Supporting Information

Copper-catalyzed tandem cyclization/arylation of α, β-alkynic hydrazones with diaryliodonium salts: synthesis of N -arylpyrazoles

Sushanta K. Parida, Saurav Joshi, Sandip Murarka*
Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India. Email: sandipmurarka@iitj.ac.in.

Table of Contents

1. Complete Optimization TableS2
2. Experimental Section S4
2.1. General Information S4
2.2 Preparation of Starting Material
2.2.1. General Procedure (GP1) for the synthesis of α, β-alkynic S6 hydrazones
2.2.2. Preparation of Diaryliodonium Triflates S9
2.3 General Procedure (GP2) for the Synthesis of N-aryl Pyrazole S10
2.4 Characterization data of final compounds S10
2.5 Control Experiments S30
2.6 Scale-up experiment and Post-Synthetic Modifications S32
3. Crystallographic Data of 1-(4-Bromophenyl)-3,5-diphenyl-1H-pyrazole S34
4. References S36
5. NMR Spectra of Compounds S37

1. Complete Optimization Table:

Sl No	Cu catalyst $\text { (} 10 \mathrm{~mol} \% \text {) }$	Base/additives (2 equiv)	Solvent	Temp.	Yield of $\mathbf{3 a}(\%)^{b}$	Yield of $4 \mathrm{a}(\%)^{b}$
1	CuCl	dtbpy	DCE	90	62	28
2	CuCl	dtbpy	1,4-Dioxane	90	56	23
3	CuCl	dtbpy	Toluene	90	61	10
4	CuCl	dtbpy	DMF	90	82	0
5	CuCl	dtbpy	DMSO	90	64	21
6	CuBr	dtbpy	DMF	90	61	0
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	dtbpy	DMF	90	79	0
8	$\mathrm{Cu}(\mathrm{OTf}) 2$	dtbpy	DMF	90	71	0
9	CuI	dtbpy	DMF	90	68	0
10	CuTC	dtbpy	DMF	90	59	0
11	CuCl	DBU	DMF	90	52	Trace
12	CuCl	DABCO	DMF	90	76	Trace
13	CuCl	$\mathrm{Et}_{3} \mathrm{~N}$	DMF	90	74	Trace
14	CuCl	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	90	46	38
15	CuCl	---	DMF	90	63	Trace
16	---	dtbpy	DMF	90	0	74
17^{c}	CuCl	dtbpy	DMF	90	68	0
$18{ }^{\text {d }}$	CuCl	dtbpy	DMF	90	79	0
19	CuCl	dtbpy	DMF	rt	Trace	64
20	CuCl	dtbpy	DMF	110	81	0
21	CuCl	dtbpy	DMF	60	28	56
22^{e}	CuCl	dtbpy	DMF	90	83	0
22^{f}	CuCl	dtbpy	DMF	90	84	0
26^{8}	CuCl	dtbpy	DMF	90	71	0

$\mathbf{2 3}^{\boldsymbol{h}}$	CuCl	dtbpy	DMF	90	46	29
$\mathbf{2 4}^{\boldsymbol{i}}$	CuCl	dtbpy	DMF	90	83	0
$\mathbf{2 5}^{\boldsymbol{j}}$	CuCl	dtbpy	DMF	90	74	0

${ }^{\text {a }}$ Reaction Condition 1a $(0.1 \mathrm{mmol})$, 2a $(0.12 \mathrm{mmol})$, catalyst ($10 \mathrm{~mol} \%$), base (2 equiv) and solvent (2 ml) under N_{2} atmosphere at $90{ }^{\circ} \mathrm{C}$ for 24 h . ${ }^{\mathrm{b}}$ Isolated yield, ${ }^{\mathrm{c}}$ Using $5 \mathrm{~mol} \%$ of CuCl , ${ }^{\mathrm{d}}$ Using $20 \mathrm{~mol} \%$ of $\mathbf{C u C l}$, ${ }^{\mathrm{e}}$ Using 1.5 equiv of 2a, ${ }^{\mathrm{f}}$ Using 2 equiv of $\mathbf{2 a}$, ${ }^{9}$ Using 1.5 equiv dtbpy, ${ }^{\mathrm{h}}$ Reaction was stirred for $12 \mathrm{~h},{ }^{i}$ Reaction was stirred for $36 \mathrm{~h},{ }^{\mathrm{j}}$ under air.

2. Experimental Section

2.1. General Information: All the reactions were performed using pre-dried glassware and screw-cap vials. All the solvents were obtained from Merck (Emparta grade) and used without further drying or distillation. Terminal Alkyne, carboxylic acid derivatives, pToluenesulfonyl hydrazide, Copper catalyst and 2,6-Di-tert-butylpyridine (dtbpy) were obtained from commercial sources and used without further purification. All the acyl chloride were synthesized following the procedures given below. ${ }^{1}$ The reported yields are of isolated compounds that are estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR. Thin layer chromatography (TLC) was performed on Merck pre-coated silica gel $60 \mathrm{~F}_{254}$ aluminum sheets with detection under UV light at 254 nm . Chromatographic separations were carried out on Avra silica gel (100-200 mesh or 230-400 mesh). Nuclear magnetic resonance (NMR) spectroscopy was performed using Bruker 500 MHz spectrometers. If not otherwise specified, chemical shifts (δ) are provided in ppm. HRMS spectra were recorded using Agilent 6546 LC/Q-TOF spectrometer. Single crystal X-ray diffractions were recorded using Rigaku Oxford diffractometer at 100 K .

2.2. Preparation of Starting Materials

The substrates of various α, β-alkynic hydrazones $(\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 k}$ and $\mathbf{1 o}),{ }^{2}(\mathbf{1 g}$ and $\mathbf{1 q})^{3}$ and $(\mathbf{1 h}, \mathbf{1} \mathbf{i}, \mathbf{1} \mathbf{j}, \mathbf{1 1} \text { and } \mathbf{1 n})^{4}$ were prepared following the previous literature procedures and obtained characterization data were in alignment with the literature reported data.

1a

1b

$1 e$

$1 f$

1g

1h

$1 i$

1n

1j

1k

11

HN

1p

HN^{-}

10

2.2.1 General procedure (GP1) for the synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-alkynic hydrazones

In a pre-dried Schlenk flask acyl chloride (1.2 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.02 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) and anhydrous THF were added and the resulting solution was stirred for 10 minutes at $25{ }^{\circ} \mathrm{C}$ under N_{2}. Following the addition of CuI (0.04 equiv), the reaction mixture was stirred for an additional 10 minutes. Subsequently, the terminal alkyne (1.0 equiv) was added in a single portion and the solution was stirred under ambient conditions for 12 h . Ethyl acetate was added once the reaction was finished, and the solution was then with 0.1 N HCl in a separatory funnel. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated using rotary evaporator to separate the layers. The crude product was then purified using flash chromatography on silica gel with hexane/ethyl acetate as the eluent to produce the α, β-alkynic ketones. Then, to a solution of α, β-alkynic ketones (1.0 equiv) and p-toluenesulfonyl hydrazide (1.1 equiv) in EtOH was added concentrated sulfuric acid (1.1 equiv) in a dropwise fashion at $25^{\circ} \mathrm{C}$ and the solution was stirred for 12 h . After completion, the reaction mixture was concentrated, and the crude product was purified by column chromatography on silica gel with hexane/ethyl acetate as the eluent to produce corresponding α, β-alkynic hyrazone.

(Z)-4-Methyl-N'-(3-phenyl-1-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide

 (1m)

The compound was prepared according to GP1 by adding concentrated sulfuric acid ($30 \mu \mathrm{~L}$, 0.55 mmol) dropwise over 1 min to a slurry of 3-phenyl-1-(m-tolyl)prop-2-yn-1-one (0.110 g , 0.5 mmol) and p-toluenesulfonyl hydrazide ($0.103 \mathrm{~g}, 0.55 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$. After 12 h , the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give $\mathbf{1 m}$ as a white solid $(0.153 \mathrm{~g}, 79 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4$, $138.3,136.1,135.7,134.0,132.4,131.1,130.6,129.8,128.9,128.4,128.1,127.2,124.1,120.4$, 104.6, 77.5, 21.7, 21.6. HRMS-ESI (m/z): calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 389.1318$; found 389.1324.

(E)-N'-(1-(2-Bromophenyl)-3-phenylprop-2-yn-1-ylidene)-4-

 methylbenzenesulfonohydrazide (1p)

The compound was prepared according to GP1 by adding concentrated sulfuric acid ($30 \mu \mathrm{~L}$, 0.55 mmol) dropwise over 1 min to a slurry of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one ($0.143 \mathrm{~g}, 0.5 \mathrm{mmol}$) and p-toluenesulfonyl hydrazide ($103 \mathrm{mg}, 0.55 \mathrm{mmol}$) in EtOH (5 mL) at $25^{\circ} \mathrm{C}$. After 12 h , the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give $\mathbf{1 p}$ as a white solid $(0.161 \mathrm{~g}, 71 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48$ $-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.6,135.6,135.50,135.47,133.9,132.3,131.3,130.9,130.6,129.9,128.8,128.2$, 127.6, 122.1, 120.5, 105.7, 78.2, 21.8. HRMS-ESI (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 453.0267; found 453.0271.
(Z)-N'-(1-cyclohexyl-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (1r)

The compound was prepared according to GP1 by adding concentrated sulfuric acid ($30 \mu \mathrm{~L}$, 0.55 mmol) dropwise over 1 min to a slurry of 1-cyclohexyl-3-phenylprop-2-yn-1-one (0.106 $\mathrm{g}, 0.5 \mathrm{mmol})$ and p-toluenesulfonyl hydrazide ($103 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$.

After 12 h , the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give $\mathbf{1 r}$ as a white solid $(0.144 \mathrm{~g}, 76 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.34(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33$ $-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,143.8,135.7,132.3$, 130.3, 129.7, 128.8, 128.0, 120.5, 103.6, 78.0, 44.5, 30.5, 25.9, 25.8, 21.8. HRMS-ESI (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$381.1631; found 381.1636.

(Z)-N'-(1-((3r,5r,7r)-adamantan-1-yl)-3-phenylprop-2-yn-1-ylidene)-4-

 methylbenzenesulfonohydrazide (1s)

The compound was prepared according to GP1 by adding concentrated sulfuric acid ($30 \mu \mathrm{~L}$, $0.55 \mathrm{mmol})$ dropwise over 1 min to a slurry of 1-((3r, 5r, 7r)-adamantan-1-yl)-3-phenylprop-2-yn-1-one ($0.132 \mathrm{~g}, 0.5 \mathrm{mmol}$) and p-toluenesulfonyl hydrazide ($103 \mathrm{mg}, 0.55 \mathrm{mmol}$) in EtOH $(5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After 12 h , the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give 1 s as a white solid ($0.148 \mathrm{~g}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H})$, $1.78-1.66(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,144.0,135.5,132.1,130.1,129.5$, 128.7, 127.9, 120.6, 103.9, 77.2, 40.1, 39.7, 36.6, 28.2, 21.6. HRMS-ESI (m/z): calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 433.1944$; found 433.1950.

2.2.2. Preparation of Diaryliodonium salts:

The diaryliodonium salts ($\mathbf{2 a} \mathbf{- 2 p}$) were prepared following the literature procedures and obtained characterization data were in alignment with the literature-reported data. ${ }^{5}$

2.3. General procedure (GP2) for the synthesis of N-aryl Pyrazoles 3

A pre-dried Schlenk-tube was charged with copper(I) chloride ($10 \mathrm{~mol} \%$), diaryliodonium salts (1.2 equiv), and hydrazone (1 equiv). The tube was evacuated and backfilled with nitrogen 3 times. Then a solution of 2,6-di-tert-butylpyridine (2 equiv) in DMF (2 ml) was added and the resulting reaction mixture was allowed to stir at $90^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture was cooled to room temperature and quenched by the addition of sat. $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$. The resulting mixture was extracted with $\mathrm{DCM}(5 \mathrm{~mL} \times 3)$, combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude residue was purified by column chromatography (3-5\% Ethyl acetate in hexane) to yield the corresponding pyrazole derivatives 3 .

3,5-Diphenyl-1-(p-tolyl)-1H-pyrazole (3aa) ${ }^{6}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), diphenyliodonium trifluoromethanesulfonate $(0.103 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6 -di-tertbutylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.049 \mathrm{~g}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.27$ $(\mathrm{m}, 11 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,144.5,140.3,133.2,130.7$, 129.4, 128.9, 128.8, 128.6, 128.4, 128.1, 127.6, 126.0, 125.4, 105.3.

3,5-Diphenyl-1-(\boldsymbol{p}-tolyl)-1H-pyrazole (3ab) ${ }^{7}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ $\mathrm{mmol})$, di-p-tolyliodonium trifluoromethanesulfonate $(0.109 \mathrm{~g}, 0.24 \mathrm{mmol})$ and 2,6 -di-tertbutylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave $\mathbf{3 a b}$ as a white solid ($0.045 \mathrm{~g}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34$ (m, 4H), $7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 151.6,144.3,137.5,137.3,132.9,130.5,129.4,128.6,128.5,128.3$, 128.1, 127.9, 125.7, 125.1, 104.8, 21.0.

1-(4-Methoxyphenyl)-3,5-diphenyl-1H-pyrazole (3ac) ${ }^{8}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-methoxyphenyl)iodonium trifluoromethanesulfonate ($0.117 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave 3ac as a white solid ($0.036 \mathrm{~g}, 56 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 8 \mathrm{H})$, $6.87(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.0,151.7,144.4,133.6,133.3,130.7,128.8,128.7,128.6,128.3,128.0,126.8,125.9$, 114.2, 104.7, 55.6.

1-(4-(tert-Butyl)phenyl)-3,5-diphenyl-1H-pyrazole (3ad) ${ }^{9}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-(tert-butyl)phenyl)iodonium trifluoromethanesulfonate ($0.130 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3ad as a white solid ($0.035 \mathrm{~g}, 50 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.7, $150.6,144.3,137.7,133.2,130.8,128.8,128.6,128.5,128.2,127.9,125.9,125.8,124.8,105.0$, 34.7, 31.4 .

1-(4-Fluorophenyl)-3,5-diphenyl-1H-pyrazole (3ae) ${ }^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-fluorophenyl)iodonium trifluoromethanesulfonate ($0.111 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3ae as a yellow solid ($0.048 \mathrm{~g}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 6 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.5(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 151.9,144.4,136.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.8,130.2,128.62$, 128.56, 128.46, 128.3, 128.0, $126.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 125.7,115.7(\mathrm{~d}, J=23 \mathrm{~Hz}), 105.1 .{ }^{19} \mathbf{F}\{\mathbf{1 H}\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.01.

1-(4-Chlorophenyl)-3,5-diphenyl-1H-pyrazole (3af) ${ }^{11}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-chlorophenyl)iodonium trifluoromethanesulfonate ($0.120 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3af as a yellow solid ($0.048 \mathrm{~g}, 73 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}$, $10 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,144.5,138.7,133.0,132.9,130.3$, 129.1, 128.8, 128.74, 128.69, 128.6, 128.2, 126.3, 125.9, 105.6.

1-(4-Bromophenyl)-3,5-diphenyl-1H-pyrazole (3ag) ${ }^{11}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-bromophenyl)iodonium trifluoromethanesulfonate ($0.141 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3ag as a white solid ($0.053 \mathrm{~g}, 71 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H})$, $7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4,144.6,139.2,132.9$, $132.1,130.4,128.9,128.82,128.79,128.7,128.3,126.7,126.0,121.1,105.8$.

3,5-Diphenyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole (3ah) ${ }^{12}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(4-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate $(0.136 \mathrm{~g}, 0.24$
mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave 3ah as a white solid ($0.044 \mathrm{~g}, 61 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,144.7,142.9,132.7,130.3,129.1(\mathrm{q}, J=33 \mathrm{~Hz}), 128.91$, 128.87 (2C), 128.85, 128.5, 126.2 (q, $J=4 \mathrm{~Hz}$), 126.0, 124.9, 124.0 (q, $J=271 \mathrm{~Hz}$), 106.4. ${ }^{19} \mathbf{F}\{\mathbf{1 H}\} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.36$.

1-(4-Nitrophenyl)-3,5-diphenyl-1H-pyrazole (3ai) ${ }^{11}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), mesityl (4-nitrophenyl) iodonium trifluoromethanesulfonate ($0.124 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3ai as a yellow solid ($0.046 \mathrm{~g}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.17(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.47$ (m, 2H), $7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,145.8,145.0,144.9,132.4,130.1,129.2,129.0,128.89,128.85,128.7$, 126.0, 124.5, 124.5, 107.3.

3,5-Diphenyl-1-(m-tolyl)-1H-pyrazole (3aj) ${ }^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ $\mathrm{mmol})$, di-m-tolyliodonium trifluoromethanesulfonate $(0.109 \mathrm{~g}, 0.24 \mathrm{mmol})$ and 2,6-di-tert-
butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3aj as a yellow oil ($0.030 \mathrm{~g}, 48 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16$ $(\mathrm{m}, 7 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,144.5,140.1,139.2,133.2,130.7$, 128.81, 128.76, 128.7, 128.5, 128.38, 128.35, 128.1, 126.1, 125.9, 122.6, 105.2, 21.5.

1-(3-Fluoropheny)-3,5-diphenyl-1H-pyrazole (3ak)

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(3-fluorophenyl)iodonium trifluoromethanesulfonate ($0.112 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3ak as a white solid ($0.043 \mathrm{~g}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32$ (m, 4H), $7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.92(\mathrm{~m}$, 1H), $6.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$ ($\mathrm{d}, J=247.1 \mathrm{~Hz}$), $152.4,144.7,141.6$ (d, $J=10.2 \mathrm{~Hz}), 132.9,130.4,130.1(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 128.89,128.82,128.76,128.74,128.3$, 126.0, $120.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 114.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 105.9 .{ }^{19} \mathbf{F}\{\mathbf{1 H}\}$ NMR (471 MHz, CDCl_{3}) δ-111.28. HRMS-ESI (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 315.1292; found 315.1303.

1-(3-Chlorophenyl)-3,5-diphenyl-1H-pyrazole (3al) ${ }^{13}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$
mmol), bis(3-chlorophenyl)iodonium trifluoromethanesulfonate ($0.120 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3al as a yellow oil ($0.050 \mathrm{~g}, 76 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20 - $7.10(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,144.7,141.2,134.7$, $132.8,130.3,129.8,128.9,128.84,128.78,128.4,127.6,126.0,125.4,123.3,105.8$.

1-(3-Bromophenyl)-3,5-diphenyl-1H-pyrazole (3am) ${ }^{13}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), bis(3-bromophenyl)iodonium trifluoromethanesulfonate ($0.141 \mathrm{~g}, 0.24 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3 am as a yellow oil ($0.055 \mathrm{~g}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4,144.6,141.2,132.8,130.4,130.2,130.0,128.81,128.76,128.70$ (2C), 128.3, 128.2, 125.9, 123.7, 122.5, 105.8.

3,5-Diphenyl-1-(o-tolyl)-1H-pyrazole (3an) ${ }^{11}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ $\mathrm{mmol})$, di-o-tolyliodonium trifluoromethanesulfonate $(0.110 \mathrm{~g}, 0.24 \mathrm{mmol})$ and 2,6 -di-tert-
butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3an as a yellow oil ($0.036 \mathrm{~g}, 58 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6$, $145.4,139.4,135.6,133.0,131.0,130.1,128.9,128.5,128.3,128.1,128.0,127.8,127.7,126.5$, 125.7, 103.1, 17.6.

1-Mesityl-3,5-diphenyl-1H-pyrazole (3ao) ${ }^{11}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.075 \mathrm{~g}, 0.2$ mmol), dimesityliodonium trifluoromethanesulfonate $(0.123 \mathrm{~g}, 0.24 \mathrm{mmol})$ and 2,6-di-tertbutylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (4% ethyl acetate in hexane) gave 3ao as a white solid ($0.019 \mathrm{~g}, 31 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.8,145.3,138.9,136.4,136.1,133.5,130.3,129.2,128.7,128.6,128.2,127.9$, 127.2, 125.8, 102.6, 21.2, 17.8.

1,3-Diphenyl-5-(p-tolyl)-1H-pyrazole (3ba) ${ }^{7}$ and 1,5-Diphenyl-3-(p-tolyl)-1H-pyrazole $\left(3 b a^{\prime}\right)^{14}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)-4-methyl- $\mathrm{N}^{\prime}-(1-$ phenyl-3-(p-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.077 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-
di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.3 ratio) 3ba and 3ba' as a white solid $(0.047 \mathrm{~g}, 76 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $7.84-7.77(\mathrm{~m}, 2 \mathrm{H}$, major), $7.45-7.07(\mathrm{~m}, 24 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 2.38\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major), $2.34\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 152.0,144.2,140.1,137.7,130.6,130.2,129.3,128.8$, 128.6, 128.4, 128.2, 127.3, 125.7, 125.3, 105.0, 21.3. minor regioisomer $\delta 151.9,144.4,140.2$, 138.2, 130.6, 130.2, 129.1, 128.7, 128.6, 128.2, 127.9, 127.3, 125.8, 125.3, 104.9, 21.2.

5-(4-Methoxyphenyl)-1,3-diphenyl-1H-pyrazole (3ca) ${ }^{14}$ and 4-(3-(4-Methoxypheny)-5-phenyl-1H-pyrazol-1-yl)benzene-1-ylium (3ca') ${ }^{15}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)- N^{\prime}-(3-(4-methoxyphenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.080 g , 0.2 mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.75 ratio) 3ca and 3ca' as a white solid ($0.051 \mathrm{~g}, 78 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ ($\mathrm{m}, 2 \mathrm{H}$, minor), 7.87 - 7.83 ($\mathrm{m}, 2 \mathrm{H}$, major), $7.45-7.25$ $(\mathrm{m}, 18 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}$, minor), $7.20-7.17$ ($\mathrm{m}, 1 \mathrm{H}$, major), 6.98-6.96(m, 1H, major), $6.96-6.94(\mathrm{~m}, 1 \mathrm{H}$, minor), $6.87-6.84(\mathrm{~m}, 1 \mathrm{H}$, major), $6.84-6.82(\mathrm{~m}, 1 \mathrm{H}$, minor), 6.76 (s , 1 H , minor), 6.75 ($\mathrm{s}, 1 \mathrm{H}$, major), 3.84 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.80 ($\mathrm{s}, 3 \mathrm{H}$, minor). ${ }^{13} \mathbf{C}$ NMR (126 MHz , CDCl_{3}) major regioisomer $\delta 159.7,151.9,144.4,140.3,130.8,128.9,128.8,128.5,128.0$, 127.4, 127.2, 125.9, 125.4, 114.1, 104.9, 55.4. minor regioisomer $\delta 159.7,151.9,144.3,140.4$, 133.2, 130.1, 128.9, 128.7, 128.3, 127.4, 125.9, 125.4, 123.1, 114.0, 104.8, 55.4.

[^0]

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)- N^{\prime}-(3-(4-fluorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.078 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) 3da and 3da' as a white solid ($0.045 \mathrm{~g}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}$, 16 H), $7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}$, minor), $7.06-6.99(\mathrm{~m}, 1 \mathrm{H}$, major), $6.80(\mathrm{~s}$, 1 H , major), 6.77 ($\mathrm{s}, 1 \mathrm{H}$, minor). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 162.7$ (d, $J=248.9 \mathrm{~Hz}$), 151.2, 144.6, 140.1, 130.72, 130.67, 129.1 (d, $J=7.9 \mathrm{~Hz}$), 128.6, 128.5, 127.7, 127.6, $126.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 125.4,115.7(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 105.1$. minor regioisomer δ $162.9(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 152.1,143.5,140.2,133.1,130.6,129.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}), 128.2,127.7,127.6,125.9,125.4,115.7(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 105.3 .{ }^{\mathbf{1}} \mathbf{F}\{\mathbf{1 H}\} \mathbf{N M R}(373$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.59,-114.05$.

5-(4-Chlorophenyl)-1,3-diphenyl-1H-pyrazole (3ea) ${ }^{10}$ and 3-(4-Chlorophenyl)-1,5-diphenyl- $\mathbf{H} \boldsymbol{H}$-pyrazole ($\mathbf{3 e a}^{\prime}$) ${ }^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)- N^{\prime}-(3-(4-chlorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.082 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) 3ea and 3ea' as a yellow solid ($0.052 \mathrm{~g}, 78 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{3 e a}), 7.89(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}$, 2H, 3ea'), $7.49-7.28$ (m, 22H), $7.26-7.22$ (m, 2H), 6.85 (s, 1H, 3ea), 6.82 (s, 1H, 3ea'). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3ea $\delta 152.2$, 144.7, 140.2, 133.8, 133.0, 129.2, 129.0, $128.9,128.7,128.5,128.2,127.7,125.9,125.5,105.4$. compound 3ea' $\delta 151.0,143.3,140.0$, $134.5,131.7,130.5,130.1,129.1,128.9,128.8,127.8,127.2,125.4,121.7,105.2$.

5-(4-Bromophenyl)-1,3-diphenyl-1H-pyrazole (3fa) ${ }^{10}$ and 3-(4-Bromophenyl)-1,5-diphenyl- $\mathbf{1 H}$-pyrazole ($\left.\mathbf{3 f a ^ { \prime }}\right)^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)-N'-(3-(4-bromophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.090 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.6 ratio) 3fa and 3fa' as a yellow solid ($0.056 \mathrm{~g}, 75 \%$).
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 7.83 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.58 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), $7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 14 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}$, major), 7.18 ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 6.85 ($\mathrm{s}, 1 \mathrm{H}$, minor), 6.83 ($\mathrm{s}, 1 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) major regioisomer $\delta 150.9,144.7,140.0,132.1,131.8,130.4,129.0,128.8$, 128.54, 128.45, 127.6, 127.4, 125.3, 122.0, 105.1. minor regioisomer ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): δ $152.2,143.2,139.9,132.9,131.8,130.3,129.5,129.15,128.8,128.2,127.8,125.9,125.4$, 122.7, 105.4 .

1,5-Diphenyl-3-(m-tolyl)-1H-pyrazole (3ga) and 1,3-diphenyl-5-(m-tolyl)-1H-pyrazole $\left(3 \mathrm{ga}^{\prime}\right)^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)-4-methyl-N'-(1-phenyl-3-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.077 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) 3ga and 3ga' as a yellow oil ($0.045 \mathrm{~g}, 73 \%$).
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 17 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H , major), 6.83 (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$, Minor), 2.33 ($\mathrm{s}, 3 \mathrm{H}$, Major). ${ }^{13} \mathbf{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 152.1,144.4,140.2,138.3,133.0,130.6,128.9,128.84$, 128.77, 128.6, 128.5, 128.3, 127.4, 126.5, 125.4, 123.0, 105.3, 21.5. minor regioisomer $\delta 151.9$, 144.6, 140.2, 138.2, 133.1, 130.5, 129.4, 129.1, 129.0, 128.7, 128.3, 128.0, 127.5, 125.9, 125.8, 125.3, 105.2, 21.4. HRMS-ESI (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}]^{+} 310.1470$; found 310.3104.

3-(2-Fluorophenyl)-1,5-diphenyl-1H-pyrazole (3ha) and 3-(2-fluorophenyl)-1,5-diphenyl-1H-pyrazole (3ha')

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)- N^{\prime}-(3-(2-fluorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.078 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) 3ha and 3ha' as a yellow oil ($0.047 \mathrm{~g}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inseparable regioisomer $\delta 8.22-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.93(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 17 \mathrm{H}), 7.30-7.06(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) inseparable regioisomers $\delta 160.4(\mathrm{~d}, J=249.6 \mathrm{~Hz}$), $159.5(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 152.1,146.7,144.1,140.2(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 138.1,133.0,131.4(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 130.5,129.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 129.0,128.9,128.8,128.7,128.6$ (d, $J=3.6 \mathrm{~Hz}$), 128.5, 128.3, 128.0, 127.6, 127.4, 125.9, 125.4, 124.4, 124.3 ($\mathrm{d}, J=3.4 \mathrm{~Hz}$), $124.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=21.6 \mathrm{~Hz})$, 116.1, 116.0, $108.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 106.8 .{ }^{19} \mathbf{F}\{\mathbf{1 H}\} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.57$, 115.83. HRMS-ESI (m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 315.1292$; found 315.1305 .

1,3-Diphenyl-5-(trimethylsilyl)-1H-pyrazole (3ia) and 1,5-Diphenyl-3-(trimethylsilyl)-1H-pyrazole (3ia')

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)-4-methyl-N'-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.074 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers ($0.78: 1$ ratio) 3ia and 3ia' as a yellow oil ($0.037 \mathrm{~g}, 64 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (br s, 4H), 7.16 (br s, 4 H), $7.13-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.07-7.04$ $(\mathrm{m}, 4 \mathrm{H}), 6.45\left(\mathrm{~s}, 1 \mathrm{H}\right.$, major), $6.45\left(\mathrm{~s}, 1 \mathrm{H}\right.$, minor), $0.21\left(\mathrm{~s}, 9 \mathrm{H}\right.$, major), $0.21\left(\mathrm{~s}, 9 \mathrm{H}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 154.1,140.4,131.1,128.9,128.8,128.5,128.4$, $128.1,127.5,125.6,114.5,-0.8$. minor isomer 154.1, 143.2, 129.1, 128.9, 128.8, 128.5, 128.0, 127.5, 127.4, 125.4, 114.1, -0.9. HRMS-ESI (m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 293.1169$; found 293.1173.

1,5-Diphenyl-3-(p-tolyl)-1H-pyrazole (3ja) ${ }^{10}$ and 1,3-Diphenyl-5-(p-tolyl)-1H-pyrazole $\left(\mathbf{3 j a} \mathbf{a}^{10}{ }^{10}\right.$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)-4-methyl-N'-(3-phenyl-1-(p-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.077 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) 3ja and $\mathbf{3 j} \mathbf{a}^{\prime}$ as a white $\operatorname{solid}(0.044 \mathrm{~g}, 72 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.16 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 6.83 ($\mathrm{s}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.39 ($\mathrm{s}, 3 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 152.0,144.5,140.3,138.4,130.8,129.3,129.0$, 128.7, 128.6, 128.1, 127.8, 127.5, 126.0, 125.5, 105.1, 21.4. minor regioisomer $\delta 152.1,144.6$, $140.3,137.9,133.2,130.3,129.5,129.0,128.9,128.8,128.4,126.0,125.9,125.5,105.2,21.5$.

5-(4-Methoxyphenyl)-1,3-diphenyl-1H-pyrazole (3ka) ${ }^{10}$ and 3 -(4-Methoxyphenyl)-1,5-diphenyl-1H-pyrazole (3ka') ${ }^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)-N'-(1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.081 g , 0.2 mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column
chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.74 ratio) 3ka and $\mathbf{3 k a}$ ' as a white solid ($0.051 \mathrm{~g}, 78 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.93$ ($\mathrm{m}, 2 \mathrm{H}$, minor), $7.92-7.85$ ($\mathrm{m}, 2 \mathrm{H}$, major), $7.51-$ $7.27(\mathrm{~m}, 18 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, major), $6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $6.84-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.88$ ($\mathrm{s}, 3 \mathrm{H}$, major), $3.84\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) major regioisomer $\delta 159.7,151.9,144.4,140.3,130.8,129.0$ (2C), 128.8, 128.4, 127.4, 127.2, 125.4, 123.1, 114.2, 104.9, 55.4. minor regioisomer $\delta 159.7,152.0,144.4,140.4,133.3$, $130.2,129.0$ (2C), 128.9, 128.6, 128.1, 125.9, 123.1, 114.1, 104.8, 55.4.

3-(4-chlorophenyl)-1,5-diphenyl-1H-pyrazole (3la) ${ }^{10}$ and 5-(4-Chlorophenyl)-1,3-diphenyl- \mathbf{H}-pyrazole (31a') ${ }^{10}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)-N'-(1-(4-chlorophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.081 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) 3la and 3la' as a yellow oil ($0.043 \mathrm{~g}, 66 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inseparable regioisomer $\delta 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.83(\mathrm{~m}$, 2H), $7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.28$ $-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) inseparable regioisomer $\delta 152.2,150.9,144.7,143.3,140.1,140.0,134.5,133.8,133.0,131.7$, $130.5,130.1,129.2,129.0,128.92,128.88$ (2C), 128.83, 128.77, 128.6, 128.5, 128.2, 127.8, 127.7, 127.1, 125.9, 125.4, 125.4, 105.4, 105.2.

1,5-diphenyl-3-(m-tolyl)-1H-pyrazole (3ma) ${ }^{10}$ and 1,3-Diphenyl-5-(m-tolyl)-1H-pyrazole (3ma')

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)-4-methyl-N'-(3-phenyl-1-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.077 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.97 ratio) 3ma and $\mathbf{3 m a}$ as a yellow soild ($0.042 \mathrm{~g}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 17 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 2.44\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), 2.33 ($\mathrm{s}, 3 \mathrm{H}$, major). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 152.2,144.4,140.3,138.3,133.2,130.6,129.5,128.9,128.9,128.8,128.6$, 128.4, 128.1, 127.5, 125.4, 123.1, 105.4, 21.5. minor regioisomer $\delta 152.0,144.6,140.3,138.3$, 133.0, 130.7, 129.1, 129.0, 128.7, 128.6, 128.4, 128.0, 127.5, 126.5, 126.0, 125.4, 105.2, 21.6. HRMS-ESI (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 311.1543$; found 311.1553

3-(3-Chlorophenyl)-1,5-diphenyl-1H-pyrazole (3na) ${ }^{13}$ and 5-(3-Chlorophenyl)-1,3-diphenyl-1H-pyrazole (3na') ${ }^{17}$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (Z)-N'-(1-(3-chlorophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.081 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.90 ratio) 3na and 3na' as a yellow oil ($0.045 \mathrm{~g}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 20 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (s, 1 H , major), 6.82 ($\mathrm{s}, 1 \mathrm{H}$, minor). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 150.7$, $144.7,140.0,135.0,134.7,132.3,129.2,128.8,128.6,128.5,128.0,127.7,127.0,125.9,125.4$, 124.0, 105.6. minor regioisomer 152.2, 142.9, 139.9, 134.5, 132.9, 130.4, 130.0, 129.8, 129.1, $128.8,128.7,128.5,128.2,127.9,125.9,125.4,105.3$.

1,3-Diphenyl-5-(o-tolyl)-1H-pyrazole (3oa) ${ }^{10}$ and 1,5-Diphenyl-3-(o-tolyl)-1H-pyrazole $\left(30 a^{\prime}\right)^{13}$

(30a $+3 \mathbf{3 o a}=61 \%$)
[30a:30a' $=0.45: 1]$
The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (E)-4-methyl-N'-(3-phenyl-1-(o-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.077 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.45 ratio) 3oa and 3oa' as a yellow oil ($0.038 \mathrm{~g}, 61 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.46-7.20(\mathrm{~m}, 23 \mathrm{H}$), 6.78 ($\mathrm{s}, 1 \mathrm{H}$, major), 6.74 ($\mathrm{s}, 1 \mathrm{H}$, minor), 2.66 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.08 (s, 3H, major). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 152.5,143.4,140.2$, 136.2, 133.1, 132.9, 130.9, 129.4, 128.9, 128.8, 128.7, 128.6, 127.9, 127.3, 125.8, 123.7, 106.2, 20.0. minor regioisomer $\delta 152.5,143.4,140.2,136.2,133.1,132.9,130.9,130.7,129.4,128.9$, $128.6,128.3,127.9,127.3,125.9,125.2,108.3,21.5$.

3-(2-bromophenyl)-1,5-diphenyl-1H-pyrazole (3pa) ${ }^{13}$ and 5 -(2-Bromophenyl)-1,3-diphenyl-1H-pyrazole (3pa')

$\left(3 \mathbf{p a}+3 \mathbf{p a}^{\prime}=71 \%\right)$
[3pa:3pa' $=0.35: 1]$

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, \quad 0.25 \mathrm{mmol})$, (E)- $\mathrm{N}^{\prime}-(1-(2-$ bromophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.090 \mathrm{~g}, 0.2$ mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.35 ratio) 3pa and 3pa' as a yellow oil ($0.053 \mathrm{~g}, 71 \%$).
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.92 ($\mathrm{d}, J=7.7,1 \mathrm{H}$, minor), 7.73 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 7.65 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, major), 7.48 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 - $7.22(\mathrm{~m}, 21 \mathrm{H}), 7.10\left(\mathrm{~s}, 1 \mathrm{H}\right.$, minor), 6.88 ($\mathrm{s}, 1 \mathrm{H}$, major). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) major regioisomer $\delta 151.6,142.6,140.1,133.2,132.3,130.5,128.8,128.7,128.4,128.1,127.5$, 127.4, 127.2, 125.9, 125.3, 124.1, 106.8. minor regioisomer $\delta 151.1,143.3,140.0,134.2,133.6$, 133.0, 132.5, 131.3, 130.5, 129.3, 129.0, 128.9, 128.5, 128.4, 127.6, 122.1, 109.0. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 377.0471$; found 377.0485.

1,5-Diphenyl-3-(thiophen-2-yl)-1H-pyrazole (3qa) ${ }^{13}$ and 1,3-Diphenyl-5-(thiophen-2-yl)-1H-pyrazole (3qa')

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (E)-4-methyl-N'-(3-phenyl-1-(thiophen-2-yl)prop-2-yn-1-ylidene)benzenesulfonohydrazide ($0.076 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.49 ratio) 3qa and 3qa' as a yellow oil ($0.041 \mathrm{~g}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 11 \mathrm{H}), 7.38-7.22(\mathrm{~m}$, 10 H), 7.10 (dd, $J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 6.97 (dd, $J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.89 (s, 1 H , major), 6.86 (dd, $J=3.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ ($\mathrm{s}, 1 \mathrm{H}$, minor). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major regioisomer $\delta 151.9,139.9,139.8,138.3,132.8,131.3,129.1,128.7,128.4,128.1,127.4$, 126.6, 126.3, 125.9, 105.0. minor regioisomer $\delta 147.3$, 144.4, 136.3, 130.3, 129.0, 128.8,
128.53, 128.46, 127.6, 127.5, 127.3, 125.4, 124.9, 124.2, 105.2. HRMS-ESI (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$287.1179; found 287.1178.

5-Cyclohexyl-1,3-diphenyl-1H-pyrazole (3ra) and 3-Cyclohexyl-1,5-diphenyl-1Hpyrazole (3ra')

(3ra $\mathbf{~} \mathbf{3 r a} \mathbf{a}^{\prime}=58 \%$)
[3ra:3ra' $=0.3: 1]$
The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol})$, (Z)- N^{\prime}-(1 -cyclohexyl-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide ($0.076 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (7\% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.3 ratio) 3ra and $\mathbf{3 r a}$ ' as a yellow solid ($0.055 \mathrm{~g}, 58 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.38(\mathrm{~m}$, 7 H), $7.36-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}$, major), $6.36(\mathrm{~s}, 1 \mathrm{H}$, minor), $2.84-2.76(\mathrm{~m}, 1 \mathrm{H}$, minor), $2.74-2.66(\mathrm{~m}, 1 \mathrm{H}$, major), 2.18-2.01 (m, 2H, minor), $1.99-1.63(\mathrm{~m}, 9 \mathrm{H}), 1.58-1.39(\mathrm{~m}$, $4 \mathrm{H}), 1.38-1.11(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ inseparable mixture of regioisomers δ $159.1,151.5,150.9,143.2,140.3,140.1,133.5,131.0,129.2,128.8,128.7,128.6,128.4,128.1$, 128.0, 127.7, 127.0, 126.0, 125.7, 125.2, 105.1, 100.8, 37.7, 35.4, 33.6, 33.4, 26.5, 26.3, 26.2, 25.9. HRMS-ESI (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303.1861$; found 303.1982.

3-((3r, 5r, 7r)-Adamantan-1-yl)-1,5-diphenyl-1H-pyrazole (3sa)

The compound was prepared according to GP2 using copper(I) chloride ($0.001 \mathrm{~g}, 0.02 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate $(0.108 \mathrm{~g}, 0.25 \mathrm{mmol}), \mathrm{N}^{\prime}-((Z)-1-((3 \mathrm{r}, 5 \mathrm{r}, 7 \mathrm{r})-$ adamantan-1-yl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.086 g , 0.2 mmol) and 2,6-di-tert-butylpyridine ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (6% ethyl acetate in hexane) gave 3sa as a yellow solid ($0.034 \mathrm{~g}, 48 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{br} \mathrm{s}$, 2 H), 6.31 ($\mathrm{s}, 1 \mathrm{H}$), 2.04 (br s, 3H), 2.01 (br s, 6H), 1.75 (br s, 6H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,142.9,140.4,131.2,128.8,128.7,128.3,127.9,126.9,125.3,104.1,42.6,36.9,34.2$, 28.7. HRMS-ESI (m/z): calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.2169$; found 355.2170.

2.5. Control Experiments: -

a) The reaction was performed according to GP2 using (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide $(0.037 \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, diphenyliodonium trifluoromethanesulfonate $(0.086 \mathrm{~g}, 0.2 \mathrm{mmol})$. After 24 h , purification by column chromatography (10% ethyl acetate in hexane) gave $\mathbf{4 a}$ as a white solid ($0.024 \mathrm{~g}, 66 \%$).
b) The reaction was performed according to GP2 using (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide $\quad(0.037 \quad \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, sodium trifluoromethanesulfonate $(0.069 \mathrm{~g}, 0.2 \mathrm{mmol})$. After 24 h , purification by column chromatography (10% ethyl acetate in hexane) gave $\mathbf{4 a}$ as a white solid ($0.021 \mathrm{~g}, 63 \%$).
c) The reaction was performed according to GP2 using copper(I) chloride ($0.5 \mathrm{mg}, 0.01 \mathrm{mmol}$), 3,5-diphenyl-1-tosyl-1H-pyrazole $\quad(0.037 \quad \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, diphenyliodonium trifluoromethanesulfonate ($0.086 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($22 \mu \mathrm{~L}, 0.2$ mmol). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.026 \mathrm{~g}, 88 \%$).
d) The reaction was performed according to GP2 using 3,5-diphenyl-1-tosyl- 1 H -pyrazole ($0.037 \mathrm{~g}, 0.1 \mathrm{mmol}$), diphenyliodonium trifluoromethanesulfonate ($0.086 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$).
e) The reaction was performed according to GP2 using copper(I) chloride ($0.5 \mathrm{mg}, 0.01 \mathrm{mmol}$), 3,5-diphenyl-1-tosyl-1 H -pyrazole $\quad(0.037 \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, diphenyliodonium trifluoromethanesulfonate $(0.086 \mathrm{~g}, 0.2 \mathrm{mmol})$ and 2,6-di-tert-butylpyridine ($22 \mu \mathrm{~L}, 0.2$ mmol). After 4 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid $(0.010 \mathrm{~g}, 33 \%)$ and $7 \mathbf{a}$ as a white solid $(0.011 \mathrm{~g}, 52 \%)$.
f) The reaction was performed according to GP2 using 3,5-diphenyl- 1 H -pyrazole ($0.022 \mathrm{~g}, 0.1$ mmol), diphenyliodonium trifluoromethanesulfonate ($0.086 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tertbutylpyridine ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.004 \mathrm{~g}, 15 \%$).
g) The reaction was performed according to GP2 using copper(I) chloride ($0.5 \mathrm{mg}, 0.01 \mathrm{mmol}$), 3,5-diphenyl-1-tosyl-1 H -pyrazole $\quad(0.037 \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, diphenyliodonium trifluoromethanesulfonate ($0.086 \mathrm{~g}, 0.2 \mathrm{mmol}$), TEMPO ($0.030 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 2,6-di-tertbutylpyridine ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.021 \mathrm{~g}, 71 \%$).

The reaction was performed according to GP2 using copper(I) chloride ($0.5 \mathrm{mg}, 0.01 \mathrm{mmol}$), 3,5-diphenyl-1-tosyl-1 H -pyrazole $\quad(0.037 \mathrm{~g}, \quad 0.1 \mathrm{mmol})$, diphenyliodonium trifluoromethanesulfonate $(0.086 \mathrm{~g}, 0.2 \mathrm{mmol})$, BHT $(0.044 \mathrm{~g}, 0.2 \mathrm{mmol})$ and 2,6-di-tertbutylpyridine ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.023 \mathrm{~g}, 78 \%$).

2.6. Scale up experiment and Post-Synthetic Modifications: -

a) The reaction was performed according to GP2 using copper(I) chloride ($0.027 \mathrm{~g}, 0.27 \mathrm{mmol}$), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (1 g, 2.67 mmol), diphenyliodonium trifluoromethanesulfonate ($1.4 \mathrm{~g}, 3.2 \mathrm{mmol}$) and 2,6-di-tertbutylpyridine ($1.1 \mathrm{~g}, 5.4 \mathrm{mmol}$). After 24 h , purification by column chromatography (3% ethyl acetate in hexane) gave 3aa as a yellow solid ($0.522 \mathrm{~g}, 66 \%$).
b) In a pre-dried flask compound $\mathbf{3 a a}(0.074 \mathrm{~g}, 0.25 \mathrm{mmol}, 1.0$ equiv.) and NBS (0.054 mg , $0.3 \mathrm{mmol}, 1.2$ equiv.) were dissolved in dichloromethane (5 mL) and stirred at $50{ }^{\circ} \mathrm{C}$. After 12 h, the reaction mixture was evaporated under vacuum and the crude mixture was purified by column chromatography (1% ethyl acetate in hexane) to afford the desired product 5 as a white solid ($0.087 \mathrm{~g}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H})$, $7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,142.1,139.9$, 132.1, 130.3, 129.1 (2C), 128.9, 128.6, 128.5, 128.4, 128.1, 127.6, 124.8, 95.0.

In a pre-dried Schlenk flask $5\left(0.094 \mathrm{~g}, 0.25 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.009 \mathrm{~g}, 0.012$ mmol, 0.05 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($71 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 2$ equiv) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml})$ were added and stirred for 10 minutes at $25{ }^{\circ} \mathrm{C}$ under N_{2}. Subsequently, $\mathrm{CuI}(0.005 \mathrm{~g}, 0.025 \mathrm{mmol}, 0.1$ equiv) was added and the reaction mixture was stirred for an additional 10 minutes. Then phenyl acetylene ($31 \mu 1,0.27 \mathrm{mmol}, 1.1$ equiv) was added in a single portion and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction was quenched by sat. $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ solution and the aqueous layer was extracted with ethyl acetate ($5 \mathrm{~mL} \times 3$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated using rotary evaporator. The crude
product was then purified using flash chromatography on silica gel (2% ethyl acetate in hexane) to afford the desired product $\mathbf{6}$. as a yellow oil ($0.055 \mathrm{~g}, 55 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 10 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,145.8,139.7,132.6,131.1,129.7$, 129.1, 129.0, 128.8, 128.4 (2C), 128.3 (2C), 127.9, 127.7, 127.2, 125.3, 123.8, 102.3, 93.4, 82.7.

3. Crystallographic data of 1-(4-Bromophenyl)-3,5-diphenyl-1H-pyrazole

 (3ag): -The crystal 3ag was prepared by slow evaporation of solvent from a concentrated solution of 3ag in ethanol.

Crystal Structure data table of 3ag

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrN}_{2}$
CCDC No	2261058
Formula weight	375.26
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	10.9325(5)
b/Å	16.9864(7)
c/Å	9.6085(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.177(5)
γ^{\prime}	90
Volume/A ${ }^{3}$	1695.29(14)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.470
μ / mm^{-1}	2.428
$\mathrm{F}(000)$	760.0
Crystal size/ mm^{3}	$0.2 \times 0.2 \times 0.2$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 7.21$ to 60.568	
Index ranges	$-14 \leq \mathrm{h} \leq 15,-21 \leq \mathrm{k} \leq 22,-11 \leq 1 \leq 12$
Reflections collected	16688
Independent reflections	$4120\left[\mathrm{R}_{\text {int }}=0.0386, \mathrm{R}_{\text {sigma }}=0.0346\right]$
Data/restraints/parameters	4120/0/217
Goodness-of-fit on F^{2}	0.828
Final R indexes [$\mathrm{l}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0321, \mathrm{wR}_{2}=0.0986$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0437, \mathrm{wR}_{2}=0.1067$
Largest diff. peak/hole / e $\AA^{-3} 0.43 /-0.30$	

4. References

1. J. Liu, M. F. L. Parker, S. Wang, R. R. Flavell, F. D. Toste, D. M. Wilson., Chem. 2021, 7, 2245 - 2255.
2. Q. Wang, L. He, K. K. Li, G. C. Tsui., Org. Lett. 2017, 19, 658 - 661.
3. B. B. Lui, W. B. Cao, F. Wang, S. Y. Wang, S. J. Ji., J. Org. Chem. 2018, 83, 11118 11124.
4. N. Li, B. Li, S. Chen., Synlett. 2016, 27, 1597 - 1601.
5. R. K. Samanta, P. Meher, S. Murarka., J. Org. Chem. 2022, 87, 10947-10957.
6. M. Zora, A. Kivrak., J. Org. Chem. 2011, 76, 9379-9390.
7. X. Zhang, J. Kang, J. Wu, W. Yu, J. Chang., J. Org. Chem. 2014, 79, 10170-10178.
8. X. Li, L.He, H. Chen, W. Wu, H. Jiang., J. Org. Chem. 2013, 78, 8, 3636-3646.
9. V. K. Rao, R. Tiwari, B. S. Chhikara, A. N. Shirazi, K. Parang, A. Kumar., RSC Adv., 2013,3, 15396-15403.
10. X. W. Fan, T. Lei, C. Zhou, Q. Y. Meng., B. Chen, C. H. Tung, L. Z. Wu., J. Org. Chem. 2016, 81, 16, 7127-7133.
11. Z. Gonda, Z. Novak., Chem. Eur. J. 2015, 21, 16801-16806.
12. S. Mukherjee, P. S. Salini, A. Srinivasan, S. Peruncheralathan., Chem. Commun., 2015, 51, 17148-17151.
13. R. Mondal, A. M. Guin, S. Pal, S. Mondal, N. D. Paul, Org. Chem. Front., 2022, 9, 5246-5258.
14. S. M. Landge, A. Schmidt, V. Outerbridge, B. Torok., Synlett 2007, 10, 1600-1604.
15. N. Raghav, M. Singh., Boiorg. Med. Chem., 2014, 22, 4233-4245.
16. P. Liu, Y. M. Pan, Y. L. Xu, H. S. Wang., Org. Biomol. Chem., 2012, 10, 4696-4698.
17. L. Tu, L. Gao, X. Wang, R. Shi, R. Ma, J. Li, X. Lan, Y. Zheng, J. Liu., J. Org. Chem. 2021, 86, 559-573.

5. NMR Spectra of Compounds ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 r}$

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |
| $10(\mathrm{ppm})$ | |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 1 s

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3aa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ab

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ac

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ad

8 m

Ceres)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ae

${ }^{19} \mathrm{~F}\{\mathbf{1 H}\}$ NMR of 3ae

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3af

 -10563

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 ag

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ah

${ }^{19} \mathrm{~F}\{1 \mathrm{H}\}$ NMR of 3ah

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ai

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3aj

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ak

N8 等

${ }^{19} \mathrm{~F}\{\mathbf{1 H}\}$ NMR of 3ak

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3al

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3am

等品

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3an

$\xrightarrow{8}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ao

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b a}$ and 3ba'

${ }^{13} \mathrm{C}$ NMR of 3ba and 3ba' (expansion)
8.8
畐需
890
9

$\stackrel{\infty}{8} 8$
$\underset{1}{8} \frac{0}{7}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 cb and 3cb,

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3da and 3da'

\qquad
 Whamedull U

${ }^{19} \mathbf{F}\{\mathbf{1 H}\}$ NMR of 3da and 3da'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ea and 3ea'

 숑

210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f a}$ and $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ga and 3ga,

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ha and 3ha'

${ }^{19} \mathrm{~F}\{1 \mathrm{H}\}$ NMR of 3ha and 3ha'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ia and 3ia'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j a}$ and $\mathbf{3 j a}{ }^{\mathbf{\prime}}$

霛霛

[^1]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3kaand 3ka,

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3la and 31a'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 ma and $3 \mathrm{ma}{ }^{\prime}$

3la
$r-l$
75
888 mb \% 8
8.8
100

$\begin{array}{llllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3na and 3na'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 oa and 3oa'

$$
\begin{aligned}
& \text { Nin 88888900888 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 pa and 3pa'

示定

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 qa and $3 q \mathrm{a}{ }^{\prime}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3ra and 3ra'

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3sa

जैक के

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5

$\stackrel{8}{\vdots}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 6

$\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^0]: 5-(4-Fluorophenyl)-1,3-diphenyl-1H-pyrazole (3da) ${ }^{10}$ and 3-(4-Fluorophenyl)-1,5-diphenyl-1H-pyrazole (3da') ${ }^{10}$

[^1]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f1}(\mathrm{ppm})\end{array}$

