Alkyltin Fluorides as Alkylating Reagent in Aminoalkylation of

 Maleimides

$$
\mathrm{Wu}, * \mathrm{a}, \mathrm{~b}
$$

${ }^{\text {a }}$ School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
 ${ }^{\text {b }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China *E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data.........S2-S21
(2) References for known compounds.......................... S22
(3) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products..........S23-S58
(4) HRMS spectra of products....................................59-76

General Information

Maleimides ${ }^{1}$ and trimethyltin fluoride ${ }^{2}$ were prepared according to the reported procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of known compounds were in accordance with those described in the literatures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz), ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{19} \mathrm{~F}$ NMR (470 MHz) spectra were recorded in CDCl_{3} and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300-400 m)

General Experimental Procedures

General Procedure of Aminoalkylation of Maleimides with Alkylamines and
$\mathbf{R}_{3} \mathbf{S n F}$:

3-6
A 25 mL Schlenk tube equipped with a stir bar was charged with maleimide (0.2 mmol), secondary amines (0.6 mmol), organotin fluoride compounds (0.6 mmol), $\mathrm{CuBr}(10 \mathrm{~mol} \%), \mathrm{FeCl}_{2}$ $(80 \mathrm{~mol} \%), \mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Mechanistic Studies

A 25 mL Schlenk tube equipped with a stir bar was charged with N-phenyl maleimide (0.2 mmol), morpholine (0.6 mmol), $\mathrm{CuBr}(10 \mathrm{~mol} \%), \mathrm{FeCl}_{2}(80 \mathrm{~mol} \%), \mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$. After stirring for 24 h , the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), aminated maleimide 7 a was isolated in 81% yield.

7b, 7c were not detected by HRMS

A 25 mL Schlenk tube equipped with a stir bar was charged with N-phenyl maleimide (0.2 mmol), fluorotributyltin (0.6 mmol), $\mathrm{CuBr}\left(10 \mathrm{~mol} \%\right.$), FeCl_{2} ($80 \mathrm{~mol} \%$), $\mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$. After stirring for 24 h , the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), oxidative alkylated $\mathbf{7 b}$ or hydroalkylated maleimide 7c were not detected by HRMS.

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1H-pyrrole-2,5-dione (0.2 mmol), fluorotributyltin (0.6 mmol), $\mathrm{CuBr}\left(10 \mathrm{~mol} \%\right.$), FeCl_{2} ($80 \mathrm{~mol} \%$), $\mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$. After stirring for 24 h , the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate $(10 \mathrm{~mL})$, the butylated product $\mathbf{3}$ a was isolated in 66%.

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1H-pyrrole-2,5-dione (0.2 mmol), TEMPO (0.2 mmol), fluorotributyltin (0.6 mmol), $\mathrm{CuBr}(10 \mathrm{~mol}$ $\%), \mathrm{FeCl}_{2}(80 \mathrm{~mol} \%), \mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$. After stirring for 24 h , the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no reaction was observed.

A 25 mL Schlenk tube equipped with a stir bar was charged with TEMPO (0.2 mmol), fluorotributyltin (0.6 mmol), $\mathrm{CuBr}(10 \mathrm{~mol} \%), \mathrm{FeCl}_{2}(80 \mathrm{~mol} \%), \mathrm{SiMe}_{4}(0.6 \mathrm{mmol})$ and 2.0 mL PhH . The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The
reaction mixture was stirred at $130^{\circ} \mathrm{C}$. After stirring for 24 h , the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), the radical trapped product 7d was detected by HRMS.

Characterization of Products in Details:

3-butyl-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

3a

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($46.5 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $7.32(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{tt}, J=7.9,5.9 \mathrm{~Hz}$, 2H), 1.43 (dt, $J=14.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $171.21,167.37,143.54,132.02,128.90,127.28,126.09,108.97,67.03,48.93,32.76,23.27,22.77$, 13.94. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 315.1709$, found 315.1712 .

3-butyl-1-phenyl-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

3b

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($44.3 \mathrm{mg}, 71 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H})$, $1.54(\mathrm{tt}, J=7.7,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 171.56,167.47,144.40,132.32,128.79,127.00,126.09,106.55,50.10,32.63,26.49$, 24.24, 23.45, 22.78, 13.95. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$313.1916, found 313.1915.

3c

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($45.6 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36$ (m, 2H), 7.34-7.30 (m, 1H), 4.34-4.30(m, 2H), 3.09 (td, $J=12.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49$ (dd, $J=8.6$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{td}, J=11.3,9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{qd}, J=7.8,7.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.55,167.48$, $144.31,132.32,128.79,127.01,126.10,106.65,49.40,34.69,32.63,30.77,23.45,22.78,21.88$, 13.95. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 327.2073$, found 327.2080.
methyl 1-(4-butyl-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidine-3-carboxylate

3d

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($48.8 \mathrm{mg}, 66 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32$ (m, 3H), $4.22(\mathrm{dd}, J=13.4,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{ddd}, J=13.6,10.9,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ $(\mathrm{tt}, J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dtd}, J=14.3,10.8,3.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.53(\mathrm{tt}, J=7.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.63,171.36,167.37,143.90,132.16,128.83,127.13,126.09,107.92,51.96$, 48.29, 40.48, 32.51, 28.49, 27.90, 26.89, 23.42, 22.78, 13.92. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 371.1971$, found 371.1980 .

3-(azepan-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

$3 e$
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($32.6 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 4 \mathrm{H})$, 1.70-1.63 (m, 4H), 1.53-1.49 (m, 2H), 1.45-1.38(m, 2H), $0.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.72,167.03,143.35,132.39,128.77,126.95,126.15,102.51,52.07,33.77$, 29.01, 26.84, 23.59, 22.67, 13.99. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$327.2073, found 327.2083 .

3-butyl-4-(3,4-dihydroisoquinolin-2(1H)-yl)-1-phenyl-1H-pyrrole-2,5-dione

$3 f$
Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow liquid ($47.5 \mathrm{mg}, 66 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $4.07(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{tt}, J=7.6,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.48(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.46,167.35$, $143.66,134.24,133.26,132.19,128.96,128.87,127.16,127.01,126.56,126.20,126.13,106.79$, 50.76, 46.71, 33.10, 29.27, 23.52, 22.81, 13.99. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 361.1916, found 361.1921.

3-butyl-1-phenyl-4-(4-(pyrimidin-2-yl)piperazin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether $: \operatorname{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($63.4 \mathrm{mg}, 81 \%$ yield) $\mathrm{Mp}=92-93^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.85-$ $3.83(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{ddd}, J=9.9,6.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.27,167.44,161.55,157.89,143.76,132.07$, $128.89,127.25,126.10,110.59,108.77,48.49,43.97,32.74,23.39,22.80,13.93$. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$392.2087, found 392.2083.

3-butyl-1-phenyl-4-(pyrrolidin-1-yl)-1H-pyrrole-2,5-dione

3h

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($32.2 \mathrm{mg}, 54 \%$ yield), $\mathrm{Mp}=44-45^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.97(\mathrm{~m}$, 4H), 1.57-1.49 (m, 2H), 1.45-1.38 (m, 2H), $0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.02,166.94,142.16,132.49,128.77,126.87,126.07,101.37,50.44,34.84,25.40,22.89$, 22.69, 14.04. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.1760, found 299.1761.

3-butyl-4-(dibutylamino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($49.2 \mathrm{mg}, 69 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.34$ $(\mathrm{m}, 8 \mathrm{H}), 1.02-0.98(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.58,167.23,142.95,132.39$, 128.80, 126.97, 126.19, 103.21, 51.76, 33.52, 31.24, 23.46, 22.73, 19.94, 14.01, 13.97. HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 357.2542$, found 357.2550 .

3-butyl-4-(methyl(phenethyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($43.5 \mathrm{mg}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26$ $(\mathrm{m}, 8 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=8.6,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.53-$ $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.43$, $167.08,143.61,138.36,132.18,128.96,128.77,128.60,127.03,126.61,126.14,104.67,55.27$, 40.41, $35.05,33.71,23.24,22.63,13.92$. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 363.2073 , found 363.2083 .

3-butyl-4-((2-hydroxyethyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a
yellow liquid ($39.3 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}$, 2H), 1.46-1.41 (m, 2H), $0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.33,168.12$, 144.54, 132.04, 128.89, 127.29, 126.16, 106.13, $60.84,55.18,40.12,33.82,23.23,22.70,13.97$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$303.1709, found 303.1721.

3-(4-benzoylpiperazin-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($58.4 \mathrm{mg}, 70 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.34$ $(\mathrm{m}, 3 \mathrm{H}), 3.94-3.75(\mathrm{~m}, 8 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{qd}, J=7.7,7.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.04,170.67,167.33,143.42$, $135.13,131.91,130.23,128.94,128.75,127.37,127.24,126.05,110.21,48.81,48.69,32.60$, 23.35, 22.81, 13.93. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 418.2131$, found 418.2143.

1-benzyl-3-butyl-4-morpholino-1H-pyrrole-2,5-dione

4a

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid (47.9 mg, 73\% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.63(\mathrm{~s}$, 2H), 3.80 (t, J = 4.7 Hz, 4H), 3.69 (t, J = 4.7 Hz, 4H), 2.43-2.39 (m, 2H), 1.48-1.35 (m, 4H), 0.97$0.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 172.20, 168.31, 143.67, 137.00, 128.63, 128.50, 127.61, 108.50, 66.96, 48.71, 41.34, 32.89, 23.17, 22.75, 13.92. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 329.1865$, found 329.1870.

3-butyl-1-(4-methylbenzyl)-4-morpholino-1H-pyrrole-2,5-dione

4b
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($51.3 \mathrm{mg}, 75 \%$ yield), $\mathrm{Mp}=50-51^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $172.24,168.32,143.67,137.32,134.05,129.29,128.54,108.51,66.96,48.70,41.07,32.88,23.16$, 22.75, 21.19, 13.92. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$343.2022, found 343.2022.

3-butyl-1-(4-fluorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

4c
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($42.2 \mathrm{mg}, 61 \%$ yield), $\mathrm{Mp}=65-66^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 2 \mathrm{H})$, 1.47-1.35 (m, 4H), $0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.12,168.25$, $162.29(\mathrm{~d}, J=245.6 \mathrm{~Hz}) .143 .69,132.82,130.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.46(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 108.45$, 66.94, 48.71, 40.61, $32.88,23.16,22.74,13.90 .{ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.77$; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$347.1771, found 347.1759.

3-butyl-1-(4-chlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($45.6 \mathrm{mg}, 63 \%$ yield), $\mathrm{Mp}=75-76^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30$ (brs, 4 H), $4.58(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.97-$ $0.93(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 172.05,168.21,143.69,135.43,133.53,129.98$, 128.79, 108.42, 66.94, 48.70, 40.67, 32.87, 23.17, 22.74, 13.91. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 363.1475$, found 363.1470 .

1-(4-bromobenzyl)-3-butyl-4-morpholino-1H-pyrrole-2,5-dione

4e
Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow solid ($53.6 \mathrm{mg}, 66 \%$ yield), $\mathrm{Mp}=82-83^{\circ} \mathrm{C} . \mathbf{~}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.03$, $168.19,143.69,135.94,131.75,130.32,129.98,128.78,121.67,108.40,66.93,48.70,40.72$, 32.86, 23.16, 22.74, 13.91. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 407.0970$, found 407.0971 .

3-butyl-4-morpholino-1-(4-(trifluoromethyl)benzyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($55.4 \mathrm{mg}, 70 \%$ yield), $\mathrm{Mp}=79-80^{\circ} \mathrm{C} . \mathbf{~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.69(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.094(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.98,168.18$, $143.70,140.81,129.90(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 128.72,125.64(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.05(\mathrm{~d}, J=271.0 \mathrm{~Hz})$, $108.38,66.93,48.71,40.86,32.86,23.18,22.73,13.89 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.56$ (3F); HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 397.1739$, found 397.1745.

3-butyl-4-morpholino-1-(naphthalen-1-ylmethyl)-1H-pyrrole-2,5-dione

$4 g$

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($53.7 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{tt}, J=14.2,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 4 \mathrm{H})$, $0.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.34,168.54,143.67,133.81,132.16$, $131.34,128.73,128.49,127.45,126.45,125.80,125.39,123.69,108.56,66.95,48.71,39.35$, 32.90, 23.21, 22.75, 13.93. HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 379.2022$, found 379.2036.

3-butyl-4-morpholino-1-(thiophen-2-ylmethyl)-1H-pyrrole-2,5-dione

4h

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($33.4 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.68$ $(\mathrm{m}, 2 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 171.70,167.90,143.72,138.90,127.27,126.86,125.60,108.51,66.95,48.70,35.48,32.84$, 23.14, 22.72, 13.90. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 335.1429$, found 335.1439.

3-butyl-1-(3,4-dichlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

$4 i$
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($40.4 \mathrm{mg}, 51 \%$ yield), $\mathrm{Mp}=99-100^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=$ 2.1 Hz, 1H), $7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.80(\mathrm{~m}$, 4H), 3.71-3.69 (m, 4H), 2.43-2.39 (m, 2H), 1.48-1.36(m, 4H), $0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.87,168.10,143.71,137.06,132.63,131.84,130.61,130.48,127.97$, $108.35,66.93,48.71,40.25,32.84,23.18,22.73,13.90$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$397.1086, found 397.1095.

3-butyl-1-(4-chlorophenyl)-4-morpholino-1H-pyrrole-2,5-dione

4j
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($46.6 \mathrm{mg}, 67 \%$ yield), $\mathrm{Mp}=80-81^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.54-$ $1.39(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.85,167.04,143.59$, 132.77, 130.57, 129.04, 127.09, 108.88, 66.99, 48.92, 32.71, 23.26, 22.76, 13.92. HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$349.1319, found 349.1333.

3-butyl-1-(4-methoxybenzyl)-4-morpholino-1H-pyrrole-2,5-dione

4k
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($50.1 \mathrm{mg}, 70 \%$ yield) $\mathrm{Mp}=62-63^{\circ} \mathrm{C} . \mathbf{~}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 7 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 172.26,168.33$, $159.08,143.68,130.00,129.28,113.95,108.50,66.96,55.30,48.70,40.77,32.89,23.15,22.75$, 13.91. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 359.1971$, found 359.1982.

3-butyl-1-methyl-4-morpholino-1H-pyrrole-2,5-dione

41

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($37.3 \mathrm{mg}, 74 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.82-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.68$ $(\mathrm{m}, 4 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.69,168.78,143.77,108.73,66.98,48.75,32.92,23.64,23.08,22.70$, 13.92. HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 253.1552$, found 253.1556 .

3-methyl-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

5a

Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow solid ($35.9 \mathrm{mg}, 66 \%$ yield), $\mathrm{Mp}=96-97^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.44(\mathrm{~m}$, 2H), 7.36-7.33 (m, 3H), 3.86-3.81 (m, 8H), $2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.35$, 167.19, 143.95, 132.01, 128.94, 127.35, 126.16, 103.22, 67.14, 48.85, 9.28. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$273.1239, found 273.1248.

3-methyl-1-phenyl-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

5b

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($34.6 \mathrm{mg}, 64 \%$ yield), $\mathrm{Mp}=71-72^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.47-7.43(\mathrm{~m}$, 2H), 7.38-7.31 (m, 3H), 3.77-3.74 (m, 4H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.72(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 167.30,144.86,132.32,128.84,127.07,126.16,100.92,49.98,26.72,24.29,9.37$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.1447, found 271.1453.

5c

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($34.7 \mathrm{mg}, 61 \%$ yield), $\mathrm{Mp}=65-66^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47-7.43(\mathrm{~m}$, 2H), 7.38-7.31 (m, 3H), $4.41(\mathrm{dt}, J=13.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{td}, J=13.1,12.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10$ (s, 3H), $1.78(\mathrm{dd}, J=13.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{ddq}, J=11.0,6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1,40-1,32(\mathrm{~m}, 2 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.68,167.31,144.79,132.31,128.85$, 127.09, 126.17, 101.04, 49.28, 34.90, 30.83, 21.89, 9.37. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+} 285.1603$, found 285.1600 .

3-methyl-4-(octahydroisoquinolin-2(1H)-yl)-1-phenyl-1H-pyrrole-2,5-dione

5d

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($45.4 \mathrm{mg}, 70 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31$ (m, 3H), 3.43 (ddq, $J=18.1,12.3,5.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{td}, J=10.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, 1.94-1.90(m, 1H), 1.82-1.71 (m, 6H), 1.52-1.9 (m, 6H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.30$, $168.02,146.55,132.14,128.91,127.20,126.07,104.46,63.30,48.96,40.81,32.97,32.31,29.45$, 26.11, 25.26, 25.05, 9.11. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 325.1916$, found 325.1908 .

3-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methyl-1-phenyl-1H-pyrrole-2,5-dione

5e
Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow liquid ($37.5 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34$ $(\mathrm{m}, 3 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.60,167.19,144.24,134.12,133.36$, $132.20,129.01,128.91,127.23,127.00,126.58,126.20,101.17,50.68,46.54,29.43,9.33$. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$319.1447, found 319.1442.

3-methyl-1-phenyl-4-(pyrrolidin-1-yl)-1H-pyrrole-2,5-dione

$5 f$
Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow solid ($25.6 \mathrm{mg}, 50 \%$ yield $), \mathrm{Mp}=96-97^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47-7.43(\mathrm{~m}$, 2H), 7.39-7.36 (m, 2H), 7.34-7.32 (m, 1H), 3.93-3.90 (m, 4H), $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.23,166.78,149.03,132.48,128.82,126.96,126.13,95.79$, 50.42, 25.38, 8.39. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$257.1290, found 257.1289.

3-methyl-4-(methyl(phenethyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

5g

Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a
yellow solid ($37.1 \mathrm{mg}, 58 \%$ yield), $\mathrm{Mp}=68-69^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.64,167.01,144.46,138.41,132.26$, 129.01, 128.90, 128.69, 127.18, 126.75, 126.27, 99.33, 55.19, 40.40, 35.21, 9.17. HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$321.1603, found 321.1602.

3-((2-hydroxyethyl)(methyl)amino)-4-methyl-1-phenyl-1H-pyrrole-2,5-dione

5h

Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow solid ($31.7 \mathrm{mg}, 61 \%$ yield), $\mathrm{Mp}=84-85^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.44(\mathrm{~m}$, 2H), 7.36-7.32 (m, 3H), 3.91-3.87(m, 4H), 3.36(s, 3H), $2.26(\mathrm{brs}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.50,167.90,145.08,132.05,128.92,127.34,126.22,100.38,60.84$, 54.98, 40.19, 9.19. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$261.1239, found 261.1243.

3-butyl-4-((3-hydroxy-3-(thiophen-2-yl)propyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

6a
Following the general procedure, using (petroleum ether : EtOAc $=9: 1$) as the eluant afforded a yellow liquid ($54.1 \mathrm{mg}, 68 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=14.2,8.1$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{ddd}, J=13.9,8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{td}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.26-2.19 (m, 2H), 1.54-1.47 (m, 2H), 1.46-1.38 (m, 2H), $0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.45,167.51,148.04,144.09,132.12,128.86,127.20,126.81,126.19,124.80$, 123.75, 105.62, 67.65, 50.43, 39.77, 37.62, 33.86, 23.26, 22.70, 14.01. HRMS (ESI): calcd for

$$
\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} \text {399.1742, found 399.1748. }
$$

(R)-3-butyl-4-(2-(hydroxymethyl)pyrrolidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

6b
Following the general procedure, using (petroleum ether : $\mathrm{EtOAc}=9: 1$) as the eluant afforded a yellow liquid ($47.2 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 4.88-4.83(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.67,167.59,142.15,132.23,128.84,127.14,126.18,103.26,65.25,61.11,50.62$, 34.51, 27.77, 23.18, 23.05, 22.69, 14.02. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 329.1865 , found 329.1870 .

3-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

6c
Following the general procedure, using (petroleum ether $: \operatorname{EtOAc}=9: 1$) as the eluant afforded a yellow solid ($61.6 \mathrm{mg}, 69 \%$ yield), $\mathrm{Mp}=59-60^{\circ} \mathrm{C} . \mathbf{~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{q}, J=7.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.33(\mathrm{~m}$, $3 H), 4.01-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.71(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.27,167.44,163.38,152.99$, $143.66,132.07,128.91,127.86,127.27,126.13,124.24,123.70,120.78,108.96,50.35,48.41$, 32.67, 23.43, 22.83, 13.97. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$447.1855, found 447.1850 .

References:

(1) (a) Ding, G.; Li, C.; Shen, Y.; Lu, B.; Zhang, Z.; Xie, X. Adv. Synth. Catal. 2016, 358, 12411250. (b) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M. J. Med Chem. 2009, 52, 7410-7420
(2) K. Takahashi, Y. Ogiwara, N. Sakai, Chem. Asian J. 2018, 13, 809.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products

mg176．1．1．1r
 nलmツm

3a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

mg176．2．1．1r

3b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata／ 1

¢才	\％	लֵ¢\％\％
ミべ	F	MNN¢
		\bigcirc

$\stackrel{\circ}{0}$
$\stackrel{8}{8}$
1

3b
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

[^0]
pdata/1

3c
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
pdata/1

pdata／ 1

pdata／1

¢¢	
「¢	
T	

$3 f$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]
pdata/1

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1 & (\mathrm{ppm})\end{array} 90$

[^3]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/ 1

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]data/1

3j
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]
pdata/1

あ

3k
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^6]

[^7]

4a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/ 1

4a
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^8]

4b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata／1

$\stackrel{\bar{\circ}}{\stackrel{\circ}{0}}$

${ }^{4 b}$
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

[^9]

4c
H NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

pdata／1

${ }^{13} \mathrm{C}$ NMR $\left(\begin{array}{c}4 \mathrm{c} \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\end{array}\right.$

[^10]pdata/ 1

4c
${ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

w8950. 1. 1. 1r

${ }^{3} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
wg956. 1. 1. 1 r
```


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/ 1

${ }^{3} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/ 1
-62.56

[^11]

4 g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

あす	
N®	
	-

4 g
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^12]

4h
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

4h
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^13]
$4 i$

pdata/ 1

$4 i$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^14]

pdata／ 1

4j
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

41
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
pdata/1

41
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata／1

N
N
$\stackrel{1}{1}$
$\stackrel{\text { ®．}}{\substack{\infty \\ \text { ¢ }}}$
-9.28

5a
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1 & (\mathrm{ppm})\end{array}$

pdata／ 1

$\stackrel{\text { ® }}{\stackrel{\circ}{8}}$

5b
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^15]

$\stackrel{5 \mathrm{c}}{{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}$

pdata/1

		M్ల్సNo్ㄲ	$\begin{aligned} & \text { t } \\ & \stackrel{\rightharpoonup}{\vdots} \\ & \vdots \end{aligned}$	$\stackrel{\sim}{\text { ¢ }}$		$\stackrel{\text { ® }}{\text { - }}$

5c
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

5d
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^16]

5e
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata／1

운	
「べ	
｜	－1

毋i̛


```
\({ }^{5 f}\)
H NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）
```


pdata／1

pdata/1

ल
$\stackrel{y}{\circ}$

5g
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^17]Бのゅかん
「ल゙ゥ

5h
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata／1

5h
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

¢	
$\stackrel{\text { 튼 }}{ }$	
1 \|	।

[^18]

6b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/ 1

6b
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

pdata/1

6c
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^19]
HRMS of Products

176981

986987

986987

996995

996995

1002967

1002967

1007999

1007999

10001126

10001126

937959

964956 иg20221202-974 (1.466) AMR (Ar,2000.0,0.00,0.00); Om (740x1.500)

1: TOFMSES+

963958

940962

11211125

11211125

10291068

10701074

10701074

10751076

10751076

10721071

10721071
(

10081017

[^0]:

[^1]:

[^2]:

[^3]:

[^4]: $\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1 & (\mathrm{ppm})\end{array}$

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]:

[^12]: $\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} 1(\mathrm{ppm})\end{array}$

[^13]:

[^14]:

[^15]:

[^16]:

[^17]:

[^18]:

[^19]:

