Electronic Supplementary Information

Polynitro Functionalized 4-Phenyl-1H-pyrazoles as Heat-Resistant Explosives

Krishna Pandey,^[a] Prachi Bhatia,^[a] Khwaja Mohammad,^[a] Vikas D. Ghule,^[b] and Dheeraj Kumar*^[a]

^[a] Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India. E-mail: <u>dheeraj.kumar@cy.iitr.ac.in</u>

^[b] Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.

Table of contents:

1.	Crystal structure data	2
2.	Isodesmic reactions	8
3.	NMR spectra	9
4.	Mass spectra	24
5.	IR spectra	27
6.	DSC	33

1. Crystal structure data:

Identification code	compd 6
Empirical formula	$C_{10}H_5N_7O_{10}$
Formula weight	383.21
Temperature/K	299(2)
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	6.911(2)
b/Å	20.066(7)
c/Å	11.124(4)
α/°	90
β/°	106.903(15)
$\gamma^{/\circ}$	90
Volume/Å ³	1476.0(9)
Z	4
$\rho_{calc}g/cm^3$	1.724
μ/mm^{-1}	0.157
F(000)	776
Crystal size/mm ³	0.23 imes 0.20 imes 0.18
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.06 to 56.622
Index ranges	$-9 \le h \le 9, -26 \le k \le 26, -14 \le l \le 14$
Reflections collected	47494
Independent reflections	$3669 [R_{int} = 0.0551, R_{sigma} = 0.0207]$
Data/restraints/parameters	3669/0/245
Goodness-of-fit on F ²	0.923
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0478, wR_2 = 0.1454$
Final R indexes [all data]	$R_1 = 0.0647, wR_2 = 0.1557$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.34
CCDC number	2178043

Table 1: Crystal data and structure refinement for compound 6.

Table 2: Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for compound 6. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	У	z	U(eq)
N1	3339(2)	5432.4(7)	2435.2(13)	36.5(3)
N2	5124(2)	5359.2(7)	3292.6(14)	38.4(3)

O2	8192(2)	5405.1(8)	5371.6(17)	62.3(4)
01	6709(2)	6155.4(10)	6169.4(16)	65.6(5)
O10	460(3)	8357.9(8)	4127.0(17)	70.0(5)
N3	6758(2)	5771.1(8)	5338.2(16)	41.6(4)
N7	412(3)	8168.6(8)	5161.3(17)	46.3(4)
O5	1689(3)	5592.4(9)	8085.1(16)	71.5(5)
09	-140(3)	8508.8(8)	5898.1(18)	69.5(5)
N5	1146(3)	6165.3(9)	7948.1(15)	47.5(4)
06	380(3)	6456.5(10)	8645.3(17)	77.5(6)
N6	-50(3)	7562.4(9)	7460.2(17)	52.7(4)
07	1111(3)	7817.4(10)	8376.5(16)	74.0(5)
08	-1885(3)	7585.9(10)	7165.9(19)	76.4(6)
N4	128(3)	6020.2(10)	2127.8(17)	54.7(5)
C4	5004(2)	5732.7(8)	4253.4(16)	33.2(3)
C5	2401(2)	6462.5(8)	4951.8(15)	32.2(3)
C3	3146(2)	6055.5(8)	4065.3(15)	33.0(3)
C6	2196(3)	6163.9(8)	6034.6(15)	34.3(3)
C10	1833(3)	7121.3(9)	4696.8(16)	35.7(4)
O3	-515(3)	5823.8(13)	1076.9(18)	91.7(7)
C8	830(3)	7189.0(9)	6603.1(16)	36.9(4)
C2	2138(3)	5846.2(9)	2869.2(16)	36.8(4)
C9	1052(3)	7476.3(8)	5516.2(16)	35.9(4)
C7	1412(3)	6524.8(9)	6846.5(15)	35.9(4)
C1	2955(4)	5052.4(10)	1256.5(19)	52.6(5)
04	-840(4)	6359.6(19)	2624(3)	160.3(17)

Table 3: Table containing bond lengths for selected bonds

Atom	Atom	Length/Å
N1	N2	1.330(2)
N1	C1	1.473(2)
N3	C4	1.443(2)
N7	C9	1.476(2)

N5	C7	1.479(2)
N6	C8	1.476(2)
N4	C2	1.437(2)
C5	C3	1.483(2)

Table 4: Table containing selected bond angles

Atom	Atom	Atom	Angle/°
N2	N1	C1	118.08(15)
C2	N1	C1	131.49(17)
N2	C4	C3	114.24(15)
N2	C4	N3	118.01(15)
C3	C4	N3	127.74(15)
C9	C8	N6	121.50(17)
C7	C8	N6	120.60(16)
N1	C2	N4	122.22(16)
C3	C2	N4	127.88(16)
C10	C9	N7	116.87(16)
C8	C9	N7	121.59(15)
C6	C7	N5	116.86(16)
C8	C7	N5	121.89(15)

Table 5: Crystal data and structure refinement for compound 14.

Identification code	dk_kp_hncptot_0016_0ma_a
Empirical formula	C ₁₃ H ₁₅ N ₁₅ O ₁₃
Formula weight	589.36
Temperature/K	150.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.2502(4)
b/Å	22.4477(7)
c/Å	7.5544(2)
α/°	90
β/°	96.143(1)
γ/°	90
Volume/Å ³	2234.05(11)
Z	4
ρ _{calc} g/cm³	1.7521
µ/mm⁻¹	0.155
F(000)	1208.8
Crystal size/mm ³	0.08 × 0.03 × 0.02
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection/°	3.58 to 41.54

Index ranges	-13 ≤ h ≤ 13, -22 ≤ k ≤ 22, -7 ≤ l ≤ 7
Reflections collected	126143
Independent reflections	2321 [R _{int} = 0.0732, R _{sigma} = 0.0167]
Data/restraints/parameters	2321/3/382
Goodness-of-fit on F ²	1.106
Final R indexes [I>=2σ (I)]	$R_1 = 0.0361$, $wR_2 = 0.0892$
Final R indexes [all data]	R ₁ = 0.0382, wR ₂ = 0.0913
Largest diff. peak/hole / e Å-3	0.38/-0.25
CCDC Number	2270163

Table 6: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Compound 14. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
07	1717.7(13)	4697.6(8)	6150(2)	23.5(5)
O3	5629.7(15)	4683.9(9)	6225(3)	32.1(5)
08	1664.8(16)	5625.1(9)	8407(3)	40.1(6)
09	2453.5(15)	5511.1(9)	11013(3)	35.7(5)
010	5185.5(15)	4204.4(9)	12114(3)	37.5(6)
011	5843.2(15)	3747.8(10)	10006(3)	39.5(6)
04	6887.5(15)	4277(1)	5037(3)	39.6(6)
01	3515.0(16)	2786.5(9)	8477(3)	38.6(6)
C5	4119.7(19)	3979.3(11)	7612(3)	20.2(7)
C4	4795(2)	2933.4(12)	6770(3)	24.3(7)
C2	5642(2)	3680.6(12)	5954(3)	23.2(7)
C12	-131.2(19)	6304.0(12)	3228(4)	20.9(7)
C9	3681.7(19)	4664.9(11)	9903(4)	21.3(7)
C1	6909(2)	3045.8(15)	4410(5)	44.9(9)
013	836.7(16)	7173.8(9)	7591(3)	37.7(6)
012	1591.0(18)	6804.8(9)	11010(3)	44.8(6)
06	2935.7(17)	4164.4(9)	3553(3)	41.1(6)
N10	-45.0(16)	5816.3(9)	2205(3)	20.5(6)
N8	824.1(16)	5709(1)	4695(3)	24.9(6)
02	4149.6(17)	2009(1)	7305(3)	46.6(6)
N12	-819.6(16)	6658.9(10)	2257(3)	24.3(6)
N6	2282.1(17)	5359.3(10)	9441(3)	25.6(6)
N11	-692.8(16)	5825.3(10)	609(3)	23.6(6)
N5	2916.2(16)	3877.1(11)	4905(3)	23.2(6)
O5	2582.0(17)	3370.6(10)	4919(3)	44.7(6)
N7	5169.0(17)	4047.6(10)	10556(3)	25.9(6)
N9	388.6(17)	6276.9(10)	4789(3)	25.4(6)
N14	766.6(17)	4871.1(10)	2761(3)	27.7(6)
N3	4101.1(19)	2546.7(11)	7557(3)	29.9(6)

N4	6085.3(18)	4252.7(11)	5707(3)	27.8(6)
N1	6052.5(17)	3158.7(11)	5441(3)	29.7(6)
N15	-1828.7(17)	6589.3(10)	-487(3)	30.3(6)
N13	-1162(2)	7229.3(11)	2608(3)	32.6(7)
N2	5520.2(18)	2692.9(10)	5931(3)	32.0(6)
C11	541.2(19)	5419.3(12)	3179(4)	21.2(7)
C6	3239.5(19)	4159.7(11)	6628(3)	19.5(7)
C13	-1138(2)	6349.1(12)	717(4)	22.3(7)
C8	2849.0(19)	4864.1(11)	8808(3)	20.5(7)
C10	4307.0(19)	4232.5(11)	9327(3)	19.9(7)
C 7	2528(2)	4597.9(11)	7120(3)	18.9(7)
C3	4814.8(19)	3555.6(12)	6836(3)	20.9(7)

Table 7: Table containing bond lengths for selected bonds

Atom	Atom	Length/Å	Atom	Atom	Length/Å
07	C7	1.254(3)	C9	C10	1.377(4)
O3	N4	1.227(3)	C1	N1	1.465(4)
08	N6	1.224(3)	06	N5	1.210(3)
09	N6	1.233(3)	N10	N11	1.403(3)
010	N7	1.227(3)	N10	C11	1.348(3)
011	N7	1.226(3)	N8	N9	1.404(3)
04	N4	1.226(3)	N8	C11	1.335(3)
01	N3	1.221(3)	02	N3	1.225(3)
C5	C6	1.375(4)	N12	N13	1.393(3)
C5	C10	1.412(4)	N12	C13	1.382(3)
C5	C3	1.488(4)	N6	C8	1.451(3)
C4	N3	1.438(4)	N11	C13	1.322(3)
C4	N2	1.322(4)	N5	O5	1.221(3)
C4	C3	1.398(4)	N5	C6	1.470(3)
C2	N4	1.433(4)	N7	C10	1.453(3)
C2	N1	1.365(3)	N14	C11	1.313(3)
C2	C3	1.372(4)	N1	N2	1.335(3)
C12	N10	1.351(3)	N15	C13	1.333(3)
C12	N12	1.364(3)	C6	C 7	1.439(4)
C12	N9	1.302(3)	C8	C7	1.431(4)
C9	C8	1.380(4)			

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10	C5	C6	115.7(2)	C4	N3	01	116.3(2)
C3	C5	C6	120.0(2)	02	N3	01	124.7(2)
C3	C5	C10	124.3(2)	02	N3	C4	119.0(2)
N2	C4	N3	118.8(3)	04	N4	O3	125.1(2)
C3	C4	N3	126.8(3)	C2	N4	O3	116.3(2)
C3	C4	N2	114.4(2)	C2	N4	04	118.6(2)
N1	C2	N4	123.4(2)	C1	N1	C2	130.8(3)
C3	C2	N4	127.4(2)	N2	N1	C2	110.8(2)
C3	C2	N1	109.0(2)	N2	N1	C1	118.3(2)
N12	C12	N10	105.0(2)	N1	N2	C4	104.2(2)
N9	C12	N10	114.3(2)	N8	C11	N10	103.8(2)
N9	C12	N12	140.6(3)	N14	C11	N10	128.4(2)
C10	C9	C8	120.6(2)	N14	C11	N8	127.8(2)
N11	N10	C12	113.4(2)	N5	C6	C5	120.1(2)
C11	N10	C12	107.6(2)	C7	C6	C5	127.1(2)
C11	N10	N11	137.9(2)	C7	C6	N5	112.8(2)
C11	N8	N9	114.0(2)	N11	C13	N12	113.7(2)
N13	N12	C12	130.3(2)	N15	C13	N12	119.7(2)
C13	N12	C12	106.5(2)	N15	C13	N11	126.6(2)
C13	N12	N13	123.1(2)	N6	C8	C9	117.4(2)
09	N6	08	121.4(2)	C7	C8	C9	122.7(2)
C8	N6	08	119.8(2)	C7	C8	N6	119.9(2)
C8	N6	09	118.7(2)	C9	C10	C5	121.4(2)
C13	N11	N10	101.3(2)	N7	C10	C5	121.3(2)
O5	N5	06	123.0(2)	N7	C10	C9	117.3(2)
C6	N5	06	119.1(2)	C6	C7	07	121.0(2)
C6	N5	O5	117.8(2)	C8	C7	07	126.9(2)
011	N7	010	123.0(2)	C8	C7	C6	112.1(2)
C10	N7	010	117.6(2)	C4	С3	C5	130.0(2)
C10	N7	011	119.4(2)	C2	С3	C5	128.4(2)
N8	N9	C12	100.2(2)	C2	С3	C4	101.6(2)

Table 8: Table containing selected bond angles

2. Isodesmic Reactions:

Compound 5:

$$\begin{array}{c} O_2 N + O_2 \\ O_2 N + O_2 \\ O_2 N + O_2 \\ N - N \\ H_3 C \end{array} + CH_4 + NH_3 \longrightarrow O_2 + 2CH_3 NH_2 + CH_3 - CH_3 \\ \end{array}$$

Compound 6:

Compound 7:

Compound 8:

Compound 10:

Energetic Anion for salts 11-14:

3. NMR Spectra:

Fig.1: ¹H NMR Spectra of compound 2

Fig.2: ¹³C{¹H} NMR Spectra of compound 2

Fig.3: ¹H NMR Spectra of compound 3

Fig.4: ¹³C{¹H} NMR Spectra of compound **3**

Fig.5: ¹H NMR Spectra of compound 4

Fig.6: ¹³C{¹H} NMR Spectra of compound **4**

Fig.7: ¹H NMR Spectra of compound 5

Fig.8: ¹³C{¹H} NMR Spectra of compound **5**

Fig.9: ¹⁵NMR NMR Spectra of compound **5**

Fig.10: ¹H NMR Spectra of compound 6

Fig.11: ¹³C{¹H} NMR Spectra of compound 6

Fig.12: ¹H NMR Spectra of compound 7

Fig.13: ¹³C{¹H} NMR Spectra of compound 7

Fig.14: ¹H NMR Spectra of compound 8

Fig.15: ¹³C{¹H} NMR Spectra of compound 8

Fig.16: ¹H NMR Spectra of compound 9

Fig.17: ¹³C{¹H} NMR Spectra of compound 9

Fig.18: ¹H NMR Spectra of compound **10**

Fig.19: ¹³C{¹H} NMR Spectra of compound **10**

Fig.20: D₂O exchange ¹H NMR Spectra of compound **10**

Fig.21: ¹⁵NMR Spectra of compound **10**

Fig.22: ¹H NMR Spectra of compound **11**

Fig.23: ¹³C{¹H} NMR Spectra of compound **11**

Fig.24: ¹H NMR Spectra of compound **12**

Fig.25: ¹³C{¹H} NMR Spectra of compound **12**

Fig.26: ¹H NMR Spectra of compound **13**

Fig.27: ¹³C{¹H} NMR Spectra of compound **13**

Fig.28: ¹⁵NMR NMR Spectra of compound **13**

Fig.29: ¹H NMR Spectra of compound **14**

Fig.30: ¹³C{¹H} NMR Spectra of compound **14**

4. Mass Spectra

Fig.32: Mass Spectrum of Compound 6

Fig.33: Mass Spectrum of Compound 7

Fig.34: Mass Spectrum of Compound 8

Fig.35: Mass Spectrum of Compound 10

5. IR Data

Fig.37: FTIR Spectra of compound 4

Fig.39: FTIR Spectra of compound 6

Fig.41: FTIR Spectra of compound 8

Fig.43: FTIR Spectra of compound 11

Fig.45: FTIR Spectra of compound 13

Fig.46: FTIR Spectra of compound 14

6. DSC Analysis

Fig.47: DSC curve of compound **5** at heating rate 5 °C/min.

Fig.48: DSC curve of compound **6** at heating rate 5 °C/min.

Fig.49: DSC curve of compound 7 at heating rate 5 °C/min.

Fig.50: DSC curve of compound 8 at heating rate 5 °C/min.

Fig.51: DSC curve of compound 10 at heating rate 5 $^{\circ}$ C/min.

Fig.52: DSC curve of compound 11 at heating rate 5 °C/min.

Fig.53: DSC curve of compound 12 at heating rate 5 °C/min.

Fig.54: DSC curve of compound 13 at heating rate 5 $^{\circ}$ C/min.

Fig.55: DSC curve of compound 14 at heating rate 5 °C/min.