Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Copper-catalyzed tandem cyclization/arylation of α , β -alkynic hydrazones with diaryliodonium salts: synthesis of *N*-arylpyrazoles

Sushanta K. Parida, Saurav Joshi, Sandip Murarka*

Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India. Email: <u>sandipmurarka@iitj.ac.in.</u>

Table of Contents

1.	Complete Optimization Table		
2.	Experimental Section		
2.1.	General Information		
2.2	Preparation of Starting Material		
	2.2.1. General Procedure (GP1) for the synthesis of α , β -alkynic hydrazones	S 6	
	2.2.2. Preparation of Diaryliodonium Triflates		
2.3	General Procedure (GP2) for the Synthesis of N-aryl Pyrazole	S 10	
2.4	Characterization data of final compounds		
2.5	Control Experiments		
2.6	Scale-up experiment and Post-Synthetic Modifications		
3.	Crystallographic Data of 1-(4-Bromophenyl)-3,5-diphenyl-1H-pyrazole		
4.	References	S36	
5.	NMR Spectra of Compounds	S37	

1. Complete Optimization Table:

catalyst (10 mol%), base (2 equiv), solvent, 90 °C, 24 h

OTf

2a

SI	Cu catalyst	Base/additives	Solvent	Temp.	Yield of	Yield of
No	(10 mol%)	(2 equiv)			3a (%) ^b	4a (%) ^b
1	CuCl	dtbpy	DCE	90	62	28
2	CuCl	dtbpy	1,4-Dioxane	90	56	23
3	CuCl	dtbpy	Toluene	90	61	10
4	CuCl	dtbpy	DMF	90	82	0
5	CuCl	dtbpy	DMSO	90	64	21
6	CuBr	dtbpy	DMF	90	61	0
7	Cu(OAc) ₂	dtbpy	DMF	90	79	0
8	Cu(OTf)2	dtbpy	DMF	90	71	0
9	CuI	dtbpy	DMF	90	68	0
10	CuTC	dtbpy	DMF	90	59	0
11	CuCl	DBU	DMF	90	52	Trace
12	CuCl	DABCO	DMF	90	76	Trace
13	CuCl	Et ₃ N	DMF	90	74	Trace
14	CuCl	K ₂ CO ₃	DMF	90	46	38
15	CuCl		DMF	90	63	Trace
16		dtbpy	DMF	90	0	74
17 ^c	CuCl	dtbpy	DMF	90	68	0
18 ^d	CuCl	dtbpy	DMF	90	79	0
19	CuCl	dtbpy	DMF	rt	Trace	64
20	CuCl	dtbpy	DMF	110	81	0
21	CuCl	dtbpy	DMF	60	28	56
22 ^e	CuCl	dtbpy	DMF	90	83	0
22 ^f	CuCl	dtbpy	DMF	90	84	0
26 ^g	CuCl	dtbpy	DMF	90	71	0

23 ^h	CuCl	dtbpy	DMF	90	46	29
24^i	CuCl	dtbpy	DMF	90	83	0
25 ^j	CuCl	dtbpy	DMF	90	74	0

^aReaction Condition **1a** (0.1 mmol), **2a** (0.12 mmol), catalyst (10 mol%), base (2 equiv) and solvent (2 ml) under N₂ atmosphere at 90 °C for 24 h. ^bIsolated yield, ^cUsing 5 mol% of CuCl, ^dUsing 20 mol% of CuCl, ^eUsing 1.5 equiv of **2a**, ^fUsing 2 equiv of **2a**, ^gUsing 1.5 equiv dtbpy, ^hReaction was stirred for 12 h, ⁱReaction was stirred for 36 h, ^junder air.

2. Experimental Section

2.1. General Information: All the reactions were performed using pre-dried glassware and screw-cap vials. All the solvents were obtained from Merck (Emparta grade) and used without further drying or distillation. Terminal Alkyne, carboxylic acid derivatives, *p*-Toluenesulfonyl hydrazide, Copper catalyst and 2,6-Di-*tert*-butylpyridine (dtbpy) were obtained from commercial sources and used without further purification. All the acyl chloride were synthesized following the procedures given below.¹ The reported yields are of isolated compounds that are estimated to be >95% pure as determined by ¹H NMR and ¹³C NMR. Thin layer chromatography (TLC) was performed on Merck pre-coated silica gel 60 F₂₅₄ aluminum sheets with detection under UV light at 254 nm. Chromatographic separations were carried out on Avra silica gel (100-200 mesh or 230–400 mesh). Nuclear magnetic resonance (NMR) spectroscopy was performed using Bruker 500 MHz spectrometers. If not otherwise specified, chemical shifts (δ) are provided in ppm. HRMS spectra were recorded using Agilent 6546 LC/Q-TOF spectrometer. Single crystal X-ray diffractions were recorded using Rigaku Oxford diffractometer at 100 K.

2.2. Preparation of Starting Materials

The substrates of various α,β -alkynic hydrazones (1a, 1b, 1c, 1d, 1e, 1f, 1k and 1o),² (1g and 1q)³ and (1h, 1i, 1j, 1l and 1n)⁴ were prepared following the previous literature procedures and obtained characterization data were in alignment with the literature reported data.

2.2.1 General procedure (GP1) for the synthesis of α , β -alkynic hydrazones

In a pre-dried Schlenk flask acyl chloride (1.2 equiv), Pd(PPh₃)₂Cl₂ (0.02 equiv), Et₃N (1.2 equiv) and anhydrous THF were added and the resulting solution was stirred for 10 minutes at 25 °C under N₂. Following the addition of CuI (0.04 equiv), the reaction mixture was stirred for an additional 10 minutes. Subsequently, the terminal alkyne (1.0 equiv) was added in a single portion and the solution was stirred under ambient conditions for 12 h. Ethyl acetate was added once the reaction was finished, and the solution was then with 0.1 N HCl in a separatory funnel. The organic phase was dried over Na₂SO₄ and evaporated using rotary evaporator to separate the layers. The crude product was then purified using flash chromatography on silica gel with hexane/ethyl acetate as the eluent to produce the α , β -alkynic ketones. Then, to a solution of α , β -alkynic ketones (1.0 equiv) and *p*-toluenesulfonyl hydrazide (1.1 equiv) in EtOH was added concentrated sulfuric acid (1.1 equiv) in a dropwise fashion at 25 °C and the solution was stirred for 12 h. After completion, the reaction mixture was concentrated, and the crude product was purified by column chromatography on silica gel with hexane/ethyl acetate as the eluent to produce mixture was concentrated, and the crude product was purified by column chromatography on silica gel with hexane/ethyl acetate as the eluent to produce mixture was concentrated, and the solution was stirred for 12 h. After completion, the reaction mixture was concentrated, and the crude product was purified by column chromatography on silica gel with hexane/ethyl acetate as the eluent to produce the acetate was concentrated as the eluent to produce was purified by column chromatography on silica gel with hexane/ethyl acetate as the eluent to produce corresponding α , β -alkynic hyrazone.

(Z)-4-Methyl-N'-(3-phenyl-1-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (1m)

The compound was prepared according to GP1 by adding concentrated sulfuric acid (30 μ L, 0.55 mmol) dropwise over 1 min to a slurry of 3-phenyl-1-(m-tolyl)prop-2-yn-1-one (0.110 g, 0.5 mmol) and p-toluenesulfonyl hydrazide (0.103 g, 0.55 mmol) in EtOH (5 mL) at 25 °C. After 12 h, the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give **1m** as a white solid (0.153 g, 79%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.62 (s, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.67 – 7.60 (m, 2H), 7.52 – 7.43 (m, 3H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 9.2 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 2.44 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.4, 138.3, 136.1, 135.7, 134.0, 132.4, 131.1, 130.6, 129.8, 128.9, 128.4, 128.1, 127.2, 124.1, 120.4, 104.6, 77.5, 21.7, 21.6. **HRMS-ESI** (m/z): calcd for C₂₃H₂₀N₂O₂S [M + H]⁺ 389.1318; found 389.1324.

(*E*)-N'-(1-(2-Bromophenyl)-3-phenylprop-2-yn-1-ylidene)-4methylbenzenesulfonohydrazide (1p)

The compound was prepared according to GP1 by adding concentrated sulfuric acid (30 μ L, 0.55 mmol) dropwise over 1 min to a slurry of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (0.143 g, 0.5 mmol) and p-toluenesulfonyl hydrazide (103 mg, 0.55 mmol) in EtOH (5 mL) at 25 °C. After 12 h, the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give **1p** as a white solid (0.161 g, 71%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.77 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.70 – 7.52 (m, 3H), 7.48 – 7.37 (m, 4H), 7.35 – 7.31 (m, 3H), 7.25 – 7.20 (m, 1H), 2.44 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.6, 135.6, 135.50, 135.47, 133.9, 132.3, 131.3, 130.9, 130.6, 129.9, 128.8, 128.2, 127.6, 122.1, 120.5, 105.7, 78.2, 21.8. **HRMS-ESI** (m/z): calcd for C₂₂H₁₇BrN₂O₂S [M + H]⁺ 453.0267; found 453.0271.

(Z)-N'-(1-cyclohexyl-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (1r)

The compound was prepared according to GP1 by adding concentrated sulfuric acid (30 μ L, 0.55 mmol) dropwise over 1 min to a slurry of 1-cyclohexyl-3-phenylprop-2-yn-1-one (0.106 g, 0.5 mmol) and p-toluenesulfonyl hydrazide (103 mg, 0.55 mmol) in EtOH (5 mL) at 25 °C.

After 12 h, the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give **1r** as a white solid (0.144 g, 76%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.23 (s, 1H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.46 – 7.41 (m, 1H), 7.40 – 7.36 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 1.42 – 1.34 (m, 1H), 1.86 – 1.79 (m, 2H), 1.79 – 1.73 (m, 2H), 1.70 – 1.64 (m, 1H), 1.45 – 1.34 (m, 2H), 1.33 – 1.23 (m, 2H), 1.23 – 1.13 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.2, 143.8, 135.7, 132.3, 130.3, 129.7, 128.8, 128.0, 120.5, 103.6, 78.0, 44.5, 30.5, 25.9, 25.8, 21.8. **HRMS-ESI** (m/z): calcd for C₂₂H₂₄N₂O₂S [M + H]⁺ 381.1631; found 381.1636.

(Z)-N'-(1-((3r,5r,7r)-adamantan-1-yl)-3-phenylprop-2-yn-1-ylidene)-4methylbenzenesulfonohydrazide (1s)

The compound was prepared according to GP1 by adding concentrated sulfuric acid (30 μ L, 0.55 mmol) dropwise over 1 min to a slurry of 1-((3r, 5r, 7r)-adamantan-1-yl)-3-phenylprop-2-yn-1-one (0.132 g, 0.5 mmol) and p-toluenesulfonyl hydrazide (103 mg, 0.55 mmol) in EtOH (5 mL) at 25 °C. After 12 h, the crude product was purified by flash column chromatography on silica gel using 5% ethyl acetate in hexane to give **1s** as a white solid (0.148 g, 68%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.24 (s, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.57 – 7.51 (m, 2H), 7.48 – 7.38 (m, 3H), 7.34 (d, J = 8.1 Hz, 2H), 2.46 (s, 3H), 2.05 (br s, 3H), 1.82 (d, J = 2.1 Hz, 6H), 1.78 – 1.66 (m, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.1, 144.0, 135.5, 132.1, 130.1, 129.5, 128.7, 127.9, 120.6, 103.9, 77.2, 40.1, 39.7, 36.6, 28.2, 21.6. **HRMS-ESI** (m/z): calcd for C₂₆H₂₈N₂O₂S [M + H]⁺ 433.1944; found 433.1950.

2.2.2. Preparation of Diaryliodonium salts:

The diaryliodonium salts (2a-2p) were prepared following the literature procedures and obtained characterization data were in alignment with the literature-reported data.⁵

2.3. General procedure (GP2) for the synthesis of N-aryl Pyrazoles 3

A pre-dried Schlenk-tube was charged with copper(I) chloride (10 mol%), diaryliodonium salts (1.2 equiv), and hydrazone (1 equiv). The tube was evacuated and backfilled with nitrogen 3 times. Then a solution of 2,6-di-*tert*-butylpyridine (2 equiv) in DMF (2 ml) was added and the resulting reaction mixture was allowed to stir at 90 °C for 24 h. After completion, the reaction mixture was cooled to room temperature and quenched by the addition of sat. NaHCO₃ (5 ml). The resulting mixture was extracted with DCM (5 mL \times 3), combined organic layers was dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude residue was purified by column chromatography (3-5% Ethyl acetate in hexane) to yield the corresponding pyrazole derivatives **3**.

3,5-Diphenyl-1-(*p*-tolyl)-1*H*-pyrazole (3aa)⁶

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), diphenyliodonium trifluoromethanesulfonate (0.103 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.049 g, 82%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.41 – 7.27 (m, 11H), 6.84 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.1, 144.5, 140.3, 133.2, 130.7, 129.4, 128.9, 128.8, 128.6, 128.4, 128.1, 127.6, 126.0, 125.4, 105.3.

3,5-Diphenyl-1-(*p***-tolyl**)-1*H*-pyrazole (3ab)⁷

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), di-*p*-tolyliodonium trifluoromethanesulfonate (0.109 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3ab** as a white solid (0.045 g, 72%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.39 – 7.34 (m, 4H), 7.33 – 7.26 (m, 4H), 7.18 (d, J = 8.0 Hz, 2H), 6.85 (s, 1H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.6, 144.3, 137.5, 137.3, 132.9, 130.5, 129.4, 128.6, 128.5, 128.3, 128.1, 127.9, 125.7, 125.1, 104.8, 21.0.

1-(4-Methoxyphenyl)-3,5-diphenyl-1*H*-pyrazole (3ac)⁸

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-methoxyphenyl)iodonium trifluoromethanesulfonate (0.117 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave **3ac** as a white solid (0.036 g, 56%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 – 7.89 (m, 2H), 7.47 – 7.41 (m, 2H), 7.38 – 7.26 (m, 8H), 6.87 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 2.1 Hz, 1H), 3.80 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.0, 151.7, 144.4, 133.6, 133.3, 130.7, 128.8, 128.7, 128.6, 128.3, 128.0, 126.8, 125.9, 114.2, 104.7, 55.6.

1-(4-(*tert*-Butyl)phenyl)-3,5-diphenyl-1*H*-pyrazole (3ad)⁹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-(tert-butyl)phenyl)iodonium trifluoromethanesulfonate (0.130 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3ad** as a white solid (0.035 g, 50%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, J = 7.1 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.36 – 7.27 (m, 2H), 7.34 – 7.28 (m, 8H), 6.83 (s, 1H), 1.33 (s, 9H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.7, 150.6, 144.3, 137.7, 133.2, 130.8, 128.8, 128.6, 128.5, 128.2, 127.9, 125.9, 125.8, 124.8, 105.0, 34.7, 31.4.

1-(4-Fluorophenyl)-3,5-diphenyl-1*H*-pyrazole (3ae)¹⁰

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-fluorophenyl)iodonium trifluoromethanesulfonate (0.111 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3ae** as a yellow solid (0.048 g, 77%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 – 7.32 (m, 6H), 7.30 – 7.26 (m, 2H), 7.05 (t, J = 8.6 Hz, 2H), 6.83 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5 (d, J = 247.5Hz), 151.9, 144.4, 136.2 (d, J = 3.0 Hz), 132.8, 130.2, 128.62, 128.56, 128.46, 128.3, 128.0, 126.9 (d, J = 8.6 Hz), 125.7, 115.7 (d, J = 23 Hz), 105.1. ¹⁹F{1H} NMR (471 MHz, CDCl₃) δ -114.01.

1-(4-Chlorophenyl)-3,5-diphenyl-1*H*-pyrazole (3af)¹¹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-chlorophenyl)iodonium trifluoromethanesulfonate (0.120 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3af** as a yellow solid (0.048 g, 73%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.41 – 7.30 (m, 10H), 6.86 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.3, 144.5, 138.7, 133.0, 132.9, 130.3, 129.1, 128.8, 128.74, 128.69, 128.6, 128.2, 126.3, 125.9, 105.6.

1-(4-Bromophenyl)-3,5-diphenyl-1*H*-pyrazole (3ag)¹¹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-bromophenyl)iodonium trifluoromethanesulfonate (0.141 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3ag** as a white solid (0.053 g, 71%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.52 – 7.45 (m, 4H), 7.42 – 7.36 (m, 4H), 7.34 – 7.27 (m, 4H), 6.85 (s, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 152.4, 144.6, 139.2, 132.9, 132.1, 130.4, 128.9, 128.82, 128.79, 128.7, 128.3, 126.7, 126.0, 121.1, 105.8.

3,5-Diphenyl-1-(4-(trifluoromethyl)phenyl)-1*H*-pyrazole (3ah)¹²

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(4-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate (0.136 g, 0.24

mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave **3ah** as a white solid (0.044 g, 61%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 7.3 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.40 – 7.33 (m, 4H), 7.32 – 7.26 (m, 2H), 6.83 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.8, 144.7, 142.9, 132.7, 130.3, 129.1 (q, J = 33 Hz), 128.91, 128.87 (2C), 128.85, 128.5, 126.2 (q, J = 4 Hz), 126.0, 124.9, 124.0 (q, J = 271 Hz), 106.4. ¹⁹**F**{**1H**} **NMR** (471 MHz, CDCl₃) δ -62.36.

1-(4-Nitrophenyl)-3,5-diphenyl-1*H*-pyrazole (3ai)¹¹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), mesityl (4-nitrophenyl) iodonium trifluoromethanesulfonate (0.124 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3ai** as a yellow solid (0.046 g, 68%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.24 – 8.17 (m, 2H), 8.01 – 7.93 (m, 2H), 7.61 – 7.53 (m, 2H), 7.53 – 7.47 (m, 2H), 7.46 – 7.39 (m, 4H), 7.37 – 7.31 (m, 2H), 6.89 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.3, 145.8, 145.0, 144.9, 132.4, 130.1, 129.2, 129.0, 128.89, 128.85, 128.7, 126.0, 124.5, 124.5, 107.3.

3,5-Diphenyl-1-(m-tolyl)-1*H*-pyrazole (3aj)¹⁰

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), di-m-tolyliodonium trifluoromethanesulfonate (0.109 g, 0.24 mmol) and 2,6-di-tert-

butylpyridine (43 µL, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3aj** as a yellow oil (0.030 g, 48%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.16 (m, 7H), 7.08 (d, *J* = 7.7 Hz, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 6.73 (s, 1H), 2.25 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 151.9, 144.5, 140.1, 139.2, 133.2, 130.7, 128.81, 128.76, 128.7, 128.5, 128.38, 128.35, 128.1, 126.1, 125.9, 122.6, 105.2, 21.5.

1-(3-Fluorophenyl)-3,5-diphenyl-1*H*-pyrazole (3ak)

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(3-fluorophenyl)iodonium trifluoromethanesulfonate (0.112 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3ak** as a white solid (0.043 g, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 7.3 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.38 – 7.32 (m, 4H), 7.31 – 7.23 (m, 3H), 7.21 – 7.15 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.03 – 6.92 (m, 1H), 6.81 (s, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 162.7 (d, J = 247.1 Hz), 152.4, 144.7, 141.6 (d, J = 10.2 Hz), 132.9, 130.4, 130.1 (d, J = 9.1 Hz), 128.89, 128.82, 128.76, 128.74, 128.3, 126.0, 120.8 (d, J = 3.2 Hz), 114.4 (d, J = 21.1 Hz), 112.7 (d, J = 24.7 Hz), 105.9. ¹⁹**F**{**1H**} **NMR** (471 MHz, CDCl₃) δ -111.28. **HRMS-ESI** (m/z): calcd for C₂₁H₁₅FN₂ [M + H]⁺ 315.1292; found 315.1303.

1-(3-Chlorophenyl)-3,5-diphenyl-1*H*-pyrazole (3al)¹³

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2

mmol), bis(3-chlorophenyl)iodonium trifluoromethanesulfonate (0.120 g, 0.24 mmol) and 2,6di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3al** as a yellow oil (0.050 g, 76%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.52 (t, J = 1.9 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.39 – 7.34 (m, 4H), 7.31 – 7.28 (m, 2H), 7.27 – 7.24 (m, 1H), 7.23 (t, J = 7.9 Hz, 1H), 7.20 – 7.10 (m, 1H), 6.83 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.5, 144.7, 141.2, 134.7, 132.8, 130.3, 129.8, 128.9, 128.84, 128.78, 128.4, 127.6, 126.0, 125.4, 123.3, 105.8.

1-(3-Bromophenyl)-3,5-diphenyl-1*H*-pyrazole (3am)¹³

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), bis(3-bromophenyl)iodonium trifluoromethanesulfonate (0.141 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3am** as a yellow oil (0.055 g, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.3 Hz, 2H), 7.71 (d, *J* = 1.7 Hz, 1H), 7.50 – 7.41 (m, 3H), 7.40 – 7.34 (m, 4H), 7.30 – 7.25 (m, 2H), 7.20 – 7.14 (m, 2H), 6.83 (s, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.4, 144.6, 141.2, 132.8, 130.4, 130.2, 130.0, 128.81, 128.76, 128.70 (2C), 128.3, 128.2, 125.9, 123.7, 122.5, 105.8.

3,5-Diphenyl-1-(o-tolyl)-1*H*-pyrazole (3an)¹¹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (Z)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), di-o-tolyliodonium trifluoromethanesulfonate (0.110 g, 0.24 mmol) and 2,6-di-tert-

butylpyridine (43 µL, 0.4 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3an** as a yellow oil (0.036 g, 58%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.40 – 7.33 (m, 3H), 7.32 – 7.24 (m, 7H), 6.92 (s, 1H), 2.08 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.6, 145.4, 139.4, 135.6, 133.0, 131.0, 130.1, 128.9, 128.5, 128.3, 128.1, 128.0, 127.8, 127.7, 126.5, 125.7, 103.1, 17.6.

1-Mesityl-3,5-diphenyl-1*H*-pyrazole (3ao)¹¹

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.075 g, 0.2 mmol), dimesityliodonium trifluoromethanesulfonate (0.123 g, 0.24 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (4% ethyl acetate in hexane) gave **3ao** as a white solid (0.019 g, 31%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.09 – 7.94 (m, 2H), 7.54 – 7.44 (m, 2H), 7.42 – 7.36 (m, 1H), 7.34 – 7.25 (m, 5H), 6.98 (d, *J* = 3.3 Hz, 3H), 2.37 (s, 3H), 2.04 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.8, 145.3, 138.9, 136.4, 136.1, 133.5, 130.3, 129.2, 128.7, 128.6, 128.2, 127.9, 127.2, 125.8, 102.6, 21.2, 17.8.

1,3-Diphenyl-5-(p-tolyl)-1*H*-pyrazole (3ba)⁷ and 1,5-Diphenyl-3-(p-tolyl)-1*H*-pyrazole (3ba')¹⁴

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (*Z*)-4-methyl-N'-(1-phenyl-3-(p-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.077 g, 0.2 mmol) and 2,6-

di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.3 ratio) **3ba** and **3ba'** as a white solid (0.047 g, 76%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 – 7.88 (d, *J* = 8.0 Hz, 2H, minor), 7.84 – 7.77 (m, 2H, major), 7.45 – 7.07 (m, 24H), 6.78 (s, 2H), 2.38 (s, 3H, major), 2.34 (s, 3H, minor). ¹³**C NMR** (126 MHz, CDCl₃) major regioisomer δ 152.0, 144.2, 140.1, 137.7, 130.6, 130.2, 129.3, 128.8, 128.6, 128.4, 128.2, 127.3, 125.7, 125.3, 105.0, 21.3. minor regioisomer δ 151.9, 144.4, 140.2, 138.2, 130.6, 130.2, 129.1, 128.7, 128.6, 128.2, 127.9, 127.3, 125.8, 125.3, 104.9, 21.2.

5-(4-Methoxyphenyl)-1,3-diphenyl-1*H*-pyrazole $(3ca)^{14}$ and 4-(3-(4-Methoxyphenyl)-5-phenyl-1*H* $-pyrazol-1-yl)benzene-1-ylium <math>(3ca')^{15}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (*Z*)-N'-(3-(4-methoxyphenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.080 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.75 ratio) **3ca** and **3ca'** as a white solid (0.051 g, 78%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (m, 2H, minor), 7.87 – 7.83 (m, 2H, major), 7.45 – 7.25 (m, 18H), 7.22 – 7.20 (m, 1H, minor), 7.20 – 7.17 (m, 1H, major), 6.98 – 6.96 (m, 1H, major), 6.96 – 6.94 (m, 1H, minor), 6.87 – 6.84 (m, 1H, major), 6.84 – 6.82 (m, 1H, minor), 6.76 (s, 1H, minor), 6.75 (s, 1H, major), 3.84 (s, 3H, major), 3.80 (s, 3H, minor). ¹³C NMR (126 MHz, CDCl₃) major regioisomer δ 159.7, 151.9, 144.4, 140.3, 130.8, 128.9, 128.8, 128.5, 128.0, 127.4, 127.2, 125.9, 125.4, 114.1, 104.9, 55.4. minor regioisomer δ 159.7, 151.9, 144.3, 140.4, 133.2, 130.1, 128.9, 128.7, 128.3, 127.4, 125.9, 125.4, 123.1, 114.0, 104.8, 55.4.

5-(4-Fluorophenyl)-1,3-diphenyl-1*H*-pyrazole (3da)¹⁰ and 3-(4-Fluorophenyl)-1,5diphenyl-1*H*-pyrazole (3da')¹⁰

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(3-(4-fluorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.078 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) **3da** and **3da'** as a white solid (0.045 g, 72%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 – 7.87 (m, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.39 – 7.30 (m, 16H), 7.29 – 7.23 (m, 4H), 7.15 – 7.09 (m, 1H, minor), 7.06 – 6.99 (m, 1H, major), 6.80 (s, 1H, major), 6.77 (s, 1H, minor). ¹³**C NMR** (126 MHz, CDCl₃) major regioisomer δ 162.7 (d, J = 248.9 Hz), 151.2, 144.6, 140.1, 130.72, 130.67, 129.1 (d, J = 7.9 Hz), 128.6, 128.5, 127.7, 127.6, 126.8 (d, J = 3.2 Hz), 125.4, 115.7 (d, J = 21.6 Hz), 105.1. minor regioisomer δ 162.9 (d, J = 246.5 Hz), 152.1, 143.5, 140.2, 133.1, 130.6, 129.4 (d, J = 2.5 Hz), 128.8 (d, J = 7.8 Hz), 128.2, 127.7, 127.6, 125.9, 125.4, 115.7 (d, J = 21.8 Hz), 105.3. ¹⁹**F**{**1H**} **NMR** (373 MHz, CDCl₃) δ -112.59, -114.05.

5-(4-Chlorophenyl)-1,3-diphenyl-1*H*-pyrazole (3ea)¹⁰ and 3-(4-Chlorophenyl)-1,5diphenyl-1*H*-pyrazole (3ea')¹⁰

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(3-(4-chlorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.082 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) **3ea** and **3ea'** as a yellow solid (0.052 g, 78%).

¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, *J* = 8.1, 0.9 Hz, 2H, **3ea**), 7.89 (dd, *J* = 8.9, 2.0 Hz, 2H, **3ea'**), 7.49 – 7.28 (m, 22H), 7.26 – 7.22 (m, 2H), 6.85 (s, 1H, **3ea**), 6.82 (s, 1H, **3ea'**). ¹³C NMR (126 MHz, CDCl₃) compound **3ea** δ 152.2, 144.7, 140.2, 133.8, 133.0, 129.2, 129.0, 128.9, 128.7, 128.5, 128.2, 127.7, 125.9, 125.5, 105.4. compound **3ea'** δ 151.0, 143.3, 140.0, 134.5, 131.7, 130.5, 130.1, 129.1, 128.9, 128.8, 127.8, 127.2, 125.4, 121.7, 105.2.

5-(4-Bromophenyl)-1,3-diphenyl-1*H*-pyrazole $(3fa)^{10}$ and 3-(4-Bromophenyl)-1,5-diphenyl-1*H*-pyrazole $(3fa')^{10}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(3-(4-bromophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.090 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.6 ratio) **3fa** and **3fa'** as a yellow solid (0.056 g, 75%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, J = 7.5 Hz, 2H, minor), 7.83 (d, J = 8.4 Hz, 2H, major), 7.58 (d, J = 8.4 Hz, 2H, major), 7.51 – 7.44 (m, 4H), 7.44 – 7.33 (m, 14H), 7.32 – 7.27 (m, 2H, major), 7.18 (d, J = 8.4 Hz, 2H, minor), 6.85 (s, 1H, minor), 6.83 (s, 1H, major). ¹³C NMR (126 MHz, CDCl3) major regioisomer δ 150.9, 144.7, 140.0, 132.1, 131.8, 130.4, 129.0, 128.8, 128.54, 128.45, 127.6, 127.4, 125.3, 122.0, 105.1. minor regioisomer (125 MHz, CDCl3): δ 152.2, 143.2, 139.9, 132.9, 131.8, 130.3, 129.5, 129.15, 128.8, 128.2, 127.8, 125.9, 125.4, 122.7, 105.4.

1,5-Diphenyl-3-(m-tolyl)-1*H*-pyrazole (3ga) and **1,3-diphenyl-5-(m-tolyl)-1***H*-pyrazole (3ga')¹⁰

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-4-methyl-N'-(1-phenyl-3-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.077 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) **3ga** and **3ga'** as a yellow oil (0.045 g, 73%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 2H), 7.80 (s, 1H), 7.72 (d, J = 7.7 Hz, 1H, minor), 7.45 (t, J = 7.6 Hz, 2H), 7.42 – 7.27 (m, 17H), 7.23 – 7.13 (m, 4H), 7.04 (d, J = 7.5 Hz, 1H, major), 6.83 (d, J = 3.2 Hz, 2H), 2.43 (s, 3H, Minor), 2.33 (s, 3H, Major). ¹³C NMR (126 MHz, CDCl₃) major regioisomer δ 152.1, 144.4, 140.2, 138.3, 133.0, 130.6, 128.9, 128.84, 128.77, 128.6, 128.5, 128.3, 127.4, 126.5, 125.4, 123.0, 105.3, 21.5. minor regioisomer δ 151.9, 144.6, 140.2, 138.2, 133.1, 130.5, 129.4, 129.1, 129.0, 128.7, 128.3, 127.5, 125.9, 125.8, 125.3, 105.2, 21.4. HRMS-ESI (m/z): calcd for C₂₂H₁₈N₂ [M]⁺ 310.1470; found 310.3104.

3-(2-Fluorophenyl)-1,5-diphenyl-1*H*-pyrazole (3ha) and 3-(2-fluorophenyl)-1,5-diphenyl-1*H*-pyrazole (3ha')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(3-(2-fluorophenyl)-1-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.078 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) **3ha** and **3ha'** as a yellow oil (0.047 g, 75%).

¹**H NMR** (500 MHz, CDCl₃) inseparable regioisomer δ 8.22 – 8.16 (m, 1H), 8.02 – 7.93 (m, 2H), 7.50 – 7.44 (m, 2H), 7.44 – 7.30 (m, 17H), 7.30 – 7.06 (m, 6H), 7.02 (d, J = 3.9 Hz, 1H), 6.92 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) inseparable regioisomers δ 160.4 (d, J = 249.6 Hz), 159.5 (d, J = 250.1 Hz), 152.1, 146.7, 144.1, 140.2 (d, J = 24.7 Hz), 138.1, 133.0, 131.4 (d, J = 2.3 Hz), 130.7 (d, J = 8.2 Hz), 130.5, 129.3 (d, J = 8.4 Hz), 129.0, 128.9, 128.8, 128.7, 128.6 (d, J = 3.6 Hz), 128.5, 128.3, 128.0, 127.6, 127.4, 125.9, 125.4, 124.4, 124.3 (d, J = 3.4 Hz), 124.2 (d, J = 3.6 Hz), 121.0 (d, J = 11.9 Hz), 118.9 (d, J = 14.8 Hz), 116.2 (d, J = 21.6 Hz), 116.1, 116.0, 108.6 (d, J = 10.1 Hz), 106.8. ¹⁹**F**{1H} **NMR** (471 MHz, CDCl₃) δ -112.57, -115.83. **HRMS-ESI** (m/z): calcd for C₂₁H₁₅FN₂[M+H]⁺ 315.1292; found 315.1305.

1,3-Diphenyl-5-(trimethylsilyl)-1*H*-pyrazole (3ia) and 1,5-Diphenyl-3-(trimethylsilyl)-1*H*-pyrazole (3ia')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-4-methyl-N'-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.074 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (0.78:1 ratio) **3ia** and **3ia'** as a yellow oil (0.037 g, 64%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.17 (br s, 4H), 7.16 (br s, 4H), 7.13 – 7.10 (m, 8H), 7.07 – 7.04 (m, 4H), 6.45 (s, 1H, major), 6.45 (s, 1H, minor), 0.21 (s, 9H, major), 0.21 (s, 9H, minor). ¹³**C NMR** (126 MHz, CDCl₃) major isomer δ 154.1, 140.4, 131.1, 128.9, 128.8, 128.5, 128.4, 128.1, 127.5, 125.6, 114.5, -0.8. minor isomer 154.1, 143.2, 129.1, 128.9, 128.8, 128.5, 128.0, 127.5, 127.4, 125.4, 114.1, -0.9. **HRMS-ESI** (m/z): calcd for C₁₈H₂₀N₂Si [M+H]⁺ 293.1169; found 293.1173.

1,5-Diphenyl-3-(p-tolyl)-1*H*-pyrazole $(3ja)^{10}$ and **1,3-Diphenyl-5-(p-tolyl)-1***H*-pyrazole $(3ja')^{10}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-4-methyl-N'-(3-phenyl-1-(p-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.077 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.95 ratio) **3ja** and **3ja'** as a white solid (0.044 g, 72%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 (dd, J = 8.1, 0.9 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.44 – 7.30 (m, 16H), 7.28 (d, J = 7.1 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H, major), 7.16 (d, J = 8.1 Hz, 2H, minor), 6.83 (s, 2H), 2.43 (s, 3H, minor), 2.39 (s, 3H, major). ¹³**C NMR** (126 MHz, CDCl₃) major regioisomer δ 152.0, 144.5, 140.3, 138.4, 130.8, 129.3, 129.0, 128.7, 128.6, 128.1, 127.8, 127.5, 126.0, 125.5, 105.1, 21.4. minor regioisomer δ 152.1, 144.6, 140.3, 137.9, 133.2, 130.3, 129.5, 129.0, 128.9, 128.8, 128.4, 126.0, 125.9, 125.5, 105.2, 21.5.

5-(4-Methoxyphenyl)-1,3-diphenyl-1*H*-pyrazole $(3ka)^{10}$ and 3-(4-Methoxyphenyl)-1,5-diphenyl-1*H*-pyrazole $(3ka')^{10}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.081 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column

chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.74 ratio) **3ka** and **3ka'** as a white solid (0.051 g, 78%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H, minor), 7.92 – 7.85 (m, 2H, major), 7.51 – 7.27 (m, 18H), 7.26 – 7.19 (m, 2H), 7.00 (d, J = 8.8 Hz, 2H, major), 6.88 (d, J = 8.8 Hz, 2H, minor), 6.84 – 6.72 (m, 2H), 3.88 (s, 3H, major), 3.84 (s, 3H, minor). ¹³C NMR (126 MHz, CDCl₃) major regioisomer δ 159.7, 151.9, 144.4, 140.3, 130.8, 129.0 (2C), 128.8, 128.4, 127.4, 127.2, 125.4, 123.1, 114.2, 104.9, 55.4. minor regioisomer δ 159.7, 152.0, 144.4, 140.4, 133.3, 130.2, 129.0 (2C), 128.9, 128.6, 128.1, 125.9, 123.1, 114.1, 104.8, 55.4.

3-(4-chlorophenyl)-1,5-diphenyl-1*H*-pyrazole $(3la)^{10}$ and **5-(4-Chlorophenyl)-1,3-diphenyl-1***H*-pyrazole $(3la')^{10}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(1-(4-chlorophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.081 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:1 ratio) **3la** and **3la'** as a yellow oil (0.043 g, 66%).

¹**H NMR** (500 MHz, CDCl₃) inseparable regioisomer δ 7.94 – 7.90 (m, 2H), 7.89 – 7.83 (m, 2H), 7.46 – 7.42 (m, 2H), 7.41 – 7.38 (m, 2H), 7.38 – 7.34 (m, 9H), 7.33 – 7.30 (m, 6H), 7.28 – 7.24 (m, 3H), 7.23 – 7.18 (m, 2H), 6.81 (s, 1H), 6.79 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) inseparable regioisomer δ 152.2, 150.9, 144.7, 143.3, 140.1, 140.0, 134.5, 133.8, 133.0, 131.7, 130.5, 130.1, 129.2, 129.0, 128.92, 128.88 (2C), 128.83, 128.77, 128.6, 128.5, 128.2, 127.8, 127.7, 127.1, 125.9, 125.4, 125.4, 105.4, 105.2.

1,5-diphenyl-3-(m-tolyl)-1*H*-pyrazole (3ma)¹⁰ and **1,3-Diphenyl-5-(m-tolyl)-1***H*-pyrazole (3ma')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-4-methyl-N'-(3-phenyl-1-(m-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.077 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.97 ratio) **3ma** and **3ma'** as a yellow soild (0.042 g, 68%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.81 (s, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.42 – 7.29 (m, 17H), 7.23 – 7.13 (m, 4H), 7.05 (d, J = 7.5 Hz, 1H), 7.86 – 7.81 (m, 2H), 2.44 (s, 3H, minor), 2.33 (s, 3H, major). ¹³**C NMR** (126 MHz, CDCl₃) major regioisomer δ 152.2, 144.4, 140.3, 138.3, 133.2, 130.6, 129.5, 128.9, 128.9, 128.8, 128.6, 128.4, 128.1, 127.5, 125.4, 123.1, 105.4, 21.5. minor regioisomer δ 152.0, 144.6, 140.3, 138.3, 133.0, 130.7, 129.1, 129.0, 128.7, 128.6, 128.4, 128.0, 127.5, 126.5, 126.0, 125.4, 105.2, 21.6. **HRMS-ESI** (m/z): calcd for C₂₂H₁₈N₂ [M+H]⁺ 311.1543; found 311.1553

3-(3-Chlorophenyl)-1,5-diphenyl-1*H*-pyrazole $(3na)^{13}$ and **5-(3-Chlorophenyl)-1,3-diphenyl-1***H*-pyrazole $(3na')^{17}$

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(1-(3-chlorophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.081 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.90 ratio) **3na** and **3na'** as a yellow oil (0.045 g, 69%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.92 (s, 1H), 7.80 (dt, *J* = 7.4, 1.2 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.40 – 7.27 (m, 20H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.12 – 7.07 (m, 1H), 6.85 (s, 1H, major), 6.82 (s, 1H, minor). ¹³**C NMR** (101 MHz, CDCl₃) major regioisomer δ 150.7, 144.7, 140.0, 135.0, 134.7, 132.3, 129.2, 128.8, 128.6, 128.5, 128.0, 127.7, 127.0, 125.9, 125.4, 124.0, 105.6. minor regioisomer 152.2, 142.9, 139.9, 134.5, 132.9, 130.4, 130.0, 129.8, 129.1, 128.8, 128.7, 128.5, 128.2, 127.9, 125.9, 125.4, 105.3.

1,3-Diphenyl-5-(o-tolyl)-1*H*-pyrazole (30a)¹⁰ and **1,5-Diphenyl-3-(o-tolyl)-1***H*-pyrazole (30a')¹³

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (E)-4-methyl-N'-(3-phenyl-1-(o-tolyl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.077 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.45 ratio) **30a** and **30a'** as a yellow oil (0.038 g, 61%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.5 Hz, 2H), 7.81 – 7.73 (m, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.46 – 7.20 (m, 23H), 6.78 (s, 1H, major), 6.74 (s, 1H, minor), 2.66 (s, 3H, minor), 2.08 (s, 3H, major). ¹³**C NMR** (101 MHz, CDCl₃) major regioisomer δ 152.5, 143.4, 140.2, 136.2, 133.1, 132.9, 130.9, 129.4, 128.9, 128.8, 128.7, 128.6, 127.9, 127.3, 125.8, 123.7, 106.2, 20.0. minor regioisomer δ 152.5, 143.4, 140.2, 136.2, 133.1, 132.9, 130.7, 129.4, 128.9, 128.6, 128.3, 127.9, 127.3, 125.9, 125.2, 108.3, 21.5.

3-(2-bromophenyl)-1,5-diphenyl-1*H*-pyrazole (**3**pa)¹³ and **5-(2-Bromophenyl)-1,3diphenyl-1***H*-pyrazole (**3**pa')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (E)-N'-(1-(2-bromophenyl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.090 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.35 ratio) **3pa** and **3pa'** as a yellow oil (0.053 g, 71%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, J = 8.0 Hz, 2H, major), 7.92 (d, J = 7.7, 1H, minor), 7.73 (d, J = 8.0 Hz, 1H, minor), 7.65 (d, J = 8.1 Hz, 1H, major), 7.48 (t, J = 7.7 Hz, 2H), 7.45 – 7.22 (m, 21H), 7.10 (s, 1H, minor), 6.88 (s, 1H, major). ¹³**C NMR** (126 MHz, CDCl3) major regioisomer δ 151.6, 142.6, 140.1, 133.2, 132.3, 130.5, 128.8, 128.7, 128.4, 128.1, 127.5, 127.4, 127.2, 125.9, 125.3, 124.1, 106.8. minor regioisomer δ 151.1, 143.3, 140.0, 134.2, 133.6, 133.0, 132.5, 131.3, 130.5, 129.3, 129.0, 128.9, 128.5, 128.4, 127.6, 122.1, 109.0. **HRMS-ESI** (m/z): calcd for C₂₁H₁₅BrN₂ [M+H]⁺ 377.0471; found 377.0485.

1,5-Diphenyl-3-(thiophen-2-yl)-1*H*-pyrazole (3qa)¹³ and **1,3-Diphenyl-5-(thiophen-2-yl)-**1*H*-pyrazole (3qa')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (E)-4-methyl-N'-(3-phenyl-1-(thiophen-2-yl)prop-2-yn-1-ylidene)benzenesulfonohydrazide (0.076 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.49 ratio) **3qa** and **3qa'** as a yellow oil (0.041 g, 68%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, J = 7.2 Hz, 2H), 7.51 – 7.39 (m, 11H), 7.38 – 7.22 (m, 10H), 7.10 (dd, J = 5.0, 3.6 Hz, 1H, minor), 6.97 (dd, J = 5.1, 3.6 Hz, 1H, major), 6.89 (s, 1H, major), 6.86 (dd, J = 3.5, 0.8 Hz, 1H), 6.74 (s, 1H, minor). ¹³**C NMR** (126 MHz, CDCl₃) major regioisomer δ 151.9, 139.9, 139.8, 138.3, 132.8, 131.3, 129.1, 128.7, 128.4, 128.1, 127.4, 126.6, 126.3, 125.9, 105.0. minor regioisomer δ 147.3, 144.4, 136.3, 130.3, 129.0, 128.8,

128.53, 128.46, 127.6, 127.5, 127.3, 125.4, 124.9, 124.2, 105.2. **HRMS-ESI** (m/z): calcd for C₁₉H₁₄N₂O [M+H]⁺ 287.1179; found 287.1178.

5-Cyclohexyl-1,3-diphenyl-1*H*-pyrazole (3ra) and 3-Cyclohexyl-1,5-diphenyl-1*H*-pyrazole (3ra')

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), (Z)-N'-(1-cyclohexyl-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.076 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (7% ethyl acetate in hexane) gave inseparable mixture of two regioisomers (1:0.3 ratio) **3ra** and **3ra'** as a yellow solid (0.055 g, 58%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.1 Hz, 2H), 7.56 – 7.49 (m, 5H), 7.47 – 7.38 (m, 7H), 7.36 – 7.24 (m, 6H), 6.57 (s, 1H, major), 6.36 (s, 1H, minor), 2.84 – 2.76 (m, 1H, minor), 2.74 – 2.66 (m, 1H, major), 2.18 – 2.01 (m, 2H, minor), 1.99 – 1.63 (m, 9H), 1.58 – 1.39 (m, 4H), 1.38 – 1.11 (m, 5H). ¹³**C NMR** (101 MHz, CDCl₃) inseparable mixture of regioisomers δ 159.1, 151.5, 150.9, 143.2, 140.3, 140.1, 133.5, 131.0, 129.2, 128.8, 128.7, 128.6, 128.4, 128.1, 128.0, 127.7, 127.0, 126.0, 125.7, 125.2, 105.1, 100.8, 37.7, 35.4, 33.6, 33.4, 26.5, 26.3, 26.2, 25.9. **HRMS-ESI** (m/z): calcd for C₂₁H₂₂N₂ [M+H]⁺ 303.1861; found 303.1982.

3-((3r, 5r, 7r)-Adamantan-1-yl)-1,5-diphenyl-1*H*-pyrazole (3sa)

The compound was prepared according to GP2 using copper(I) chloride (0.001 g, 0.02 mmol), diphenyliodonium trifluoromethanesulfonate (0.108 g, 0.25 mmol), N'-((*Z*)-1-((3r,5r,7r)-adamantan-1-yl)-3-phenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.086 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (43 μ L, 0.4 mmol). After 24 h, purification by column chromatography (6% ethyl acetate in hexane) gave **3sa** as a yellow solid (0.034 g, 48%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.28 – 7.24 (d, *J* = 4.1 Hz, 4H), 7.23 – 7.20 (m, 4H), 7.18 (br s, 2H), 6.31 (s, 1H), 2.04 (br s, 3H), 2.01 (br s, 6H), 1.75 (br s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.8, 142.9, 140.4, 131.2, 128.8, 128.7, 128.3, 127.9, 126.9, 125.3, 104.1, 42.6, 36.9, 34.2, 28.7. **HRMS-ESI** (m/z): calcd for C₂₅H₂₆N₂ [M+H]⁺ 355.2169; found 355.2170.

2.5. Control Experiments: -

a) The reaction was performed according to GP2 using (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol). After 24 h, purification by column chromatography (10% ethyl acetate in hexane) gave **4a** as a white solid (0.024 g, 66%).

b) The reaction was performed according to GP2 using (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (0.037 g, 0.1 mmol), sodium trifluoromethanesulfonate (0.069 g, 0.2 mmol). After 24 h, purification by column chromatography (10% ethyl acetate in hexane) gave **4a** as a white solid (0.021 g, 63%).

c) The reaction was performed according to GP2 using copper(I) chloride (0.5 mg, 0.01 mmol), 3,5-diphenyl-1-tosyl-1*H*-pyrazole (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (22 μ L, 0.2 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.026 g, 88%).

d) The reaction was performed according to GP2 using 3,5-diphenyl-1-tosyl-1*H*-pyrazole (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (22 μ L, 0.2 mmol).

e) The reaction was performed according to GP2 using copper(I) chloride (0.5 mg, 0.01 mmol), 3,5-diphenyl-1-tosyl-1*H*-pyrazole (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (22 μ L, 0.2 mmol). After 4 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.010 g, 33%) and **7a** as a white solid (0.011 g, 52%).

f) The reaction was performed according to GP2 using 3,5-diphenyl-1*H*-pyrazole (0.022 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (22 μ L, 0.2 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.004 g, 15%).

g) The reaction was performed according to GP2 using copper(I) chloride (0.5 mg, 0.01 mmol), 3,5-diphenyl-1-tosyl-1*H*-pyrazole (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol), TEMPO (0.030 g, 0.2 mmol) and 2,6-di-tert-butylpyridine (22 μ L, 0.2 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.021 g, 71%).

The reaction was performed according to GP2 using copper(I) chloride (0.5 mg, 0.01 mmol), 3,5-diphenyl-1-tosyl-1*H*-pyrazole (0.037 g, 0.1 mmol), diphenyliodonium trifluoromethanesulfonate (0.086 g, 0.2 mmol), BHT (0.044 g, 0.2 mmol) and 2,6-di-*tert*-butylpyridine (22 μ L, 0.2 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.023 g, 78%).

S31

2.6. Scale up experiment and Post-Synthetic Modifications: -

a) The reaction was performed according to GP2 using copper(I) chloride (0.027 g, 0.27 mmol), (*Z*)-N'-(1,3-diphenylprop-2-yn-1-ylidene)-4-methylbenzenesulfonohydrazide (1 g, 2.67 mmol), diphenyliodonium trifluoromethanesulfonate (1.4 g, 3.2 mmol) and 2,6-di-tert-butylpyridine (1.1 g, 5.4 mmol). After 24 h, purification by column chromatography (3% ethyl acetate in hexane) gave **3aa** as a yellow solid (0.522 g, 66%).

b) In a pre-dried flask compound **3aa** (0.074 g, 0.25 mmol, 1.0 equiv.) and NBS (0.054 mg, 0.3 mmol, 1.2 equiv.) were dissolved in dichloromethane (5 mL) and stirred at 50 °C. After 12 h, the reaction mixture was evaporated under vacuum and the crude mixture was purified by column chromatography (1% ethyl acetate in hexane) to afford the desired product **5** as a white solid (0.087 g, 93%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 – 8.03 (m, 2H), 7.53 – 7.48 (m, 2H), 7.47 – 7.40 (m, 4H), 7.39 – 7.36 (m, 2H), 7.34 – 7.28 (m, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.8, 142.1, 139.9, 132.1, 130.3, 129.1 (2C), 128.9, 128.6, 128.5, 128.4, 128.1, 127.6, 124.8, 95.0.

In a pre-dried Schlenk flask **5** (0.094 g, 0.25 mmol, 1 equiv), $Pd(PPh_3)_2Cl_2$ (0.009 g, 0.012 mmol, 0.05 equiv), Et_3N (71 µl, 0.5 mmol, 2 equiv) and anhydrous CH_3CN (2.5 ml) were added and stirred for 10 minutes at 25 °C under N₂. Subsequently, CuI (0.005 g, 0.025 mmol, 0.1 equiv) was added and the reaction mixture was stirred for an additional 10 minutes. Then phenyl acetylene (31 µl, 0.27 mmol, 1.1 equiv) was added in a single portion and the resulting mixture was stirred at 90 °C for 12 hours. After completion, the reaction was quenched by sat. NaHCO₃ (5 ml) solution and the aqueous layer was extracted with ethyl acetate (5 mL × 3). The organic phase was dried over Na₂SO₄ and concentrated using rotary evaporator. The crude

product was then purified using flash chromatography on silica gel (2% ethyl acetate in hexane) to afford the desired product **6**.as a yellow oil (0.055 g, 55%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.31 – 8.25 (m, 2H), 7.58 – 7.44 (m, 5H), 7.43 – 7.35 (m, 10H), 7.34 – 7.28 (m, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.2, 145.8, 139.7, 132.6, 131.1, 129.7, 129.1, 129.0, 128.8, 128.4 (2C), 128.3 (2C), 127.9, 127.7, 127.2, 125.3, 123.8, 102.3, 93.4, 82.7.

3. Crystallographic data of 1-(4-Bromophenyl)-3,5-diphenyl-1*H*-pyrazole (3ag): -

The crystal **3ag** was prepared by slow evaporation of solvent from a concentrated solution of **3ag** in ethanol.

Crystal Structure data table of 3ag

Empirical formula	$C_{21}H_{15}BrN_2$			
CCDC No	2261058			
Formula weight	375.26			
Temperature/K	100.00(10)			
Crystal system	monoclinic			
Space group	P2 ₁ /c			
a/Å	10.9325(5)			
b/Å	16.9864(7)			
c/Å	9.6085(5)			
α/\circ	90			
β/°	108.177(5)			
γ/ ^o	90			
Volume/Å ³	1695.29(14)			
Z	4			
$\rho_{calc}g/cm^3$	1.470			
μ/mm^{-1}	2.428			
F(000)	760.0			
Crystal size/mm ³	0.2 imes 0.2 imes 0.2			
Radiation	MoKα ($\lambda = 0.71073$)			
20 range for data collection/° 7.21 to 60.568				
Index ranges	$-14 \le h \le 15, -21 \le k \le 22, -11 \le l \le 12$			
Reflections collected	16688			
Independent reflections	4120 [$R_{int} = 0.0386$, $R_{sigma} = 0.0346$]			
Data/restraints/parameters	4120/0/217			
Goodness-of-fit on F ²	0.828			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0321, wR_2 = 0.0986$			
Final R indexes [all data]	$R_1 = 0.0437, wR_2 = 0.1067$			
Largest diff. peak/hole / e Å ⁻³ 0.43/-0.30				

4. References

- J. Liu, M. F. L. Parker, S. Wang, R. R. Flavell, F. D. Toste, D. M. Wilson., Chem. 2021, 7, 2245 – 2255.
- 2. Q. Wang, L. He, K. K. Li, G. C. Tsui., Org. Lett. 2017, 19, 658 661.
- B. B. Lui, W. B. Cao, F. Wang, S. Y. Wang, S. J. Ji., J. Org. Chem. 2018, 83, 11118 11124.
- 4. N. Li, B. Li, S. Chen., Synlett. 2016, 27, 1597 1601.
- 5. R. K. Samanta, P. Meher, S. Murarka., J. Org. Chem. 2022, 87, 10947–10957.
- 6. M. Zora, A. Kivrak., J. Org. Chem. 2011, 76, 9379–9390.
- 7. X. Zhang, J. Kang, J. Wu, W. Yu, J. Chang., J. Org. Chem. 2014, 79, 10170–10178.
- 8. X. Li, L.He, H. Chen, W. Wu, H. Jiang., J. Org. Chem. 2013, 78, 8, 3636–3646.
- V. K. Rao, R. Tiwari, B. S. Chhikara, A. N. Shirazi, K. Parang, A. Kumar., *RSC Adv.*, 2013,3, 15396–15403.
- X. W. Fan, T. Lei, C. Zhou, Q. Y. Meng., B. Chen, C. H. Tung, L. Z. Wu., J. Org. Chem. 2016, 81, 16, 7127–7133.
- 11. Z. Gonda, Z. Novak., Chem. Eur. J. 2015, 21, 16801–16806.
- S. Mukherjee, P. S. Salini, A. Srinivasan, S. Peruncheralathan., *Chem. Commun.*, 2015, 51, 17148–17151.
- R. Mondal, A. M. Guin, S. Pal, S. Mondal, N. D. Paul, Org. Chem. Front., 2022, 9, 5246–5258.
- 14. S. M. Landge, A. Schmidt, V. Outerbridge, B. Torok., Synlett 2007, 10, 1600-1604.
- 15. N. Raghav, M. Singh., Boiorg. Med. Chem., 2014, 22, 4233-4245.
- 16. P. Liu, Y. M. Pan, Y. L. Xu, H. S. Wang., Org. Biomol. Chem., 2012, 10, 4696–4698.
- L. Tu, L. Gao, X. Wang, R. Shi, R. Ma, J. Li, X. Lan, Y. Zheng, J. Liu., J. Org. Chem. 2021, 86, 559–573.
5. NMR Spectra of Compounds ¹H and ¹³C NMR of 1m

¹H and ¹³C NMR of 1p

¹H and ¹³C NMR of 1r

8.23
7.755
7.757
7.758
7.758
7.758
7.758
7.758
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.759
7.7

¹H and ¹³C NMR of 1s

¹H and ¹³C NMR of 3aa

¹H and ¹³C NMR of 3ab

¹H and ¹³C NMR of 3ac

¹H and ¹³C NMR of 3ad

¹H and ¹³C NMR of 3ae

¹⁹F{1H} NMR of 3ae

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)

S47

¹H and ¹³C NMR of 3ag

¹H and ¹³C NMR of 3ah

¹H and ¹³C NMR of 3ai

¹H and ¹³C NMR of 3ak

¹⁹F{1H} NMR of 3ak

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 f1 (ppm)

¹H and ¹³C NMR of 3al

¹H and ¹³C NMR of 3am

¹H and ¹³C NMR of 3an

¹H and ¹³C NMR of 3ao

¹H and ¹³C NMR of 3ba and 3ba'

¹³C NMR of 3ba and 3ba' (expansion)

¹H and ¹³C NMR of 3cb and 3cb'

a felority

¹H and ¹³C NMR of 3da and 3da'

¹⁹F{1H} NMR of 3da and 3da'

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H and ¹³C NMR of 3ea and 3ea'

¹H and ¹³C NMR of 3fa and 3fa'

¹H and ¹³C NMR of 3ga and 3ga'

S66

¹H and ¹³C NMR of 3ha and 3ha'

¹⁹F{1H} NMR of 3ha and 3ha'

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H and ¹³C NMR of 3ia and 3ia'

¹H and ¹³C NMR of 3ja and 3ja'

S70

¹H and ¹³C NMR of 3kaand 3ka'

¹H and ¹³C NMR of 3la and 3la'

¹H and ¹³C NMR of 3ma and 3ma'

¹H and ¹³C NMR of 3na and 3na'

¹H and ¹³C NMR of 3oa and 3oa'

¹H and ¹³C NMR of 3pa and 3pa'

¹H and ¹³C NMR of 3qa and 3qa'

¹H and ¹³C NMR of 3ra and 3ra'

¹H and ¹³C NMR of 3sa

¹H and ¹³C NMR of 5

