Alkyltin Fluorides as Alkylating Reagent in Aminoalkylation of Maleimides

Jingjing Wang,^{a†} Lin Zhao,^{a†} Yafei Zhang,^a Peisen Zheng,^a Peng Zou,^{*a} and Ge Wu,^{*a,b}

^aSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S21
(2) References for known compounds	S22
(3) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	
(4) HRMS spectra of products	59-76

General Information

Maleimides¹ and trimethyltin fluoride² were prepared according to the reported procedures. ¹H and ¹³C spectra of known compounds were in accordance with those described in the literatures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

General Experimental Procedures

General Procedure of Aminoalkylation of Maleimides with Alkylamines and R₃SnF:

A 25 mL Schlenk tube equipped with a stir bar was charged with maleimide (0.2 mmol), secondary amines (0.6 mmol), organotin fluoride compounds (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 130 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Mechanistic Studies

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-phenyl maleimide (0.2 mmol), morpholine (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 130 °C. After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), aminated maleimide **7a** was isolated in 81% yield.

A 25 mL Schlenk tube equipped with a stir bar was charged with *N*-phenyl maleimide (0.2 mmol), fluorotributyltin (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 130 °C. After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), oxidative alkylated **7b** or hydroalkylated maleimide **7c** were not detected by HRMS.

$$\begin{array}{c} & O \\ & N \\ & N \\ & N \\ & O \\ & & O \\$$

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), fluorotributyltin (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 130 °C. After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), the butylated product **3a** was isolated in 66%.

$$\begin{array}{c} & CuCl (10 \text{ mol }\%) \\ FeCl_2 (80 \text{ mol }\%) \\ \hline N-Ph + n-Bu_3SnF \\ \hline SiMe_4 (3.0 \text{ equiv.}) \\ \hline TEMPO (1.0 \text{ equiv}) \\ \hline PhH, O_2, 130 \ ^\circ\text{C}, 24 \text{ h} \end{array}$$

A 25 mL Schlenk tube equipped with a stir bar was charged with 3-morpholino-1-phenyl-1Hpyrrole-2,5-dione (0.2 mmol), TEMPO (0.2 mmol), fluorotributyltin (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 130 °C. After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no reaction was observed.

$$n-Bu_{3}SnF + TEMPO \xrightarrow{FeCl_{2} (80 \text{ mol } \%)}{SiMe_{4} (3.0 \text{ equiv.})} (eq. 5)$$

$$PhH, O_{2}, 130 \text{ °C}, 24 \text{ h}$$

7d, detected by HRMS

A 25 mL Schlenk tube equipped with a stir bar was charged with TEMPO (0.2 mmol), fluorotributyltin (0.6 mmol), CuBr (10 mol %), FeCl₂ (80 mol %), SiMe₄ (0.6 mmol) and 2.0 mL PhH. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The

reaction mixture was stirred at 130 °C. After stirring for 24 h, the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), the radical trapped product **7d** was detected by HRMS.

Characterization of Products in Details:

3-butyl-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (46.5 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, *J* = 7.8 Hz, 2H), 7.38-7.32 (m, 3H), 3.87-3.84 (m, 4H), 3.78-3.75 (m, 4H), 2.52-2.48 (m, 2H), 1.54 (tt, *J* = 7.9, 5.9 Hz, 2H), 1.43 (dt, *J* = 14.7, 7.4 Hz, 2H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.21, 167.37, 143.54, 132.02, 128.90, 127.28, 126.09, 108.97, 67.03, 48.93, 32.76, 23.27, 22.77, 13.94. HRMS (ESI): calcd for C₁₈H₂₃N₂O₃ [M + H]⁺ 315.1709, found 315.1712.

3-butyl-1-phenyl-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (44.3 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.39-7.37 (m, 2H), 7.34-7.30 (m, 1H), 3.70 (d, *J* = 4.8 Hz, 2H), 2.51-2.47 (m, 2H), 1.73 (d, *J* = 3.4 Hz, 6H), 1.54 (tt, *J* = 7.7, 5.9 Hz, 2H), 1.46-1.41 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.56, 167.47, 144.40, 132.32, 128.79, 127.00, 126.09, 106.55, 50.10, 32.63, 26.49, 24.24, 23.45, 22.78, 13.95. HRMS (ESI): calcd for C₁₉H₂₅N₂O₂ [M + H]⁺ 313.1916, found 313.1915.

3-butyl-4-(4-methylpiperidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (45.6 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.39-7.36 (m, 2H), 7.34-7.30 (m, 1H), 4.34-4.30(m, 2H), 3.09 (td, *J* = 12.6, 2.5 Hz, 2H), 2.49 (dd, *J* = 8.6, 6.9 Hz, 2H), 1.80-1.75 (m, 2H), 1.67 (td, *J* = 11.3, 9.6, 5.7 Hz, 1H), 1.53 (qd, *J* = 7.8, 7.3, 4.0 Hz, 1H), 1.46-1.31 (m, 4H), 1.03-0.96 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.55, 167.48, 144.31, 132.32, 128.79, 127.01, 126.10, 106.65, 49.40, 34.69, 32.63, 30.77, 23.45, 22.78, 21.88, 13.95. HRMS (ESI): calcd for C₂₀H₂₇N₂O₂ [M + H]⁺ 327.2073, found 327.2080.

methyl 1-(4-butyl-2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)piperidine-3-carboxylate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (48.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 2H), 7.37-7.32 (m, 3H), 4.22 (dd, *J* = 13.4, 4.1 Hz, 2H), 3.74 (s, 3H), 3.26 (ddd, *J* = 13.6, 10.9, 2.9 Hz, 2H), 2.62 (tt, *J* = 10.5, 4.1 Hz, 1H), 2.50-2.46 (m, 2H), 2.07-2.02 (m, 2H), 1.90 (dtd, *J* = 14.3, 10.8, 3.9 Hz, 2H), 1.53 (tt, *J* = 7.8, 5.9 Hz, 2H), 1.45-1.40 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.63, 171.36, 167.37, 143.90, 132.16, 128.83, 127.13, 126.09, 107.92, 51.96, 48.29, 40.48, 32.51, 28.49, 27.90, 26.89, 23.42, 22.78, 13.92. HRMS (ESI): calcd for C₂₁H₂₇N₂O₄ [M + H]⁺ 371.1971, found 371.1980.

3-(azepan-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

3e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (32.6 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (t, *J* = 7.7 Hz, 2H), 7.39-7.37 (m, 2H), 7.34-7.31 (m, 1H), 3.80 (t, *J* = 6.0 Hz, 4H), 2.52-2.48 (m, 2H), 1.87-1.84 (m, 4H), 1.70-1.63 (m, 4H), 1.53-1.49 (m, 2H), 1.45-1.38 (m, 2H), 0.97 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.72, 167.03, 143.35, 132.39, 128.77, 126.95, 126.15, 102.51, 52.07, 33.77, 29.01, 26.84, 23.59, 22.67, 13.99. HRMS (ESI): calcd for C₂₀H₂₇N₂O₂ [M + H]⁺ 327.2073, found 327.2083.

3-butyl-4-(3,4-dihydroisoquinolin-2(1H)-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.5 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.41-7.38 (m, 2H), 7.36-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.23-7.20 (m, 1H), 7.16-7.14 (m, 1H), 4.94 (s, 2H), 4.07 (t, *J* = 5.9 Hz, 2H), 3.06 (t, *J* = 5.9 Hz, 2H), 2.60-2.56 (m, 2H), 1.59 (tt, *J* = 7.6, 5.9 Hz, 2H), 1.48 (p, *J* = 7.2 Hz, 2H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.46, 167.35, 143.66, 134.24, 133.26, 132.19, 128.96, 128.87, 127.16, 127.01, 126.56, 126.20, 126.13, 106.79, 50.76, 46.71, 33.10, 29.27, 23.52, 22.81, 13.99. HRMS (ESI): calcd for C₂₃H₂₅N₂O₂ [M + H]⁺ 361.1916, found 361.1921.

3-butyl-1-phenyl-4-(4-(pyrimidin-2-yl)piperazin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (63.4 mg, 81% yield), Mp = 92-93 °C. **¹H NMR** (400 MHz, CDCl₃): δ 8.38 (d, *J* = 4.8 Hz, 2H), 7.48-7.44 (m, 2H), 7.39-7.32 (m, 3H), 6.59 (t, *J* = 4.8 Hz, 1H), 4.02-4.00 (m, 4H), 3.85-3.83 (m, 4H), 2.55-2.51 (m, 2H), 1.56 (ddd, *J* = 9.9, 6.4, 2.7 Hz, 2H), 1.47-1.41 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.27, 167.44, 161.55, 157.89, 143.76, 132.07, 128.89, 127.25, 126.10, 110.59, 108.77, 48.49, 43.97, 32.74, 23.39, 22.80, 13.93. HRMS (ESI): calcd for C₂₂H₂₆N₅O₂ [M + H]⁺ 392.2087, found 392.2083.

3-butyl-1-phenyl-4-(pyrrolidin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (32.2 mg, 54% yield), Mp = 44-45 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.42 (m, 2H), 7.40-7.37 (m, 2H), 7.33-7.31 (m, 1H), 3.88-3.85 (m, 4H), 2.56-2.52 (m, 2H), 2.00-1.97 (m, 4H), 1.57-1.49 (m, 2H), 1.45-1.38 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.02, 166.94, 142.16, 132.49, 128.77, 126.87, 126.07, 101.37, 50.44, 34.84, 25.40, 22.89, 22.69, 14.04. HRMS (ESI): calcd for C₁₈H₂₃N₂O₂ [M + H]⁺ 299.1760, found 299.1761.

3-butyl-4-(dibutylamino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.2 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.40-7.37 (m, 2H), 7.34-7.32 (m, 1H), 3.60-3.56 (m, 4H), 2.46-2.42 (m, 2H), 1.69-1.61 (m, 4H), 1.53-1.34 (m, 8H), 1.02-0.98 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 171.58, 167.23, 142.95, 132.39, 128.80, 126.97, 126.19, 103.21, 51.76, 33.52, 31.24, 23.46, 22.73, 19.94, 14.01, 13.97. HRMS (ESI): calcd for C₂₂H₃₃N₂O₂ [M + H]⁺ 357.2542, found 357.2550.

3-butyl-4-(methyl(phenethyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (43.5 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.37-7.26 (m, 8H), 3.98-3.94 (m, 2H), 3.26 (s, 3H), 2.99 (dd, *J* = 8.6, 6.5 Hz, 2H), 2.53-2.49(m, 2H), 1.53-1.45 (m, 2H), 1.43-1.36 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.43, 167.08, 143.61, 138.36, 132.18, 128.96, 128.77, 128.60, 127.03, 126.61, 126.14, 104.67, 55.27, 40.41, 35.05, 33.71, 23.24, 22.63, 13.92. HRMS (ESI): calcd for C₂₃H₂₇N₂O₂ [M + H]⁺ 363.2073, found 363.2083.

3-butyl-4-((2-hydroxyethyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow liquid (39.3 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.44 (m, 2H), 7.37-7.32 (m, 3H), 3.90-3.85 (m, 4H), 3.30 (s, 3H), 2.58-2.54 (m, 2H), 2.36 (t, *J* = 5.1 Hz, 1H), 1.58-1.51 (m, 2H), 1.46-1.41 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.33, 168.12, 144.54, 132.04, 128.89, 127.29, 126.16, 106.13, 60.84, 55.18, 40.12, 33.82, 23.23, 22.70, 13.97. HRMS (ESI): calcd for C₁₇H₂₃N₂O₃ [M + H]⁺ 303.1709, found 303.1721.

3-(4-benzoylpiperazin-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (58.4 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 7H), 7.37-7.34 (m, 3H), 3.94-3.75 (m, 8H), 2.51-2.47 (m, 2H), 1.53 (qd, *J* = 7.7, 7.3, 4.0 Hz, 2H), 1.43 (q, *J* = 7.3 Hz, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.04, 170.67, 167.33, 143.42, 135.13, 131.91, 130.23, 128.94, 128.75, 127.37, 127.24, 126.05, 110.21, 48.81, 48.69, 32.60, 23.35, 22.81, 13.93. HRMS (ESI): calcd for C₂₅H₂₈N₃O₃ [M + H]⁺ 418.2131, found 418.2143.

1-benzyl-3-butyl-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.9 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.29 (m, 5H), 4.63 (s, 2H), 3.80 (t, J = 4.7 Hz, 4H), 3.69 (t, J = 4.7 Hz, 4H), 2.43-2.39 (m, 2H), 1.48-1.35 (m, 4H), 0.97-0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.20, 168.31, 143.67, 137.00, 128.63, 128.50, 127.61, 108.50, 66.96, 48.71, 41.34, 32.89, 23.17, 22.75, 13.92. HRMS (ESI): calcd for C₁₉H₂₅N₂O₃ [M + H]⁺ 329.1865, found 329.1870.

3-butyl-1-(4-methylbenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (51.3 mg, 75% yield), Mp = 50-51 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 4.59 (s, 2H), 3.81-3.78 (m, 4H), 3.69-3.67 (m, 4H), 2.42-2.38 (m, 2H), 2.35 (s, 3H), 1.47-1.33 (m, 4H), 0.97-0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.24, 168.32, 143.67, 137.32, 134.05, 129.29, 128.54, 108.51, 66.96, 48.70, 41.07, 32.88, 23.16, 22.75, 21.19, 13.92. HRMS (ESI): calcd for C₂₀H₂₇N₂O₃ [M + H]⁺ 343.2022, found 343.2022.

3-butyl-1-(4-fluorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (42.2 mg, 61% yield), Mp = 65-66 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.03-6.99 (m, 2H), 4.59 (s, 2H), 3.81-3.79 (m, 4H), 3.70-3.67 (m, 4H), 2.42-2.38 (m, 2H), 1.47-1.35 (m, 4H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.12, 168.25, 162.29 (d, *J* = 245.6 Hz). 143.69, 132.82, 130.37 (d, *J* = 8.0 Hz), 115.46 (d, *J* = 21.4 Hz), 108.45, 66.94, 48.71, 40.61, 32.88, 23.16, 22.74, 13.90. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.77; HRMS (ESI): calcd for C₁₉H₂₄N₂O₃F [M + H]⁺ 347.1771, found 347.1759.

3-butyl-1-(4-chlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (45.6 mg, 63% yield), Mp = 75-76°C. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (brs, 4H), 4.58 (s, 2H), 3.81-3.79 (m, 4H), 3.70-3.67 (m, 4H), 2.42-2.38 (m, 2H), 1.46-1.37 (m, 4H), 0.97-0.93 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.05, 168.21, 143.69, 135.43, 133.53, 129.98, 128.79, 108.42, 66.94, 48.70, 40.67, 32.87, 23.17, 22.74, 13.91. HRMS (ESI): calcd for C₁₉H₂₄N₂O₃Cl [M + H]⁺ 363.1475, found 363.1470.

1-(4-bromobenzyl)-3-butyl-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (53.6 mg, 66% yield), Mp = 82-83 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 4.57 (s, 2H), 3.81-3.79 (m, 4H), 3.70-3.67 (m, 4H), 2.42-2.38 (m, 2H), 1.47-1.35 (m, 4H), 0.95 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.03, 168.19, 143.69, 135.94, 131.75, 130.32, 129.98, 128.78, 121.67, 108.40, 66.93, 48.70, 40.72, 32.86, 23.16, 22.74, 13.91. HRMS (ESI): calcd for C₁₉H₂₄N₂O₃Br [M + H]⁺ 407.0970, found 407.0971.

3-butyl-4-morpholino-1-(4-(trifluoromethyl)benzyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.4 mg, 70% yield), Mp = 79-80 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 4.67 (s, 2H), 3.82-3.80 (m, 4H), 3.71-3.69 (m, 4H), 2.44-2.40 (m, 2H), 1.49-1.38 (m, 4H), 0.98-0.094 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.98, 168.18, 143.70, 140.81, 129.90 (d, *J* = 32.3 Hz), 128.72, 125.64 (q, *J* = 3.7 Hz), 124.05 (d, *J* = 271.0 Hz), 108.38, 66.93, 48.71, 40.86, 32.86, 23.18, 22.73, 13.89. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.56 (3F); HRMS (ESI): calcd for C₂₀H₂₄N₂O₃F₃ [M + H]⁺ 397.1739, found 397.1745.

3-butyl-4-morpholino-1-(naphthalen-1-ylmethyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.7 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 8.4 Hz, 1H), 7.89 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.57 (tt, *J* = 14.2, 7.0 Hz, 3H), 7.49-7.45 (m, 1H), 5.11 (s, 2H), 3.81-3.79 (m, 4H), 3.69-3.67 (m, 4H), 2.45-2.41 (m, 2H), 1.49-1.37 (m, 4H), 0.96 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.34, 168.54, 143.67, 133.81, 132.16, 131.34, 128.73, 128.49, 127.45, 126.45, 125.80, 125.39, 123.69, 108.56, 66.95, 48.71, 39.35, 32.90, 23.21, 22.75, 13.93. HRMS (ESI): calcd for C₂₃H₂₇N₂O₃ [M + H]⁺ 379.2022, found 379.2036.

3-butyl-4-morpholino-1-(thiophen-2-ylmethyl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (33.4 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.08 (t, *J* = 2.2 Hz, 1H), 6.96 (dd, *J* = 5.1, 3.5 Hz, 1H), 4.80 (s, 2H), 3.82-3.80 (m, 2H), 3.71-3.68 (m, 2H), 2.43-2.39 (m, 2H), 1.48-1.38 (m, 4H), 0.98-0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.70, 167.90, 143.72, 138.90, 127.27, 126.86, 125.60, 108.51, 66.95, 48.70, 35.48, 32.84, 23.14, 22.72, 13.90. HRMS (ESI): calcd for C₁₇H₂₃N₂O₃S [M + H]⁺ 335.1429, found 335.1439.

3-butyl-1-(3,4-dichlorobenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (40.4 mg, 51% yield), Mp = 99-100°C. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 2.1 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.21 (dd, *J* = 8.2, 2.1 Hz, 1H), 4.56 (s, 2H), 3.82-3.80 (m, 4H), 3.71-3.69 (m, 4H), 2.43-2.39 (m, 2H), 1.48-1.36 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.87, 168.10, 143.71, 137.06, 132.63, 131.84, 130.61, 130.48, 127.97, 108.35, 66.93, 48.71, 40.25, 32.84, 23.18, 22.73, 13.90. HRMS (ESI): calcd for C₁₉H₂₃N₂O₃Cl₂ [M + H]⁺ 397.1086, found 397.1095.

3-butyl-1-(4-chlorophenyl)-4-morpholino-1H-pyrrole-2,5-dione

4j

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (46.6 mg, 67% yield), Mp = 80-81 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.8 Hz, 2H), 7.33 (d, *J* = 8.8 Hz, 2H), 3.86-3.83 (m, 4H), 3.77-3.74 (m, 4H), 2.50-2.46 (m, 2H), 1.54-1.39 (m, 4H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.85, 167.04, 143.59, 132.77, 130.57, 129.04, 127.09, 108.88, 66.99, 48.92, 32.71, 23.26, 22.76, 13.92. HRMS (ESI): calcd for C₁₈H₂₂N₂O₃Cl [M + H]⁺ 349.1319, found 349.1333.

3-butyl-1-(4-methoxybenzyl)-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (50.1 mg, 70% yield), Mp = 62-63 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 7.1 Hz, 2H), 6.87 (d, *J* = 6.9 Hz, 2H), 4.57 (s, 2H), 3.82-3.79 (m, 7H), 3.70-3.68 (m, 4H), 2.42-2.38 (m, 2H), 1.46-1.38 (m, 4H), 0.98-0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.26, 168.33, 159.08, 143.68, 130.00, 129.28, 113.95, 108.50, 66.96, 55.30, 48.70, 40.77, 32.89, 23.15, 22.75, 13.91. HRMS (ESI): calcd for C₂₀H₂₇N₂O₄ [M + H]⁺ 359.1971, found 359.1982.

3-butyl-1-methyl-4-morpholino-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (37.3 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.82-3.80 (m, 4H), 3.70-3.68 (m, 4H), 2.96 (s, 3H), 2.42-2.39 (m, 2H), 1.48-1.35 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.69, 168.78, 143.77, 108.73, 66.98, 48.75, 32.92, 23.64, 23.08, 22.70, 13.92. HRMS (ESI): calcd for C₁₃H₂₁N₂O₃ [M + H]⁺ 253.1552, found 253.1556.

3-methyl-4-morpholino-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (35.9 mg, 66% yield), Mp = 96-97 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.36-7.33 (m, 3H), 3.86-3.81 (m, 8H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.35, 167.19, 143.95, 132.01, 128.94, 127.35, 126.16, 103.22, 67.14, 48.85, 9.28. HRMS (ESI): calcd for C₁₅H₁₇N₂O₃ [M + H]⁺ 273.1239, found 273.1248.

3-methyl-1-phenyl-4-(piperidin-1-yl)-1H-pyrrole-2,5-dione

5b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (34.6 mg, 64% yield), Mp = 71-72 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.38-7.31 (m, 3H), 3.77-3.74 (m, 4H), 2.10 (s, 3H), 1.74-1.72 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.30, 144.86, 132.32, 128.84, 127.07, 126.16, 100.92, 49.98, 26.72, 24.29, 9.37. HRMS (ESI): calcd for C₁₆H₁₉N₂O₂ [M + H]⁺ 271.1447, found 271.1453.

3-methyl-4-(4-methylpiperidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (34.7 mg, 61% yield), Mp = 65-66 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.38-7.31 (m, 3H), 4.41 (dt, *J* = 13.2, 2.3 Hz, 2H), 3.12 (td, *J* = 13.1, 12.7, 2.5 Hz, 2H), 2.10 (s, 3H), 1.78 (dd, *J* = 13.3, 2.7 Hz, 2H), 1.69 (ddq, *J* = 11.0, 6.8, 3.6 Hz, 1H), 1,40-1,32 (m, 2H), 1.02 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.68, 167.31, 144.79, 132.31, 128.85, 127.09, 126.17, 101.04, 49.28, 34.90, 30.83, 21.89, 9.37. HRMS (ESI): calcd for C₁₇H₂₁N₂O₂ [M + H]⁺ 285.1603, found 285.1600.

3-methyl-4-(octahydroisoquinolin-2(1H)-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (45.4 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.39-7.31 (m, 3H), 3.43 (ddq, *J* = 18.1, 12.3, 5.9, 5.5 Hz, 2H), 3.26 (td, *J* = 10.3, 3.1 Hz, 1H), 2.06 (s, 3H), 1.94-1.90 (m, 1H), 1.82-1.71 (m, 6H), 1.52-1.9 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.30, 168.02, 146.55, 132.14, 128.91, 127.20, 126.07, 104.46, 63.30, 48.96, 40.81, 32.97, 32.31, 29.45, 26.11, 25.26, 25.05, 9.11. HRMS (ESI): calcd for C₂₀H₂₅N₂O₂ [M + H]⁺ 325.1916, found 325.1908.

3-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methyl-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (37.5 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.39-7.34 (m, 3H), 7.27-7.20 (m, 3H), 7.16-7.14 (m, 1H), 5.00 (s, 2H), 4.08 (t, *J* = 5.9 Hz, 2H), 3.06 (t, *J* = 5.9 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.60, 167.19, 144.24, 134.12, 133.36, 132.20, 129.01, 128.91, 127.23, 127.00, 126.58, 126.20, 101.17, 50.68, 46.54, 29.43, 9.33. HRMS (ESI): calcd for C₂₀H₁₉N₂O₂ [M + H]⁺ 319.1447, found 319.1442.

3-methyl-1-phenyl-4-(pyrrolidin-1-yl)-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (25.6 mg, 50% yield), Mp = 96-97°C. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.39-7.36 (m, 2H), 7.34-7.32 (m, 1H), 3.93-3.90 (m, 4H), 2.17 (s, 3H), 1.99-1.96 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 172.23, 166.78, 149.03, 132.48, 128.82, 126.96, 126.13, 95.79, 50.42, 25.38, 8.39. HRMS (ESI): calcd for C₁₅H₁₇N₂O₂ [M + H]⁺ 257.1290, found 257.1289.

3-methyl-4-(methyl(phenethyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (37.1 mg, 58% yield), Mp = 68-69°C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (m, 2H), 7.36-7.32 (m, 5H), 7.30-7.27 (m, 3H), 3.95 (t, *J* = 8.6 Hz, 2H), 3.31 (s, 3H), 3.00 (t, *J* = 8.6 Hz, 2H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.64, 167.01, 144.46, 138.41, 132.26, 129.01, 128.90, 128.69, 127.18, 126.75, 126.27, 99.33, 55.19, 40.40, 35.21, 9.17. HRMS (ESI): calcd for C₂₀H₂₁N₂O₂ [M + H]⁺ 321.1603, found 321.1602.

3-((2-hydroxyethyl)(methyl)amino)-4-methyl-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (31.7 mg, 61% yield), Mp = 84-85 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.44 (m, 2H), 7.36-7.32 (m, 3H), 3.91-3.87 (m, 4H), 3.36 (s, 3H), 2.26 (brs, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.50, 167.90, 145.08, 132.05, 128.92, 127.34, 126.22, 100.38, 60.84, 54.98, 40.19, 9.19. HRMS (ESI): calcd for C₁₄H₁₇N₂O₃ [M + H]⁺ 261.1239, found 261.1243.

3-butyl-4-((3-hydroxy-3-(thiophen-2-yl)propyl)(methyl)amino)-1-phenyl-1H-pyrrole-2,5-dione

6a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.1 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.43 (m, 2H), 7.38-7.31 (m, 3H), 7.30-7.28 (m, 1H), 7.03-6.99 (m, 2H), 5.07 (t, *J* = 6.4 Hz, 1H), 3.93 (ddd, *J* = 14.2, 8.1, 7.1 Hz, 1H), 3.75 (ddd, *J* = 13.9, 8.2, 5.3 Hz, 1H), 3.27 (s, 3H), 2.53 (td, *J* = 7.1, 1.9 Hz, 2H), 2.26-2.19 (m, 2H), 1.54-1.47 (m, 2H), 1.46-1.38 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.45, 167.51, 148.04, 144.09, 132.12, 128.86, 127.20, 126.81, 126.19, 124.80, 123.75, 105.62, 67.65, 50.43, 39.77, 37.62, 33.86, 23.26, 22.70, 14.01. HRMS (ESI): calcd for

 $C_{22}H_{27}N_2O_3S [M + H]^+ 399.1742$, found 399.1748.

(R)-3-butyl-4-(2-(hydroxymethyl)pyrrolidin-1-yl)-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (47.2 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.38-7.31 (m, 3H), 4.88-4.83 (m, 1H), 3.94-3.90 (m, 1H), 3.72-3.55 (m, 3H), 2.63-2.56 (m, 1H), 2.51-2.44 (m, 1H), 2.07-1.98 (m, 5H), 1.55-1.39 (m, 4H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.67, 167.59, 142.15, 132.23, 128.84, 127.14, 126.18, 103.26, 65.25, 61.11, 50.62, 34.51, 27.77, 23.18, 23.05, 22.69, 14.02. HRMS (ESI): calcd for C₁₉H₂₅N₂O₃ [M + H]⁺ 329.1865, found 329.1870.

3-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)-4-butyl-1-phenyl-1H-pyrrole-2,5-dione

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (61.6 mg, 69% yield), Mp = 59-60 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.56-7.52 (m, 1H), 7.46 (q, *J* = 7.4, 7.0 Hz, 3H), 7.42-7.33 (m, 3H), 4.01-3.99 (m, 4H), 3.73-3.71 (m, 4H), 2.58-2.54 (m, 2H), 1.61-1.55(m, 2H), 1.49-1.44 (m, 2H), 1.00 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.27, 167.44, 163.38, 152.99, 143.66, 132.07, 128.91, 127.86, 127.27, 126.13, 124.24, 123.70, 120.78, 108.96, 50.35, 48.41, 32.67, 23.43, 22.83, 13.97. HRMS (ESI): calcd for C₂₅H₂₇N₄O₂S [M + H]⁺ 447.1855, found 447.1850.

References:

(1) (a) Ding, G.; Li, C.; Shen, Y.; Lu, B.; Zhang, Z.; Xie, X. Adv. Synth. Catal. **2016**, 358, 1241-1250. (b) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M. J. Med Chem. **2009**, 52, 7410-7420.

(2) K. Takahashi, Y. Ogiwara, N. Sakai, Chem. Asian J. 2018, 13, 809.

S25

wg996.1.1.1r

Million <t

No.000 No.000<

wg937. l. l. lr	7.39 7.37 7.37 7.35 7.35 7.35 7.35 7.35 7.35	-4.63	3.82 3.79 3.79 3.68 3.68	2.43 2.41 2.39	141 147 147 147 147 147 147 147 147 147
-----------------	--	-------	--------------------------------------	----------------------	--

¹H NMR (400 MHz, CDCl₃)

wg949.1.1.1r

S39

S40

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

(0 t t m N (0 10 t	00000	400000004000000«
000000	04444	0000000444444440000
() () () () () () () () () () () () () (NNNNN	

7.43 7.41 7.34 7.32

wg962.1.1.1r

4j ¹H NMR (400 MHz, CDCl₃)

wg1121.1.1.1r

7.7.2.2.25 7.7.2.2.25 7.7.2.2.25 7.7.2.2.25 7.7.2.2.25 7.7

5e ¹H NMR (400 MHz, CDCl₃)

5f ¹H NMR (400 MHz, CDCl₃)

HRMS of Products

S60

1002 967 1: TOF MS ES+ 9.72e5 wg20221202-4 49 (0.984) AM2 (Ar,20000.0,0.00,0.00); Cm (49-5x1.500) 299.1761 100 % 3h ____ m/z 320 0-270 275 280 285 290 295 300 305 310 315

1007 999 wg20221202-5 46 (0.913) AW2 (Ar,20000.0,0.00,0.00); Cm (46-4x1.500) 1: TOF MS ES+ 8:19e5 1: TOF MS ES+ 8:19e5 357,2550 357,2550 1: TOF MS ES+ 8:19e5 357,2550 357,2570 377,277,374,376,378 m/z

S67

1121 1125 wg20221209-12 15 (0.310) AW2 (Ar,20000.0,0.00); Cm (15-5x1.500) 1: TOF MS ES+ 9.70e5 100 1: TOF MS ES+9.70e5 41 41 1: TOF MS ES+9.70e5 1: TOF MS ES+ 9.70e5 9.70e

