Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Facile access to S-methyl dithiocarbamates with sulfonium or

sulfoxonium iodides as methylation reagent

Huiying Deng, Lingling Xiang, Zhijun Yuan, Bohong Lin, Yiting He, Qi Hou, Yaoping Ruan, Jing Zhang*

Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China. Email: jingzhang@gzucm.edu.cn

Table of Contents

Tał	ble S1 TMSO-I-mediated thiolmethylation of benzylamine (1k)S2
1.	General Information
2. met	Synthetic procedure and spectroscopic data with trimethylsulfonium iodide as thylation reagent
3. met	Synthetic procedure and spectroscopic data with trimethylsulfoxonium iodide as thylation reagent
4. DN	General procedure for synthesis of S-trideuteromethyl dithiocarbamates with $ISO-d_6$ as deuterium source
5.	¹ H and ¹³ C NMR spectra of compoundsS8
6.	Reference

1k) NH ₂ +	O I [−] CS ₂ + +S I TMSO-I	K ₂ CO ₃ , DMSO Temp., 30 min	
	Entry	TMSO-I (equiv)	Temp. (°C)	Yield $(\%)^a$
	1	2.0 equiv	65	39
	2	1.5 equiv	65	88
	3	1.1 equiv	65	78
	4	1.5 equiv	80	66
	5	1.5 equiv	120	26
	6	1.5 equiv	120	89^{b}

Table S1 TMSO-I-mediated thiolmethylation of benzylamine (1k)^a

^{*a*} Reaction condition: **1k** (1.0 equiv), CS₂ (1.2 equiv), TMSO-I (1.1 – 2.0 equiv), K₂CO₃ (4.0 equiv), DMSO, 30 min; ^{*b*} K₂CO₃ was replaced with DIPEA.

Experimental procedure

1. General Information

All chemicals were used as received unless otherwise stated. Trimethylsulfonium iodide and trimethylsulfoxonium iodide were purchased from Bide Pharmatech Ltd. (Shanghai, China). D₆-DMSO were purchased from Shanghai Titan Scientific Co., Ltd. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were measured on Bruker 400 NMR spectrometer. Proton chemical shifts of NMR spectra were calibrated with TMS as internal reference. HR-MS spectral data were recorded on Agilent 6550 Q-TOF or Thermo Fisher Q Exactive Orbitrap mass spectrometer. Analytical thin-layer chromatography (TLC) analysis was performed on TLC silica gel plates (0.2 ± 0.03 mm) and visualized with ultraviolet light (254 nm) to monitor the reaction progression.

2. Synthetic procedure and spectroscopic data with trimethylsulfonium iodide as methylation reagent

General procedure: A solution of trimethylsulfonium iodide (3.0 equiv) in ddH₂O (1 mL) was added to a mixture of amine (1.0 equiv), carbondisulfide (1.2 equiv), and 28% ammonium hydroxide solution (1 mL) in ethanol (6 mL) in a sealed tube, and it was stirred at 120 °C for 30 min. Then the mixture was cooled to room temperature, and extracted with DCM or ethyl ether twice. After being washed with H₂O and brine, the combined organic was dried over anhydrous Na₂SO₄, and concentrated under vacuum. The desired compound could be obtained directly for characterization or after purification by silica gel column chromatography.

Compound **2a** was obtained as a yellow solid in 70% yield (195 mg, 1.11 mmol) after extraction with ethyl ether without further purification. ¹H NMR (400 MHz, CDCl₃) δ 4.30 (s, 2H), 3.89 (s, 2H), 2.66 (s, 3H), 1.69 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.9, 53.0, 51.2, 25.7, 24.3, 20.1. Data are consistent with previous reports¹.

Compound **2b** was obtained as a colorless liquid in 76% yield (150 mg, 0.93 mmol) after extraction with ethyl ether without further purification. ¹H NMR (400 MHz, CDCl₃) δ 3.95 (t, *J* = 7.2 Hz, 2H), 3.65 (t, *J* = 6.4 Hz, 2H), 2.66 (s, 3H), 2.09 (p, *J* = 7.2 Hz, 2H), 1.99 (p, *J* = 7.2 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.9, 55.0, 50.5, 26.1, 24.4, 19.4. Data are consistent with previous reports¹.

Compound **2c** was obtained as a yellow liquid in 59% yield (120 mg, 0.68 mmol) after purification with silica gel column chromatography (PE/EtOAc 12:1). ¹H NMR (400 MHz, CDCl₃) δ 4.16 (brs, 4H), 3.77 (t, *J* = 4.8 Hz, 4H), 2.68 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.9, 66.3, 50.6, 19.9. Data are consistent with previous reports².

Compound **2d** was obtained as a yellow liquid in 60% yield (140 mg, 0.86 mmol) after extraction with ethyl ether without further purification. ¹H NMR (400 MHz, CDCl₃) δ 4.05 (q, *J* = 7.2 Hz, 2H), 3.75 (q, *J* = 7.2 Hz, 2H), 2.64 (s, 3H), 1.29 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.8, 49.5, 46.7, 20.0, 12.4, 11.6. Data are consistent with previous reports¹.

Compound **2e** was obtained as a colorless liquid in 72% yield (220 mg, 1.17 mmol) after extraction with ethyl ether without further purification. ¹H NMR (400 MHz, CDCl₃) δ 5.84 (m, 2H), 5.23 (m, 4H), 4.67 (s, 2H), 4.30 (s, 2H), 2.65 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.3, 131.1 130.4, 118.5, 118.4, 56.5, 53.6, 20.4. Data are consistent with previous reports³.

Compound **2f** was obtained as a yellow liquid in 91% yield (150 mg, 0.71 mmol) as a mixture of isomers with a ratio of ca. 2:1 after purification through silica gel column chromatography (PE/EtOAc 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (m, 5H), 5.39 [5.00] (s, 2H), 3.29 [3.48] (s, 3H), 2.69 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.1 [199.0], 135.7 [134.9], [128.9] 128.8, [128.0] 127.7, 127.1, 59.5 [57.6], [43.5] 38.8, 20.7 [20.1]. The data of minor isomer are given in square brackets. Data are consistent with previous reports⁴.

Compound **2g** was obtained as a colorless liquid in 70% yield (220 mg, 0.92 mmol) as a mixture of isomers with a ratio of 1:1 after purification through silica gel column chromatography (PE/EtOAc 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (m, 5H), [6.05] 5.00 (s, 1H), [5.32] 4.93 (s, 2H), 2.71 [2.63] (s, 3H), 1.22 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.2 [199.9], 137.4 [136.5], 128.6 [128.4], 127.2 [126.8],

[126.5] 126.1, 55.1 [53.9], 52.3 [50.2], 20.7, [20.3] 19.8. The data of the other isomer are given in square brackets. Data are consistent with previous reports⁵.

Compound **2h** was obtained as a colorless liquid in 93% yield (273 mg, 0.95 mmol) after purification through silica gel column chromatography (PE/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 10H), 5.35 (s, 2H), 4.95 (s, 2H), 2.72 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.9, 139.4, 135.7, 134.8, 129.0, 128.9, 128.3, 127.9, 127.2, 127.0, 61.3, 56.4, 54.0, 42.3, 20.8. Data are consistent with previous reports⁶.

Compound **2i** was obtained as a white solid in 73% yield (307 mg, 1.45 mmol) after purification through silica gel column chromatography (PE/DCM 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (m, 2H), 7.13 (m, 2H), 3.76 (s, 3H), 2.53 (s, 3H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.5, 142.3, 139.2, 130.4, 126.6, 46.2, 21.3, 20.8. Data are consistent with previous reports⁷.

Compound **2j** was obtained as a yellow liquid in 63% yield (140 mg, 0.67 mmol) after purification through silica gel column chromatography (PE/EtOAc 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 3H), 7.12 (t, *J* = 7.4 Hz, 1H), 4.51 (t, *J* = 8.4 Hz, 2H), 3.21 (t, *J* = 8.4 Hz, 2H), 2.71 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.5, 144.1, 134.6, 126.8, 125.3, 125.2, 118.5, 54.3, 27.4, 19.6. Data are consistent with previous reports⁶.

3. Synthetic procedure and spectroscopic data with trimethylsulfoxonium iodide as methylation reagent

General procedure: amine (1.0 equiv), carbondisulfide (1.2 equiv), trimethylsulfoxonium iodide (1.5 equiv), K_2CO_3 (4.0 equiv) was added to DMSO (8 mL) in a sealed tube, then the mixture was stirred at 65 °C for 30 min. The reaction mixture was cooled down, diluted with H₂O, and extracted with DCM or ethyl ether twice. After being washed with H₂O and brine, the organic was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The desired compound could be obtained directly for characterization or after purification by silica gel column chromatography.

Compound **3a** was obtained as a yellow liquid in 61% yield (138 mg, 0.61 mmol) as a mixture of isomers in the ratio of 3:1 after purification through silica gel column chromatography (PE/EtOAc 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 9.2 Hz 2H), 6.90 (d, *J* = 8.8 Hz 2H), 4.84 [4.55] (d, *J* = 5.2 Hz, 2H), 3.81 (s, 3H), [2.70] 2.65 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [201.6] 198.8, 159.5, 129.7 [129.4], 128.3 [127.2], 114.3, 55.4, 50.9 [49.9], [19.1] 18.3; HRMS-ESI (m/z): calcd for C₁₀H₁₄NOS₂⁺ [M+H]⁺ 228.0511, found 228.0513.

Compound **3b** was obtained as a white solid in 64% yield (142 mg, 0.64 mmol) as a mixture of isomers in the ratio of 17:1 after purification through silica gel column chromatography (PE/EtOAc 9:1). ¹H NMR (400 MHz, *d*₆-DMSO) δ 10.47 (s, 1H), 7.80 (m, 2H), 7.45 (d, *J* = 8.0 Hz 2H), 4.91 [4.67] (s, 2H), 2.55 [2.52] (s, 3H);

¹³C{¹H} NMR (101 MHz, *d*₆-DMSO) δ [200.7] 199.2, 143.8 [143.2], [133.0] 132.8, 128.7 [128.5], 119.5, [110.6] 110.3, 49.4 [48.9], [18.6] 18.0; HRMS-ESI (m/z): calcd for C₁₀H₁₁N₂S₂⁺ [M+H]⁺ 223.0358, found 223.0359.

Compound **3c** was obtained as a yellow liquid in 61% yield (197 mg, 0.92 mmol) as a mixture of isomers in the ratio of 5:1 after purification through silica gel column chromatography (PE/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 2H), 7.05 (m, 2H), 4.90 [4.60] (d, *J* = 5.2 Hz, 2H), [2.70] 2.86 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [202.0] 199.4, 162.5 (d, *J* = 247.4 Hz), 132.1 [131.1] (d, *J* = 3.0 Hz), 130.0 [129.8] (d, *J* = 8.1 Hz), [116.1] 115.8 (d, *J* = 21.2 Hz), 50.3 [49.6], [19.1] 18.3; ¹⁹F NMR (376 MHz, CDCl₃) δ [-113.3] -113.8 (s, 1F); HRMS-ESI (m/z): calcd for C₉H₁₁FNS₂⁺ [M+H]⁺ 216.0311, found 216.0309.

Compound **3d** was obtained as a yellow liquid in 69% yield (240 mg, 1.04 mmol) as a mixture of isomers in the ratio of 5:1 after purification through silica gel column chromatography (PE/EtOAc 10:1) ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.0 Hz 2H), 7.26 (d, *J* = 8.4 Hz 2H), 4.91 [4.61] (d, *J* = 5.6 Hz 2H), 2.67 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.7, 134.8, 133.9, 129.5, [129.2] 129.0, 50.3 [49.6], [19.1] 18.4; HRMS-ESI (m/z): calcd for C₉H₁₁ClNS₂⁺ [M+H]⁺ 232.0016, found 232.0017.

Compound **3e** was obtained as a yellow liquid in 53% yield (147 mg, 0.53 mmol) as a mixture of isomers in the ratio of 4:1 after purification through silica gel column chromatography (PE/EtOAc 10:1) ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.87 [4.57] (d, *J* = 5.6 Hz, 2H), 2.65 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.7, 135.4, 132.0, 129.8 [129.5], 122.0, 50.3 [49.6], [19.1] 18.4; HRMS-ESI (m/z): calcd for C₉H₁₁BrNS₂⁺ [M+H]⁺ 275.9511, found 275.9509.

Compound **3f** was obtained as a yellow solid in 75% yield (269 mg, 0.83 mmol) as a mixture of isomers in the ratio of 4:1 after purification through silica gel column chromatography (PE/EtOAc 10:1) ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 4.88 [4.58] (d, *J* = 5.2 Hz, 2H), 2.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.7, 138.0, 136.0, 130.0 [129.7], 93.6, 50.4 [49.7], [19.6] 18.4. HRMS-ESI (m/z): calcd for C₉H₁₁INS₂⁺ [M+H]⁺ 323.9372, found 323.9371.

Compound **3g** was obtained as a white solid in 51% yield (170 mg, 0.80 mmol) as a mixture of isomers in the ratio of 3:1 after purification through silica gel column chromatography (PE/EtOAc 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 2H), 7.27 (m, 1H), 7.22 (m,2H), 6.92 (s, 1H), 4.01 [3.72] (q, J= 7.2, 12.8 Hz, 2H), 2.98 (m, 2H), [2.69] 2.61 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [201.9] 199.1, 138.2 [137.3], [129.0] 128.8, 128.8 [128.7], [127.1] 126.8, 48.0 [47.3], [34.9] 34.3, [19.0] 18.1. The data of minor isomer are given in square brackets. Data are consistent with previous reports⁸.

Compound **3h** was obtained as a yellow liquid in 66% yield (120 mg, 0.80 mmol) as a mixture of isomers with a ratio of 2:1 after purification through silica gel column chromatography (PE/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃) δ [7.63] 6.94 (s, 1H) 3.71 [3.41] (q, *J* = 5.2, 12.4 Hz, 2H), [2.68] 2.64 (s, 3H), 1.69 (m, 2H), 0.99 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [201.8] 198.9, 49.0 [48.1], [22.1] 21.7, [18.9] 18.2, 11.4. The data of minor isomer are given in square brackets. Data are consistent with previous reports⁹.

Compound **3i** was obtained as a yellow liquid in 46% yield (50 mg, 0.31 mmol) as a mixture of isomers with a ratio of 2:1 after purification through silica gel column chromatography (PE/DCM 4:1). ¹H NMR (400 MHz, CDCl₃) δ 3.74 [3.44] (m, 2H), [2.68] 2.64 (s, 3H), 1.65 (m, 2H), 1.41 (m, 2H), 0.96 (q, J= 7.2 Hz 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [201.8] 198.8, 47.1 [46.1], [30.7] 30.4, 20.1 [20.0], [18.9] 18.2, 13.7 [13.6]. The data of minor isomer are given in square brackets. Data are consistent with previous reports¹.

Compound **2k** was obtained as a yellow liquid in 88% yield (160 mg, 0.81 mmol) as a mixture of isomers with a ratio of 4:1 after purification through silica gel column chromatography (PE/EtOAc 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 5H), 7.10 (s, 1H), 4.92 [4.62] (d, *J* = 5.2 Hz, 2H), [2.70] 2.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [202.0] 199.2, 136.3 [135.3], [129.0] 128.9, 128.3 [128.3], 128.1 [127.9], 51.3 [50.4], [19.1] 18.4. The data of minor isomer are given in square brackets. Data are consistent with previous reports¹⁰.

Compound **2l** was obtained as a yellow liquid in 73% yield (120 mg, 0.53 mmol) as a mixture of isomers with a ratio of 2:1 after purification through silica gel column chromatography (PE/EtOAc 12:1). ¹H NMR (400 Hz, CDCl₃) δ 7.30 (t, J= 7.6 Hz, 2H),7.20 (m, 3H), 3.78 [3.46] (q, J= 6.8, 13.2 Hz, 2H), 2.70 (m, 2H),2.60 (s, 3H), 2.02 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ [201.9] 198.9, 141.1 [140.5], 128.6, 128.4, 126.3 [126.2], 47.0 [45.9], 33.3 [33.0], [30.1] 29.8, [18.9] 18.2. The data of minor isomer are given in square brackets. Data are consistent with previous reports¹¹.

4. General procedure for synthesis of S-trideuteromethyl dithiocarbamates with DMSO-*d*₆ as deuterium source

General procedure: A mixture of trimethylsulfoxonium iodide (1.5 equiv) and DMSO- d_6 (80.0 equiv) in sealed tube was stirred at 120 °C for 2 h, then it was cooled down. After that, amine (1.0 equiv) and K₂CO₃ (4.0 equiv) was added in, and the mixture was further stirred at 65 °C for 30 min. After being cooled to room temperature, the reaction mixture was diluted with H₂O and extracted with DCM twice. The combined organic was washed with H₂O and brine, and dried over anhydrous Na₂SO₄. The obtained crude was concentrated under vacuum, and purified by silica gel column chromatography. The level of deuterium incorporation was determined by ¹H NMR spectrometry of the S-CH₃ signal based on the following equation:

$$Deuteration (\%) = (1 - \frac{Normalized residual integral}{3}) \times 100\%$$

Compound **4a** was obtained as a yellow solid in 96% yield and 93% deuterium incorporation (40 mg, 0.22 mmol) after purification through silica gel column chromatography (PE/EtOAc 20:1). ¹H NMR (400 MHz, CDCl₃) δ 4.31 (s, 2H), 3.90 (m, 2H), 2.66 (s, 0.21H), 1.71 (m, 6H).

Compound **4b** was obtained as a colorless liquid in 93% yield and 96% deuterium incorporation (120 mg, 0.43 mmol) after purification through silica gel column chromatography (PE/DCM 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 10H), 5.36 (s, 2H), 4.98 (s, 2H), 2.73 (s, 0.12H).

Compound 4c was obtained as a colorless liquid in 98% yield and 95% deuterium incorporation (60 mg, 0.80 mmol) after purification through silica gel column chromatography (PE/EtOAc 15:1). ¹H NMR (400 MHz, CDCl₃) δ 5.83 (m, 2H), 5.40 (s, 1H), 5.23 (m, 4H), 4.65 (d, J = 6.0 Hz, 2H), 4.28 (d, J = 5.2 Hz, 2H), 2.65 (s, 0.14H).

Compound **4d** was obtained as a yellow liquid in 85% yield and 96% deuterium incorporation (170 mg, 0.97 mmol) as a mixture of isomers in the ratio of 2:1 after extraction with ethyl ether without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 5H), 5.38 [5.00] (s, 2H), [3.48] 3.26 (s, 3H), 2.69 (s, 0.12H).

Compound 4e was obtained as a colorless liquid in 76% yield and 89% deuterium incorporation (35 mg, 0.16 mmol) as a mixture of isomers with a ratio of 2:1 after purification through silica gel column chromatography (PE/EtOAc 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (m, 2H), 7.23 (m, 3H), 3.78 [3.46] (m, 2H), 2.71 (t, *J* = 7.6 Hz, 2H), 2.60 (s, 0.32H), 2.03 (m, 2H).

Compound **4f** was obtained as a colorless liquid in 93% yield and 77% deuterium incorporation (43 mg, 0.24 mmol) as a mixture of isomers with a ratio of 2:1 after purification through silica gel column chromatography (PE/EtOAc 15:1). ¹H NMR (400 MHz, CDCl₃) δ 3.74 [3.44] (p, *J* = 7.2 Hz, 2H), [2.68] 2.64 (s, 0.70H), 1.64 (m, 2H), 1.41 (m, 2H), 0.96 (t, *J* = 7.6 Hz, 3H).

5. ¹H and ¹³C NMR spectra of compounds

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)


```
f1 (ppm)
```


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3.75

S31

6. Reference

1. Azizi, N.; Aryanasab, F.; Saidi, M. R., Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions. *Org. Lett.* **2006**, *8* (23), 5275-5277.

2. Pujol, M. D.; Guillaumet, G., A new route to dithiocarbamates from tertiary N-methyl and N-benzylamines. *Synth. Commun.* **1992**, *22* (9), 1231-1238.

3. Balogh, K.; Nagy, J.; Toth, I.; Nagy, S.; Toth, A.; Grega Erzsebet, D. R.; Dombay, Z.; Filetoth, L.; Urszin, E.; Pasztor, K.; Nagy, I.; Pavliscsak, C.; Kis Kotta, B.; Mile, E.; Lorik Robert, E.; Bartha, L. Controlled-release herbicidal composition. GB2175503, 1986/05/12, 1986.

4. Rabiller, C.; Renou, J. P.; Martin, G. J., Nuclear magnetic resonance investigation of iminium ion intermediates. Part VI. A hydrogen-1 and carbon-13 structural and dynamic study of various substituted iminium salts. *J. Chem. Soc., Perkin Trans. 2.* **1977**, *(5)*, 536-541.

5. Czajkowski Albert, J.; Schafer David, E. Compositions and methods for reducing herbicidal injury. US4231786, 1974/12/26, 1974.

6. Kanie, K.; Mizuno, K.; Kuroboshi, M.; Hiyama, T., A facile synthesis of trifluoromethylamines by oxidative desulfurization–fluorination of dithiocarbamates. *Bull. Chem. Soc. Jpn.* **1998**, *71* (8), 1973-1991.

7. Hiroto, T.; Yoshio, H.; Tsuneo, I., Cycloaddition in synthesis of sulfonamide derivatives. III. Convenient synthesis of 3-(alkylthio)-4H-1,2,4-benzothiadiazine 1,1-dioxides. *Chem. Pharm. Bull.* **1990**, *38* (4), 1075-1076.

8. Gaspari, P.; Banerjee, T.; Malachowski, W. P.; Muller, A. J.; Prendergast, G. C.; DuHadaway, J.; Bennett, S.; Donovan, A. M., Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. *J Med. Chem.* **2006**, *49* (2), 684-692.

9. Kelly, B.; McMullan, M.; Muguruza, C.; Ortega, J. E.; Meana, J. J.; Callado, L. F.; Rozas, I., Alpha2-adrenoceptor antagonists: synthesis, pharmacological evaluation, and molecular modeling investigation of pyridinoguanidine, pyridino-2-aminoimidazoline and their derivatives. *J Med. Chem.* **2015**, *58* (2), 963-977.

10. Mohanta, P. K.; Dhar, S.; Samal, S.; Ila, H.; Junjappa, H., 1- (Methyldithiocarbonyl)imidazole: a useful thiocarbonyl transfer reagent for synthesis of substituted thioureas. *Tetrahedron* **2000**, *56*, 629-637.

11. Kaiser, C.; Kruse, L. I. Dopamine β -hydroxylase inhibitors. EP191621, 1986/08/20, 1986.