H), 2.54 (s, 3H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  155.0, 150.3, 145.2, 135.3, 133.2, 131.7, 131.4, 130.1, 130.0, 128.8, 127.0, 127.4, 127.0, 126.6, 125.1, 123.6, 123.3, 118.5, 115.3, 18.2, 17.0. HRMS (ESI) m/z calcd for.

 $C_{21}H_{18}NO^+$  [M+H]<sup>+</sup> 300.1383, found 300.1385.

3,7,8b-Trimethyl-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline (4i)



Yield: 35% (22 mg). Yellow solid. m.p. 230.4-231.3 °C.  $R_f = 0.47$  (EtOAc / CH<sub>2</sub>Cl<sub>2</sub> = 1/15). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.97 (s, 1H), 8.93 (s, 1H), 8.78 (d, J = 8.4 Hz, 1H), 8.58 (s, 1H), 7.97 (s, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 7.00 (d, J = 7.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.88 (t, J = 7.2 Hz, 1H), 2.58 (s, 3H), 2.52 (s, 3H), 2.41 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  154.9, 149.9, 144.9, 136.8, 135.2, 132.9, 131.7, 131.5,

129.8, 129.8, 128.1, 127.9, 127.0, 126.6, 124.7, 123.6, 123.3, 118.5, 115.3, 21.5, 18.2, 17.0. HRMS (ESI) m/z calcd for.  $C_{22}H_{20}NO^+$  [M+H]<sup>+</sup> 314.1539, found 314.1543.

#### 3,8b-Dimethyl-7-(trifluoromethyl)-1,8b-dihydrobenzo[f]benzofuro[3,2-h]quinoline (4j)



Yield: 76% (56 mg). Yellow solid. m.p. 237.9-239 °C.  $R_f = 0.47$  (EtOAc / CH<sub>2</sub>Cl<sub>2</sub> = 1/15). <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  9.07 – 8.99 (m, 3H), 8.66 (s, 1H), 8.40 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 7.3 Hz, 1H), 2.50 (s, 3H), 2.45 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  155.9, 151.6, 145.8, 137.0, 133.3, 131.5, 131.4, 130.8, 130.7, 130.7, 128.2, 127.4 (q, <sup>2</sup>J)

= 31.3 Hz), 126.4, 124.9, 124.6 (q,  ${}^{1}J$  = 272.3 Hz), 123.2, 122.1 (dd, J = 21.2, 1.9 Hz), 118.5, 115.3, 18.2, 16.9. HRMS (ESI) m/z calcd for. C<sub>22</sub>H<sub>17</sub>F<sub>3</sub>NO<sup>+</sup> [M+H]<sup>+</sup> 368.1257, found 368.1257.

#### 2-([1,1'-biphenyl]-2-yl)benzofuran (6a)



Yield: 40% (108 mg) Colorless oil.  $R_f = 0.49$  (EtOAc / Petroleum ether = 1/10). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 – 7.99 (m, 1H), 7.50 – 7.38 (m, 7H), 7.37 – 7.34 (m, 3H), 7.26 – 7.21 (m, 1H), 7.15 (ddd, *J* = 8.6, 2.2, 1.1 Hz, 1H), 5.97 (d, *J* = 0.8 Hz, 1H).<sup>[4]</sup>

#### trans-8b,13b-dihydrophenanthro[9,10-b]benzofuran (6b)



Yield: 62.5% (51 mg) White solid. m.p. 106.5-108.3 °C.  $R_f = 0.48$  (EtOAc / Petroleum ether = 1/5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 7.1 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.76 – 7.69 (m, 2H), 7.48 – 7.39 (m, 4H), 7.30 (t, J = 7.8 Hz, 1H), 7.12 – 7.06 (m, 2H), 5.21 (d, J = 16.0 Hz, 1H), 4.42 (d, J = 16.0 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.6, 137.2, 135.7, 135.0, 133.4, 128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 125.4, 125.0, 124.9, 124.1, 122.0, 121.7,

111.3, 86.7, 48.7. HRMS (APCI) m/z calcd for.  $C_{20}H_{15}O^+$  [M+H]<sup>+</sup>271.1117, found 271.1117.

### 6. References

- N. Shestakov, A. S. Pankova and M. A. Kuznetsov, *Chem. Heterocycl. Comp.*, 2017, *53*, 1103-1113.
- [2] F. Alonso, I. P. Beletskaya and M. Yus, Tetrahedron., 2008, 64, 3047-3101.
- [3] J. M. Fan, W. Zhang, W. X. Gao, T. Wang, W. L. Duan, Y. Liang, and Z. T. Zhang, Org. Lett., 2019, 21, 9183-9187.
- [4] J. Gicquiaud, A. Hacıhasanoğlu, P. Hermange, J. M. Sotiropoulos, and P. Y. Toullec, *Adv. Synth. Catal.*, 2019, 361, 2025-2030.

## 7. <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra



<sup>1</sup>H NMR spectrum of **5a** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **5a** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **5b** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **5c** (CDCl<sub>3</sub>, 400 MHz)







**1**a



<sup>1</sup>H NMR spectrum of **1a** (CDCl<sub>3</sub>, 400 MHz)







<sup>1</sup>H NMR spectrum of **1b** (CDCl<sub>3</sub>, 400 MHz)



1c



<sup>1</sup>H NMR spectrum of **1c** (CDCl<sub>3</sub>, 400 MHz)







**1e** 







<sup>13</sup>C NMR spectrum of **1e** (CDCl<sub>3</sub>, 400 MHz)





<sup>1</sup>H NMR spectrum of **1f** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **1g** (CDCl<sub>3</sub>, 400 MHz)



1h



<sup>1</sup>H NMR spectrum of **1h** (CDCl<sub>3</sub>, 400 MHz)


<sup>13</sup>C NMR spectrum of **1h** (CDCl<sub>3</sub>, 400 MHz)

1i



<sup>1</sup>H NMR spectrum of **1i** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1i** (CDCl<sub>3</sub>, 400 MHz)





<sup>1</sup>H NMR spectrum of 1j (CDCl<sub>3</sub>, 400 MHz)



1k



<sup>1</sup>H NMR spectrum of **1k** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1k** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **11** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **1m** (CDCl<sub>3</sub>, 400 MHz)



 $^{13}$ C NMR spectrum of **1m** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1n** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **10** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **10** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1p** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1q** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1r** (CDCl<sub>3</sub>, 600 MHz)





<sup>13</sup>C NMR spectrum of **1s** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1t** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of 1u (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **1u** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2a** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2b** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2c** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2d** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2e** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2f** (CDCl<sub>3</sub>, 400 MHz)



 $^{13}\text{C}$  NMR spectrum of **2g** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2h** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2i** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2j** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2k** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2l** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **2m** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2m** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2n** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **20** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **20** (CDCl<sub>3</sub>, 400 MHz)







<sup>13</sup>C NMR spectrum of **2q** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2r** (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR spectrum of **2s** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2t** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **2u** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **3a** (CDCl<sub>3</sub>, 400 MHz)







**3**c



<sup>1</sup>H NMR spectrum of **3c** (CDCl<sub>3</sub>, 400 MHz)














<sup>13</sup>C NMR spectrum of **3e** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **3f** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3f** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **3g** (CDCl<sub>3</sub>, 400 MHz)









<sup>13</sup>C NMR spectrum of **3h** (CDCl<sub>3</sub>, 400 MHz)









<sup>1</sup>H NMR spectrum of **3j** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3j** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **3k** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3k** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **3l** (CDCl<sub>3</sub>, 400 MHz)







<sup>13</sup>C NMR spectrum of **3m** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3n** (CDCl<sub>3</sub>, 400 MHz)



<sup>1</sup>H NMR spectrum of **30** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **30** (CDCl<sub>3</sub>, 400 MHz)







<sup>13</sup>C NMR spectrum of **3p** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3q** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3r** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3s** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3t** (CDCl<sub>3</sub>, 400 MHz)



<sup>13</sup>C NMR spectrum of **3u** (CDCl<sub>3</sub>, 600 MHz)



<sup>1</sup>H NMR spectrum of **4a** (DMSO-*d*<sub>6</sub>, 400 MHz)







<sup>13</sup>C NMR spectrum of **4b** (DMSO- $d_6$ , 400 MHz)







 $^{13}$ C NMR spectrum of **4c** (DMSO- $d_6$ , 400 MHz)







 $^{13}$ C NMR spectrum of **4d** (DMSO-*d*<sub>6</sub>, 400 MHz)







 $^{13}$ C NMR spectrum of **4e** (DMSO- $d_6$ , 400 MHz)







 $^{13}$ C NMR spectrum of **4f** (DMSO-*d*<sub>6</sub>, 400 MHz)







 $^{13}$ C NMR spectrum of **4g** (DMSO- $d_6$ , 400 MHz)

4h







**4i** 











 $^{13}$ C NMR spectrum of **4j** (DMSO-*d*<sub>6</sub>, 400 MHz)













## 8. Two-dimensional NMR of 21

## trans-8b-Methyl-8b,13a-dihydrobenzo[f]benzofuro[3,2-h]quinoline (2l)



Yield: 93% (79 mg).White solid. m.p. 131.5-132.6 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (dd, J = 4.9, 1.3 Hz, 1H), 8.05 (dd, J = 7.9, 1.3 Hz, 1H), 7.91 (dd, J = 5.8, 3.1 Hz, 1H), 7.80 (dd, J = 6.0, 3.1 Hz, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.38 (ddd, J = 7.8, 5.0, 0.7 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.09 (td, J = 7.5, 0.9 Hz, 1H), 5.45 (s, 1H), 1.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 153.5, 148.6, 142.3, 134.5, 132.0,

131.6, 129.5, 129.2, 128.6, 127.8, 126.1, 124.2, 123.9, 123.1, 122.1, 112.4, 87.9, 49.7, 24.5.



<sup>13</sup>C NMR spectrum of **2l** (CDCl<sub>3</sub>, 400 MHz)







DEPT (135 °) spectrum of 2l (CDCl<sub>3</sub>, 400 MHz)







HMBC spectrum of 2l (CDCl<sub>3</sub>, 400 MHz)









| Data analysis of DEPT  | (135 °). H.H-COSY   | HSOC and HMBC of 2 | are shown in the table. |
|------------------------|---------------------|--------------------|-------------------------|
| Data analysis of DEI 1 | (100 ), 11,11 000 1 |                    | are shown in the table. |

|                           |                 |                 | DEPT            | H,H-COSY             | HSQC                                | HMBC                            |
|---------------------------|-----------------|-----------------|-----------------|----------------------|-------------------------------------|---------------------------------|
| Position $\delta_{\rm H}$ | $\delta_{Hppm}$ | $\delta_{Cppm}$ | (135 %          | cross-signal         | cross-signal                        | cross-signal                    |
|                           |                 |                 | $\delta_{Cppm}$ | with $\delta_{Hppm}$ | with $\delta_{H}(\delta_{C})_{ppm}$ | with $\delta_H(\delta_C)_{ppm}$ |
| 1 8.62                    | 8 67            | 148.6           | 149.6           | 7 38                 | 8 62 (148 6)                        | $8.62 (123.1) J^2$ ,            |
|                           | 148.0           | 146.0           | 7.38            | 8.02 (148.0)         | $(131.6) J^3$ , $(153.5) J^3$       |                                 |
| 2                         | 7 29            | 122.1           | 123.1           |                      | 7.38 (123.1)                        | 7.38 (148.6) $J^2$ ,            |
| 2 7.38                    | 7.30            | 123.1           |                 |                      |                                     | $(131.6) J^2$                   |
| 3                         | ° 05            | 131.6           | 131.6           | 7.38                 | 8.05 (131.6)                        | $8.05 (132.0) J^2$ ,            |
|                           | 8.05            |                 |                 |                      |                                     | $(148.6) J^3, (153.5) J^3$      |
| 4                         |                 | 132.0           |                 |                      |                                     |                                 |
| 5                         |                 | 129.5           |                 |                      |                                     |                                 |
| 6 7.                      |                 |                 | 126.1           | 7.42                 | 7.80 (126.1)                        | 7.80 (129.2) $J^2$ ,            |
|                           | 7.80            | 126.1           |                 |                      |                                     | $(129.5) J^2$ , $(132.0) J^3$ , |
|                           |                 |                 |                 |                      |                                     | $(142.3) J^3$                   |
| 7 7.42                    | 7 42            | 12 129.2        | 129.2           |                      | 7.42 (129.2)                        | 7.42 (126.1) $J^2$ ,            |
|                           | 7.42            |                 |                 |                      |                                     | $(123.9)J^3$                    |
| 8                         | 7 45            | 127.8           | 127.8           |                      | 7 45 (127 8)                        | 7.45 (123.9) $J^2$ ,            |
| 8 7.4                     | 7.45            | 7.45 127.8      | 127.8           |                      | 7.43 (127.8)                        | $(142.3) J^3$                   |
| 9                         | 7.01            | 123.9           | 123.9           | 7.45                 | 7.91 (123.9)                        | 7.91 (49.7) $J^3$ ,             |
|                           | 7.91            |                 |                 |                      |                                     | $(127.8) J^2$ , $(142.3) J^2$   |
| 10                        |                 | 142.3           |                 |                      |                                     |                                 |
| 11                        |                 | 49.7            |                 |                      |                                     |                                 |
| 12                        |                 | 134.5           |                 |                      |                                     |                                 |
| 13                        | 7.75            | 124.2           | 124.2           | 7.09                 | 7.75 (124.2)                        | 7.75 (49.7) $J^3$ ,             |
|                           | 1.15            |                 |                 |                      |                                     | $(128.6) J^3$ , $(160.1) J^3$   |
| 14                        | 7.00            | 122.1           | 122.1           |                      | 7.09 (122.1)                        | 7.09 (112.4) $J^3$ ,            |
|                           | 7.09            |                 |                 |                      |                                     | $(134.5) J^3$                   |
| 15 7.                     | 7.20            | 129 6           | 128.6           | 7.09 ; 7.16          | 7.30 (128.6)                        | 7.30 (124.2) $J^3$ ,            |
|                           | 7.50            | 128.0           |                 |                      |                                     | $(160.1) J^3$                   |
| 16                        | 7 16            | 112.4           | 112.4           |                      | 7.16(112.4)                         | 7.16 (122.1) $J^3$ ,            |
|                           | 7.10            |                 |                 |                      | 7.10 (112.4)                        | $(134.5) J^3$ , $(160.1) J^2$   |
| 17                        |                 | 160.2           |                 |                      |                                     |                                 |
| 18                        |                 | 87.9            | 87.9            |                      | 5.45 (87.9)                         | $5.45 (24.5) J^3$ ,             |
|                           | 5.45            |                 |                 |                      |                                     | $(49.7) J^2$ , $(134.5) J^3$ ,  |
|                           |                 |                 |                 |                      |                                     | $(142.3) J^3$ , $(153.5) J^2$   |
| 19                        |                 | 153.5           |                 |                      |                                     |                                 |
| 20                        |                 | 24.5            | 24.5            |                      | 1.04 (24.5)                         | $1.04 (49.7) J^2$ ,             |
|                           | 1.04            |                 |                 |                      |                                     | $(87.9) J^3, (134.5) J^3,$      |
|                           |                 |                 |                 |                      |                                     | $(142.3) J^3$                   |
## 9. 1D-NOE of 2l and 3l

## Nuclear Overhauser Effect



Nuclear Overhauser Effect of 3l (CDCl<sub>3</sub>, 400 MHz)