Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

N-Heterocyclic Carbene-Catalyzed Enantioselective Annulation of 2-Amino-*1H*-indoles and Bromoenals for Synthesis of Chiral 2-Aryl-2,3-dihydropyrimido[1,2-a] indol-4 (*1H*)-ones

Jianbo Zhao,^a Min Wu,^a Jiamin Luo,^a Lei Shi^b and Hao Li^{*a}

 [a] State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Mei-long Road, Shanghai, 200237, China
 [b] Döhler Food & Beverage Ingredients (Shanghai) Co., Ltd., 739 Shennan Road, Shanghai 201108, China.

Table of contents

I. General Information	1
II. General Procedure for the preparation of Substrates	2
III. General Procedure for Synthesis of 3 and their Characterization I	Data7
IV. X-ray crystal structure of (-)3a	21
V. References	
VI. ¹ H, ¹³ C, ¹⁹ F NMR spectra and HPLC Spectra	

1. General Information

Unless otherwise mentioned, all commercial reagents and solvents were used directly as purchased. Flash chromatography was performed on silica gel (200 - 300 mesh) with petroleum ether/ethyl acetate as the eluent. ¹H, ¹³C, and ¹⁹FNMR spectra were performed on a 400 MHz NMR or 600 MHz NMR spectrometer. The ¹H NMR spectra of the compounds were measured at 400 MHz or 600 MHz are internally referenced to residual protic CDCl₃ (δ 7.26 ppm) or DMSO-*d*₆ (δ 3.36, 2.50 ppm). ¹³C NMR spectra were measured at 151/101 MHz and data are reported referenced to CDCl₃ (δ 77.0 ppm, the middle peak) or DMSO-*d*₆ (δ 39.5 ppm). ¹⁹F NMR spectra were measured at 565 MHz. *J* values are given in hertz (Hz).

2. Preparation of Substrates

2.1 Preparation of 2-amino-1H-indole-3-carbonitrile¹

Step 1: Corresponding 2-iodoaniline derivative (1.0 mmol) was dissolved in dry THF (5 mL), Et₃N (1.2 mmol) was added and resulting solution cooled down to -7° C. Trifluroacetic anhydride (1.2 mmol) dissolved in dry THF was added dropwise within 5 min and then the reaction was allowed to warm up to RT and was stirred overnight. After completion the reaction was diluted with water and the product extracted to EtOAc. Organic layer was washed with brine, dried over Na₂SO₄ and evaporated to obtain 2,2,2-trifluoro-N-(2-iodophenyl)acetamide as solid, Products were used for the next step without further purification.

Step 2: Corresponding 2,2,2-trifluoro-N-(2-iodophenyl)acetamide derivative (1.0 equiv), malononitrile (1.2 equiv), K_2CO_3 (2.0 equiv) and L-proline (0.2 equiv) were dispersed in DMSO/H₂O (1:1, 2 mL/mmol) and stirred for 15 min at RT. Then CuI (0.1 equiv) was added and the reaction mixture stirred at 60°C overnight. After completion the reaction mixture was filtrated and filter washed extensively with MeOH. The filtrate was concentrated and resulting liquid diluted with water and extracted with Et₂O. Organic layer was washed with brine, dried over Na₂SO₄ and evaporated to obtain 2-amino-1H-indole-3-carbonitrile as beige solid. In case of 2-amino-1H-indole-3-carbonitrile, the crude product was purified by flash chromatography (hex/EtOAc) to afford product.

2-Amino-1H-indole-3-carbonitrile (1a).² (yield: 65%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.71 (s, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.99 - 6.89 (m, 2H), 6.75 (s, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.3, 132.6, 128.7, 121.0, 120.1, 118.4, 115.6, 110.7, 62.1.

2-Amino-7-bromo-1H-indole-3-carbonitrile (1b). (yield: 54%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.97 (s, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.74 (s, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ 154.7, 130.7, 130.3, 122.7, 122.5, 117.5, 115.0, 102.9, 63.3. HRMS (ESI, m/z) calcd for C₉H₆N₃BrNa [M + Na]⁺: 257.9643, found: 257.9646.

2-Amino-7-chloro-1H-indole-3-carbonitrile (**1c**). (yield: 60%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.15 (s, 1H), 7.15 (dd, *J* = 6.4, 2.0 Hz, 1H), 7.01 (m, 2H), 6.75 (s, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.8, 130.5, 129.1, 122.3, 119.7, 117.5, 114.8, 114.6, 63.2. HRMS (ESI, m/z) calcd for C₉H₇N₃Cl [M + H]⁺ : 192.0328, found: 192.0327.

2-Amino-7-methyl-1H-indole-3-carbonitrile (1d). (yield: 66%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO- d_6) δ 10.75 (s, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 7.2 Hz, 1H), 6.49 (s, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 154.2, 131.4, 128.4, 121.4, 121.2, 119.7, 118.4, 113.5, 62.6, 16.9. HRMS (ESI, m/z) calcd for C₁₀H₉N₃Na [M + Na]⁺: 194.0694, found: 194.0695.

2-Amino-6-fluoro-1H-indole-3-carbonitrile (1e). (yield: 51%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.77 (s, 1H), 7.08 (dd, *J* = 8.4, 5.2 Hz, 1H), 6.97 (dd, *J* = 9.6, 2.4 Hz, 1H), 6.83 - 6.77 (m, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 158.8, 156.1 (d, *J* = 356.7 Hz), 132.7 (d, *J* = 12.5 Hz), 125.0, 118.0, 115.9 (d, *J* = 9.8 Hz), 108.1 (d, *J* = 23.6 Hz), 98.2, 98.0, 61.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -123.8 (td, *J* = 10.2, 5.1 Hz). HRMS (ESI, m/z) calcd for C₉H₆N₃FNa [M + Na]⁺: 198.0443, found: 198.0440.

2-Amino-6-methyl-1H-indole-3-carbonitrile (1f). (yield: 47%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.95 (s, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.63 (s, 2H), 2.30 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.1, 132.9, 129.1, 126.2, 122.1, 118.6, 115.4, 111.0, 61.8, 21.6. HRMS (ESI, m/z) calcd for C₁₀H₉N₃Na [M + Na]⁺: 194.0694, found: 194.0698.

2-Amino-5-chloro-1H-indole-3-carbonitrile (1g). (yield: 42%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.85 (s, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.08 (d, *J* = 2.0 Hz, 1H), 6.95 (s, 2H), 6.90 (dd, *J* = 8.4, 2.0 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 155.1, 131.3, 130.3, 125.6, 119.7, 117.6, 114.7, 111.9, 62.1. HRMS (ESI, m/z) calcd for C₉H₇N₃Cl [M + H]⁺: 192.0328, found: 192.0325.

2-Amino-5-methyl-1H-indole-3-carbonitrile (**1h**). (yield: 62%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 1.6 Hz, 1H), 6.71 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.65 (s, 2H), 2.30 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.3, 130.7, 129.7, 129.0, 121.1, 118.4, 115.8, 110.3, 61.8, 21.6. HRMS (ESI, m/z) calcd for C₁₀H₉N₃Na [M + Na]⁺: 194.0694, found: 194.0689.

2-Amino-5-methoxy-1H-indole-3-carbonitrile (**1i**). (yield: 45%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.67 (s, 1H), 6.67 (s, 2H), 6.50 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 155.1, 154.6, 129.6, 127.0, 118.4, 111.2, 107.8, 99.8, 62.6, 55.7. HRMS (ESI, m/z) calcd for C₁₀H₉N₃ONa [M + Na]⁺: 210.0643, found: 210.0641.

2-Amino-4-chloro-1H-indole-3-carbonitrile (1j). (yield: 63%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.01 (s, 1H), 7.09 (dd, *J* = 7.7, 1.1 Hz, 1H), 6.95 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.93 (s, 2H), 6.88 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 155.6, 133.9, 125.3, 121.4, 121.2, 120.9, 118.0, 109.6, 61.8. HRMS (ESI, m/z) calcd for C₉H₇N₃Cl [M + H]⁺: 192.0328, found: 192.0325.

2-Amino-4-fluoro-1H-indole-3-carbonitrile (1k). (yield: 54%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.97 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.92 - 6.83 (m, 3H), 6.78 - 6.73 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.8, 153.8 (d, *J* = 239.8 Hz), 135.2 (d, *J* = 11.0 Hz), 120.6 (d, *J* = 7.0 Hz), 118.1, 115.9 (d, *J* = 19.5 Hz), 107.3 (d, *J* = 2.4 Hz), 106.7 (d, *J* = 19.0 Hz), 59.0. HRMS (ESI, m/z) calcd for C₉H₆N₃NaF [M + Na]⁺: 198.0443, found: 198.0439.

2-Amino-4-methyl-1H-indole-3-carbonitrile (11). (yield: 48%). Brown solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 1/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.68 (s, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.70 (d, *J* = 7.2 Hz, 1H), 6.62 (s, 2H), 2.48 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 154.8, 132.3, 126.4, 126.1, 122.1, 120.2, 119.9, 108.6, 61.8, 18.4. HRMS (ESI, m/z) calcd for C₁₀H₉N₃Na [M + Na]⁺: 194.0694, found: 194.0693.

2.2 Preparation of α-bromocinnamaldehyde³

To a solution of cinnamaldehyde (10 mmol) in DCM (20 mL) was added Br_2 (12 mmol) at 0 °C. The reaction mixture was stirred for 15 min, followed by the addition of Et_3N (17 mmol). After stirring for an additional 15 min, the reaction mixture was diluted with DCM and washed sequentially with a 10% NaHSO₃ solution, H₂O, and brine. The organic layer was separated and dried over anhydrous Na₂SO₄, filtered, and concentrated to yield orange oil. Products were used for the next step without further purification.

3 General Procedure for Synthesis of Compounds 3

2-Amino-1H-indole-3-carbonitrile (1.0 equiv, 0.2 mmol), α -bromocinnamaldehyde (2.0 equiv, 0.4 mmol), NHC (0.2 equiv, 0.04 mmol) and K₂CO₃ (2.0 equiv, 0.4 mmol) were added to a reaction tube in DCE (2.0 mL) with N₂. The tube was stirred for 24 h at rt After completion, the crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel to give the product.

3.1 General Procedure for Synthesis of Compounds 3'

4-Oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (1.0 equiv, 0.2 mmol), Et₃N (1.2 equiv, 0.24 mmol) were added to a reaction tube in DCM (2.0 mL) at rt, then AcOCl (1.2 equiv, 0.24 mmol) were added after 30 minutes. The tube was stirred for 15-24 h at rt. After completion, the crude reaction mixture was quenched with water and extracted with ethyl acetate, then concentrated under reduced pressure and purified by flash chromatography on silica gel to give the product.

(*R*)-4-Oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3a). (yield: 72%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.20 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.44 - 7.39 (m, 4H), 7.37 - 7.32 (m, 1H), 7.29 - 7.23 (m, 2H), 7.14 - 7.10 (m, 1H), 5.07 (t, *J* = 6.8 Hz, 1H), 3.20 - 3.18 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.0, 152.4, 140.6, 130.4, 129.2, 128.8, 128.6, 127.0, 125.6, 122.5, 116.4, 116.0, 115.2, 64.3, 53.8. HRMS (ESI, m/z) calcd for C₁₈H₁₃N₃ONa [M + Na]⁺: 310.0956, found: 310.0956. Enantiomeric excess: 92%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 8.24 min, t_{major} = 9.08 min; [α]²⁴ = + 29.3 (c = 0.6, CHCl₃).

(R)-1-Acetyl-6-bromo-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-

10-carbonitrile (**3b**'). (yield: 81%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.54 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.36 - 7.32 (m, 2H), 7.29 - 7.23 (m, 4H), 6.38 (d, *J* = 5.6 Hz, 1H), 3.59 - 3.44 (m, 2H), 2.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.5, 162.8, 143.0, 135.7, 132.6, 131.1, 129.7, 129.4, 128.8, 127.1, 126.1, 118.3, 112.8, 109.2, 87.3, 54.7, 38.4, 22.4. HRMS (ESI, m/z) calcd for C₂₀H₁₄N₃O₂NaBr [M + Na]⁺: 430.0167, found: 430.0171. Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 30.47 min, t_{minor} = 37.94 min; [α]²⁰_D = + 73.7 (c = 0.3, CHCl₃).

(*R*)-1-Acetyl-6-chloro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3c'). (yield: 60%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.35 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.28 - 7.19 (m, 6H), 6.31 (d, *J* = 6.0Hz, 1H), 3.53 - 3.37 (m, 2H), 2.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 161.8, 141.9, 134.6, 128.5, 128.4, 128.2, 128.1, 127.7, 125.8, 125.0, 121.1, 116.6, 111.8, 86.3, 53.5, 37.3, 21.4. HRMS (ESI, m/z) calcd for C₂₀H₁₄N₃O₂NaCl [M + Na]⁺: 386.0672, found: 386.0673. Enantiomeric excess: 92%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 15.97 min, t_{minor} = 18.22 min; [α]²⁷_D = + 55.7 (c = 0.9, CHCl₃).

(R)-1-Acetyl-6-methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-

10-carbonitrile (3d'). (yield: 67%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.33 - 7.24 (m, 6H), 7.20 (dt, *J* = 7.2, 1.2 Hz, 1H), 6.40 (d, *J* = 5.4 Hz, 1H), 3.53 - 3.41 (m, 2H), 2.60 (s, 3H), 2.56 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 164.4, 141.9, 135.9, 131.4, 130.4, 129.3, 128.6, 127.2, 126.1, 126.0, 116.7, 113.3, 88.2, 54.0, 38.2, 23.0, 22.4. HRMS (ESI, m/z) calcd for C₂₁H₁₇N₃O₂Na [M + Na]⁺ : 366.1218, found: 366.1223. Enantiomeric excess: 82%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 30.18 min, t_{minor} = 35.45 min; [α]²⁰ = + 29.8 (c = 0.4, CHCl₃).

(R)-7-Fluoro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**3e**). (yield: 60%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.25 (d, *J* = 2.4 Hz, 1H), 7.83 (dd, *J* = 10.2, 3.0 Hz, 1H), 7.43 - 7.40 (m, 4H), 7.38 -7.34 (m, 1H), 7.26 (dd, *J* = 8.4, 4.8 Hz, 1H), 7.13 (ddd, *J* = 9.6, 8.4, 2.4 Hz, 1H), 5.09 - 5.06 (m, 1H), 3.19 (dd, *J* = 7.8, 6.0 Hz, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.2, 159.5, 158.0, 152.9, 140.4, 130.2 (d, *J* = 12.5 Hz), 129.2, 128.6, 127.0, 125.1, 116.9 (d, *J* = 8.5 Hz), 115.8, 112.6 (d, *J* = 23.4 Hz), 103.1 (d, *J* = 29.1 Hz), 63.8, 53.8. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -120.4 (d, *J* = 10.2 Hz). HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃ONaF [M + Na]⁺: 328.0862, found: 328.0856. Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 9.31 min, t_{major} = 13.14 min; [α]²⁵_D = + 25.5 (c = 0.5, CHCl₃).

(R)-7-Methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3f). (yield: 55%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.09 (d, *J* = 2.4 Hz, 1H), 7.91 (d, *J* = 1.2 Hz, 1H), 7.43 - 7.40 (m, 4H), 7.37 - 7.32 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.08 (dd, *J* = 7.6, 1.2 Hz, 1H), 5.06 - 5.02 (m, 1H), 3.18 (dd, *J* = 5.6, 3.2 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.0, 152.2, 140.6, 131.8, 130.7, 129.2, 128.5, 126.9, 126.4, 126.2, 116.1, 116.1, 115.7, 64.1, 53.7, 21.7. HRMS (ESI, m/z) calcd for C₁₉H₁₅N₃ONa [M + Na]⁺ : 324.1113, found: 324.1108. Enantiomeric excess: 86%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 18.27 min, t_{major} = 21.87 min; [α]²⁶ = + 37.1 (c = 0.5, CHCl₃).

(*R*)-1-Acetyl-8-chloro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3g'). (yield: 71%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.28 - 7.13 (m, 6H), 6.29 (d, *J* = 5.6 Hz, 1H), 3.48 - 3.31 (m, 2H), 2.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 163.5, 140.4, 134.5, 130.8, 128.5, 128.2, 127.8, 126.1, 126.0, 124.7, 117.8, 116.3, 111.9, 84.4, 53.2, 36.6, 21.6. HRMS (ESI, m/z) calcd for C₂₀H₁₄N₃O₂NaCl [M + Na]⁺ : 386.0672, found: 386.0671. Enantiomeric excess: >99%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 10.12 min, t_{minor} = 12.83 min; [α]²⁶ = + 100.4 (c = 0.5, CHCl₃).

(R)-8-Methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3h). (yield: 53%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.92 (d, *J* = 2.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.19 - 7.15 (m, 4H), 7.15 - 7.08 (m, 1H), 6.83 (t, *J* = 1.2 Hz, 1H), 6.68 (ddd, *J* = 8.4, 1.6, 0.4 Hz, 1H), 4.80 (td, *J* = 7.2, 2.0 Hz, 1H), 2.92 (d, *J* = 6.8 Hz, 2H), 2.11 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 165.8, 152.5, 140.6, 134.8, 129.2, 128.9, 128.6, 128.4, 127.0, 123.3, 116.6, 116.0, 114.9, 64.1, 53.8, 21.5. HRMS (ESI, m/z) calcd for C₁₉H₁₅N₃ONa [M + Na]⁺ : 324.1113, found: 324.1112. Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ = 254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 21.90 min, t_{minor} = 23.24 min; [α]²⁵ = + 109.8 (c = 0.5, CHCl₃).

(*R*)-1-Acetyl-8-methoxy-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3i'). (yield: 55%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.8 Hz, 1H), 7.34 - 7.22 (m, 5H), 7.00 (d, *J* = 2.8 Hz, 1H), 6.96 (dd, *J* = 9.2, 2.8 Hz, 1H), 6.37 (d, *J* = 5.6 Hz, 1H), 3.84 (s, 3H), 3.52 - 3.36 (m, 2H), 2.60 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.7, 164.5, 158.1, 140.7, 135.8, 129.4, 128.7, 127.0, 125.9, 125.2, 117.2, 115.4, 113.6, 101.6, 86.2, 55.8, 54.2, 37.5, 22.5. HRMS (ESI, m/z) calcd for C₂₁H₁₇N₃O₃Na [M + Na]⁺ : 382.1168, found: 382.1170. Enantiomeric excess: 93%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 13.83 min, t_{minor} = 20.32 min; [α]²⁷_D = + 32.3 (c = 0.6, CHCl₃).

(R)-1-Acetyl-9-chloro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-

10-carbonitrile (**3j**'). (yield: 61%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 6.4, 3.2 Hz, 1H), 7.36 - 7.24 (m, 7H), 6.44 (d, J = 6.0 Hz, 1H), 3.58 - 3.38 (m, 2H), 2.63 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.7, 164.8, 142.8, 135.5, 132.0, 129.5, 128.8, 127.5, 126.5, 126.0, 125.9, 122.9, 114.7, 113.6, 85.6, 53.9, 37.6, 22.5. HRMS (ESI, m/z) calcd for C₂₀H₁₄N₃O₂NaCl [M + Na]⁺ : 386.0672, found: 386.0671. Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 17.98 min, t_{minor} = 24.20 min; [α]²⁰ = + 68.5 (c = 0.6, CHCl₃).

(R)-9-Fluoro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**3k**). (yield: 65%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.34 (d, *J* = 2.4 Hz, 1H), 7.91 - 7.89 (m, 1H), 7.44 - 7.41 (m, 4H), 7.40 - 7.32 (m, 1H), 7.13 - 7.07 (m, 2H), 5.09 (td, *J* = 7.2, 2.0 Hz, 1H), 3.22 - 3.20 (m, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.1, 154.3, 153.0, 152.7, 140.3, 132.4 (d, *J* = 8.5 Hz), 128.6, 128.1 (d, *J* = 341.4 Hz), 123.4 (d, *J* = 7.7 Hz), 116.3, 116.2, 115.9, 111.7, 111.6, 60.8, 53.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -127.4 (dd, *J* = 9.6, 6.2 Hz). HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃OFNa [M + Na]⁺ : 328.0862, found: 328.0858. Enantiomeric excess: 98%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 24.91 min, t_{major} = 30.94 min; [α]²⁷_D = + 120.6 (c = 0.3, CHCl₃)

(R)-1-Acetyl-9-methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-

10-carbonitrile (**31**'). (yield: 71%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.34 - 7.23 (m, 6H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.42 (d, *J* = 5.2 Hz, 1H), 3.55 - 3.26 (m, 2H), 2.67 (s, 3H), 2.61 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.9, 164.8, 141.6, 135.7, 131.2, 130.6, 129.4, 128.6, 127.2, 126.8, 125.9, 123.7, 115.1, 113.8, 86.0, 53.8, 37.5, 22.7, 18.3. HRMS (ESI, m/z) calcd for C₂₁H₁₇N₃O₂Na [M + Na]⁺ : 366.1218, found: 366.1220. Enantiomeric excess: 88%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90:10 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{major} = 20.67 min, t_{minor} = 24.54 min; [α]²⁶ = + 16.9 (c = 0.7, CHCl₃).

(*R*)-2-(4-Bromophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3m). (yield: 58%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.17 (d, *J* = 2.4 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.63 - 7.61 (m, 2H), 7.41 - 7.39 (m, 2H), 7.28 -7.24 (m, 2H), 7.14 -7.11 (m, 1H), 5.07 (td, *J* = 6.6, 1.8 Hz, 1H), 3.18 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 164.7, 151.2, 138.8, 131.0, 129.3, 128.3, 127.6, 124.5, 121.5, 120.6, 115.3, 114.9, 114.2, 63.4, 52.2. HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃ONaBr [M + Na]⁺: 388.0061, found: 388.0059. Enantiomeric excess: 88%, determined by HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 9.50 min, t_{major} = 11.71 min; [α]²⁶_D = + 22.29 (c = 0.6, CHCl₃).

(R)-2-(4-Chlorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**3n**). (yield: 62%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.93 (d, *J* = 2.0 Hz, 1H), 7.81 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.25 - 7.20 (m, 4H), 7.04 - 6.98 (m, 2H), 6.90 - 6.86 (m, 1H), 4.84 (td, *J* = 7.2, 2.0, 1H), 2.93 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 165.8, 152.3, 139.5, 133.2, 130.4, 129.2, 129.0, 128.7, 125.6, 122.6, 116.4, 116.0, 115.2, 64.5, 53.3. HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃ONaCl [M + Na]⁺: 344.0567, found: 344.0562. Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5 (v/v), λ =254 nm, flow rate = 0.8 mL/min, rt): t_{minor} = 35.52 min, t_{major} = 38.64 min; [α]²⁷_D = + 55.7 (c = 0.3, CHCl₃).

(R)-2-(4-Fluorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**30**). (yield: 70%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.18 (d, *J* = 2.4 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.50 - 7.47 (m, 2H), 7.28 - 7.24 (m, 4H), 7.12 (td, *J* = 7.8, 1.8 Hz, 1H), 5.10 -5.07 (m, 1H), 3.23 - 3.13 (m, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 165.9, 163.1, 161.5, 152.3, 136.6, 130.3, 129.2 (d, *J* = 8.3 Hz), 128.7, 125.6, 122.6, 116.0, 115.9, 115.9, 115.8 (d, *J* = 176.4 Hz), 64.4, 53.2. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -114.2 (dt, *J* = 12.2, 6.4 Hz). HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃ONaF [M + Na]⁺ : 328.0862, found: 328.0862. Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor}= 13.62 min, t_{major} = 15.20 min; [α]²⁶_D = + 50.1 (c = 0.6, CHCl₃).

(*R*)-4-Oxo-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydropyrimido [1,2a]indole -10-carbonitrile (3p). (yield: 68%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO d_6) δ 9.29 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.79 (dd, J = 50.8, 8.0 Hz, 4H), 7.32 (m, 2H), 7.21 -7.16 (m, 1H), 5.25 (t, J = 7.2 Hz, 1H), 3.28 (d, J = 7.2 Hz, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ 165.7, 152.3, 145.2, 130.4, 129.2 (dd, J = 62.8, 32.0 Hz), 128.7, 128.1, 126.1 (d, J = 4.2 Hz), 125.6, 125.5 (dd, J = 545.1, 272.1 Hz),122.7, 116.4, 115.9, 115.2, 64.6, 53.5. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -61.0. HRMS (ESI, m/z) calcd for C₁₉H₁₂N₃ONaF₃ [M + Na]⁺: 378.0830, found: 378.0825. Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 90:10 (v/v), $\lambda = 254$ nm, flow rate = 1.0 mL/min, rt): t_{minor} = 12.03 min, t_{major} = 15.74 min; [α]²⁶ = + 6.6 (c = 0.6, CHCl₃).

(*R*)-4-Oxo-2-(p-tolyl)-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3q). (yield: 52%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.19 (d, *J* = 2.0 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.25 (dd, *J* = 36.4, 8.0, 4H), 7.25 (dd, *J* = 6.8, 1.6 Hz, 2H), 7.13 - 7.09 (m, 1H), 5.02 (td, *J* = 7.6, 2.0 Hz, 1H), 3.15 - 3.15 (m, 2H), 2.29 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.1, 152.4, 137.8, 137.5, 130.4, 129.7, 128.8, 126.8, 125.5, 122.5, 116.3, 116.0, 115.2, 64.2, 53.4, 21.1. HRMS (ESI, m/z) calcd for C₁₉H₁₅N₃ONa [M + Na]⁺ : 324.1113, found: 324.1107. Enantiomeric excess: 82%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): $t_{minor} = 11.12 \text{ min}, t_{major} = 12.60 \text{ min}; [\alpha]_{D}^{26} = +53.1 \text{ (c} = 0.6, \text{ CHCl}_3).$

(*R*)-2-(4-Methoxyphenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3r). (yield: 47%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.14 (d, *J* = 2.0 Hz, 1H), 8.06 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.36 - 7.32 (m, 2H), 7.28 - 7.22 (m, 2H), 7.14 - 7.10 (m, 1H), 6.99 - 6.95 (m, 2H), 5.03 - 4.99 (m, 1H), 3.75 (s, 3H), 3.18 - 3.15 (m, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.2, 159.5, 152.4, 132.3, 130.3, 128.8, 128.2, 125.6, 122.5, 116.3, 116.0, 115.2, 114.5, 64.2, 55.6, 53.2. HRMS (ESI, m/z) calcd for C₁₉H₁₅N₃O₂Na [M + Na]⁺: 340.1062, found: 340.1064. Enantiomeric excess: 88%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 17.85 min, t_{major} = 19.65 min; [α]²⁷_D = + 77.1 (c = 0.2, CHCl₃).

(R)-2-(3-Bromophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3s). (yield: 65%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.17 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 1.6 Hz, 1H), 7.57 (dt, J = 7.6, 1.6 Hz, 1H), 7.44 (dt, J = 8.0, 1.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.30 - 7.24 (m, 2H), 7.15 - 7.11 (m, 1H), 5.09 (dd, J = 10.0, 5.2 Hz, 1H), 3.25 (dd, J = 16.8, 9.2 Hz, 1H), 3.15 (dd, J = 16.8, 5.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 165.8, 152.3, 143.1, 131.5, 131.4, 130.3, 130.2, 128.7, 126.2, 125.6, 122.6, 122.3, 116.4, 115.9, 115.2, 64.6, 53.4. HRMS (ESI,

m/z) calcd for C₁₈H₁₂N₃ONaBr [M + Na]⁺: 388.0061, found: 388.0057. Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 10.44 min, t_{major} = 15.31 min; $[\alpha]_{D}^{26}$ = + 9.0 (c = 0.9, CHCl₃).

(R)-2-(3-Chlorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**3t**). (yield: 75%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.18 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 2.4 Hz, 1H), 7.48 - 7.38 (m, 3H), 7.30 - 7.24 (m, 2H), 7.15 - 7.11 (m, 1H), 5.12 - 5.08 (m, 1H), 3.25 (dd, *J* = 16.4, 8.8 Hz, 1H), 3.16 (dd, *J* = 16.6, 5.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 165.8, 152.3, 142.9, 133.7, 131.1, 130.3, 128.7, 128.6, 127.3, 125.8, 125.6, 122.6, 116.4, 115.9, 115.2, 64.6, 53.4. HRMS (ESI, m/z) calcd for C₁₈H₁₂N₃ONaCl [M + Na]⁺ : 344.0567, found: 344.0566. Enantiomeric excess: 84%, determined by HPLC (Daicel Chiralpak IB-3, hexane/*i*-PrOH = 80:20 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 10.73 min, t_{major} = 14.52 min; [α]²⁶ = + 96.6 (c = 0.5, CHCl₃).

(R)-2-(3-Fluorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (**3u**). (yield: 58%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO- d_6) δ 9.14 (d, J = 2.0 Hz, 1H), 7.99 (dd, J = 8.0, 0.8 Hz, 1H), 7.39 (td, J = 8.0, 6.4 Hz, 1H), 7.26 - 7.22 (m, 1H), 7.21 - 7.18 (m, 3H), 7.13 (td, J = 8.4, 2.8 Hz, 1H), 7.08 -7.04 (m, 1H), 5.05 - 5.01 (m, 1H), 3.20 - 3.08 (m, 2H). ¹³C NMR (151 MHz,) δ 165.8, 163.5, 161.9, 152.3,

143.3 (d, J = 7.1 Hz), 131.3 (d, J = 8.3 Hz), 130.3, 128.7, 125.6, 123.1 (d, J = 2.1 Hz), 122.6, 116.4, 115.9, 115.2, 114.8 (dd, J = 198.4, 20.8 Hz), 64.5, 53.4. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -112.5 (q, J = 8.0 Hz). HRMS (ESI, m/z) calcd for C₁₈H₁₃N₃OF[M + Na]⁺: 306.1043, found: 306.1046. Enantiomeric excess: 84%, determined by HPLC (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95:5 (v/v), $\lambda = 254$ nm, flow rate = 1.0 mL/min, rt): t_{minor} = 23.01 min, t_{major} = 26.16 min; $[\alpha]_D^{26} = + 23.5$ (c = 0.3, CHCl₃).

(R)-4-Oxo-2-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydropyrimido[1,2-

a]indole-10-carbonitrile (**3v**). (yield: 65%). White solid, purified by flash column chromatography (eluent: Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSOd₆) δ 9.19 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.87 (s, 1H), 7.78 - 7.74 (m, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.31 - 7.24 (m, 2H), 7.16 - 7.12 (m, 1H), 5.21 (ddd, J = 10.0, 5.2, 1.6 Hz, 1H), 3.32 (dd, J = 16.4, 10.0 Hz, 1H), 3.16 (dd, J = 16.4, 4.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 165.8, 152.4, 141.7, 131.4, 130.6, 130.3, 129.8 (dd, J = 64.0, 32.0 Hz), 128.7, 125.6, 125.5 (dd, J = 545.0, 273.2 Hz), 124.3 (dt, J = 187.4, 5.4 Hz), 122.7, 116.4, 115.9, 115.3, 64.7, 53.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -61.0. HRMS (ESI, m/z) calcd for C₁₉H₁₂N₃ONaF₃ [M + Na]⁺ : 378.0830, found: 378.0823. Enantiomeric excess: 86%, determined by HPLC (Daicel Chiralpak OD-3, hexane/*i*-PrOH = 90:10 (v/v), $\lambda = 254$ nm, flow rate = 1.0 mL/min, rt): t_{minor} = 17.09 min, t_{major} = 19.00 min; [α]²⁶₂ = + 67.8 (c = 0.4, CHCl₃).

(R)-4-Oxo-2-(m-tolyl)-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile
(3w). (yield: 75%). White solid, purified by flash column chromatography (eluent: - 19 -

Petroleum ether/EtOAc = 3/1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.18 (s, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.31 - 7.25 (m, 4H), 7.23 - 7.10 (m, 3H), 5.02 (t, J = 6.8 Hz, 1H), 3.17 (d, J = 6.8 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.1, 152.4, 140.4, 138.4, 130.3, 129.2, 129.1, 128.8, 127.6, 125.6, 123.9, 122.5, 116.3, 116.0, 115.2, 64.2, 53.7, 21.5. HRMS (ESI, m/z) calcd for C₁₉H₁₅N₃ONa [M + Na]⁺ : 324.1113, found: 324.1113. Enantiomeric excess: 82%, determined by HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 90:10 (v/v), λ =254 nm, flow rate = 1.0 mL/min, rt): *t_{minor}* = 14.78 min, *t_{major}* = 19.33 min; [α]²⁵_D = + 16.1 (c = 0.6, CHCl₃).

3.2 The transformation of Compounds 3a to 4a

To a stirred solution of **3a** (0.2 mmol) in AcOH (2.0 mL), cooled in an ice bath, was added 50% H_2SO_4 (1.0 mL), the reaction was allowed to warm up to 120 °C. After 1 h, distilled aq. Na₂CO₃ (10 mL) was added, cooling applied and the product was collected by chromatography on silica gel.

(*R*)-4-Oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carboxamide (4a). (yield: 51%). White solid, purified by flash column chromatography (eluent: Petroleum DCM/MeOH = 20/1). ¹H NMR (400 MHz, DMSO- d_6) δ 8.48 (s, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.44 - 7.32 (m, 5H), 7.21 (td, *J* = 7.6, 1.2 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.99 (s, 2H), 5.12 (t, *J* = 6.8 Hz, 1H), 3.28 - 3.16 (m,

2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.0, 166.2, 151.2, 141.2, 131.0, 129.3, 128.6, 127.4, 126.7, 125.0, 121.5, 117.8, 114.8, 88.4, 53.4. HRMS (ESI, m/z) calcd for C₁₈H₁₆N₃O₂ [M + H]⁺ : 306.1206, found: 306.1208. Enantiomeric excess: 84%, determined by HPLC (Daicel Chiralpak IC-3, hexane/*i*-PrOH = 50:50 (v/v), λ = 254 nm, flow rate = 1.0 mL/min, rt): t_{minor} = 20.23 min, t_{major} = 14.65 min; [α]²⁶_D = + 76.6 (c = 0.4, CHCl₃).

4. X-ray crystal structure of (-)3a

(-)3a

Table 1. Crystal data and structure refinement f	For d8v23073.			
Identification code	d8v23073			
Empirical formula	C18 H13 N3 O			
Formula weight	287.31			
Temperature	293(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 5.4603(2) Å	α= 90°.		
	b = 20.5881(9) Å	$\beta = 93.864(2)^{\circ}.$		
	c = 12.9406(6) Å	$\gamma = 90^{\circ}$.		
Volume	1451.44(11) Å ³			
Z	4			
Density (calculated)	1.315 Mg/m ³			
Absorption coefficient	0.675 mm ⁻¹			
F(000)	600			
Crystal size	$0.140 \ge 0.120 \ge 0.060 \text{ mm}^3$			
Theta range for data collection	4.041 to 67.985°.			
Index ranges	-6<=h<=6, -24<=k<=24, -15<=l<=15			
Reflections collected	19539			
Independent reflections	5271 [R(int) = 0.0789]			
Completeness to theta = 67.679°	99.6 %			
Absorption correction	Semi-empirical from equivaler	nts		
Max. and min. transmission	0.7533 and 0.5264			
Refinement method	Full-matrix least-squares on F ²	1		
Data / restraints / parameters	5271 / 25 / 386			
Goodness-of-fit on F ²	1.053			
Final R indices [I>2sigma(I)]	R1 = 0.0644, wR2 = 0.1718			
R indices (all data)	R1 = 0.0812, wR2 = 0.1932			
Absolute structure parameter	0.0(3)			
Extinction coefficient	0.037(6)			
Largest diff. peak and hole	0.234 and -0.206 e.Å ⁻³			

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3)

	Х	У	Z	U(eq)
O(1)	2818(7)	2922(2)	4510(4)	92(1)
N(1)	8661(9)	4093(2)	4194(4)	73(1)
N(2)	5974(7)	3527(2)	5233(4)	71(1)
N(3)	12314(10)	4939(3)	6561(5)	90(2)
C(1)	4572(9)	3275(2)	4383(5)	75(2)
C(2)	5352(10)	3486(3)	3354(5)	82(2)
C(3)	8079(10)	3626(2)	3366(4)	72(1)
C(4)	8905(11)	3851(3)	2343(5)	78(2)
C(5)	9498(16)	3407(4)	1625(6)	107(2)
C(6)	10380(20)	3588(6)	686(6)	133(3)
C(7)	10670(20)	4214(6)	448(7)	141(4)
C(8)	10120(30)	4666(5)	1188(8)	159(5)
C(9)	9212(19)	4487(3)	2113(6)	117(3)
C(10)	7926(8)	3956(2)	5136(5)	67(1)
C(11)	8764(9)	4157(2)	6113(4)	70(1)
C(12)	7281(9)	3841(3)	6854(5)	73(1)
C(13)	5541(9)	3460(2)	6290(5)	74(1)
C(14)	3809(11)	3094(3)	6767(7)	88(2)
C(15)	3855(13)	3121(4)	7845(7)	98(2)
C(16)	5595(13)	3492(4)	8408(6)	97(2)
C(17)	7323(12)	3855(3)	7908(6)	86(2)
C(18)	10732(10)	4582(3)	6345(5)	72(1)
O(2)	12357(8)	7077(2)	5991(4)	96(1)
N(4)	6585(8)	5903(2)	6393(4)	71(1)
N(5)	9317(7)	6430(2)	5318(4)	70(1)
N(6)	2913(10)	4998(3)	4108(5)	92(2)
C(19)	10548(10)	6761(3)	6117(5)	77(2)
C(20)	9330(12)	6725(3)	7101(5)	89(2)
C(21)	8095(11)	6087(3)	7313(5)	77(1)
C(22)	6597(9)	6117(2)	8260(3)	80(1)
C(23)	5542(13)	6690(2)	8585(5)	144(3)
C(24)	4196(14)	6691(3)	9459(5)	151(3)

for d8v23073. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(25)	3905(14)	6119(4)	10008(5)	151(3)
C(26)	4961(17)	5546(3)	9684(6)	167(3)
C(27)	6307(14)	5545(2)	8809(5)	160(3)
C(28)	7299(9)	6023(2)	5450(4)	67(1)
C(29)	6346(9)	5827(2)	4485(4)	66(1)
C(30)	7758(10)	6137(2)	3706(5)	70(1)
C(31)	9616(10)	6498(2)	4239(5)	71(1)
C(32)	11329(11)	6852(3)	3724(6)	85(2)
C(33)	11081(13)	6843(3)	2662(6)	95(2)
C(34)	9219(13)	6498(3)	2119(6)	96(2)
C(35)	7553(12)	6140(3)	2633(5)	85(2)
C(36)	4426(10)	5383(3)	4279(5)	72(1)

1.222(7)
1.339(8)
1.458(7)
0.8600
1.397(7)
1.396(6)
1.410(8)
1.154(7)
1.490(9)
1.516(8)
0.9700
0.9700
1.501(9)
0.9800
1.356(9)
1.358(9)
1.388(13)
0.9300
1.336(14)
0.9300
1.383(15)
0.9300
1.376(13)
0.9300
0.9300
1.379(8)
1.401(8)
1.450(8)
1.363(9)
1.399(8)
1.386(8)
1.395(11)
0.9300
1.387(11)
0.9300
1.397(10)

Table 3. Bond lengths [Å] and angles $[\circ]$ for d8v23073.

C(16)-H(16)	0.9300
C(17)-H(17)	0.9300
O(2)-C(19)	1.203(7)
N(4)-C(28)	1.329(7)
N(4)-C(21)	1.452(7)
N(4)-H(4)	0.8600
N(5)-C(19)	1.375(7)
N(5)-C(28)	1.405(6)
N(5)-C(31)	1.424(7)
N(6)-C(36)	1.155(7)
C(19)-C(20)	1.478(9)
C(20)-C(21)	1.511(8)
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(21)-C(22)	1.520(7)
C(21)-H(21)	0.9800
C(22)-C(23)	1.3900
C(22)-C(27)	1.3900
C(23)-C(24)	1.3900
C(23)-H(23)	0.9300
C(24)-C(25)	1.3900
C(24)-H(24)	0.9300
C(25)-C(26)	1.3900
C(25)-H(25)	0.9300
C(26)-C(27)	1.3900
C(26)-H(26)	0.9300
C(27)-H(27)	0.9300
C(28)-C(29)	1.381(8)
C(29)-C(36)	1.403(7)
C(29)-C(30)	1.457(8)
C(30)-C(35)	1.385(9)
C(30)-C(31)	1.401(8)
C(31)-C(32)	1.390(8)
C(32)-C(33)	1.372(10)
C(32)-H(32)	0.9300
C(33)-C(34)	1.392(10)
C(33)-H(33)	0.9300
C(34)-C(35)	1.376(9)

C(34)-H(34)	0.9300
C(35)-H(35)	0.9300
C(10)-N(1)-C(3)	117.8(4)
C(10)-N(1)-H(1)	121.1
C(3)-N(1)-H(1)	121.1
C(1)-N(2)-C(10)	123.0(5)
C(1)-N(2)-C(13)	127.5(5)
C(10)-N(2)-C(13)	109.1(4)
O(1)-C(1)-N(2)	120.5(6)
O(1)-C(1)-C(2)	124.5(5)
N(2)-C(1)-C(2)	115.0(5)
C(1)-C(2)-C(3)	112.7(5)
C(1)-C(2)-H(2A)	109.1
C(3)-C(2)-H(2A)	109.1
C(1)-C(2)-H(2B)	109.1
C(3)-C(2)-H(2B)	109.1
H(2A)-C(2)-H(2B)	107.8
N(1)-C(3)-C(4)	112.4(4)
N(1)-C(3)-C(2)	107.4(5)
C(4)-C(3)-C(2)	113.7(5)
N(1)-C(3)-H(3)	107.7
C(4)-C(3)-H(3)	107.7
C(2)-C(3)-H(3)	107.7
C(9)-C(4)-C(5)	117.5(7)
C(9)-C(4)-C(3)	122.7(6)
C(5)-C(4)-C(3)	119.7(6)
C(4)-C(5)-C(6)	122.0(8)
C(4)-C(5)-H(5)	119.0
C(6)-C(5)-H(5)	119.0
C(7)-C(6)-C(5)	121.0(9)
C(7)-C(6)-H(6)	119.5
C(5)-C(6)-H(6)	119.5
C(6)-C(7)-C(8)	117.0(9)
C(6)-C(7)-H(7)	121.5
C(8)-C(7)-H(7)	121.5
C(9)-C(8)-C(7)	122.0(9)
C(9)-C(8)-H(8)	119.0

C(7)-C(8)-H(8)	119.0
C(4)-C(9)-C(8)	120.4(8)
C(4)-C(9)-H(9)	119.8
C(8)-C(9)-H(9)	119.8
N(1)-C(10)-C(11)	132.1(5)
N(1)-C(10)-N(2)	119.5(5)
C(11)-C(10)-N(2)	108.5(5)
C(10)-C(11)-C(18)	125.9(5)
C(10)-C(11)-C(12)	107.8(5)
C(18)-C(11)-C(12)	126.3(5)
C(17)-C(12)-C(13)	119.9(5)
C(17)-C(12)-C(11)	132.8(5)
C(13)-C(12)-C(11)	107.3(5)
C(14)-C(13)-C(12)	122.2(6)
C(14)-C(13)-N(2)	130.4(6)
C(12)-C(13)-N(2)	107.4(5)
C(13)-C(14)-C(15)	117.2(6)
C(13)-C(14)-H(14)	121.4
C(15)-C(14)-H(14)	121.4
C(16)-C(15)-C(14)	120.9(7)
C(16)-C(15)-H(15)	119.6
C(14)-C(15)-H(15)	119.6
C(15)-C(16)-C(17)	120.7(7)
C(15)-C(16)-H(16)	119.6
C(17)-C(16)-H(16)	119.6
C(12)-C(17)-C(16)	119.1(6)
C(12)-C(17)-H(17)	120.5
C(16)-C(17)-H(17)	120.5
N(3)-C(18)-C(11)	177.9(7)
C(28)-N(4)-C(21)	121.3(5)
C(28)-N(4)-H(4)	119.4
C(21)-N(4)-H(4)	119.4
C(19)-N(5)-C(28)	123.5(5)
C(19)-N(5)-C(31)	127.3(5)
C(28)-N(5)-C(31)	108.7(4)
O(2)-C(19)-N(5)	122.0(6)
O(2)-C(19)-C(20)	124.4(6)
N(5)-C(19)-C(20)	113.5(5)

C(19)-C(20)-C(21)	115.5(5)
C(19)-C(20)-H(20A)	108.4
C(21)-C(20)-H(20A)	108.4
C(19)-C(20)-H(20B)	108.4
C(21)-C(20)-H(20B)	108.4
H(20A)-C(20)-H(20B)	107.5
N(4)-C(21)-C(20)	108.3(5)
N(4)-C(21)-C(22)	111.4(5)
C(20)-C(21)-C(22)	112.4(5)
N(4)-C(21)-H(21)	108.2
C(20)-C(21)-H(21)	108.2
C(22)-C(21)-H(21)	108.2
C(23)-C(22)-C(27)	120.0
C(23)-C(22)-C(21)	122.4(4)
C(27)-C(22)-C(21)	117.6(4)
C(24)-C(23)-C(22)	120.0
C(24)-C(23)-H(23)	120.0
C(22)-C(23)-H(23)	120.0
C(23)-C(24)-C(25)	120.0
C(23)-C(24)-H(24)	120.0
C(25)-C(24)-H(24)	120.0
C(26)-C(25)-C(24)	120.0
C(26)-C(25)-H(25)	120.0
C(24)-C(25)-H(25)	120.0
C(25)-C(26)-C(27)	120.0
C(25)-C(26)-H(26)	120.0
C(27)-C(26)-H(26)	120.0
C(26)-C(27)-C(22)	120.0
C(26)-C(27)-H(27)	120.0
C(22)-C(27)-H(27)	120.0
N(4)-C(28)-C(29)	131.4(5)
N(4)-C(28)-N(5)	120.2(5)
C(29)-C(28)-N(5)	108.4(5)
C(28)-C(29)-C(36)	126.4(5)
C(28)-C(29)-C(30)	108.3(5)
C(36)-C(29)-C(30)	125.3(5)
C(35)-C(30)-C(31)	119.9(5)
C(35)-C(30)-C(29)	133.2(5)

C(31)-C(30)-C(29)	106.9(5)
C(32)-C(31)-C(30)	122.0(6)
C(32)-C(31)-N(5)	130.3(5)
C(30)-C(31)-N(5)	107.7(4)
C(33)-C(32)-C(31)	116.7(6)
C(33)-C(32)-H(32)	121.7
C(31)-C(32)-H(32)	121.7
C(32)-C(33)-C(34)	122.2(6)
C(32)-C(33)-H(33)	118.9
C(34)-C(33)-H(33)	118.9
C(35)-C(34)-C(33)	120.9(7)
C(35)-C(34)-H(34)	119.6
C(33)-C(34)-H(34)	119.6
C(34)-C(35)-C(30)	118.4(7)
C(34)-C(35)-H(35)	120.8
C(30)-C(35)-H(35)	120.8
N(6)-C(36)-C(29)	177.3(6)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	61(2)	82(3)	129(4)	-12(2)	-12(2)	-11(2)
N(1)	76(3)	57(2)	84(3)	-6(2)	-8(2)	-8(2)
N(2)	58(2)	59(2)	95(3)	-8(2)	-7(2)	-5(2)
N(3)	82(3)	78(3)	109(4)	-18(3)	-1(3)	-17(3)
C(1)	53(2)	56(3)	114(5)	-13(3)	-12(3)	2(2)
C(2)	74(3)	67(3)	100(4)	-9(3)	-26(3)	-2(3)
C(3)	69(3)	53(2)	91(4)	-8(2)	-13(2)	2(2)
C(4)	82(3)	66(3)	84(4)	-5(3)	-14(3)	-5(3)
C(5)	141(6)	89(4)	89(5)	-10(4)	-15(4)	21(4)
C(6)	186(9)	133(7)	78(5)	-13(5)	-5(5)	28(7)
C(7)	193(10)	144(8)	84(5)	-5(5)	-2(6)	-30(7)
C(8)	268(14)	107(6)	100(6)	12(5)	1(7)	-41(8)
C(9)	187(9)	64(4)	96(5)	1(3)	-8(5)	-10(4)
C(10)	55(2)	48(2)	96(4)	-7(2)	-7(2)	3(2)
C(11)	61(3)	58(3)	91(4)	-12(2)	-4(2)	-2(2)
C(12)	64(3)	57(3)	99(4)	-10(3)	3(3)	4(2)
C(13)	62(3)	57(3)	104(4)	-7(3)	5(3)	1(2)
C(14)	64(3)	63(3)	139(6)	-4(3)	13(3)	-3(3)
C(15)	89(4)	90(4)	118(6)	2(4)	21(4)	0(3)
C(16)	95(4)	92(4)	106(5)	-11(4)	18(4)	-3(4)
C(17)	88(4)	74(3)	96(5)	-13(3)	7(3)	-2(3)
C(18)	70(3)	61(3)	86(4)	-11(2)	-3(2)	-1(2)
O(2)	78(2)	74(2)	135(4)	-14(2)	3(2)	-19(2)
N(4)	73(3)	61(2)	79(3)	-6(2)	0(2)	-15(2)
N(5)	67(2)	47(2)	96(3)	-4(2)	4(2)	-7(2)
N(6)	88(3)	85(3)	103(4)	-10(3)	-1(3)	-20(3)
C(19)	71(3)	51(3)	108(4)	-11(3)	-2(3)	-5(2)
C(20)	95(4)	75(4)	96(4)	-19(3)	3(3)	-16(3)
C(21)	76(3)	64(3)	89(4)	-10(3)	-5(3)	-1(2)
C(22)	83(3)	80(3)	75(3)	-8(3)	-3(3)	-3(3)
C(23)	187(7)	125(6)	124(6)	13(5)	46(5)	55(5)
C(24)	187(6)	142(5)	130(5)	2(4)	47(5)	44(5)
C(25)	184(6)	145(5)	130(5)	8(5)	55(5)	20(5)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for d8v23073. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(26)	213(7)	133(5)	163(6)	28(5)	76(5)	10(5)
C(27)	216(8)	102(5)	171(7)	26(5)	92(6)	6(6)
C(28)	68(3)	43(2)	88(4)	-5(2)	5(2)	-6(2)
C(29)	62(3)	52(2)	86(4)	-4(2)	4(2)	-8(2)
C(30)	68(3)	54(2)	88(4)	-2(3)	11(2)	2(2)
C(31)	71(3)	46(2)	96(4)	-4(2)	11(3)	3(2)
C(32)	77(3)	61(3)	119(5)	0(3)	20(3)	-5(3)
C(33)	100(5)	80(4)	108(5)	0(4)	33(4)	-5(4)
C(34)	104(5)	84(4)	103(5)	5(4)	30(4)	7(4)
C(35)	87(4)	72(3)	97(4)	-3(3)	12(3)	2(3)
C(36)	69(3)	61(3)	88(4)	-7(2)	3(3)	-6(2)

	X	у	Z	U(eq)
H(1)	9451	4444	4081	88
H(2A)	4448	3874	3138	98
H(2B)	4940	3148	2849	98
H(3)	8954	3222	3549	86
H(5)	9310	2968	1768	129
H(6)	10764	3270	215	160
H(7)	11223	4339	-186	169
H(8)	10372	5104	1056	191
H(9)	8806	4805	2583	140
H(14)	2666	2841	6384	106
H(15)	2702	2888	8191	118
H(16)	5611	3499	9127	116
H(17)	8487	4103	8289	103
H(4)	5201	5713	6459	85
H(20A)	8108	7067	7102	107
H(20B)	10545	6813	7666	107
H(21)	9373	5756	7437	92
H(23)	5736	7073	8217	172
H(24)	3489	7074	9677	181
H(25)	3005	6119	10593	181
H(26)	4767	5163	10051	200
H(27)	7013	5162	8592	191
H(32)	12582	7082	4081	102
H(33)	12193	7075	2293	114
H(34)	9099	6509	1399	115
H(35)	6320	5906	2269	102

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for d8v23073.

Table 6. Torsion angles [°] for d8v23073.

C(10)-N(2)-C(1)-O(1)	-177.0(5)
C(13)-N(2)-C(1)-O(1)	-4.5(8)
C(10)-N(2)-C(1)-C(2)	1.5(7)
C(13)-N(2)-C(1)-C(2)	173.9(5)
O(1)-C(1)-C(2)-C(3)	-152.0(5)
N(2)-C(1)-C(2)-C(3)	29.6(6)
C(10)-N(1)-C(3)-C(4)	177.4(5)
C(10)-N(1)-C(3)-C(2)	51.6(6)
C(1)-C(2)-C(3)-N(1)	-53.9(6)
C(1)-C(2)-C(3)-C(4)	-178.9(5)
N(1)-C(3)-C(4)-C(9)	-24.9(9)
C(2)-C(3)-C(4)-C(9)	97.4(8)
N(1)-C(3)-C(4)-C(5)	151.7(6)
C(2)-C(3)-C(4)-C(5)	-86.0(7)
C(9)-C(4)-C(5)-C(6)	-0.3(11)
C(3)-C(4)-C(5)-C(6)	-177.1(7)
C(4)-C(5)-C(6)-C(7)	-0.1(15)
C(5)-C(6)-C(7)-C(8)	1.5(18)
C(6)-C(7)-C(8)-C(9)	-2.6(19)
C(5)-C(4)-C(9)-C(8)	-0.8(13)
C(3)-C(4)-C(9)-C(8)	175.9(9)
C(7)-C(8)-C(9)-C(4)	2.3(18)
C(3)-N(1)-C(10)-C(11)	156.4(5)
C(3)-N(1)-C(10)-N(2)	-22.7(7)
C(1)-N(2)-C(10)-N(1)	-6.3(7)
C(13)-N(2)-C(10)-N(1)	180.0(4)
C(1)-N(2)-C(10)-C(11)	174.4(4)
C(13)-N(2)-C(10)-C(11)	0.7(5)
N(1)-C(10)-C(11)-C(18)	-0.2(9)
N(2)-C(10)-C(11)-C(18)	178.9(5)
N(1)-C(10)-C(11)-C(12)	-179.1(5)
N(2)-C(10)-C(11)-C(12)	0.1(6)
C(10)-C(11)-C(12)-C(17)	178.9(6)
C(18)-C(11)-C(12)-C(17)	0.0(10)
C(10)-C(11)-C(12)-C(13)	-0.9(6)
C(18)-C(11)-C(12)-C(13)	-179.7(5)

C(17)-C(12)-C(13)-C(14)	0.7(8)
C(11)-C(12)-C(13)-C(14)	-179.5(5)
C(17)-C(12)-C(13)-N(2)	-178.5(5)
C(11)-C(12)-C(13)-N(2)	1.3(5)
C(1)-N(2)-C(13)-C(14)	6.3(9)
C(10)-N(2)-C(13)-C(14)	179.7(5)
C(1)-N(2)-C(13)-C(12)	-174.6(5)
C(10)-N(2)-C(13)-C(12)	-1.3(5)
C(12)-C(13)-C(14)-C(15)	0.3(8)
N(2)-C(13)-C(14)-C(15)	179.2(5)
C(13)-C(14)-C(15)-C(16)	-1.1(9)
C(14)-C(15)-C(16)-C(17)	1.0(11)
C(13)-C(12)-C(17)-C(16)	-0.8(8)
C(11)-C(12)-C(17)-C(16)	179.5(6)
C(15)-C(16)-C(17)-C(12)	0.0(10)
C(28)-N(5)-C(19)-O(2)	175.6(5)
C(31)-N(5)-C(19)-O(2)	-13.0(9)
C(28)-N(5)-C(19)-C(20)	-8.6(7)
C(31)-N(5)-C(19)-C(20)	162.8(5)
O(2)-C(19)-C(20)-C(21)	-148.1(6)
N(5)-C(19)-C(20)-C(21)	36.2(8)
C(28)-N(4)-C(21)-C(20)	36.5(7)
C(28)-N(4)-C(21)-C(22)	160.6(5)
C(19)-C(20)-C(21)-N(4)	-48.7(7)
C(19)-C(20)-C(21)-C(22)	-172.2(5)
N(4)-C(21)-C(22)-C(23)	-93.6(6)
C(20)-C(21)-C(22)-C(23)	28.2(7)
N(4)-C(21)-C(22)-C(27)	86.6(6)
C(20)-C(21)-C(22)-C(27)	-151.6(5)
C(27)-C(22)-C(23)-C(24)	0.0
C(21)-C(22)-C(23)-C(24)	-179.8(5)
C(22)-C(23)-C(24)-C(25)	0.0
C(23)-C(24)-C(25)-C(26)	0.0
C(24)-C(25)-C(26)-C(27)	0.0
C(25)-C(26)-C(27)-C(22)	0.0
C(23)-C(22)-C(27)-C(26)	0.0
C(21)-C(22)-C(27)-C(26)	179.8(5)
C(21)-N(4)-C(28)-C(29)	170.9(5)
C(21)-N(4)-C(28)-N(5)	-11.3(7)
-------------------------	-----------
C(19)-N(5)-C(28)-N(4)	-4.7(7)
C(31)-N(5)-C(28)-N(4)	-177.4(4)
C(19)-N(5)-C(28)-C(29)	173.5(5)
C(31)-N(5)-C(28)-C(29)	0.8(5)
N(4)-C(28)-C(29)-C(36)	-6.6(9)
N(5)-C(28)-C(29)-C(36)	175.4(5)
N(4)-C(28)-C(29)-C(30)	176.1(5)
N(5)-C(28)-C(29)-C(30)	-1.8(6)
C(28)-C(29)-C(30)-C(35)	-176.7(6)
C(36)-C(29)-C(30)-C(35)	6.0(9)
C(28)-C(29)-C(30)-C(31)	2.2(6)
C(36)-C(29)-C(30)-C(31)	-175.1(5)
C(35)-C(30)-C(31)-C(32)	-1.8(8)
C(29)-C(30)-C(31)-C(32)	179.2(5)
C(35)-C(30)-C(31)-N(5)	177.3(5)
C(29)-C(30)-C(31)-N(5)	-1.7(5)
C(19)-N(5)-C(31)-C(32)	7.2(9)
C(28)-N(5)-C(31)-C(32)	179.6(5)
C(19)-N(5)-C(31)-C(30)	-171.8(5)
C(28)-N(5)-C(31)-C(30)	0.7(5)
C(30)-C(31)-C(32)-C(33)	1.5(8)
N(5)-C(31)-C(32)-C(33)	-177.3(6)
C(31)-C(32)-C(33)-C(34)	-0.2(10)
C(32)-C(33)-C(34)-C(35)	-0.9(11)
C(33)-C(34)-C(35)-C(30)	0.7(10)
C(31)-C(30)-C(35)-C(34)	0.6(8)
C(29)-C(30)-C(35)-C(34)	179.4(6)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(32)-H(32)O(2)	0.93	2.48	2.986(9)	114.1
C(21)-H(21)N(3)	0.98	2.63	3.484(8)	145.2
N(4)-H(4)N(3)#1	0.86	2.25	3.081(7)	161.9
C(14)-H(14)O(1)	0.93	2.44	2.956(10)	115.1
C(3)-H(3)O(2)#2	0.98	2.55	3.309(7)	134.6
C(3)-H(3)O(1)#3	0.98	2.45	3.236(7)	136.4
N(1)-H(1)N(6)#3	0.86	2.21	2.986(7)	150.6
N(1)-H(1)N(6)#3	0.86	2.21	2.986(7)	150.6
C(3)-H(3)O(1)#3	0.98	2.45	3.236(7)	136.4
C(3)-H(3)O(2)#2	0.98	2.55	3.309(7)	134.6
C(14)-H(14)O(1)	0.93	2.44	2.956(10)	115.1
N(4)-H(4)N(3)#1	0.86	2.25	3.081(7)	161.9
C(21)-H(21)N(3)	0.98	2.63	3.484(8)	145.2
C(32)-H(32)O(2)	0.93	2.48	2.986(9)	114.1

Table 7. Hydrogen bonds for d8v23073 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+2,y-1/2,-z+1 #3 x+1,y,z

5. References

O. Benek., O. Soukup., M. Pasdiorova., L. Hroch., V. Sepsova., P. Jost., M. Hrabinova., D. Jun., K. Kuca., D. Zala., R. R. Ramsay., J. Marco-Contelles, and K. Musilek., *Chem. Med. Chem.*, **2016**, *11*(*12*), 1264 -1269.

a). X.-B. Yang, H. Fu, R.-Z. Qiao, Y.-Y. Jiang, Y.-F. Zhao, *Adv. Syn & Cat.*, 2010,
352, 1033 - 1038. b). C. Willemann, R. Grünert, P. J. Bednarski, R. Troschütz. *Bioorg. Med. Chem.*, 2009, **17**, 4406 - 4419.

3. Y. Liu, J. Chen, Z. Zhang, J. Qin, M. Zhao and W. Zhang. Org. Biomol. Chem., 2016, 14(29), 7099 - 7102.

6. ¹H, ¹³C and ¹⁹F NMR spectra and HPLC Spectra

2-Amino-1H-indole-3-carbonitrile (1a). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.45, 2.50 ppm)]

2-Amino-7-bromo-1H-indole-3-carbonitrile (1b). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.5, 2.50 ppm)]

2-Amino-7-chloro-1H-indole-3-carbonitrile (1c). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-7-methyl-1H-indole-3-carbonitrile (**1d**). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-6-fluoro-1H-indole-3-carbonitrile (1e). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

 $\int_{-123, 860}^{-123, 815} \frac{-123, 815}{-123, 824}$

2-Amino-6-methyl-1H-indole-3-carbonitrile (1f). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-5-chloro-1H-indole-3-carbonitrile (1g). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-5-methyl-1H-indole-3-carbonitrile (1h). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-5-methoxy-1H-indole-3-carbonitrile (1i). [¹H_NMR_600 MHz_(DMSO*d*₆: 3.36, 2.50 ppm)]

2-Amino-4-chloro-1H-indole-3-carbonitrile (1j). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

2-Amino-4-fluoro-1H-indole-3-carbonitrile (1k). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm) **2-Amino-4-methyl-1H-indole-3-carbonitrile (11).** [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

 $(R) \hbox{-} 4-Oxo-2-phenyl-1,2,3,4-tetrahydropyrimido [1,2-a] indole-10-carbonitrile$

(**3a).** [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.35, 2.50 ppm)]

(*R*)-1-Acetyl-6-bromo-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-

7 (5.37) 7 (5.1) 7 2, 590 2, 548 2, 548 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 543 2, 548 2, Y30201266-1024-WM-B33. 1. 1. 1 ____2.570 jÜ . 07 3.00-8.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 0.5 0.0 7.0 4.0 f1 (ppm) 1.5 1.0 [¹³C_NMR_151 MHz_(CDCl₃: 77.00 ppm)] 22.432 - 87.331 77, 239 77, 239 76, 815

10-carbonitrile (**3b**'). [¹H_NMR_400 MHz_(CDCl₃: 7.26 ppm)]

90 80 70 60 f1 (ppm)

50

40

30

20

0

10

150 140 130 120 110 100

180 170 160

- 53 -

(*R*)-1-Acetyl-6-methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3d'). [¹H_NMR_600 MHz_(CDCl₃: 7.26 ppm)]

(*R*)-7-Fluoro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3e). [¹H_NMR_600 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

< $^{-120, 364}_{-120, 382}$

Y30201266-0225-WM-A88.2.1.1

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 F1 (ppm)

(*R*)-7-Methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3f). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-1-Acetyl-8-chloro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3g'). [¹H_NMR_400 MHz_(CDCl₃: 7.26 ppm)]

(R)-8-Methyl-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3h). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-1-Acetyl-8-methoxy-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3i'). [¹H_NMR_400 MHz_(CDCl₃: 7.26 ppm)]

(*R*)-1-Acetyl-9-chloro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carbonitrile (3j'). [¹H_NMR_400 MHz_(CDCl₃: 7.26 ppm)]

(*R*)-9-Fluoro-4-oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3k). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

(R) - 1- Acetyl - 9- methyl - 4- oxo - 2- phenyl - 1, 2, 3, 4- tetrahydropyrimido [1, 2-a] indole-one of the second s

10-carbonitrile (3l'). [¹H_NMR_400 MHz_(CDCl₃: 7.26 ppm)]

(R)-2-(4-Bromophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3m). [¹H_NMR_600 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-2-(4-Chlorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3n). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-2-(4-Fluorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (30). [¹H_NMR_600 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 r1 (ppm)

 $\overbrace{-114,2215}^{-114,205}$

(*R*)-4-Oxo-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydropyrimido[1,2a]indole-10-carbonitrile (3p). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

Y30201266-0722-WM-B13.1.1.1

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 F1 (ppm)

-60, 999

(R)-2-(4-Methoxyphenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-

carbonitrile (3r). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-2-(3-Chlorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3t). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

(*R*)-2-(3-Fluorophenyl)-4-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10carbonitrile (3u). [¹H_NMR_400 MHz_(DMSO-*d*₆: 3.36, 2.50 ppm)]

[¹⁹F_NMR_565 MHz]

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

[¹⁹F_NMR_565 MHz]

Y30201266-0808-WM-A97R.2.1.1r

(*R*)-4-Oxo-2-phenyl-1,2,3,4-tetrahydropyrimido[1,2-a]indole-10-carboxamide

- 81 -

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Area %	Hight %
1	8.559	17472800	1149727	49.691	50.591
2	9.360	17689787	1122865	50.309	49.409

2

8.236	2695564	181755	4.205	4.669
9.084	61414595	3711178	95.795	95.331

PDA Ch1 254nm

Peak #	Ret. Time [min]	Area [mAU*s]	Hight [mAU]	Area %	Hight %
1	30.127	8057517	156884	50.061	50.555
2	35.192	8037814	153440	49.939	49.445

PDA Ch1 254nm

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Area %	Height %
1	17.788	27744260	937424	49.811	53.198
2	21.153	27954554	824710	50.189	46.802

PDA Ch1 254nm

Peak #	Ret. Time [min]	Area [mAU*s]	Hight [mAU]	Area %	Hight %
1	10.120	37536444	2419430	50.854	56.499
2	12.869	36276278	1862798	49.146	43.501

I Cuki		net. time [min]	nergite [m		nergire "
1	9191345	21.924	233762	48.052	50.132
2	9936688	23.280	232533	51.948	49.868

mAU H_3C 750-895 CN 500-3h 250-23.240 0 20 10 15 5 25 Ò min PDA Ch1 254nm Peak# Ret. Time [min] Area [mAU*s] Height [mAU] Hight % Area % 1 21.895 28784850 731603 89.650 89.905 2 23.240 3323122 82152 10.350 10.095

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Area %	Height %
1	17.977	34058008	1167274	98.697	99.131
2	24.200	449801	10232	1.303	0.869

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Area %	Height %
1	24.907	363967	8600	0.661	1.366
2	30.943	54726874	620835	99.339	98.634

Реак#	Ret. lime [min]	Area [mAU*s]	Height [mAU]	Area %	Height %
1	35.530	44827959	654273	49.679	49.830
2	38.581	45407905	658732	50.321	50.170

Peak#	Ret. Time [min]	Area [mAU*s]	Hight [mAU]	Area %	Hight %
1	35.519	7698932	107113	9.826	9.527
2	38.642	70651089	1017166	90.174	90.473

PDA Ch1 254nm									
Peak#	Ret. Time [min]	Area [mAU*s]	Hight [mAU]	Area %	Hight %				
1	17.853	3989371	108659	6.444	6.041				
2	19.653	57915891	1689946	93.556	93.959				

ĊH₃

Peak#	Ret. Time [min]	Area [mAU*s]	Height [mAU]	Area %	Hight %
1	14.663	32768039	830254	53.474	60.879
2	20.052	28509975	533513	46.526	39.121

