Supporting Information

β-Peptides incorporating polyhydroxylated cyclohexane β-amino acid: synthesis and conformational study

David Reza, Rosalino Balo, José M. Otero, Ai M. Fletcher, Rebeca García-Fandino, Víctor M. Sánchez-Pedregal, Stephen G. Davies, Ramón J. Estévez, Juan C. Estévez

juancarlos.estevez@usc.es

section	TABLE OF CONTENTS	page
I	MATERIALS AND INSTRUMENTATION	S-2
II	NMR SPECTRA OF COMPOUNDS 3 , 4 , 5 , 6 , 7 , 8 AND 11	S-3
	INFRARED SPECTROSCOPY	S-10
IV	CIRCULAR DICHROISM	S-13
V	NMR STRUCTURAL ANALYSIS OF PENTAPEPTIDES 14-16	S-16
VI	CARTESIAN COORDINATES OF PENTAPEPTIDES 14-16	S-59
VII	X-RAY OF COMPOUND 3	S-68

I. MATERIALS AND INSTRUMENTATION

Specific rotations were recorded on a JASCO DIP-370 optical polarimeter. Infrared spectra were recorded on a *MIDAC Prospect FT-IR PerkinElmer Spectrum Two* spectrometer. Nuclear magnetic resonance spectra were recorded on Varian Mercury 300, Bruker Avance III 500 and Bruker NEO 750 spectrometers. Mass spectra were obtained on a Kratos MS 50 TC mass spectrometer. X-ray experiments were obtained with a Bruker Appex II apparatus. Thin layer chromatography (tlc) was performed using Merck GF-254 type 60 silica gel and ethyl EtOAc/hexane mixtures as eluents; the tlc spots were visualized with a Hanessian stain (dipping into a solution of 12.5 g of (NH₄)₄Mo₇O₂₄·4H₂O, 5 g of Ce(SO₄)₂·4H₂O and 50 mL of H₂SO₄ in 450 mL of H₂O, and warming). Column chromatography was carried out using Merck type 9385 silica gel. Solvents were purified as in ref. (Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: New York, 1988).

S-5

S-6

S-9

III. INFRARED SPECTROSCOPY

Table S1: Maxima (cm⁻¹) of the Amide A, Amide I, and Amide II characteristic bands for **9**, **11**, **14**, **15**, and **16**.

Compound	Amide A	Amide I	Amide II
9	3297.27	1646.47	1533.44
11	3327.38	1679.77	1527.80
14	3281.07	1644.93	1535.61
15	3369.60	1649.42	1547.16
16	3269.40	1649.50	1546.80

Figure S8: FTIR spectrum of 9 (Boc-trans-(ACHC)₂-OBn).

Figure S9: FTIR spectrum of 11.

Figure S10: FTIR spectrum of 14.

Figure S11: FTIR spectrum of 15.

Figure S12: FTIR spectrum of 16.

IV. CIRCULAR DICHROISM

Figure S13: Circular dichroism data for 9 in methanol (c = 1 mM; T = 0, 15 and 25 °C).

Figure S14: Circular dichroism data for 11 in methanol (c = 1 mM; T = 0, 15 and 25 °C).

Figure S15: Circular dichroism data for 14 in methanol (c = 1 mM; T = 0, 15 and 25 °C).

Figure S16: Circular dichroism data for 14 in methanol (c = 0.5 mM, 0.75 mM and 1 mM; T = 25 °C).

Figure S17: Circular dichroism data for 9, 11 and 14 in methanol (c = 1 mM; T = 25 °C).

Figure S18: Circular dichroism data for peptides 14, 15 and 16 in methanol (c = 1 mM; T = 25 °C).

V. NMR STRUCTURAL ANALYSIS OF PENTAPEPTIDES 14, 15, AND 16

V-A. Peptide 14: NMR spectroscopy in DMSO-d₆

Figure S19: ¹H-NMR spectrum of peptide **14** at concentrations of 0.4 mM (bottom) and 1.5 mM (top). Conditions: DMSO-*d*₆, 500 MHz, 298 K.

Figure S20: ¹H-NMR spectrum of peptide **14** at concentrations of 0.4 mM (bottom) and 1.5 mM (top): expansion of the amide and hydroxyl regions. Conditions: DMSO- d_6 , 500 MHz, 298 K.

Figure S21: VT-NMR spectra of peptide **14** in DMSO- d_6 (500 MHz). Temperatures, from bottom to top: 298 to 338 K in 10 K steps.

Figure S22: Expansion of the amide proton region of the VT-NMR spectra of peptide **14** in DMSO-*d*₆ (500 MHz). Temperatures, from bottom to top: 298 to 338 K in 10 K steps.

Figure S23: COSY spectrum of peptide 14 (DMSO-*d*₆, 500 MHz, 298 K).

Figure S24: TOCSY spectrum of peptide 14, t_{mix} = 70 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S25: ROESY spectrum of peptide 14, t_{mix} = 120 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S26: Overlay of the COSY (*red*) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **14** (DMSO- d_6 , 500 MHz, 298 K).

Figure S27: Overlay of the ROESY (*red/blue*, t_{mix} 120 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **14** (DMSO- d_6 , 500 MHz, 298 K).

Figure S28: Overlay of the ROESY (*red/blue*, t_{mix} 120 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **14** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the (H α +H β)/HN region.

Figure S29: Overlay of the ROESY (*red/blue*, t_{mix} 120 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **14** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the H α /H β region.

V-B. Peptide 15: NMR spectroscopy in DMSO-d₆

Figure S30: VT-NMR spectra of peptide **15** in DMSO- d_6 (500 MHz). Temperatures, from bottom to top: 298 to 358 K in 10 K steps.

Figure S31: Expansion of the amide proton region of the VT-NMR spectra of peptide **15** in DMSO d_6 (500 MHz). Temperatures, from bottom to top: 298 to 358 K in 10 K steps.

Figure S32: COSY spectrum of peptide 15 (DMSO-*d*₆, 500 MHz, 298 K).

Figure S33: TOCSY spectrum of peptide 15, t_{mix} = 70 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S34: ROESY spectrum of peptide 15, t_{mix} = 200 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S35: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **15** (DMSO- d_6 , 500 MHz, 298 K).

Figure S36: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **15** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the (H α +H β)/HN region.

Figure S37: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 70 ms) spectra of peptide **15** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the H α /H β region.

V-C. Peptide 16: NMR spectroscopy in DMSO-d₆

Figure S38: ¹H-NMR spectrum of peptide **16** at concentrations of 1.8 mM (bottom) and 10 mM (top). Conditions: DMSO- d_6 , 500 MHz, 298 K.

Figure S39: ¹H-NMR spectrum of peptide **16** at concentrations of 1.8 mM (bottom) and 10 mM (top): expansion of the amide and hydroxyl regions. Conditions: DMSO- d_6 , 500 MHz, 298 K.

Figure S40: VT-NMR spectra of peptide **16** in DMSO- d_6 (500 MHz). Temperatures, from bottom to top: 298 to 348 K in 10 K steps.

Figure S41: Expansion of the amide proton region of the VT-NMR spectra of peptide **16** in DMSO-*d*₆ (500 MHz). Temperatures, from bottom to top: 298 to 348 K in 10 K steps.

Figure S42: COSY spectrum of peptide 16 (DMSO-*d*₆, 500 MHz, 298 K).

Figure S43: TOCSY spectrum of peptide 16, t_{mix} = 80 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S44: ROESY spectrum of peptide 16, t_{mix} = 200 ms (DMSO- d_6 , 500 MHz, 298 K).

Figure S45: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 80 ms) spectra of peptide **16** (DMSO- d_6 , 500 MHz, 298 K).

Figure S46: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 80 ms) spectra of peptide **16** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the (H α +H β)/HN region.

Figure S47: Overlay of the ROESY (*red/blue*, t_{mix} 200 ms) and TOCSY (*black*, t_{mix} 80 ms) spectra of peptide **16** (DMSO- d_6 , 500 MHz, 298 K). Expansion of the H α /H β region.

V-D. Peptide 16: NMR spectroscopy in methanol-d₃

Figure S48: ¹H-NMR spectrum of peptide **16** at 1 mM concentration (methanol-*d*₃, 500 MHz, 298 K).

Figure S49: VT-NMR spectra of peptide **16** in methanol- d_3 (500 MHz). Temperatures, from bottom to top: 273 to 333 K in 10 K steps. The *zggpw5* pulse program was used to suppress the strong HO signal.

Figure S50: Expansion of the amide proton region of the VT-NMR spectra of peptide **16** in methanol d_3 (500 MHz). Temperatures, from bottom to top: 273 to 333 K in 10 K steps.

Figure S51: CLIP-COSY spectrum of peptide 16 (methanol-*d*₃, 750 MHz, 273 K).

Figure S52: TOCSY spectrum of peptide 16, t_{mix} = 80 ms (methanol- d_3 , 750 MHz, 273 K).

Figure S53: NOESY spectrum of peptide 16, t_{mix} = 500 ms (methanol- d_3 , 750 MHz, 273 K).

Figure S54: Overlay of the NOESY (*red/blue*, t_{mix} 500 ms) and TOCSY (*black*, t_{mix} 80 ms) spectra of peptide **16** (methanol- d_3 , 750 MHz, 273 K).

Figure S55: Overlay of the NOESY (*red/blue*, t_{mix} 500 ms) and TOCSY (*black*, t_{mix} 80 ms) spectra of peptide **16** (methanol- d_3 , 750 MHz, 273 K). Expansion of the (H α +H β)/HN region. Assignment of the HN peaks of the major conformer is shown.

Figure S56: Residue and atom naming used in the following tables.

Table S2: Assignment of pentapeptide **14** in DMSO- d_6 (T = 298 K). Spectra were referenced to the resonance of TMS (δ = 0.00 ppm).

residue	HN	Ηβ	Ηα	Other
t-Bu	_	_	_	1.35
1	6.77	3.45	2.27	0.98, 1.01, 1.11, 1.20, 1.31, 1.34, 1.43, 1.65, 1.86
2	7.49	3.67	2.35	1.07, 1.10, 1.12, 1.14, 1.21, 1.30, 1.64, 1.67, 1.77,
				1.80
3	6.83	4.02	2.34	0.03 (Si-CH ₃), 0.04 (Si-CH ₃), 0.08 (Si- <i>t</i> Bu), 1.20
				(CH_3) , 1.48 (CH_3) , 1.57 and 1.89 $(H\zeta^*)$, 3.83-3.87 $(H\gamma,$
				Ηδ, Ηε)
4	7.40	3.87	2.18	1.10, 1.12, 1.16, 1.30, 1.71, 1.76, 1.78
5	7.82	3.93	2.52	1.19, 1.21, 1.23, 1.68, 1.72, 1.79, 1.88, 1.98
-O-CH ₂ -Ph				4.98 and 5.26 (CH ₂), 7.32-7.39 (Ph)

Table S3: Assignment of pentapeptide **15** in DMSO- d_6 (T = 298 K). Spectra were referenced to the resonance of TMS (δ = 0.00 ppm).

residue	HN	Ηβ	Ηα	other
t-Bu	_	_	_	1.35
1	6.92	3.44	2.35	0.99, 1.32, 1.66, 1.91
2	7.49	3.70	2.36	1.09, 1.27, 1.65, 1.76
3	6.72	4.05	2.44	1.21 (CH ₃), 1.52 (CH ₃), 1.63 and 1.83 (Hζ*), 3.77
				(Ηγ), 3.96 (Ηδ), 4.02 (Ηε), 5.20 (ΗΟ-ε)
4	7.53	3.87	2.13	1.12, 1.26, 1.79
5	7.91	3.95	2.54	1.17, 1.24, 1.80
-O-CH ₂ -Ph		_	—	5.09 and 5.28 (CH ₂), 7.29-7.44 (Ph)

Table S4: Assignment of pentapeptide **16** in DMSO- d_6 (T = 298 K). Spectra were referenced to the resonance of TMS (δ = 0.00 ppm).

residue	HN	Ηβ	΄Ηα	other
t-Bu				1.35
1	6.80	3.46	2.44	1.06, 1.19, 1.32, 1.67, 1.86
2	7.49	3.62	2.41	1.03, 1.08, 1.24, 1.38, 1.62, 1.85
3	6.89	4.19	2.54	1.47 and 1.88 (Ηζ*), 3.56 (Ηγ), 3.60 (Ηδ), 3.76 (Ηε),
				4.25 (ΗΟ-γ), 4.47 (ΗΟ-δ), 4.89 (ΗΟ-ε)
4	7.61	3.93	2.13	1.09, 1.10, 1.19, 1.30, 1.73, 1.80
5	7.97	3.97	2.50	1.18, 1.21, 1.71, 1.75
-O-CH ₂ -Ph	_	_	—	5.10 and 5.25 (CH ₂), 7.31-7.44 (Ph)

Table S5: Properties of amide HN protons (DMSO- d_6 , 500 MHz). Chemical shifts and scalar couplings were determined at 298 K. Temperature coefficients in –ppb/K units.

	δ _н (ppm)			3,				T-coef (–ppb/K)		
	14	15	16	14	15	16	14	15	16	
HN1	6.77	6.92	6.80	8.3	8.5	8.8	7.3	7.5	5.2	
HN2	7.49	7.49	7.49	7.9	8.3	8.6	5.6	4.9	4.3	
HN3	6.83	6.71	6.89	8.3	9.2	7.3	0.9	1.7	3.4	
HN4	7.40	7.53	7.61	8.4	8.6	8.6	9.0	9.2	8.2	
HN5	7.82	7.91	7.97	7.9	8.6	8.9	5.2	5.4	4.9	

Table S6: Properties of hydroxyl HO protons of residue 3 (DMSO-*d*₆, 500 MHz). Chemical shifts and scalar couplings were determined at 298 K. Temperature coefficients in –ppb/K units.

· · ·	δ _Η (ppm)			3	³ <i>J</i> _{HN-Hβ} (Hz)			T-coef (–ppb/K)		
	14	15	16	14	15	16	14	15	16	
ΗΟ-γ	_	_	4.24	_	_	5.1		_	0.7	
ΗΟ-δ			4.45	_	—	3.1		_	6.4	
ΗΟ-ε		5.20	4.89	_	3.3	2.9		5.6	4.8	

V-F. TABLES OF NOEs

Table S7: Summary of backbone NOE intensities from the ROESY spectra of pentapeptides **14**, **15** and **16** (DMSO- d_6 , 500 MHz, 298 K). Classification of NOE intensities: **S** strong, **M** medium, **W** weak, **X** overlapped. The dash (—) indicates absence of cross-peak.

proton (residue)	proton (residue)	14	15	16
Intra-residual: HN(i) / Hα(i)				
HN (1)	Ηα (1)	S	S	S
HN (2)	Ηα (2)	s	S	S
HN (3)	Ηα (3)	S	S	S
HN (4)	Ηα (4)	S	S	S
HN (5)	Ηα (5)	S	S	S
Intra-residual: HN(i) / Hβ(i)				
HN (1)	Ηβ (1)	М	М	М
HN (2)	Ηβ (2)	М	М	М
HN (3)	Ηβ (3)	М	М	М
HN (4)	Ηβ (4)	М	М	М
HN (5)	Ηβ (5)	М	М	М
Inter-residual: HN(i) / Hα(i–1)				
HN (2)	Ηα (1)	S	S	S
HN (3)	Ηα (2)	s	S	S
HN (4)	Ηα (3)	S	S	S
HN (5)	Ηα (4)	S	S	S
Inter-residual: HN(i) / Hβ(i–1)				
HN (2)	Ηβ (1)	W	W	_
HN (3)	Ηβ (2)	_	_	X
HN (4)	Ηβ (3)	W	—	—
HN (5)	Ηβ (4)	X	_	Х
Inter-residual: HN(i) / Hβ(i+2)				
HN (1)	Ηβ (3)	_		М
HN (2)	Ηβ (4)	X	М	М
HN (3)	Ηβ (5)	X	X	X
Inter-residual: HN(i) / Hβ(i+3)				
HN (1)	Ηβ (4)	М	М	W
HN (2)	Ηβ (5)	М	_	—
Inter-residual: Hα(i) / Hβ(i+3)				
Ηα (1)	Ηβ (4)	S	S	S
Ηα (2)	Ηβ (5)	S	S	S
Inter-residual: HN / HN				
HN (3)	HN (2)			М
HN (3)	HN (4)			W

Table S8: Summary of inter-residual NOE contacts of residue 3 with the *N*-terminal *t*-Bu group and the *C*-terminal OBn group, determined from the ROESY spectra of pentapeptides **14**, **15** and **16** (DMSO- d_6 , 500 MHz, 298 K). Classification of NOE intensities: **S** strong, **M** medium, **W** weak, **X** overlapped. The dash (—) indicates absence of cross-peak.

proton (residue)	proton (residue)	14	15	16
Inter-residual: t-Bu				
t-Bu (1)	Ηα (3)		—	
t-Bu (1)	Ηβ (3)	W	W ^[b*]	W
t-Bu (1)	Ηγ (3)		—	
t-Bu (1)	Ηδ (3)		—	
t-Bu (1)	Ηε (3)	—	W ^[b*]	_
t-Bu (1)	HO-γ (3)	n.e.	n.e.	W
t-Bu (1)	ΗΟ-δ (3)	n.e.	n.e.	М
t-Bu (1)	ΗΟ-ε (3)	n.e.	—	—
Inter-residual: Benzylic CH ₂				
OCH ₂ –a (5)	HN (3)		W	W
OCH ₂ –b (5)	HN (3)	—	W	—
OCH ₂ -a (5)	Ηα (3)	W	М	М
OCH ₂ –b (5)	Ηα (3)	W	М	М
OCH ₂ –a (5)	Ηγ (3)	W ^[a*]	М	M ^[c*]
OCH ₂ –b (5)	Ηγ (3)	W ^[a*]	W	W ^[c*]
OCH ₂ –a (5)	Ηδ (3)	W ^[a*]	—	M ^[c*]
OCH ₂ –b (5)	Ηδ (3)	W ^[a*]	—	W ^[c*]
OCH ₂ –a (5)	Ηε (3)	W ^[a*]	—	_
OCH ₂ –b (5)	Ηε (3)	W ^[a*]	—	
OCH ₂ –a (5)	ΗΟ-ε (3)	n.e.	—	
OCH ₂ –b (5)	ΗΟ-ε (3)	n.e.	—	—
Inter-residual: Benzylic Ph				
Ph (5)	HO-γ (3)	n.e.	n.e.	—
Ph (5)	ΗΟ-δ (3)	n.e.	n.e.	_
Ph (5)	ΗΟ-ε (3)	n.e.	W	W
Ph (5)	Ηγ (3)	_	W	W ^[c*]
Ph (5)	Ηδ (3)	_	W	W ^[c*]
Ph (5)	Ηε (3)	_		

O-CH₂*. The two diastereotopic benzylic protons give separate peaks but were not assigned stereospecifically. Labels 'a' and 'b' refer to the most deshielded and most shielded resonances, respectively.

n.e.: not existing, *i.e.* one or two of the H atoms do not exist in this compound.

 $[a^*]$ H $\gamma(3)$, H $\delta(3)$ and H $\epsilon(3)$ overlap in **14**.

 $[b^*]$ H $\beta(3)$ and H $\epsilon(3)$ overlap in **15**.

 $[^{c^*}]$ Hy(3) and H $\delta(3)$ overlap in **16**.

Table S9: Summary of intra-residual NOE contacts of residue 3 in the ROESY spectra of pentapeptides **14**, **15** and **16** (DMSO- d_6 , 500 MHz, 298 K). Classification of NOE intensities: **S** strong, **M** medium, **W** weak, **X** overlapped. The dash (—) indicates absence of cross-peak.

proton (residue)	proton (residue)	14	15	16
Intra-residual: hydroxyls				
ΗΟ-ε (3)	Ηα (3)	n.e.	М	W
ΗΟ-ε (3)	Ηβ (3)	n.e.	W	
ΗΟ-ε (3)	Ηγ (3)	n.e.	W	
ΗΟ-ε (3)	Ηδ (3)	n.e.	М	М
ΗΟ-ε (3)	Ηε (3)	n.e.	М	S
Intra-residual: acetonide				
Me-a (3)	Ηα (3)		—	n.e.
Me-b (3)	Ηα (3)		—	n.e.
Me-a (3)	Ηβ (3)	S	S ^[b*]	n.e.
Me-b (3)	Ηβ (3)	W	M ^[b*]	n.e.
Me-a (3)	Ηγ (3)	$X^{[a^*]}$	W	n.e.
Me-b (3)	Ηγ (3)	X ^[a*]	М	n.e.
Me-a (3)	Ηδ (3)	X ^[a*]	W	n.e.
Me-b (3)	Ηδ (3)	X ^[a*]	S	n.e.
Me-a (3)	Ηε (3)	X ^[a*]	S ^[b*]	n.e.
Me-b (3)	Ηε (3)	$X^{[a^*]}$	M ^[b*]	n.e.
Me-a (3)	ΗΟ-ε (3)	n.e.	W	n.e.
Me-b (3)	ΗΟ-ε (3)	n.e.	М	n.e.

Me-a and *Me-b* refer to the methyl groups of the acetonide protecting group of residue 3. The two diastereotopic methyl groups give separate peaks but were not assigned stereospecifically. Labels 'a' and 'b' refer to the most deshielded and most shielded methyl resonances, respectively.

n.e.: not existing, *i.e.* one or two of the H atoms do not exist in this compound.

 $[a^*]$ H $\gamma(3)$, H $\delta(3)$ and H $\epsilon(3)$ resonances overlap in **14**.

 $[b^*]$ H $\beta(3)$ and H $\epsilon(3)$ resonances overlap in **15**.

Table S10: Assignment of pentapeptide **16** in CD₃-OH (T = 273 K, 750 MHz). Spectra were referenced to the resonance of TMS (δ = 0.00 ppm).

residue	HN	Ηβ	Ηα	other
t-Bu	_	_	_	1.47
1	7.19	3.68	2.66	1.31, 1.46, 1.81, 1.99
2	8.29	3.94	2.60	1.25, 1.51, 1.80, 1.96
3	7.51	4.42	2.63	3.73 and 4.63 (Hγ, Hδ and Hε); 1.65, 2.08
4	7.56	4.06	2.08	1.22, 1.42, 1.87
5	7.97	4.15	2.57	1.31, 1.89, 2.19
-O-CH ₂ -Ph	_		—	7.31-7.46 (Ph)

Table S11: Properties of the amide HN protons of pentapeptide **16** in CD₃-OH (T = 273 K, 750 MHz).Scalar couplings were determined at 273 K and 750 MHz.

	³ <i>J</i> _{НN-Нβ} (Hz)	T-coef (–ppb/K)				
HN1	9.2	5.2				
HN2	8.3	4.0				
HN3	8.2	4.2				
HN4	8.6	11.0				
HN5	9.2	5.2				

VI. CARTESIAN COORDINATES OF PENTAPEPTIDES 14-16

Cartesian coordinates (Å) of conformations optimized at the M052X/6-31G(d) level.

Peptide 14:

numbernumberrppexrz170-4.119268-1.871251-0.525786260-4.358270-3.114948-0.651754380-5.461122-3.6245930.046234460-3.214895-5.0665230.841217580-3.189865-3.7166350.297668660-3.292915-5.0723332.187774760-3.845936-6.042624-0.148759860-1.737552-5.396510.016779960-4.8683370.338628-1.2288981160-5.1507474-1.162388-1.2286961260-6.147259-0.950105-3.4143811360-6.168330.543987-3.4557521460-5.9487771.095035-2.0403411560-4.8475670.8753550.1705641680-2.1386042.0381102.3325661770-3.720171.5466720.5436121860-2.6058363.9159513.9455842260-2.6058363.9159513.9455842360-2.6058363.9159513.9455842460-1.6410010.61229021.732912580-2.200198-0.3148042.73817426	Center	Atomic	Atomic	Coord Y	linates (Ang	stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			туре	^	T	ـــــ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	7	0	-4.119268	-1.871251	-0.525786
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	-4.358270	-3.114948	-0.051754
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	8	0	-5,461122	-3.624593	0.046234
5 8 0 -3.189865 -3.716635 0.297608 6 6 0 -3.929915 -5.672333 2.187744 7 6 0 -3.845936 -6.042624 -0.148759 8 6 0 -1.737952 -5.396510 1.016779 9 6 0 -4.868337 0.338628 -1.228898 10 6 0 -5.176774 -1.62388 -1.228898 11 6 0 -5.350849 -1.706170 -2.650632 12 6 0 -6.437259 -0.959105 -3.4455757 14 6 0 -5.948777 1.095035 -2.040341 15 6 0 -4.847567 0.875355 0.912469 17 7 0 -3.732017 1.546672 0.546122 18 6 0 -2.038064 2.038110 2.32566 19 6 0 -2.629836 3.945584 2.3784744 20 6 0 -2.62	4	6	0	-3.214895	-5.066523	0.841217
660 -3.929915 -5.072333 2.187774 760 -3.845936 -6.042624 -0.148759 860 -1.737952 -5.396510 1.016779 960 -4.868337 0.338628 -1.252561 1060 -5.176774 -1.162338 -1.228898 1160 -5.350849 -1.706170 -2.656261 1260 -6.437259 -0.950105 -3.414381 1360 -6.437259 -0.950105 -3.414381 1460 -5.948777 1.0959355 -2.040341 1560 -4.847567 0.873555 0.170564 1680 -5.809972 0.725655 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138664 2.038110 2.332566 2060 -4.668334 3.967802 3.473443 2160 -4.668334 3.967802 3.473443 2260 -2.6023068 2.509656 3.786607 2460 -1.641061 0.612909 2.175291 2580 -2.2023068 2.509656 3.786607 2460 -1.6420918 -1.22738 1.340379 2580 -2.209198 -0.314804 2.738174 2670 0.656273 $-2.$	5	8	0	-3.189865	-3.716635	0.297608
760 -3.845936 -6.042624 -0.148759 860 -1.737952 -5.396510 1.016779 960 -4.868337 0.33628 -1.252561 1060 -5.176774 -1.162388 -1.228898 1160 -5.359849 -1.706170 -2.656632 1260 -6.437259 -0.950165 -3.441381 1360 -6.116833 0.543987 -3.455752 1460 -5.809972 0.725655 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.3225665 2060 -4.847575 2.669479 1.892561 2060 -4.184378 3.477674 2.029401 2160 -2.023068 2.599656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.556448 0.452928 1.340379 2760 1.669673 -2.631298 1.661740 3160 0.659549 -0.860934 1.046522 2960 1.669673 -2.631298 1.651744 3160 0.763966 -3.415707 2.413789 3460 0.527631 -2.637262	6	6	0	-3.929915	-5.072333	2.187774
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	0	-3.845936	-6.042624	-0.148759
960 -4.868337 0.338628 -1.252561 1060 -5.176774 -1.162388 -1.228888 1160 -5.350849 -1.706170 -2.650632 1260 -6.437259 -0.950165 -3.414381 1360 -5.948777 1.095035 -2.040341 1560 -4.847567 0.875355 0.1725665 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 1960 -3.607375 2.069479 1.892561 2060 -4.184378 3.477674 2.029401 2160 -4.60834 3.967802 3.473443 2260 -2.605836 3.915951 3.945584 2360 -2.209198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 1.668073 -2.631298 1.644522 2960 1.140918 -1.222738 1.940690 3060 0.5576448 -0.450544 0.408934 3160 0.520631 -2.69173 3.621124 3560 0.520631 -2.69173 3.621124 3560 0.520631 -2.69173 </td <td>8</td> <td>6</td> <td>0</td> <td>-1.737952</td> <td>-5.396510</td> <td>1.016779</td>	8	6	0	-1.737952	-5.396510	1.016779
1060 -5.176774 -1.162388 -1.228898 1160 -5.359849 -1.706170 -2.659632 1260 -6.437259 -0.950165 -3.414381 1360 -6.116833 0.543987 -3.455752 1460 -5.948777 1.095035 -2.040341 1560 -4.847567 0.875355 0.705665 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 2060 -4.184378 3.477674 2.029401 2160 -4.060834 3.967802 3.473443 2260 -2.023068 2.509656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.209198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 1.140918 -1.222738 1.940590 3380 0.769364 -1.314078 3.49595 3380 0.769364 -1.314078 3.413797 3460 0.526631 -2.691773 3.621124 3560 1.595660 -3.116551 4.699015 3660 0.526631 -2.631773	9	6	0	-4.868337	0.338628	-1.252561
1160 -5.350849 -1.706170 -2.650632 1260 -6.437259 -0.950105 -3.4414381 1360 -6.116833 0.543987 -3.455752 1460 -5.948777 1.095035 -2.040341 1560 -4.847567 0.875355 0.170564 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 1960 -4.60834 3.967822 3.473443 2060 -4.60834 3.967822 3.473443 2160 -2.605836 3.915951 3.945584 2360 -2.605836 3.915951 3.945584 2460 -1.641001 0.612299 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 0.420113 -1.028448 -0.409871 2860 -0.650549 -0.860934 1.046522 2960 1.679437 -3.100039 0.197037 3280 0.776344 -1.314078 3.305596 3380 0.76366 -3.415707 2.413789 3460 0.520631 -2.691773 <	10	6	0	-5,176774	-1.162388	-1.228898
1260 -6.437259 -0.950105 -3.414381 1360 -6.116833 0.543987 -3.455752 1460 -5.948777 1.095035 -2.040341 1560 -4.847567 0.875355 0.170564 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.6343612 1860 -2.138604 2.038110 2.332566 1960 -3.607375 2.609479 1.892561 2060 -4.184378 3.477674 2.029401 2160 -2.605866 3.915951 3.945584 2360 -2.605866 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.00198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 1.668073 -2.631298 1.661740 3160 1.679437 -3.100039 0.197037 3280 0.76034 -1.314078 3.305950 3380 0.620611 -2.691773 3.621124 3560 0.919833 -2.899294 4.031589 3660 0.919833 -2.899294 4.031589 3780 2.924896 -2.677262 -0.366638 <td>11</td> <td>6</td> <td>0</td> <td>-5.350849</td> <td>-1.706170</td> <td>-2.650632</td>	11	6	0	-5.350849	-1.706170	-2.650632
1360 -6.116833 0.543987 -3.455752 1460 -5.948777 1.095635 -2.040341 1560 -4.847567 0.875355 0.170564 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 1960 -4.060834 3.967802 3.473443 2060 -4.184378 3.477674 2.029401 2160 -2.608836 3.915951 3.945844 2360 -2.608836 3.915951 3.945844 2360 -2.0023068 2.599656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 0.420113 -1.028448 -0.409871 2860 -0.650549 -0.860934 1.046522 2960 1.140918 -1.222738 1.940690 3060 0.776034 -1.314078 3.305596 3380 0.76034 -1.314078 3.305596 3380 0.76034 -1.314078 3.305596 3380 0.76034 -1.314078	12	6	0	-6.437259	-0.950105	-3.414381
1460 -5.948777 1.095035 -2.040341 1560 -4.847567 0.875355 0.170564 1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 1960 -3.607375 2.069479 1.892561 2060 -4.060834 3.967802 3.473443 2160 -2.605836 3.915951 3.945584 2360 -2.602368 2.509656 3.786607 2460 -1.64100 0.612909 2.175291 2580 -2.202198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 0.420113 -1.028448 -0.409871 2860 -0.656549 -0.860934 1.046522 2960 1.140918 -1.222738 1.940690 3160 0.776344 -1.314078 3.05959 3380 0.763966 -3.415707 2.413789 3460 0.520631 -2.691773 3.621124 3560 0.520631 -2.691773 3.621124 3560 0.520631 -2.691773 3.621124 3560 0.520631 -2.691773 <	13	6	0	-6.116833	0.543987	-3.455752
1560 -4.847567 0.8753550.1705641680 -5.809972 0.7256650.9124691770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.32566 1960 -3.607375 2.069479 1.892561 2060 -4.184378 3.477674 2.029401 2160 -4.060834 3.967802 3.473443 2260 -2.605836 3.915951 3.945584 2360 -2.023068 2.599656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 -0.650549 -0.860934 1.046522 2960 1.140918 -1.222738 1.940690 3060 1.668073 -2.631298 1.651740 3160 0.520631 -2.691773 3.621124 3560 -0.919833 -2.899929 4.031589 3780 2.924896 -2.677262 -0.366328 38140 3.982741 -1.642558 -2.412717 4260 6.459140 -3.752226 -2.337685 4560 0.547324 -2.839592	14	6	0	-5.948777	1.095035	-2.040341
1680 -5.809972 0.725665 0.912469 1770 -3.732017 1.546672 0.543612 1860 -2.138604 2.038110 2.332566 1960 -3.607375 2.069479 1.892561 2060 -4.184378 3.477674 2.029401 2160 -4.060834 3.967802 3.473443 2260 -2.605836 3.915951 3.945584 2360 -2.023068 2.599656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 0.420113 -1.028448 -0.409871 2860 -0.650543 -0.660934 1.046522 2960 1.140918 -1.222738 1.946690 3060 1.668073 -2.631298 1.651740 3160 0.520631 -2.691773 3.621124 3560 1.595660 -3.116551 4.699015 3660 -0.919833 -2.879929 4.031589 3780 2.924896 -2.677262 -0.366638 38140 3.982749 -3.821891 -0.409774 4260 5.006666 -1.732972 <	15	6	0	-4.847567	0.875355	0.170564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	8	0	-5.809972	0.725665	0.912469
1860-2.1386042.0381102.3325661960-3.6073752.0694791.8925612060-4.1843783.4776742.0294012160-2.6058363.9159513.9455842260-2.6058363.9159513.9455842360-2.020682.5096563.7866072460-1.6410010.6129092.1752912580-2.200198-0.3148042.7381742670-0.5764480.429281.34037927600.420113-1.028448-0.4098712860-0.650549-0.8609341.04652229601.140918-1.2227381.94069030601.679437-3.1000390.19703732800.76034-1.3140783.30595033800.763966-3.4157072.41378934600.520631-2.6917733.6211243560-0.919833-2.8999294.03158937802.924896-2.677262-0.366638381403.982749-3.821891-1.00423539605.473721-2.830559-1.60729340606.459140-3.752226-2.33768543606.171009-2.188295-0.400707 <t< td=""><td>17</td><td>7</td><td>0</td><td>-3.732017</td><td>1,546672</td><td>0.543612</td></t<>	17	7	0	-3.732017	1,546672	0.543612
1960-3.6073752.0694791.8925612060-4.1843783.4776742.0294012160-4.0608343.9678023.4734432260-2.6058363.9159513.9455842360-2.0230682.5996563.7866072460-1.6410010.6129092.1752912580-2.200198-0.3148042.7381742670-0.5764480.4529281.34037927600.420113-1.028448-0.4098712860-0.650549-0.8609341.04652229601.140918-1.2227381.94069030601.668073-2.6312981.65174031600.76034-1.3140783.30595033800.763966-3.4157072.41378934600.520631-2.6917733.62112435601.99833-2.8992994.03158937802.924896-2.677262-0.366638381403.982749-3.821891-1.00423539605.4473721-2.830559-1.60729340606.459140-3.752226-2.33768543600.547249-2.538422-0.65507844600.547249-2.538922-0.655078 <tr<< td=""><td>18</td><td>6</td><td>0</td><td>-2.138604</td><td>2.038110</td><td>2.332566</td></tr<<>	18	6	0	-2.138604	2.038110	2.332566
2060 -4.184378 3.477674 2.029401 2160 -4.060834 3.967802 3.473433 2260 -2.665836 3.915951 3.945584 2360 -2.023068 2.509656 3.786607 2460 -1.641001 0.612909 2.175291 2580 -2.200198 -0.314804 2.738174 2670 -0.576448 0.452928 1.340379 2760 0.420113 -1.028448 -0.409871 2860 -0.050549 -0.860934 1.046522 2960 1.140918 -1.222738 1.940690 3060 1.6679437 -3.100039 0.197037 3160 1.679437 -3.100039 0.197037 3280 0.776034 -1.314078 3.305950 3380 0.720631 -2.691773 3.621124 3560 1.595660 -3.116551 4.699015 3660 -919833 -2.89929 4.031589 3780 2.924896 -2.677262 -0.366638 38140 3.982749 -3.821891 -1.004235 3960 5.000636 -1.732972 -2.568546 4360 6.538224 -0.394463 -1.395860 4460 6.538224 -0.394463 <	19	6	0	-3.607375	2.069479	1.892561
2160-4.0608343.9678023.473443 22 60-2.6058363.9159513.945584 23 60-2.0230682.5096563.786607 24 60-1.6410010.6129092.175291 25 80-2.200198-0.3148042.738174 26 70-0.5764480.4529281.340379 27 600.420113-1.028448-0.409871 28 60-0.050549-0.8609341.046522 29 601.140918-1.2227381.940690 30 601.668073-2.6312981.651740 31 601.679437-3.1000390.197037 32 800.776034-1.3140783.305950 33 800.763966-3.4157072.413789 34 600.520631-2.6917733.621124 35 601.505660-3.1165514.699015 36 60-0.919833-2.899294.031889 37 802.924896-2.677262-0.366638 38 1403.982749-3.821891-1.004235 39 605.473721-2.830559-1.607293 40 606.459140-3.75226-2.37685 45 600.547249-2.534922-0.555078 45 60-0.538224<	20	6	0	-4.184378	3.477674	2.029401
12 6 0 -2.608336 3.915951 3.94584 23 6 0 -2.6023068 2.509656 3.786607 24 6 0 -1.641001 0.612909 2.175291 25 8 0 -2.200198 -0.314804 2.738174 26 7 0 -0.576448 0.452928 1.340379 27 6 0 0.420113 -1.028448 -0.409871 28 6 0 -0.56549 -0.860934 1.046522 29 6 0 1.140918 -1.222738 1.940690 30 6 0 1.668073 -2.631298 1.651740 31 6 0 1.679437 -3.100039 0.197037 32 8 0 0.776034 -1.314078 3.305950 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.526631 -2.691773 3.621124 35 6 0 1.595660 -3.116551 4.699015 36 6 0 -2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.839559 -1.607233 40 6 0 4.464899 -5.643515 0.343743 41 6 0 6.1732072 -2.568546 43 6 0 -0.508632 -4.740	20	6	0	-4.060834	3,967802	3 473443
2360 2.023068 2.599656 3.786607 24 60 -1.641001 0.612909 2.175291 25 80 -2.200198 -0.314804 2.738174 26 70 -0.576448 0.452928 1.340379 27 60 0.420113 -1.028448 -0.409871 28 60 -0.659549 -0.660934 1.046522 29 60 1.140918 -1.222738 1.940690 30 60 1.668073 -2.631298 1.651740 31 60 1.679437 -3.100039 0.197037 32 80 0.776034 -1.314078 3.305950 33 80 0.763966 -3.415707 2.413789 34 60 0.526631 -2.691773 3.621124 35 60 1.505660 -3.116551 4.699015 36 60 -0.919833 -2.899929 4.031589 37 80 2.924896 -2.677262 -0.366638 38 140 3.982749 -3.821891 -1.004235 39 60 5.473721 -2.830559 -1.607293 40 60 6.459140 -3.75226 -2.337685 43 60 6.459140 -3.75226 -2.3376857 45 60 -0.538224 -0.394463 -1.395860 47 8	22	6	0	-2.605836	3,915951	3,945584
24 6 0 1.641001 0.612909 2.175291 25 8 0 -2.200198 -0.314804 2.738174 26 7 0 -0.576448 0.452928 1.340379 27 6 0 0.420113 -1.028448 -0.409871 28 6 0 -0.596549 -0.860934 1.046522 29 6 0 1.140918 -1.222738 1.940690 30 6 0 1.668073 -2.631298 1.651740 31 6 0 1.679437 -3.100039 0.197037 32 8 0 0.776034 -1.314078 3.305950 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.526631 -2.691773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 -919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 6.459140 -3.752266 -2.337685 43 6 0 6.459140 -3.752266 -2.337685 45 6 0 -0.588224 -0.394463 -1.395860 47 8 0 -1.628	23	6	0	-2.023068	2,509656	3,786607
2580 -2.200198 -0.314804 2.738174 26 70 -0.576448 0.452928 1.340379 27 60 0.420113 -1.028448 -0.409871 28 60 -0.55549 -0.860934 1.046522 29 60 1.140918 -1.222738 1.940690 30 60 1.668073 -2.631298 1.651740 31 60 1.679437 -3.100039 0.197037 32 80 0.76034 -1.314078 3.305950 33 80 0.760366 -3.415707 2.413789 34 60 0.520631 -2.691773 3.621124 35 60 1.505660 -3.116551 4.699015 36 60 -0.919833 -2.899929 4.031589 37 80 2.924896 -2.677262 -0.366638 38 140 3.982749 -3.821891 -1.004235 39 60 5.473721 -2.830559 -1.607293 40 60 4.464899 -5.043515 0.343743 41 60 6.171009 -2.188295 -0.400707 42 60 6.459140 -3.752226 -2.337685 45 60 -0.538224 -0.394463 -1.395860 47 80 -1.628949 -0.888426 -1.669114 48 7 <td>23</td> <td>6</td> <td>e e</td> <td>-1 641001</td> <td>0 612909</td> <td>2 175291</td>	23	6	e e	-1 641001	0 612909	2 175291
2670 -0.576448 0.4570344 1.340379 27 60 0.420113 -1.028448 -0.409871 28 60 -0.050549 -0.860934 1.046522 29 60 1.140918 -1.222738 1.940690 30 60 1.668073 -2.631298 1.651740 31 60 1.679437 -3.100039 0.197037 32 80 0.776034 -1.314078 3.305950 33 80 0.763966 -3.415707 2.413789 34 60 0.520631 -2.691773 3.621124 35 60 1.505660 -3.116551 4.699015 36 60 -0.919833 -2.899929 4.031589 37 80 2.924896 -2.677262 -0.366638 38 140 3.982749 -3.821891 -1.004235 39 60 5.473721 -2.830559 -1.607293 40 60 4.464899 -5.043515 0.343743 41 60 6.171009 -2.188295 -0.400707 44 60 0.547249 -2.534922 -0.655078 45 60 -0.538224 -0.394463 -1.395860 47 80 -1.628949 -0.888426 -1.669114 48 70 -0.108390 0.745400 -1.987322 49 6	25	8	0	-2 200198	-0 314804	2 738174
27600.190000.192000.19200 28 60-0.050549-0.8609341.046522 29 601.140918-1.2227381.940690 30 601.668073-2.6312981.651740 31 601.679437-3.1000390.197037 32 800.76034-1.3140783.305950 33 800.763966-3.4157072.413789 34 600.520631-2.6917733.621124 35 601.505660-3.1165514.699015 36 60-0.919833-2.8992994.031589 37 802.924896-2.677262-0.366638 38 1403.982749-3.821891-1.004235 39 605.473721-2.830559-1.607293 40 604.464899-5.0435150.343743 41 603.136802-4.740558-2.412717 42 606.171009-2.188295-0.400707 44 606.459140-3.75226-2.337685 45 60-0.538224-0.394463-1.395860 47 80-1.628949-0.88426-1.669114 48 70-0.1083900.745400-1.987322 49 60-0.6031302.989457-2.849720 50 60-1.007422	25	7	0	-0 576448	0.152928	1 340379
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	, 6	0	0.370440	-1 028448	-0 409871
25 6 0 1.140918 -1.222738 1.940690 30 6 0 1.668073 -2.631298 1.651740 31 6 0 1.679437 -3.100039 0.197037 32 8 0 0.776034 -1.314078 3.305950 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.520631 -2.691773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 -0.919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 4.464899 -5.043515 0.343743 41 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.459140 -3.752226 -2.337685 45 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -0.603130 2.989457 -2.849720 50 6 0 -1.008322 1.513933 -2.838666 51 6 0 $-$	28	6	0	-0 050549	-0 860934	1 046522
125 6 0 11.1403 11.2403 11.2403 30 6 0 1.668073 -2.631298 1.651740 31 6 0 1.679437 -3.100039 0.197037 32 8 0 0.776034 -1.314078 3.305950 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.520631 -2.691773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 0.919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 4.464899 -5.043515 0.343743 41 6 0 5.006636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 0.547249 -2.534922 -0.655078 45 6 0 0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.007	20	6	0	1 140918	-1 222738	1 940690
31 6 0 1.679437 -3.100039 0.197037 32 8 0 0.776034 -1.314078 3.305950 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.520631 -2.691773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 -0.919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 4.464899 -5.043515 0.343743 41 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 -6.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.074742 0.95871 -4.26828	30	6	0	1 668073	-2 631298	1 651740
3280 0.776034 -1.314078 3.305950 33 80 0.763966 -3.415707 2.413789 34 60 0.520631 -2.691773 3.621124 35 60 1.505660 -3.116551 4.699015 36 60 -0.919833 -2.899929 4.031589 37 80 2.924896 -2.677262 -0.366638 38 140 3.982749 -3.821891 -1.004235 39 60 5.473721 -2.830559 -1.607293 40 60 4.464899 -5.043515 0.343743 41 60 3.136802 -4.740558 -2.412717 42 60 6.171009 -2.188295 -0.400707 44 60 0.547249 -2.534922 -0.655078 45 60 -0.538224 -0.394463 -1.395860 47 80 -1.628949 -0.888426 -1.669114 48 70 -0.108390 0.745400 -1.987322 49 60 -1.008322 1.513933 -2.8386665 51 60 -1.074742 0.958871 -4.269828	31	6	0	1 679437	-3 100039	0 197037
32 3 3 6 0 0.763966 1.514076 2.536956 33 8 0 0.763966 -3.415707 2.413789 34 6 0 0.520631 -2.691773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 -0.919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 4.464899 -5.043515 0.343743 41 6 0 3.136802 -4.740558 -2.412717 42 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 6.459140 -3.752226 -2.337685 45 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.074742 0.958871 -4.260828	32	8	0	0 776034	-1 314078	3 305950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	8	0	0.763966	-3 /15707	2 /13789
35 6 0 1.502631 2.631773 3.621124 35 6 0 1.505660 -3.116551 4.699015 36 6 0 -0.919833 -2.899929 4.031589 37 8 0 2.924896 -2.677262 -0.366638 38 14 0 3.982749 -3.821891 -1.004235 39 6 0 5.473721 -2.830559 -1.607293 40 6 0 4.464899 -5.043515 0.343743 41 6 0 3.136802 -4.740558 -2.412717 42 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 0.547249 -2.534922 -0.655078 45 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.074742 0.958871 -4.260828	3/	6	0	0.705500	-2 691773	3 621124
3660 -0.919833 -2.899929 4.031589 3780 2.924896 -2.677262 -0.366638 38140 3.982749 -3.821891 -1.004235 3960 5.473721 -2.830559 -1.607293 4060 4.464899 -5.043515 0.343743 4160 3.136802 -4.740558 -2.412717 4260 5.000636 -1.732972 -2.568546 4360 6.171009 -2.188295 -0.400707 4460 0.547249 -2.534922 -0.655078 4560 -0.538224 -0.394463 -1.395860 4780 -1.628949 -0.888426 -1.669114 4870 -0.108390 0.745400 -1.987322 4960 -1.008322 1.513933 -2.838666 5160 -1.074742 0.958871 -4.260828	35	6	0	1 505660	-3 116551	4 699015
3780 2.924896 -2.677262 -0.366638 38 140 3.982749 -3.821891 -1.004235 39 60 5.473721 -2.830559 -1.607293 40 60 4.464899 -5.043515 0.343743 41 60 3.136802 -4.740558 -2.412717 42 60 5.000636 -1.732972 -2.568546 43 60 6.171009 -2.188295 -0.400707 44 60 6.459140 -3.752226 -2.337685 45 60 -0.538224 -0.394463 -1.395860 47 80 -1.628949 -0.888426 -1.669114 48 70 -0.108390 0.745400 -1.987322 49 60 -1.008322 1.513933 -2.8386666 51 60 -1.074742 0.958871 -4.260828	36	6	0	-0 919833	-2 899929	4 031589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	8	0	2 92/896	-2 677262	-0 366638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1/	0	3 9827/9	-3 821891	-1 00/235
40 6 0 4.464899 -5.043515 0.343743 41 6 0 3.136802 -4.740558 -2.412717 42 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 6.459140 -3.752226 -2.337685 45 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.074742 0.958871 -4.260828	39	<u>1</u> 4	0	5 /73721	-2 830559	-1 607293
40 0 $1,1404333$ $5,043313$ $0,343743$ 4160 $3,136802$ $-4,740558$ -2.412717 4260 $5,000636$ $-1,732972$ -2.568546 4360 $6,171009$ -2.188295 -0.400707 4460 $6,459140$ $-3,752226$ -2.337685 4560 $0,547249$ -2.534922 -0.655078 4660 -0.538224 -0.394463 -1.395860 4780 -1.628949 -0.888426 -1.669114 4870 -0.108390 0.745400 -1.987322 4960 -1.008322 1.513933 -2.838666 5160 -1.074742 0.958871 -4.260828	10	6	0	1 161899	-5 0/3515	0 3/37/3
41 6 6 5.130302 4.740333 2.4412717 42 6 0 5.000636 -1.732972 -2.568546 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 6.459140 -3.752226 -2.337685 45 6 0 0.547249 -2.534922 -0.655078 46 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.074742 0.958871 -4.260828	40 //1	6	0	3 136802	-1 710558	-2 /12717
42 6 6 5.000000 1.752572 2.500540 43 6 0 6.171009 -2.188295 -0.400707 44 6 0 6.459140 -3.752226 -2.337685 45 6 0 0.547249 -2.534922 -0.655078 46 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -0.603130 2.989457 -2.849720 50 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.074742 0.958871 -4.260828	41	6	0	5 000636	-4.740558	-2.412/1/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	6	0	6 171009	-2 188295	-0 100707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	6	0	6 159110	-3 752226	-2 337685
46 6 0 -0.538224 -0.394463 -1.395860 47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -0.603130 2.989457 -2.849720 50 6 0 -1.074742 0.958871 -4.260828	44	6	a	0 5/72/0	-2 53/022	-0 655072
47 8 0 -1.628949 -0.888426 -1.669114 48 7 0 -0.108390 0.745400 -1.987322 49 6 0 -0.603130 2.989457 -2.849720 50 6 0 -1.008322 1.513933 -2.838666 51 6 0 -1.074742 0.958871 -4.260828	45	6	0 Q	-0 528331	-0 301162	-1 305860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	Q	0	-0.550224	-0.888176	-1 66011/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	0 7	0	-1.020343	0.000420 0 7/5/00	-1 007200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 10	7	0	-0.502120 -0.102120	0./43400 2 gga/57	-1.30/322
51 6 0 -1.074742 0 958871 -4 260828	49 50	6	0	-1 000200	2,505457	-7 838666
	50	6	0 Q	-1.074747	0.958871	-4.260828

52	6	0	-2.071064	1.763224	-5.097892
53	6	0	-1.712158	3.250421	-5.102463
54	6	0	-1.617793	3.796031	-3.676594
55	6	0	-0.560809	3.500868	-1.421270
56	8	0	-1.435523	3.211254	-0.611599
57	7	0	0.499123	4.279229	-1.098240
58	6	0	2.270018	4.330036	0.586214
59	6	0	0.803175	4.635798	0.278933
60	6	0	0.472688	6.094402	0.595880
61	6	0	0.797082	6.419547	2.055467
62	6	0	2.261117	6.110762	2.372571
63	6	0	2.592595	4.651269	2.059301
64	6	õ	2.604746	2.883875	0.302523
65	8	â	1 796167	1 980306	0 197952
66	8	â	3 917877	2 697962	0.197992
67	6	9	1 3/7/77	1 3282/19	-0 0201005
69	6	0	5 927201	1 220777	-0.024450
60	6	0	6 200117	1 516156	-0.190702
70	0	0	6 671479	1 160228	-1.454107
70	6	0	0.0/14/8	1.109338	0.913015
/1	6	0	/./80/18	1.51/52/	-1.61585/
/2	6	0	8.053325	1.168333	0.755130
/3	6	0	8.608513	1.340682	-0.510230
74	1	0	-3.158251	-1.636035	-0.743172
75	1	0	-4.980807	-4.822300	2.061810
76	1	0	-3.466120	-4.344586	2.856039
77	1	0	-3.846750	-6.064047	2.639077
78	1	0	-3.369163	-5.933941	-1.125619
79	1	0	-4.912701	-5.865611	-0.250477
80	1	0	-3.678333	-7.063326	0.203598
81	1	0	-1.240701	-5.416207	0.043435
82	1	0	-1.631979	-6.380004	1.479260
83	1	0	-1.244071	-4.654845	1.644278
84	1	0	-3.892342	0.477934	-1.730830
85	1	0	-6.095340	-1.309589	-0.658603
86	1	0	-5.587386	-2.770032	-2.582558
87	1	0	-4.390787	-1.608410	-3.172763
88	1	0	-7.399816	-1.097428	-2.913073
89	1	0	-6.538210	-1.349746	-4.426549
90	1	0	-6,903248	1.093630	-3.979503
91	1	0	-5.188439	0.694252	-4.020128
92	-	0	-6.888091	0.997767	-1.488592
93	1	e e	-5.698786	2 160095	-2.065681
94	-	â	-2 999905	1 750248	-0 121437
95	1	9	-1 571/16	2 7117/2	1 683709
96	1	0	-1 167/80	1 38/808	2 532527
07	1	0	-4.107488	2 151216	1 710707
97	1	0	-3.620020	A 147126	1 252646
90	1	0	-3.039920	4.14/150	1.332040
100	1	0	-4.0080/9	3.323901	4.119028
100	1	0	-4.455198	4.982554	3.50/3/2
101	1	0	-2.529568	4.238199	4.98/163
102	1	0	-2.013/69	4.619812	3.346646
103	1	0	-2.563120	1./99220	4.418662
104	1	0	-0.9/51/4	2.4884/1	4.100521
102	1	0	-0.124699	1.264886	0.947930
106	1	0	1.405520	-0.564003	-0.523930
107	1	0	-0.867685	-1.559605	1.236614
108	1	0	1.906810	-0.449772	1.839702
109	1	0	2.687910	-2.737683	2.039389
110	1	0	1.610728	-4.193975	0.217458
111	1	0	1.372972	-2.489276	5.580960
112	1	0	2.530525	-3.002277	4.343587
113	1	0	1.334543	-4.158523	4.971056

114	1	0	-1.588467	-2.534676	3.255453
115	1	0	-1.122706	-2.336763	4.942859
116	1	0	-1.094467	-3.961087	4.218846
117	1	0	4.892641	-4.528720	1.206299
118	1	0	5.203160	-5.759696	-0.025263
119	1	0	3.600757	-5.614418	0.691575
120	1	0	3.776254	-5.538444	-2.797477
121	1	0	2.893475	-4.069478	-3.239025
122	1	0	2.205599	-5.201565	-2.074016
123	1	0	4.522571	-2.154636	-3.456917
124	1	0	5.854946	-1.131536	-2.899874
125	1	0	4.281637	-1.068973	-2.082715
126	1	0	5.469399	-1.597521	0.194183
127	1	0	6.972973	-1.518125	-0.731134
128	1	0	6.614016	-2.945144	0.252018
129	1	0	6.010230	-4.197309	-3.229807
130	1	0	6.810512	-4.562790	-1.692793
131	1	0	7.338620	-3.182424	-2.657960
132	1	0	0.777090	-2.747066	-1.701550
133	1	0	-0.404470	-3.013369	-0.414416
134	1	0	0.726023	1.178410	-1.619400
135	1	0	0.388912	3.083948	-3.311013
136	1	0	-2.004455	1.450432	-2.395338
137	1	0	-1.367887	-0.090273	-4.205986
138	1	0	-0.075749	1.007089	-4.709000
139	1	0	-3.074219	1.636575	-4.676884
140	1	0	-2.103205	1.376960	-6.118491
141	1	0	-2.453069	3.820956	-5.666444
142	1	0	-0.748592	3.389623	-5.605642
143	1	0	-2.590316	3.724021	-3.179762
144	1	0	-1.332681	4.851135	-3.682799
145	1	0	1.172154	4.498281	-1.814997
146	1	0	2.921628	4.946612	-0.044201
147	1	0	0.176375	3.989829	0.895476
148	1	0	-0.584381	6.262333	0.381788
149	1	0	1.052307	6.746003	-0.068496
150	1	0	0.153194	5.820675	2.708341
151	1	0	0.575027	7.467826	2.262747
152	1	0	2.475673	6.317382	3.422740
153	1	0	2.909576	6.762270	1.776739
154	1	0	1.995420	3.991998	2.698526
155	1	0	3.644813	4.437341	2.251985
156	1	0	4.032870	0.724652	0.826860
157	1	0	3.843518	0.954275	-0.915062
158	1	0	5.750722	1.639210	-2.314266
159	1	0	6.235991	1.024759	1.895117
160	1	0	8.210065	1.648807	-2.600863
161	1	0	8.695254	1.027229	1.615139
162	1	0	9.683782	1.333777	-0.635124

Peptide 15:

Center	Atomic	Atomic	Coord	inates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	7	0	4.109606	0.640959	-0.513784
2	1	0	3.156362	0.683356	-0.853039

3	6	0	4.735968	1.824021	-0.314904
4	8	0	5.935112	1.958484	-0.144679
5	6	0	4.309007	4.214450	-0.212811
6	8	0	3,835399	2.843025	-0.336408
7	6	0	3,040778	5,038160	-0.399484
8	1	0	2,272802	4.743853	0.315674
9	-	â	2.648839	4 896959	-1.409855
10	1	â	3 265830	6 097833	-0 262/12
11	5	9	/ 001186	1 1/1/37	1 173736
12	1	0	4.901180 E 146600	F 400270	1 204944
12	1	0	5.140090	2 9459270	1 202622
10	1	0	5.001/50	3.043007	1.000005
14	1 C	0	4.1/4494	4.101908	1 221012
15	0	0	5.304190	4.54/89/	-1.321812
16	1	0	4.8//124	4.280140	-2.291120
1/	1	0	6.240680	4.015032	-1.184132
18	1	0	5.4945/6	5.623813	-1.316134
19	6	0	4.081663	-1.802069	-0.633497
20	1	0	3.167717	-1.727880	-1.234237
21	6	0	4.905545	-0.528861	-0.856193
22	1	0	5.754147	-0.551683	-0.170722
23	6	0	5.406291	-0.446549	-2.301886
24	1	0	5.999476	0.464166	-2.405717
25	1	0	4.534291	-0.356735	-2.962110
26	6	0	6.223151	-1.679451	-2.685693
27	1	0	7.113366	-1.734008	-2.049955
28	1	0	6.570358	-1.599156	-3.718798
29	6	0	5.390309	-2.946078	-2.494319
30	1	0	5.974947	-3.835450	-2.743317
31	1	0	4,537352	-2.919120	-3.182966
32	6	0	4.886160	-3.042538	-1.055055
33	1	0	5,733590	-3.130597	-0.369362
34	1	0	4,268417	-3.935718	-0.919330
35	-	0	3.747671	-1.937913	0.844718
36	8	â	4 635121	-1 938587	1 687868
37	7	a	2 1/0/28	-2 099265	1 162047
22	, 1	a	1 731773	-2.055205	0 115690
20	6	a	0 655006	_1 513701	2 725011
10	1	0	-0.070711	-2 001752	2.725044
40	т С	0	2 020552	2.091/32	2.150157
41 42	0	0	2.020332	-2.1/0214	2.555619
42	I C	0	2.756021	-1.560061	2 007015
43	6	0	2.01/989	-3.601598	3.08/915
44	1	0	3.014044	-4.028083	2.954474
45	1	0	1.313384	-4.193656	2.491/84
46	6	0	1.60/983	-3.61/12/	4.562189
4/	1	0	2.364570	-3.082979	5.146562
48	1	0	1.5//8/1	-4.642591	4.938412
49	6	0	0.252081	-2.936108	4.762513
50	1	0	-0.015419	-2.923729	5.822126
51	1	0	-0.520741	-3.516446	4.242389
52	6	0	0.264555	-1.509588	4.207590
53	1	0	0.989902	-0.895720	4.748881
54	1	0	-0.714293	-1.037747	4.331718
55	6	0	0.749849	-0.100804	2.177625
56	8	0	1.564556	0.696753	2.612457
57	7	0	-0.101019	0.178786	1.150262
58	1	0	-0.798405	-0.500732	0.886952
59	6	0	-0.418850	1.407696	-0.991636
60	1	0	-1.489845	1.234316	-1.118258
61	6	0	-0.109664	1.476760	0.514528
62	1	0	0.890402	1.891437	0.652882
63	6	0	-1.149473	2.411271	1.148174
64	1	0	-2.114495	1.900488	1.164011

65	6	0	-1.204322	3.779624	0.466829
66	1	0	-2.143550	4.284769	0.720719
67	6	0	-1.059695	3.810165	-1.047843
68	1	0	-0.752678	4.819888	-1.336373
69	8	0	-0.813501	2.764984	2.477208
70	8	â	-0.104650	4 429660	1.080965
71	6	õ	-0 113737	4 017841	2 452563
72	6	0	-0.002001	5 000242	2 202000
72	1	0	-0.902994	1 620657	1 200570
75	1	0	1 002075	4.029037 E 142002	4.303370 2.977464
74	1	0	-1.9028/5	5.143882	2.8//404
75	1	0	-0.391017	5.9/1/51	3.313888
76	6	0	1.313281	3.856480	2.926924
//	1	0	1.312160	3.518890	3.963456
/8	1	0	1.828693	4.816423	2.861349
79	1	0	1.830977	3.106369	2.333093
80	8	0	-2.381249	3.537573	-1.538497
81	1	0	-2.348398	3.573935	-2.502665
82	6	0	-0.075588	2.774867	-1.585970
83	1	0	-0.140082	2.755713	-2.679240
84	1	0	0.951490	3.040798	-1.327565
85	6	0	0.336565	0.284556	-1.668611
86	8	0	1.548913	0.313715	-1.856143
87	7	0	-0.425221	-0.759977	-2.076246
88	1	0	-1.374920	-0.788258	-1.733890
89	6	0	-0.765873	-3.169765	-2.331001
90	1	9	-1.630666	-3.025520	-2.992106
91	- 6	õ	0 201734	-1 999564	-2 521878
92	1	a	1 066599	-2 181489	-1 878515
92	6	õ	0 68/233	-1 927000	-3 969222
0/	1	0	1 267020	-1 092052	-1 063301
94	1	0	1.307039 0.175776	1 7/1201	4.003301
95	1	0	1 275002	-1.741291	-4.022498
90	0	0	1.5/5005	-2.220102	-4.33/320
97	1	0	2.2/121/	-3.302008	-3.740317
98	l	0	1./0//93	-3.191988	-5.39615/
99	6	0	0.44/119	-4.433864	-4.145615
100	1	0	0.964053	-5.365153	-4.385988
101	1	0	-0.40/410	-4.355686	-4.82/194
102	6	0	-0.064093	-4.484839	-2.704330
103	1	0	0.769754	-4.631305	-2.010912
104	1	0	-0.752638	-5.322484	-2.566806
105	6	0	-1.218195	-3.197734	-0.881311
106	8	0	-0.420101	-3.048216	0.037893
107	7	0	-2.547163	-3.370571	-0.679615
108	1	0	-3.138099	-3.532152	-1.479311
109	6	0	-4.348910	-2.262536	0.560150
110	1	0	-5.122151	-2.663495	-0.106071
111	6	0	-3.163870	-3.231578	0.630052
112	1	0	-2.393557	-2.797220	1.269585
113	6	0	-3.599487	-4.575616	1.213272
114	1	0	-2.728978	-5.232501	1.257611
115	1	0	-4.329011	-5.040115	0.539024
116	6	0	-4.219670	-4.389625	2.599505
117	1	0	-3,458492	-3,996515	3,282080
118	1	0	-4.539269	-5.353885	2,998655
119	-	- 0	-5.399579	-3,417621	2,543530
120	1	â	-5 817113	-3,266223	3,540670
121	- 1	a	-6 19/797	-3,845180	1.972021
122	-	a	_A 072801	-2 071111	1 957333
122	1	a a	-1 2200E7	-1 6020ED	2 610000
122 124	1 1	0	-4,2290)/ _5 001707	-1 20071E	2.010000 1 001101
124 125	1 6	0	-J.021/2/	-1.000/10	1.002102
122	Ø	0	-2.921448	-0.922363	0.012031
170	ð	0	-2.//26//	-0.524648	-0.026486

127	8	0	-4.950295	-0.192635	-0.410235
128	6	0	-4.615625	1.116172	-0.924906
129	1	0	-4.085982	1.678818	-0.157733
130	1	0	-3.929134	0.986044	-1.763745
131	6	0	-5.874228	1.822007	-1.349581
132	6	0	-7.064201	1.141601	-1.594757
133	1	0	-7.112357	0.072211	-1.440897
134	6	0	-5.816198	3.204207	-1.538562
135	1	0	-4.887730	3.729709	-1.343414
136	6	0	-8.189772	1.839486	-2.025301
137	1	0	-9.113514	1.305443	-2.208735
138	6	0	-6.940031	3.895931	-1.975351
139	1	0	-6.888820	4.967973	-2.117804
140	6	0	-8.130659	3.215340	-2.218790
141	1	0	-9.007058	3.755537	-2.553460

Peptide 16:

Center	Atomic	Atomic	Coord	 Jinates (Ang	stroms)
Number	Number	Туре	Х	Ŷ	Ź
1	7	0	3.658488	-0.129033	-1.350022
2	6	0	4.757252	0.347605	-0.722475
3	8	0	5.862076	-0.164031	-0.753254
4	6	0	5.417146	2.106149	0.819583
5	8	0	4.442445	1.493607	-0.069762
6	6	0	6.638842	2.576505	0.036371
7	6	0	4.658269	3.302414	1.379080
8	6	0	5.779361	1.138846	1.941354
9	6	0	2.550524	-2.291854	-1.631861
10	6	0	3.681316	-1.364417	-2.103627
11	6	0	3.565686	-1.110298	-3.608014
12	6	0	3.580525	-2.423027	-4.393658
13	6	0	2.469361	-3.359145	-3.915195
14	6	0	2.578153	-3.610360	-2.410784
15	6	0	2.725587	-2.545490	-0.144565
16	8	0	3.696943	-3.142377	0.302636
17	7	0	1.741050	-2.043489	0.636492
18	6	0	0.796972	-1.168599	2.697505
19	6	0	1.772592	-2.177973	2.079060
20	6	0	1.426935	-3.598311	2.534073
21	6	0	1.449211	-3.706285	4.058908
22	6	0	0.493238	-2.692551	4.690119
23	6	0	0.819097	-1.271968	4.227383
24	6	0	1.174740	0.236829	2.269823
25	8	0	2.225391	0.758096	2.657281
26	7	0	0.290817	0.867560	1.478345
27	6	0	-0.427521	2.329490	-0.313860
28	6	0	0.531274	2.176315	0.871407
29	6	0	0.306807	3.310994	1.881291
30	6	0	0.368562	4.692892	1.225885
31	6	0	-0.530809	4.810767	0.008345
32	8	0	1.310979	3.337272	2.881917
33	8	0	1.687043	4.944983	0.786966
34	8	0	-1.874752	4.733947	0.482144
35	6	0	-0.233533	3.694941	-0.985124
36	6	0	-0.202479	1.236360	-1.342909
37	8	0	0.915208	0.828200	-1.635884

38	7	0	-1.323619	0.787763	-1.957566
39	6	0	-2.286996	-1.398921	-2.526375
40	6	0	-1.279221	-0.309320	-2.906996
41	6	0	-1.494365	0.148572	-4.349139
42	6	0	-1.372760	-1.036211	-5.310102
43	6	0	-2.343731	-2.156476	-4.931528
44	6	0	-2.140494	-2.597162	-3.480383
45	6	0	-2.053300	-1.827431	-1.088267
46	8	0	-0.936096	-1.835795	-0.589744
47	7	0	-3.160487	-2.206774	-0.396423
48	6	0	-4.020717	-1.693316	1.842638
49	6	0	-3.095562	-2.582547	1.006730
50	6	0	-3.412731	-4.058033	1.245543
51	6	0	-3.265752	-4.397068	2.731229
52	6	0	-4.150762	-3.497232	3,596430
53	6	0	-3.856619	-2.017757	3.339368
54	6	0	-3.705749	-0.238471	1.599313
55	8	0	-2.598594	0.211204	1.409061
56	8	0	-4.810825	0.522510	1,642926
57	6	0	-4.629074	1.933416	1.452275
58	6	0	-4.671851	2.321550	-0.006916
59	6	0 0	-4.718623	1 382877	-1.033741
60	6	â	-4.665812	3.681416	-0.328057
61	6	a	-4 733380	1 797699	-2 366698
62	6	a	-4 675834	4 094792	-1 656077
63	6	9	-1 701235	3 151168	-2 682301
64	1	a	2 7900/9	0 380922	-1 260153
65	1	0	6 32/383	3 222386	-0.786355
66	1	0	7 100702	1 729882	-0.760000
67	1	0	7.190792	2 152577	-0.505052
67	1	0	7.200500 דרדרסד כ	2.1222//	1 020406
60	1	0	J./0Z/Z/ 1 JJ61E0	2.950422	0 565560
70	1	0	4.330138	2.920044	
70	1	0	5.302292	2.00/222	2.055/95
71	1	0	6.326910	0.284002	1.550622
72	1	0	4.865892	0./93/9/	2.429047
73	1	0	0.399156	1.050344	2.6//829
74	1	0	1.594836	-1./84/56	-1.8052/1
75	1	0	4.634/50	-1.845028	-1.8/5899
76	1	0	4.385819	-0.459272	-3.918513
//	1	0	2.629270	-0.5691/1	-3./9434/
/8	1	0	4.54/354	-2.916145	-4.246236
/9	1	0	3.481383	-2.2266//	-5.464348
80	1	0	2.506619	-4.306209	-4.459/53
81	1	0	1.495536	-2.9012/1	-4.1345/1
82	1	0	3.51590/	-4.122/56	-2.1/814/
83	1	0	1.763841	-4.255804	-2.068455
84	1	0	0.913209	-1.6/5309	0.192216
85	1	0	-0.212226	-1.398348	2.331268
86	1	0	2.785125	-1.930503	2.410275
87	1	0	2.141248	-4.283522	2.076696
88	1	0	0.428238	-3.848161	2.151548
89	1	0	2.465748	-3.509816	4.415662
90	1	0	1.191964	-4.720962	4.372172
91	1	0	0.539074	-2.747516	5.780429
92	1	0	-0.536747	-2.940387	4.401877
93	1	0	1.816094	-0.982321	4.568996
94	1	0	0.112137	-0.554494	4.653253
95	1	0	-0.584751	0.406569	1.275376
96	1	0	-1.455507	2.268087	0.059595
97	1	0	1.564621	2.202792	0.514709
98	1	0	-0.682711	3.170256	2.332224
99	1	0	0.053835	5.432673	1.971866

100	1	0	-0.343326	5.782813	-0.459356
101	1	0	1.743132	2.460152	2.927838
102	1	0	2.250465	4.624667	1.509935
103	1	0	-2.447950	4.653329	-0.290743
104	1	0	0.795112	3.788880	-1.337271
105	1	0	-0.898682	3.777799	-1.852654
106	1	0	-2.217407	1.158032	-1.670213
107	1	0	-3.304966	-0.996958	-2.622518
108	1	0	-0.277584	-0.730388	-2.814288
109	1	0	-0.755792	0.917584	-4.583487
110	1	0	-2.486173	0.608635	-4.439643
111	1	0	-0.347565	-1.419766	-5.270392
112	1	0	-1.551621	-0.710458	-6.336732
113	1	0	-2.216284	-3.011743	-5.598294
114	1	0	-3.373427	-1.802028	-5.057677
115	1	0	-1.136453	-3.014538	-3.350706
116	1	0	-2.854154	-3.380431	-3.210938
117	1	0	-4.040201	-2.273780	-0.883841
118	1	0	-5.064034	-1.865407	1.557562
119	1	0	-2.064495	-2.387823	1.301439
120	1	0	-2.738827	-4.666345	0.639344
121	1	0	-4.437223	-4.268498	0.914942
122	1	0	-2.218378	-4.263213	3.022596
123	1	0	-3.511925	-5.446699	2.901408
124	1	0	-3.999792	-3.722125	4.653999
125	1	0	-5.204018	-3.697590	3.372164
126	1	0	-2.827227	-1.784556	3.632968
127	1	0	-4.520350	-1.381516	3.928250
128	1	0	-5.451304	2.397791	1.993350
129	1	0	-3.682220	2.242940	1.895059
130	1	0	-4.749099	0.327027	-0.795234
131	1	0	-4.641654	4.417237	0.468688
132	1	0	-4.778606	1.059814	-3.158844
133	1	0	-4.675083	5.152276	-1.890618
134	1	0	-4.711923	3.470659	-3.716243

Figure S57: Alignment of the models of peptides **14-16** calculated from NMR data and further optimized at the M052X DFT level. Compound colours: **14** *blue*, **15** *red*, **16** *grey*. Atom colours: Si *yellow*, H^N *white*; hydrogen atoms not bound to nitrogen have been omitted for clarity. RMSD of backbone heavy atoms = 0.246 Å (carbonyl C, C α , C β , N).

VII. X-RAY OF COMPOUND 3

Crystal data C₃₂H₄₇NO₅Si $M_r = 553.79$ Monoclinic, $P2_1$ a = 7.7332 (3) Å b = 8.4891(4) Å c =24.0949 (9) Å β = 95.619 (2)° V = 1574.18 (11) Å³Z = 2

Data collection κ -geometry diffractometer Radiation source: sealed x-ray tube, SIEMENS KFN MO 2K-90 Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ or ω oscillation scans Absorption correction: multi-scan *SADABS2016*/2 - Bruker AXS area detector scaling and absorption correction

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.085$ S = 1.057146 reflections 361 parameters 1 restraint

Special details

$$\begin{split} &\Delta\rho_{max} = 0.24 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.23 \text{ e } \text{\AA}^{-3} \\ &\text{Absolute structure: Flack x determined using 2459} \\ &\text{quotients } [(\text{I+})-(\text{I-})]/[(\text{I+})+(\text{I-})] \text{ (Parsons, Flack} \\ &\text{and Wagner, Acta Cryst. B69 (2013) 249-259).} \\ &\text{Absolute structure parameter: } -0.01 \text{ (5)} \end{split}$$

F(000) = 600 $D_x = 1.168 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \text{ Å Cell parameters from 9346} reflections \theta = 2.6-27.4° \mu = 0.11 mm^{-1} T = 100 KPlate, clear colourless $0.89 \times 0.74 \times 0.13 \text{ mm}$

 $T_{min} = 0.85, T_{max} = 0.99$ 25016 measured reflections
7146 independent reflections
6355 reflections with $l > 2\sigma(l) R_{int} = 0.035$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 1.7^{\circ} h = -10 \rightarrow 10 k = -11 \rightarrow 11 l = -31 \rightarrow 20$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 0.3617P]$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Figure S58: ORTEP diagram for compound 3.