Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for

1-(*N*,*N*-Dialkylcarbamoyl)-1,1-difluoromethanesulfonyl ester as a stable and effective precursor for neopentyl labeling group with astatine-211

Ichiro Sasaki^b, Masatoshi Tada^a, Ziyun Liu^a, Maho Tatsuta^a, Takeru Okura^a, Miho Aoki^c, Kazuhiko Takahashi^c, Noriko S. Ishioka^b, Shigeki Watanabe^b and Hiroshi Tanaka^{*,a}

^aDepartment of Chemical Science and Engineering, Tokyo Institute of Technology Address 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan E-mail: <u>thiroshi@cap.mac.titech.ac.jp</u>

^bDepartment of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan

[°]Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University General Information

NMR spectra were recorded on a JEOL Model ECP-400 (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F) and Bruker AVANCE III HD 400 (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F) instrument in the indicated solvent. Chemical shifts are reported in units of parts per million (ppm) relative to the signal for internal tetramethylsilane (0 ppm for ¹H) for solutions in CDCl₃. ¹H NMR spectral data are reported as follows: CDCl₃ (7.26 ppm). ¹³C NMR spectral data are reported as follows: CDCl₃ (77.16 ppm). ¹⁹F NMR spectral are reported as follows: C₆H₅CF₃ (-63.72 ppm) as an external standard. Multiplicities are reported by using the following abbreviations: s, singlet; br-s, broaded-singlet; d, doublet; br-d, broaded-doublet; dd, doublet of doublets; br-dd, broaded-doublet of doublets; t, triplet; dq, doublet of quartets; q, quartet, m, multiplet; and, J, coupling constants in Hertz.

IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrophotometer or JASCO FT/IR-4200 spectrophotometer. Only the strongest and/or structurally important absorption is reported as the IR data in cm-1.

All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254) with UV light, visualized by p-anisaldehyde solution, ceric sulfate or ethanolic phosphomolybdic acid. Column chromatography separations were performed using silica gel (Merck silica gel 60, 0.063 - 0.200 mm).

Scheme S1. Synthesis of the sulfonyl fluoride 17.

2-(Dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonyl fluoride (17)

According to the reported method for acid chloride **15**, 2,2-difluoro-2-(fluorosulfonyl)acetic acid (**14**) (1.2 mL, 11 mmol, 1.71 g/mL) was added cautiously to phosphorus pentachloride (2.6 g, 12 mmol) at 0°C under an Ar atmosphere. After being stirred at 25°C for 30min, the reaction mixture was warmed to 60°C. After being stirred at 60°C for 2h, the reaction mixture was distilled at 90°C to 110°C. Obtained **15** was dropped into a stirred solution of dioctylamine (7.0 mL, 22 mmol, 0.8 g/mL) in dry DCM (4 mL) at 0°C under Ar atmosphere. The carboxylic chloride **15** was washed by DCM (1mL) twice and added to the reaction mixture. After being stirred at 0°C for 10min, the reaction mixture was poured into water and DCM. The aqueous layer was extracted with DCM twice. The combined extract was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel column with hexane:ethyl acetate (9:1) to **16** (4.5 g, 9.0 mmol, 80%).

¹H NMR (400 MHz, CDCl₃) δ 3.34-3.40 (m, 4H), 1.55-1.62 (m, 4H), 1.28-1.30 (m, 20H), 0.86-0.91 (m, 6H) ¹³C NMR (100 MHz, CDCl₃) δ 47.3, 47.2, 31.7, 29.1, 28.8, 26.8, 26.7, 26.5, 22.6, 14.0

¹⁹F NMR (376 MHz, CDCl₃) δ 93.8, 37.2

FT-IR (neat) 2956, 2928, 2857, 1679, 1450, 1378, 1307, 1235, 1198, 1137, 1039, 799, 762, 724, 643, 607 (cm⁻¹)

HRMS (ESI-TOF) calcd. for C₁₈H₃₄F₃NNaO₃S 424.21092 [M+Na]⁺, found 424.21037

Scheme S2. Synthesis of the neopentyl alcohol S1

(2,2-Dimethyl-5-((naphthalene-2-ylmethoxy)methyl)-1,3-dioxane-5-yl)methanol (S1)

To a stirred solution of 60% sodium hydride (3.02 g, 74.9 mmol), washed three times with dry hexane, in DMF (16.5 mL) was added a solution of 4-(hydroxymethyl)-1-methyl-2,6,7-trioxabicyclo[2,2,2]-octane* (10.0 g, 62.4 mmol) in DMF (34.2 mL) at 0 °C and the reaction mixture was stirred at room temperature for 1 h. Then a solution of 2-(bromomethyl)naphthalene (13.8 g, 62.4 mmol) in DMF (21 mL) was added to the reaction mixture at 0 °C. After being stirred at room temperature for 3 h, EtOH and water were added to the stirred solution with cooling. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was used for the next reaction without further purification. To a stirred solution of the residue in MeOH (100 mL) was added 3.0 M HCl (10.0 mL) at room temperature. After being stirred at 40 °C for 14 h, the reaction mixture was evaporated *in vacuo*. To a stirred solution of the residue in DMF (27.2 mL) were added CSA (15.6 mg, 0.065 mmol), 0.0012 eq.) and 2,2-dimethoxypropane (8.00 mL, 65.2 mmol, 1.20 eq.) at room temperature. After being stirred at 60 °C for 13 h, the reaction mixture was neutralized with NEt₃ and poured into H₂O. The aqueous layer was extracted with ethyl acetate twice. The combined extract was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue over MgSO₄, filtered and concentrated *in vacuo*. The residue was neutralized with NEt₃ and poured into H₂O. The aqueous layer was extracted with ethyl acetate twice. The combined extract was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel with hexane:ethyl acetate (50:50) and recrystallized from hexane/EtOAc to give **S1** (4.70 g, 14.9 mmol, 24%.

¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 3H), 7.74 (s, 1Hc), 7.50-7.40 (m 3H), 4.68 (s, 2H), 3.75 (s, 2H), 3.74 (s, 2H), 3.69 (d, 2H, *J* = 5.8 Hz), 3.59 (s, 2H), 2.45 (t, 1H, *J* = 5.3 Hz), 1.41 (s, 3H), 1.39 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 135.4, 133.3, 133.2, 128.5, 128.0, 127.8, 126.7, 126.3, 126.1, 125.6, 98.6, 74.0, 72.3, 65.1, 63.0, 39.1, 24.2, 23.5; FT-IR (neat) 3446, 2990, 2870, 1372, 1200, 1081, 1050, 827, 752, 420 (cm⁻¹), HRMS (ESI-TOF) calcd. For C₁₉H₂₄NaO₄ 339.15723 [M+Na]⁺, found 339.15730

*T. Jeffrey Dunn, William L. Neumann, Milorad M. Rogic, and Steven R. Woulfe, *J. Org. Chem.* 1990, 55, 26, 6368–6373

(2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl 2-(dioctylamino)-1,1difluoro-2-oxoethane-1-sulfonate (<u>3a</u>)

To a stirred solution of **S1** (100 mg, 316 μ mol) and **17** (152 mg, 379 μ mol) in PhMe (5 mL) was added 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) (71.5 μ L, 474 μ mol, 1.08 g/mL) at 0 °C under an Ar atmosphere. After being stirred at 0°C for 10 min, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by GPC to give **3a** (185 mg, 265 μ mol, 84%) as colorless oil.

¹¹H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 3H), 7.76 (s, 1H), 7.49-7.44 (m, 3H), 4.71 (s, 2H), 4.68 (s, 2H), 3.81 (d, 2H, J = 12.4 Hz), 3.76 (d, 2H, J = 12.4 Hz), 3.48 (s, 2H), 3.42-3.35 (m, 4H), 1.62-1.58 (m, 4H), 1.41 (s, 3H), 1.40 (s, 3H), 1.28 (br-s, 20H), 0.90-0.86 (m, 6H) ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 156.8, 156.6, 135.4, 133.2, 133.0, 128.3, 127.9, 127.7, 126.4, 126.1, 125.9, 125.6, 118.4, 115.4, 112.4, 98.7, 75.1, 73.7, 68.6, 62.0, 48.2, 48.0, 39.1, 31.8, 31.7, 29.3, 29.2, 29.2, 26.8, 26.8, 26.6, 25.0, 22.6, 22.2, 14.1 ¹⁹F NMR (376 Hz, CDCl₃) δ -98.0 FT-IR (neat) 2927, 2857, 1676, 1456, 1395, 1200, 1163, 1089, 943, 828 (cm⁻¹) HRMS (ESI-TOF) calcd. for C₃₇H₅₇F₂NNaO₇S 720.37215 [M+Na]⁺, found 720.37375

(2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl trifluoromethanesulfonate (3b)

To a stirred solution of (2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methanol (**6**) (54.4 mg, 172 µmol, 1.0 eq.) and 2,6-lutidine (59.8 µL, 516 µmol, 0.925 g/mL, 3.0 eq.) was added trifluoromethanesulfonic anhydride (34.9 µL, 206 µmol, 1.670 g/mL 1.2 eq.) in CH₂Cl₂ (3 mL) at 0 °C under an Ar atmosphere. After being stirred at 0 °C for 1 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give (2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl trifluoromethanesulfonate (52.3 mg, 117 µmol, 68%) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 3H), 7.73 (s, 1H), 7.52-7.47 (m, 2H), 7.43-7.41 (m, 1H), 4.77 (s, 2H), 4.66 (s, 2H), 3.80 (d, 2H, *J* = 12.4 Hz), 3.72 (d, 2H, *J* = 12.4 Hz), 3.38 (s, 2H), 1.40 (s, 6H) ¹³C NMR (100 MHz, CDCl₃) δ 134.9, 133.2, 133.1, 128.4, 127.9, 127.8, 126.6, 126.1, 125.5, 120.3, 117.1, 98.9, 75.7, 73.8, 68.3, 12.0, 39.1, 26.3, 20.7 ¹⁹F NMR (376 Hz, CDCl₃) δ -74.2

FT-IR (neat) 3057, 2293, 2941, 2872, 1415, 1246, 1205, 1146, 1087, 942, 825, 617, 474 (cm⁻¹)

2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl 4-methylbenzenesulfonate (3C)

To a stirred solution of **S1** (50.0 mg, 158 μ mol, 1.0 eq.) and *p*-toluenesulfonyl chloride (36.2 mg, 190 μ mol, 1.2 eq.) in CH₂Cl₂ (3 mL) was added triethylamine (30.8 μ L, 221 μ mol, 0.726 g/mL, 1.4 eq.) and 4-dimethylaminopyridine (1.93 mg, 15.8 μ mol) at 0 °C under an Ar atmosphere. After being stirred at room temperature for 1 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give (2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl 4-methylbenzenesulfonate (60.2 mg, 128 μ mol, 81%) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.84-7.78 (m, 5H), 7.76 (s, 1H), 7.66-7.46 (m, 2H), 7.35-7.33 (m, 1H), 7.26-7.24 (m, 2H), 4.56 (s, 2H), 4.17 (s, 2H), 3.74 (d, 2H, J = 12.0 Hz), 3.66 (d, 2H, J = 12.0 Hz), 3.40 (s, 2H), 2.33 (s, 3H), 1.28 (s, 3H), 1.26 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 144.8, 135.4, 133.2, 133.0, 132.5, 129.8, 128.2, 128.0, 127.9, 127.7, 126.2, 126.2, 126.0, 125.4, 98.5, 73.5, 69.2, 68.8, 62.2, 38.6, 25.1, 22.0, 21.6 FT-IR (neat) 3055, 2991, 2938, 2870, 1599, 1455, 1361, 1189, 1087, 977, 816, 666, 556 (cm⁻¹)

r 1-1K (lical) 5055, 2551, 2558, 2670, 1533, 1455, 1501, 1189, 1087, 377, 810, 000, 550 (C

HRMS (ESI-TOF) calcd. for $C_{26}H_{30}NaO_6S$ 493.16608 [M+Na]⁺, found 493.16620

Scheme S4. Synthesis of neopentyl bromide S2 and iodide 4a as authentic samples.

5-(bromomethyl)-2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxane (S2)

To a stirred solution of **3A** (7.5 mg, 11 μ mol) in DMF (1.0 mL) was added tetrabutylammonium bromide (6.9 mg, 21 μ mol, 2.0 eq.) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give **S2** (3.9 mg, 10 μ mol, 96%) as colorless oil.

H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 3H), 7.77 (s, 1H), 7.49-7.44 (m, 3H), 4.69 (s, 2H), 3.83 (d, 2H, *J* = 12.0 Hz), 3.77 (2H, *J* = 12.0 Hz), 3.66 (s, 2H), 3.51 (s, 2H), 1.41 (s, 3H), 1.40 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 133.23, 133.0, 128.2, 127.9, 127.7, 126.4, 126.2, 125.9, 125.6, 98.6,

73.7, 69.9, 64.0, 38.5, 36.1, 24.4, 22.9

FT-IR (neat) 3054, 2991, 2924, 2864, 1371, 1101, 820 (cm⁻¹)

HRMS (ESI-TOF) calcd. for C₁₉H₂₃BrNaO₃ 403.07078 [M+Na]⁺, found 403.07134

5-(iodomethyl)-2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxane (4b)

To a stirred solution of **3A** (7.5 mg, 11 μ mol) in DMF (1 mL) was added tetrabutylammonium iodide (7.1 mg, 21 μ mol) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract

was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give **4b** (3.5 mg, 9.2 μ mol, 86%) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 3H), 7.77 (s, 1H), 7.49-7.45 (m, 3H), 4.69 (s, 2H), 3.82 (d, 2H, *J* = 12.0 Hz), 3.72 (d, 2H, *J* = 12.0 Hz), 3.50 (s, 2H), 3.42 (s, 2H), 1.41 (s, 3H), 1.39 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 135.7, 133.4, 133.1, 128.3, 128.0, 127.9, 126.5, 126.3, 126.0, 125.8, 98.7,

73.8, 71.3, 65.0, 37.3, 23.8, 23.7, 11.7

FT-IR (neat) 3054, 2991, 2937, 2863, 1371, 1213, 1098, 818, 752 (cm⁻¹)

HRMS (ESI-TOF) calcd. for $C_{19}H_{23}INaO_3$ 449.05896 [M+Na]⁺, found 449.05975

Scheme S5. Synthesis of the sulfonyl ester 8 as a precursor for 17.

(2,2-dimethyl-1,3-dioxane-5,5-diyl)bis(methylene) bis(2-(dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonate) (<u>13</u>)

To a stirred solution of (2,2-dimethyl-1,3-dioxane-5,5-diyl)dimethanol (17) (224 mg, 1.27 mmol) and 16 (1.07 g, 2.67 mmol) in toluene (5 mL) was added 1,8- diazabicyclo[5.4.0]undec-7-ene (422 μ L, 2.80 mmol, 1.08 g/mL) at 0 °C under an Ar atmosphere. After being stirred at 0°C for 10 min, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by GPC to give 13 (641 mg, 682 μ mol, 54%) as colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.57 (s, 4H), 3.80 (s, 4H), 3.35-3.41 (m, 8H), 1.53-1.66 (m, 8H), 1.42 (s, 6H),

1.21-1.35 (m, 40H), 0.85-0.91 (m, 12H) ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 156.7, 156.4, 118.5, 115.5, 112.5, 99.2, 73.2, 60.9, 48.1, 48.1, 38.8, 31.8, 31.7, 29.2, 29.2, 29.1, 26.8, 26.8, 26.6, 23.4, 22.6, 14.1 ¹⁹F NMR (376 Hz, CDCl₃) δ -97.6 FT-IR (neat) (cm⁻¹) 2927, 2857, 1673, 1402, 1204, 945 HRMS (ESI-TOF) calcd. for C₄₄H₈₂F₄N₂NaO₁₀S₂ 961.52447 [M+Na]⁺, found 961.52206

(5-((4-((2,3-bis(*tert*-butoxycarbonyl)guanidino)methyl)phenoxy)methyl)-2,2-dimethyl-1,3-dioxan-5-yl)methyl 2-(dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonate (<u>8</u>)

To a stirred solution of **13** (200 mg, 213 μ mol) and *N*-(4-hydroxylbenzyl)-*N*',*N*''-Bis(tert-butoxycarbonyl) guanidine (**13**) (77.8 mg, 213 μ mol) in DMF (5 mL) was added cesium carbonate (104 mg, 319 μ mol) at 0 °C under an Ar atmosphere. After being stirred at 0°C for 2 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give **8** (90.0 mg, 99.4 μ mol, 47%) as colorless oil.

¹¹H NMR (400 MHz, CDCl₃) δ 8.50 (br-s, 1H), 7.23 (d, 2H, J = 8.4 Hz), 6.89 (d, 2H, J = 8.4 Hz), 4.70 (s, 2H),
4.54 (d, 2H, J = 4.8 Hz), 3.98 (s, 2H), 3.91 (d, 2H, J = 12.4 Hz), 3.85 (d, 2H, J = 12.4 Hz), 3.37-3.31 (m, 4H),
1.63-1.44 (m, 28H), 1.27 (br-s, 20H), 0.88-0.85 (m, 6H)
¹³C NMR (100 MHz, CDCl₃) δ 163.7, 158.1, 157.1, 156.9, 156.6, 156.1, 153.3, 130.1, 129.4, 118.5, 115.5,
115.0, 112.53, 99.0, 83.3, 79.5, 74.9, 66.5, 61.8, 48.3, 48.2, 48.2, 44.7, 38.9, 31.9, 31.9, 29.4, 29.3, 29.3, 28.5,
28.2, 26.9, 26.9, 26.7, 24.1, 23.3, 22.8, 14.2
¹⁹F NMR (376 Hz, CDCl₃) δ -97.9
FT-IR (neat) 3330, 2928, 2857, 1721, 1676, 1639, 1614, 1408, 1157, 1129, 947, 757 (cm⁻¹)
HRMS (ESI-TOF) calcd. for C₄₄H₇₄F₂N₄NaO₁₁S 927.49405 [M+Na]⁺, found 927.49404

Scheme S6. Synthesis of the neopentyl iodide S4 as an authentic sample.

N-(4-(5-iodomethyl-2,2-dimethyl-1,3-dioxan-5-yl)methyloxy)phenyl)-*N*',*N*''-Bis(tert-butoxycarbonyl) guanidine (S3)

To a stirred solution of **8** (70.0 mg, 155 μ mol) in CH₃CN (1.0 mL) was added tetrabutylammonium iodide (TBAI) (57.1 mg, 77.3 μ mol) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was poured into NH₄Cl aq. and EtOAc. The aqueous layer was extracted with EtOAc twice. The combined extract was washed with brine, dried over MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel with hexane/EtOAc (9:1) to give **S3** (40.5 mg, 63.9 μ mol, 83%).

H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.50 (d, 2H, *J* = 8.8 Hz), 6.90 (d, 2H, *J* = 8.8 Hz), 4.55 (d, 2H, *J* = 2.6 Hz), 4.00 (s, 2H), 3.89 (d, 2H, J = 12.0 Hz), 3.80 (d, 2H, *J* = 12.0 Hz), 3.41 (s, 2H), 1.52 (s, 9H), 1.47 (s, 9H), 1.45 (s, 3H) 1.43 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 158.2, 155.9, 153.2, 129.9, 129.3, 114.9, 98.8, 83.1, 79.4, 68.8, 64.8, 44.6, 36.8, 28.3, 28.1, 24.7, 22.4, 10.2 FT-IR (neat) 3331, 3132, 2979, 2929, 2870, 1720, 1638, 1615, 1327, 1248, 1157, 833, 757 (cm⁻¹) HRMS (ESI-TOF) calcd. for C₂₆H₄₀IN₃NaO₇ 656.18086 [M+Na]⁺, found 656.18038

1-(4-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propoxy)benzyl)guanidine (S4)

To a stirred solution of **3S** (2.0 mg, 3.16 μ mol) in 6 M HCl aq. (200 μ L) and MeOH (200 μ L) at 70 °C for 1 h. The mixture was concentrated in *vacuo*. The residue was purified by bond elute with water/MeOH (1:1) to give **S4** (0.72 mg, 1.8 μ mol, 58%)

¹H NMR (400 MHz, CD₃OD) δ 7.26 (d, 2H, *J* = 8.4 Hz), 6.98 (d, 2H, J = 8.4 Hz), 4.32 (s, 2H), 3.92 (s, 2H), 3.66 (s, 4H), 3.41 (s, 2H)

¹³C NMR (100 MHz, CD₃OD) δ 160.4, 158.5, 129.9, 129.7, 116.1, 68.9, 62.5, 45.6, 45.0, 10.1 FT-IR (neat) 3334, 2948, 1652, 1513, 1246, 1018 (cm⁻¹) HRMS (ESI-TOF) calcd. for $C_{13}H_{21}IN_3O_3$ 394.06276 [M+H]⁺, found 394.06223

Radiochemistry

Production of ⁷⁷Br

Irradiations for production of ⁷⁷Br were performed using an AVF cyclotron installed at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) of the National Institutes for Quantum Science and Technology (QST). Proton beams of 18.6 MeV irradiated a Cu₂^{nat}Se (600 mg, 11-mm diameter) at 5 μ A of beam current. ⁷⁷Br was then isolated using the dry distillation system reported previously¹. The irradiated target was heated at 1120 °C under a continuous flow of argon gas (30 mL/min flow rate). ⁷⁷Br was trapped in H₂O. A CdZnTe detector (GR-1, Kromek, UK) was used to monitor radiation level of the H₂O trap. After the heating was stopped, the H₂O solution containing ⁷⁷Br (100-500 kBq) was then provided to the radiolabeling studies. The radioactivity of [⁷⁷Br]bromide was determined using γ -ray spectroscopy with a high-purity germanium (HPGe) detector coupled with a multichannel analyzer (MCA7700; Seico EG&G).

Production of ²¹¹At

Irradiations for production of ²¹¹At were performed using an AVF cyclotron installed at QST or Fukushima Medical University. Helium beams of 28-29 MeV irradiated a Bi target. ²¹¹At was then isolated using the dry distillation system reported previously². The irradiated target was heated at 650 °C under a continuous flow of helium gas (30 mL/min flow rate). ²¹¹At was trapped in a liquid nitrogen cryotrap and eluted with 500 μ L of CHCl₃. An aliquot of the CHCl₃ solution containing of ²¹¹At (100-500 kBq) was removed and then evaporated to dryness for provide to the radiolabeling studies. The radioactivity of ²¹¹At was determined using γ -ray spectroscopy with the HPGe detector coupled with MCA.

¹²⁵I-iodination of neopentyl [¹²⁵I] iodide, [¹²⁵I]4b

A 0.05 M NaOH aqueous solution of ¹²⁵I (206 kBq, 10 μ L) was added to a glass vial and then evaporated to dryness with gentle stream of N₂ gas. The vial was added anhydrous MeCN (100 μ L) and then evaporated again to dryness with gentle stream of N₂ gas. The precursor **3a** (1.7 mg, 2.5 μ mol) in anhydrous MeCN (35 μ L) was added to the residue and then shaken at 70 °C for 10 min. After cooling to room temperature, an aliquot (5 μ L) of the reactant was applied to TLC plate for radio-TLC analysis, and the rest of the reactant was provided to radio-HPLC analysis.

⁷⁷Br-bromination of neopentyl [⁷⁷Br] bromide, [⁷⁷Br]4c

After an aliquot of the H₂O solution containing ⁷⁷Br (100 kBq) was evaporated to dryness by gentle N₂ gas,

anhydrous MeCN (100 μ L) was added to the residue and evaporated to dryness with gentle stream of N₂ gas again. To a residue containing ⁷⁷Br was added the precursor **3a** (1.7 mg, 2.5 μ mol) in anhydrous MeCN (35 μ L) and then shaken at 70 °C for 10 min. After cooling to room temperature, an aliquot (5 μ L) of the reactant was applied to TLC plates for radio-TLC analysis, and the rest of the reactant was provided to radio-HPLC analysis.

²¹¹At-astatination of neopentyl [²¹¹At] astatide [²¹¹At]4d

An aliquot of the CHCl₃ solution containing of ²¹¹At (564 kBq) was added to a glass vial. In case of astatination in the presence of K₂CO₃, K₂CO₃ (4.2 mg, 30.7 µmol) in MeOH (750 µL) was added and then evaporated to dryness with gentle stream of N₂ gas. The vial was added anhydrous MeCN (100 µL) and then evaporated again to dryness with gentle stream of N₂ gas. The precursor **3a** (1.7 mg, 2.5 µmol) in anhydrous MeCN (35 µL) was added to the residue and then shaken at 70 °C for 10 min. After cooling to room temperature, an aliquot (5 µL) of the reactant was applied to TLC plates for radio-TLC analysis, and the rest of the reactant was provided to radio-HPLC analysis.

Synthesis of ²¹¹At-NP-BG [²¹¹At]6 and ¹²⁵I-NP-BG [¹²⁵I]7

A MeOH solution (350 µL) containing ²¹¹At (564 kBq) or A 0.05M NaOH solution containing ¹²⁵I (250 kBq) was added to a glass vial. To the vial was added K₂CO₃ (0.5 mg, 3.6 µmol) in MeOH (90 µL) and then evaporated to dryness with gentle stream of N₂ gas. The vial was added anhydrous MeCN (100 µL) and then evaporated again to dryness with gentle stream of N₂ gas. The precursor **8** (0.5 mg, 0.55 µmol) in anhydrous MeCN (50 µL) was added to the residue and then shaken at 70 °C for 10 min. After cooling to room temperature, MeOH (20 µL) and 6.0 M HCl aqueous solution (80 µL) was added to the mixture and then shok at 70 °C for 30 min. After the mixture was neutralized with NaOH aqueous solution, [²¹¹At]**6** or [¹²⁵I]**7** was purified using radio-HPLC. [²¹¹At]**6**: RCY 31.9%, RCP >99.5%.; [¹²⁵I]**7**: RCY 31.9%, RCP >99.5%.

Radio-thin layer chromatography (radio-TLC)

Radiochemical conversion of [¹²⁵I]**4b**, [⁷⁷Br]**4c**, [²¹¹At]**4d**, and [²¹¹At]**19** were determined by radio-TLC. A reaction mixture diluted with H₂O was applied to a silica gel plate (TLC Silica gel 60 F254; Merck) and developed with hexane/ethyl acetate (4/1 or 2/1, v/v). The plate was dried and exposed to a BAS-III imaging plate (Fujifilm, Tokyo, Japan), and autoradiogram was obtained using a STORM 820 or Typhoon FLA 7000 (GE Healthcare, Buckinghamshire, UK). The data was analyzed using ImageQuant TL (GE Healthcare).

Radio high-performance liquid chromatography (radio-HPLC)

Radio-HPLC analysis was performed with SCL-10A VP (Shimadzu, Kyoto, Japan) system controller, LC-20AD (Shimadzu) pump, DGU-20A3 (Shimadzu) degassing unit, SIL-20AC (Shimadzu) autosampler, CTO-20AC (Shimadzu) column oven, FRC-10A (Shimadzu) fraction collector, SPD-20A (Shimadzu) UV detector, and GABI Star (Elysia-raytest GmbH, Straubenhardt, Germany) gamma-ray detector. Chromatography was performed under the following conditions: column, PEGASIL C8 SP100 (4.6 mm ID x 150 mm, 5 μm; Senshu Scientific, Tokyo, Japan); mobile phase for [¹²⁵I]**4b**, [⁷⁷Br]**4c**, and [²¹¹At]**4d**, MeCN/water (20/80 to 100/0 from 0 min to 20 min, 100/0 from 20 min to 30 min); mobile phase for [²¹¹At]**6**, MeOH/water/formic acid (10/90/0.1 to 100/0/0.1 from 0 min to 5 min, 100/0/0.1 from 5 min to 20 min); flow rate, 1.0 mL/min; temperature, 30°C; UV wavelength, 220 nm; and gamma-ray energy, 20-800 keV.

Reference

- S. Watanabe, A. Shimada, S. Watanabe, H. Hanaoka, N. S. Ishioka, Trans. Mat. Res. Soc. Japan., 2018, 43, 219-222.
- Y. Ohshima, H. Sudo, S. Watanabe, K. Nagatsu, A.B. Tsuji, T. Sakashita, Y. M. Ito, K. Yoshinaga, T. Higashi, N.S. Ishioka, Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 999-1010.

Figure S7. Radio-TLC of the mixture after $[^{125}I]$ **4b** synthesis (**A**) and free $[^{125}I]$ (**B**) and UV-TLC of **4a** (**C**). The R_f values of $[^{125}I]$ **4b**, free $[^{125}I]$, and **4a** were 0.53-0.63, 0, and 0.57, respectively, on TLC developed with hexane/ethyl acetate (4/1, v/v).

Figure S8. Radio-HPLC of the mixture after [¹²⁵I]**4b** synthesis (left) and UV-HPLC of **4a** (right). The retention time of [¹²⁵I]**4b** and **4a** was 22.5 min and 22.0 min, respectively.

Figure S9. Radio-TLC of the mixture after $[^{77}Br]$ 4c synthesis (A) and free $[^{77}Br]$ (B) and UV-TLC of S2 (C). The R_f values of $[^{77}Br]$ 4c, free $[^{77}Br]$, and S2 were 0.55-0.61, 0, and 0.55, respectively, on TLC developed with hexane/ethyl acetate (4/1, v/v).

Figure S10. Radio-HPLC of the mixture after $[^{77}Br]$ 4c synthesis (left) and UV-HPLC of S2 (right). The retention time of $[^{77}Br]$ 4c and S2 was 22.0 min and 21.4 min.

Figure S11. Radio-TLC of the mixtures after $[^{211}At]$ **4d** synthesis in the absence and presence of K₂CO₃ (**A** and **B**) and free $[^{211}At]$ (**C**). The R_f value of $[^{211}At]$ **4d** was 0.53-0.61 on TLC developed with hexane/ethyl acetate (4/1, v/v).

Figure S12. Radio-HPLC of the mixture after $[^{211}At]$ **4d** synthesis in the absence and presence of K₂CO₃ (left and right). The retention time of $[^{211}At]$ **4d** was 22.6 min.

Figure S13. Radio-TLC of the mixtures after $[^{211}At]$ **19** synthesis (**A-D**) and free $[^{211}At]$ (**E**) and UV-TLC of **S3** (**F**). **A** and **B** were synthesized in the presence of K₂CO₃ at 70 °C and room temperature, respectively. **C** and **D** were synthesized in the absence of K₂CO₃ at 70 °C and room temperature, respectively. The R_f value of **19** and **S3** was 0.63-0.71 and 0.67, respectively, on TLC developed with hexane/ethyl acetate (2/1, v/v).

Figure S14. Radio-HPLC of $[^{211}At]6$ after synthesis and purification (left and right). The retention time of $[^{211}At]6$ was 10.8 min.

Figure S15. Radio-HPLC of $[^{125}I]$ 7 after synthesis and purification (A and B) and UV-HPLC of S4 (C). The retention time of $[^{125}I]$ 7 and S4 was 10.8 min and 10.1 min, respectively.

NMR Spectra 2-(Dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonyl fluoride (16)

75 70 65 60 55 50 45 40 35 30 25 20 15 10 ppm

(2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl difluoro-2-oxoethane-1-sulfonate (3a)

(2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl trifluoromethanesulfonate (3b)

(2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxan-5-yl)methyl 4-methylbenzenesulfonate (3c)

5-(iodomethyl)-2,2-dimethyl-5-((naphthalen-2-ylmethoxy)methyl)-1,3-dioxane (4a)

200 180 160 140 120 100 80 60 40 20 0

ppm

(2,2-dimethyl-1,3-dioxane-5,5-diyl)bis(methylene) bis(2-(dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonate) (13)

(5-((4-((2,3-bis(tert-butoxycarbonyl)guanidino)methyl)phenoxy)methyl)-2,2-dimethyl-1,3-dioxan-5yl)methyl 2-(dioctylamino)-1,1-difluoro-2-oxoethane-1-sulfonate (8)

N-(4-(5-iodomethyl-2,2-dimethyl-1,3-dioxan-5-yl)methyloxy)phenyl)-N',N"-Bis(tert-butoxycarbonyl) guanidine (S3)

ò

ppm

ssing parameters 32768 100.5876241 MHz EM

1.00 Hz

1.40

1-(4-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propoxy)benzyl)guanidine (S4)

