Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Diastereoselective Construction of Carbo-Bridged Polyheterocycles by a Three-component Tandem Annulation Reaction

Maorui Wang, and Min Zhang*,

School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

Corresponding Authors

*Email: minzhang@scut.edu.cn

Table of Contents

General information	S2
Substrates Preparation	S3-S7
Control experiments	S7-S8
Typical procedure for the synthesis of C_1	S8-S9
Analytical data of the obtained compounds	S9-S26
Crystal data of C ₁₁	S27-S32
NMR spectra of obtained compounds	S33-S80

General information

All the obtained products were characterized by melting points (m.p.), ¹H NMR, and ¹³C NMR. Melting points were measured on an Electrothermal SGW-X4 microscopy digital melting point apparatus and are uncorrected. ¹H-NMR, ¹³C-NMR and NOESY spectra were obtained on Bruker-400 or Bruker-500 and referenced to 7.26 ppm for chloroform solvent or 2.54 ppm for dimethyl sulfoxide solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 600 mesh silica gel plates (GF254), and visualization was effected at 254 nm. Analytical HPLC was run with an Agilent 1260 Infinity, equipped with a Daicel CHIRALPAK IA (4.6 mm × 250 mm) and an Agilent LC1260 II DAD-G7115A detector. Unless otherwise stated, all the reagents were purchased from commercial sources, used without further purification.

Scheme S1. Substrates employed for the reaction

Substrate preparation

Synthesis of N-heteroarenium Salts Method: N-heteroarenes (3 mmol), halogenated compound (3 mmol) and toluene (3 mL) were introduced in a flask (25 mL), and the resulting mixture was stirred at 110 °C for 24 hours. After that, the solvent was removed. The reaction mixture was washed with small amount of diethyl ether and finally dried under vacuum to afford quinolinium salts A_{1} - A_{30} .

To a suspension of quinoline-6-carboxylic acid (5.0 mmol) in CH_2Cl_2 was added DMAP (4-(dimethylamino)-pyridine, 10.0 mmol) in one portion at room temperature. The reaction mixture was stirred for 10 min at room temperature. Then, N-(3-(Dimethylamino)propyl)-N'ethylcarbodiimide hydrochloride (EDC, 5.0 mmol) was added at 0 °C, the resultant suspension was stirred for 10 min at 0 °C, and a solution of alcohol (4.0 mmol) in CH_2Cl_2 was added at 0 °C. The cooling bath was removed, and the reaction mixture was stirred at room temperature for 16 h. The solution was diluted by addition of saturated aqueous NH_4Cl solution and CH_2Cl_2 at room temperature. The organic phase was dried with anhydrous sodium sulfate, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica to give 6-ester substituted quinolines.

Then, 6-ester substituted quinolines (3 mmol), benzyl bromide (3 mmol) and toluene (3 mL) were introduced in a flask (25 mL), and the resulting mixture was stirred at 110 °C for 24 hours. After removing the solvent, the reaction mixture was washed with small amount of diethyl ether and finally dried under vacuum to get reactants $A_{31}A_{43}$.

(1) 1-benzyl-6-(4-(tert-butyl)phenyl)quinolin-1-ium bromide (A₁₃)

Yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.82 (d, J = 16.1 Hz, 1H), 9.42 (d, J = 9.0 Hz, 1H), 8.85 (s, 1H), 8.64 – 8.50 (m, 2H), 8.33 (t, J = 7.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.56 – 7.32 (m, 1H), 7.31 – 7.10 (m, 2H), 6.47 (d, J = 8.2 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (126 MHz, DMSO) δ 150.4, 148.5, 141.4, 134.9, 134.5, 131.0, 129.6, 129.4, 129.3, 128.7, 127.8, 127.6, 127.6, 126.7, 125.8, 123.3, 120.4, 60.4, 34.9, 31.5. HRMS (ESI): Calcd. for C₂₆H₂₆N [M–Br]⁺: 352.2060; found: 352.2065.

(2) 1-benzyl-6-bromo-7-fluoroquinolin-1-ium bromide (A_{14})

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.92 (dd, J = 6.0, 1.4 Hz, 1H), 9.41 (d, J = 8.3 Hz, 1H), 9.16 (d, J = 7.5 Hz, 1H), 8.75 (d, J = 10.4 Hz, 1H), 8.37 (dd, J = 8.4, 5.8 Hz, 1H), 7.55 – 7.32 (m, 5H), 6.45 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 161.5 (d, J = 256.3 Hz), 151.9, 147.6, 138.8 (d, J = 12.1 Hz), 136.5 (d, J = 2.6 Hz), 133.8, 129.6, 129.4, 128.7, 128.2, 123.6 (d, J = 2.2 Hz), 113.7 (d, J = 24.1 Hz), 107.1 (d, J = 29.2 Hz), 60.4. HRMS (ESI): Calcd. for C₁₆H₁₂NFBr [M–Br]⁺: 316.0132; found: 316.0137.

(3) 1-benzyl-6-(thiophen-2-yl)quinolin-1-ium (A15)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.78 (dd, J = 5.8, 1.4 Hz, 1H), 9.39 (d, J = 8.3 Hz, 1H), 8.76 (d, J = 2.1 Hz, 1H), 8.59 – 8.51 (m, 2H), 8.31 (dd, J = 8.4, 5.7 Hz, 1H), 7.89 (dd, J = 3.4 H

J = 3.7, 1.2 Hz, 1H), 7.79 (dd, J = 5.0, 1.2 Hz, 1H), 7.47 – 7.37 (m, 5H), 7.26 (dd, J = 5.1, 3.6 Hz, 1H), 6.46 (s, 2H).¹³C NMR (126 MHz, DMSO) δ 150.1, 148.2, 140.6, 137.2, 135.3, 134.4, 133.6, 131.2, 129.6, 129.6, 129.4, 129.3, 127.8, 127.6, 125.5, 123.6, 120.7, 60.4. HRMS (ESI): Calcd. for C₂₀H₁₆NS [M–Br]⁺: 302.0998; found: 302.1003.

(4) 1-benzyl-6-(4-(diphenylamino)phenyl)quinolin-1-ium bromide (A₁₆)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ ¹H NMR (500 MHz, DMSO- d_6) δ 9.84 – 9.62 (m, 1H), 9.36 (t, J = 8.9 Hz, 1H), 8.78 (q, J = 2.6 Hz, 1H), 7.86 – 7.81 (m, 2H), 8.29 (dd, J = 8.4, 5.7 Hz, 1H), 7.87 – 7.77 (m, 2H), 7.40 (dt, J = 31.2, 6.5 Hz, 9H), 7.10 (dp, J = 14.6, 6.7, 6.2 Hz, 8H), 6.57 – 6.30 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 150.0, 148.8, 148.3, 147.1, 141.0, 141.0, 137.1, 134.5, 134.5, 131.1, 130.2, 129.6, 129.3, 128.9, 127.8, 126.7, 125.3, 124.4, 123.3, 122.6, 120.4, 60.3. HRMS (ESI): Calcd. for C₃₄H₂₇N₂ [M–Br]⁺: 463.2169; found: 463.2174.

(5) 6-((adamantan-1-ylmethoxy)carbonyl)-1-benzylquinolin-1-ium bromide (A₃₂)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ ¹H NMR (500 MHz, DMSO- d_6) δ 10.01 (s, 1H), 9.67 (d, J = 8.4 Hz, 1H), 9.16 (s, 1H), 8.63 (dd, J = 61.0, 9.3 Hz, 2H), 8.43 (t, J = 7.3 Hz, 1H), 7.53 – 7.29 (m, 3H), 7.25 – 7.04 (m, 2H), 6.49 (s, 2H), 3.97 (s, 2H), 1.95 (s, 3H), 1.73 – 1.54 (m, 12H). ¹³C NMR (126 MHz, DMSO) δ 163.98, 152.30, 149.59, 139.34, 134.03, 133.62, 132.69, 130.40, 129.70, 129.03, 128.78, 127.41, 123.44, 120.44, 74.58, 60.11, 38.52, 36.28, 33.06, 27.37. HRMS (ESI): Calcd. for C₂₈H₃₀NO₂ [M–Br]⁺: 412.2271; found: 412.2277.

(6) 1-benzyl-6-((furan-2-ylmethoxy)carbonyl)quinolin-1-ium bromide (A33)

Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ ¹H NMR (500 MHz, DMSO- d_6) δ 10.12 (d, J = 6.0 Hz, 1H), 9.67 (d, J = 8.6 Hz, 1H), 9.17 (s, 1H), 8.78 (d, J = 9.2 Hz, 1H), 8.55 (dd, J = 9.3, 2.0 Hz, 1H), 8.50 – 8.45 (m, 1H), 7.79 (s, 1H), 7.55 – 7.49 (m, 2H), 7.45 – 7.37 (m, 3H), 6.72 (d, J = 3.3 Hz, 1H), 6.61 – 6.50 (m, 3H), 5.47 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 164.1, 152.8, 150.0, 149.2, 144.6, 139.9, 134.5, 134.1, 133.3, 130.4, 130.1, 129.5, 129.3, 128.1, 124.0, 121.0, 112.1, 111.4, 60.5, 59.7. HRMS (ESI): Calcd. for C₂₂H₁₈NO₃ [M–Br]⁺: 344.1281; found: 344.1287.

(7) 1-benzyl-6-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)quinolin-1-ium bromide (A₃₄)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.95 (dd, J = 5.9, 1.5 Hz, 1H), 9.62 (d, J = 8.4 Hz, 1H), 9.15 (d, J = 2.0 Hz, 1H), 8.68 (d, J = 9.4 Hz, 1H), 8.56 (dd, J = 9.3, 2.1 Hz, 1H), 8.43 (dd, J = 8.4, 5.8 Hz, 1H), 7.62 – 7.21 (m, 5H), 6.47 (s, 2H), 5.12 – 5.03 (m, 1H), 4.51 – 4.35 (m, 2H), 3.79 (s, 1H), 2.05 – 1.97 (m, 2H), 1.87 – 1.76 (m, 1H), 1.68 – 1.51 (m, 7H), 1.43 – 1.32 (m, 1H), 1.25 – 1.15 (m, 1H), 0.95 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 164.5, 152.8, 150.0, 139.9, 134.5, 134.1, 133.2, 131.1, 131.0, 130.2, 129.6, 129.3, 128.0, 124.9, 124.0, 120.9, 64.6, 60.7, 36.9, 35.3, 29.4, 25.9, 25.3, 19.8, 18.0. HRMS (ESI): Calcd. for C₂₇H₃₂NO₂ [M–Br]⁺: 402.2428; found: 402.2433.

(8) 6-((benzo[d][1,3]dioxol-5-ylmethoxy)carbonyl)-1-benzylquinolin-1-ium bromide (A35)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.99 (d, J = 5.8 Hz, 1H), 9.63 (d, J = 8.5 Hz, 1H), 9.17 (s, 1H), 8.70 (d, J = 9.3 Hz, 1H), 8.63 – 8.56 (m, 1H), 8.43 (dd, J = 8.4, 5.7 Hz, 1H), 7.52 – 7.32 (m, 5H), 7.13 (s, 1H), 6.99 (dd, J = 44.8, 7.9 Hz, 2H), 6.49 (s, 2H), 6.05 (s, 2H), 5.36 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 164.4, 152.8, 150.0, 147.9, 147.9, 139.9, 134.7, 134.1, 133.3, 130.8, 130.2, 129.6, 129.6, 129.3, 128.0, 124.0, 122.9, 120.9, 109.5, 108.7, 101.7, 67.7, 60.6. HRMS (ESI): Calcd. for C₂₅H₂₀NO₄ [M–Br]⁺: 398.1387; found: 398.1392.

(9)1-benzyl-6-((2-(1-(sec-butoxycarbonyl)piperidin-2-yl)ethoxy)carbonyl)quinolin-1-ium bromide (A₃₆)

Pink solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.98 (d, J = 5.8 Hz, 1H), 9.61 (d, J = 8.3 Hz, 1H), 9.27 – 9.07 (m, 1H), 8.70 (d, J = 9.3 Hz, 1H), 8.57 (dt, J = 9.3, 2.5 Hz, 1H), 8.44 (dd, J = 8.4, 5.8 Hz, 1H), 7.50 – 7.35 (m, 5H), 6.49 (s, 2H), 4.55 – 4.41 (m, 2H), 4.39 – 4.28 (m, 2H), 3.92 (d, J = 13.4 Hz, 1H), 2.90 (t, J = 13.2 Hz, 1H), 2.34 – 2.23 (m, 1H), 1.97 – 1.85 (m, 1H), 1.68 – 1.51 (m, 5H), 1.45 – 1.21 (m, 3H), 1.00 (d, J = 6.3 Hz, 3H), 0.70 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 164.4, 155.1, 155.0, 152.8, 149.9, 139.8, 134.5, 134.1, 133.2, 130.1, 129.6, 129.3, 128.0,

124.1, 120.8, 72.5, 72.4, 63.9, 60.6, 28.8, 28.5, 25.7, 19.9, 19.1, 9.9, 9.9. HRMS (ESI): Calcd. for $C_{29}H_{35}N_2O_4$ [M–Br]⁺: 475.2591; found: 475.2597.

(10) 1-benzyl-6-((heptyloxy)carbonyl)quinolin-1-ium bromide (A₃₇)

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.17 (d, J = 5.6 Hz, 1H), 9.71 (d, J = 8.4 Hz, 1H), 9.19 (d, J = 1.9 Hz, 1H), 8.81 (d, J = 9.3 Hz, 1H), 8.57 (dd, J = 9.3, 2.0 Hz, 1H), 8.49 (dd, J = 8.4, 5.8 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.46 – 7.35 (m, 3H), 6.60 (s, 2H), 4.39 (t, J = 6.5 Hz, 2H), 1.81 – 1.73 (m, 2H), 1.47 – 1.39 (m, 2H), 1.38 – 1.22 (m, 6H), 0.89 – 0.82 (m, 3H). ¹³C NMR (126 MHz, DMSO) δ 163.91, 152.23, 149.39, 139.24, 133.88, 133.60, 132.58, 130.37, 129.58, 128.94, 128.71, 127.51, 123.47, 120.45, 65.65, 59.96, 31.05, 28.25, 28.02, 25.26, 21.93, 13.79. HRMS (ESI): Calcd. for C₂₄H₂₈NO₂ [M–Br]⁺: 362.2115; found: 362.2120.

(11) 1-benzyl-6-((heptan-2-yloxy)carbonyl)quinolin-1-ium bromide (A₃₉)

White solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.96 (dd, J = 5.8, 1.4 Hz, 1H), 9.63 (d, J = 8.3 Hz, 1H), 9.15 (d, J = 1.9 Hz, 1H), 8.69 (d, J = 9.3 Hz, 1H), 8.57 (dd, J = 9.3, 1.9 Hz, 1H), 8.43 (dd, J = 8.4, 5.8 Hz, 1H), 7.52 – 7.29 (m, 5H), 6.47 (s, 2H), 5.26 – 5.11 (m, 1H), 4.39 (s, 1H), 1.89 – 1.57 (m, 2H), 1.47 – 1.16 (m, 8H), 0.99 – 0.53 (m, 3H). ¹³C NMR (126 MHz, DMSO) δ 164.1, 152.7, 150.0, 139.9, 134.6, 134.1, 133.1, 131.3, 130.2, 129.6, 129.3, 127.9, 124.0, 120.8, 73.3, 60.6, 35.7, 31.5, 24.9, 22.4, 20.2, 14.3. HRMS (ESI): Calcd. for C₂₄H₂₈NO₂ [M–Br]⁺: 362.2115; found: 362.2120.

Control experiments

Synthesis of diethyl-2-hydrazineylidenesuccinate (int-2)

To a solution of 2-butynedioic acid diethyl ester \mathbf{B}_1 (3.0 mmol) in 6 mL of MeCN was slowly added N₂H₄·H₂O (3 mmol) at room temperature. The reaction was stirred at room temperature, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford **int-2**. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.68 (s, 2H), 4.25 (q, *J* = 7.2 Hz, 2H), 4.11 (q, *J* = 7.2, 6.8 Hz, 2H), 3.56 (s, 2H), 1.29 (td, *J* = 7.1, 1.8 Hz, 3H), 1.21 (td, *J* = 7.1, 1.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 164.3, 131.6, 61.5, 61.4, 31.2, 14.1, 13.9.

Synthesis of ethyl 5-oxo-2,5-dihydro-1H-pyrazole-3-carboxylate (int-3)

To a solution of 2-butynedioic acid diethyl ester **B**₁ (3.0 mmol) in 6 mL of MeOH was slowly added N₂H₄·H₂O (3 mmol) at 0 °C. The reaction was stirred at 0 °C for 12 h. After cooling down to room temperature and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford **int-3**. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.20 (s, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 161.4, 134.3, 92.9, 62.3, 14.1.

Typical procedure for the synthesis of C₁

Under argon atmosphere, 2-butynedioic acid diethyl ester B_1 (0.17 mmol), DMSO (1 mL) were introduced in a Schlenk flask I, 0.2 mmol of N₂H₄·H₂O dissolved in 1.5 ml of DMSO was added dropwise at room temperature. Then, *t*-BuONa (0.26 mmol) was added in a Schlenk flask I, and it was stirred at room temperature for 5 min. Next, 1-benzylquinolin-1-ium bromide A_1 (0.2 mmol) was added in the mixture at room temperature. After stirring for 1 h, the reaction was quenched with brine (10 mL) and extracted with EtOAc (3 × 5 mL), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. Finally, the residue was purified by preparative TLC on silica to give C₁.

For C₁, conditions: CHIRALCEL OJ (4.6 mm \times 250 mm), hexane : IPA = 80 : 20, Flow: 1 mL/min, UV: 250 nm.

Analytic data of the obtained compounds

Ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g][1,3]
oxazocine-1 -carboxylate (C1)

Red solid; M.p. 107-109 °C, (54.9 mg, 86% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.76 (s, 1H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.24 – 7.15 (m, 3H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.68 (t, *J* = 7.4 Hz, 1H), 6.53 (d, *J* = 8.2 Hz, 1H), 5.64 (q, *J* = 2.1 Hz, 1H), 4.90 (d, *J* = 17.6 Hz, 1H), 4.64 (d, *J* = 17.6 Hz, 1H), 4.49 – 4.31 (m, 3H), 2.32 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.11 (dt, *J* = 13.1, 2.7 Hz, 1H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 158.5, 141.3, 137.7, 128.9, 128.6, 127.6, 126.9, 126.6, 126.1, 117.7, 111.2, 108.1, 84.3, 61.1, 51.8, 27.8, 27.1, 14.3. HRMS (ESI): Calcd. for C₂₂H₂₂N₃O₃ [M+H]⁺: 376.1656; found: 376.1647.

(2) Methyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g][1,3] oxazocine-1-carboxylate (\mathbb{C}_2)

Red solid; M.p. 147-149 °C, (51.0 mg, 83% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.96 (s, 1H), 7.41 – 7.31 (m, 3H), 7.28 (d, *J* = 4.3 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.08 – 6.99 (m, 1H), 6.75 (td, *J* = 7.4, 1.1 Hz, 1H), 6.59 (d, *J* = 8.2 Hz, 1H), 5.72 (q, *J* = 2.6 Hz, 1H), 4.97 (d, *J* = 17.6 Hz, 1H), 4.71 (d, *J* = 17.6 Hz, 1H), 4.48 (d, *J* = 3.2 Hz, 1H), 4.00 (s, 3H), 2.41 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.19 (dt, *J* = 13.1, 2.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 158.7, 141.4, 137.7, 128.7, 127.7, 127.0, 126.6, 126.2, 117.9, 111.3, 108.5, 84.5, 51.9, 27.9, 27.2. HRMS (ESI): Calcd. for C₂₁H₂₀N₃O₃ [M+H]⁺: 362.1499; found: 362.1490.

(3) Methyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g][1,3]
oxazocine-1-carboxylate (C₃)

White solid; M.p. 116-118 °C, (60.1 mg, 90% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.61 (s, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.18 (d, *J* = 7.0 Hz, 2H), 7.10 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.67 (td, *J* = 8.7, 3.1 Hz, 1H), 6.42 (dd, *J* = 9.0, 4.5 Hz, 1H), 5.68 (q, *J* = 2.1 Hz, 1H), 4.92 (d, *J* = 17.6 Hz, 1H), 4.62 (d, *J* = 17.6 Hz, 1H), 4.54 – 4.36 (m, 3H), 2.37 (dt, *J* = 13.2, 3.0 Hz, 1H), 2.14 (dt, *J* = 13.2, 2.6 Hz, 1H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 157.9 (d, *J* = 237.5 Hz), 154.3, 137.6, 137.6, 129.0, 128.8, 127.8 (d, *J* = 6.8 Hz), 127.1, 126.1, 113.8 (d, *J* = 43.2 Hz), 113.8 (d, *J* = 1.5 Hz), 111.9 (d, *J* = 7.6 Hz), 107.8, 84.5, 61.4, 52.3, 28.0, 27.2, 14.5. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -127.25. HRMS (ESI): Calcd. for C₂₂H₂₁N₃O₃F [M+H]⁺: 394.1561; found: 394.1562.

(4) Ethyl-6-benzyl-9-chloro-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g] [1,3]oxazocine-1-carboxylate (C_4)

Red solid; M.p. 147-149 °C, (56.3 mg, 81% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 11.05 (s, 1H), 7.33 (d, J = 2.6 Hz, 1H), 7.28 (dd, J = 8.2, 6.8 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.15 (d, J = 7.4 Hz, 2H), 6.89 (dd, J = 8.7, 2.6 Hz, 1H), 6.42 (d, J = 8.7 Hz, 1H), 5.63 (q, J = 2.1 Hz, 1H), 4.88 (d, J = 17.6 Hz, 1H), 4.60 (d, J = 17.6 Hz, 1H), 4.54 – 4.47 (m, 1H), 4.44 – 4.33 (m, 2H), 2.34 (dt, J = 13.1, 3.0 Hz, 1H), 2.09 (dt, J = 13.2, 2.6 Hz, 1H), 1.48 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.5, 139.9, 137.2, 129.0, 128.7, 128.0, 127.1, 127.0, 126.7, 126.0, 122.3, 112.3, 107.3, 84.2, 61.4, 52.1, 27.8, 27.0, 14.3. HRMS (ESI): Calcd. for C₂₂H₂₁N₃O₃Cl [M+H]⁺: 410.1266; found: 410.1260.

(5) Ethyl-6-benzyl-9-bromo-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g]
[1,3]oxazocine-1-carboxylate (C₅)

White solid; M.p. 148-150 °C, (61.6 mg, 80% yield); ¹H NMR (500 MHz, Chloroform-d) δ 10.30

(s, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.17 (d, J = 7.5 Hz, 2H), 7.06 (dd, J = 8.7, 2.4 Hz, 1H), 6.40 (d, J = 8.7 Hz, 1H), 5.66 (q, J = 2.2 Hz, 1H), 4.91 (d, J = 17.5 Hz, 1H), 4.63 (d, J = 17.6 Hz, 1H), 4.54 (dq, J = 10.9, 7.2 Hz, 1H), 4.47 – 4.36 (m, 2H), 2.38 (dt, J = 13.2, 3.0 Hz, 1H), 2.12 (dt, J = 13.2, 2.7 Hz, 1H), 1.52 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 158.7, 140.5, 137.2, 130.2, 129.6, 129.1, 128.8, 128.5, 127.2, 126.1, 113.0, 109.7, 107.4, 84.2, 61.5, 52.1, 27.8, 27.1, 14.5. HRMS (ESI): Calcd. for C₂₂H₂₁N₃O₃Br [M+H]⁺: 454.0761; found: 454.0750.

(6) Ethyl-6-benzyl-7-bromo-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g]
[1,3]oxazocine-1-carboxylate (C₆)

White solid; M.p. 149-151°C, (33.1 mg, 43% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 9.92 (s, 1H), 7.47 (d, *J* = 2.4 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.26 (s, 1H), 7.11 – 7.01 (m, 3H), 6.35 (d, *J* = 8.7 Hz, 1H), 5.64 (q, *J* = 1.9 Hz, 1H), 4.86 (d, *J* = 17.6 Hz, 1H), 4.63 – 4.49 (m, 2H), 4.48 – 4.35 (m, 2H), 2.39 (dt, *J* = 13.2, 2.9 Hz, 1H), 2.11 (dt, *J* = 13.3, 2.6 Hz, 1H), 1.52 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 158.7, 140.2, 136.3, 131.9, 131.8, 130.3, 129.7, 128.6, 128.0, 121.0, 112.9, 110.0, 107.4, 84.4, 61.6, 52.0, 27.7, 27.1, 14.5. HRMS (ESI): Calcd. for C₂₂H₂₁N₃O₃Br [M+H]⁺: 454.0761; found: 454.0753.

(7) Ethyl-6-benzyl-9-phenyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo
[4,3-g][1,3]oxazocine-1-carboxylate (C₇)

Red solid; M.p. 126-128 °C, (52.9 mg, 69% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.75 (s, 1H), 7.64 (d, *J* = 2.2 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.25 – 7.19 (m, 5H), 6.60 (d, *J* = 8.5 Hz, 1H), 5.67 (q, *J* = 2.1 Hz, 1H), 4.93 (d, *J* = 17.5 Hz, 1H), 4.68 (d, *J* = 17.6 Hz, 1H), 4.50 (d, *J* = 3.1 Hz, 1H), 4.42 – 4.33 (m, 2H), 2.37 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.16 (dt, *J* = 13.1, 2.6 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.7, 140.9, 140.7, 137.6, 130.8, 128.9, 128.7, 128.5, 127.0, 126.2, 126.2, 126.2, 125.7, 111.6, 108.1, 84.3, 61.3, 52.0, 28.0, 27.2, 14.3 HRMS (ESI): Calcd. for C₂₈H₂₆N₃O₃ [M+H]⁺: 452.1969; found: 452.1965.

(8) Ethyl-6-benzyl-9-methoxy-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo
[4,3-g][1,3]oxazocine-1-carboxylate (C₈)

Red solid; M.p. 100-102 °C, (55.1 mg, 80% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.12 (s, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.28 – 7.17 (m, 3H), 7.00 (d, *J* = 2.9 Hz, 1H), 6.56 (dd, *J* = 8.9, 3.0 Hz, 1H), 6.45 (d, *J* = 8.8 Hz, 1H), 5.69 (q, *J* = 2.1 Hz, 1H), 4.92 (d, *J* = 17.5 Hz, 1H), 4.62 (d, *J* = 17.6 Hz, 1H), 4.49 – 4.37 (m, 3H), 3.72 (s, 3H), 2.37 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.16 (dt, *J* = 13.2, 2.6 Hz, 1H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 159.2, 151.9, 138.1, 135.4, 128.9, 128.7, 127.7, 127.0, 126.2, 113.4, 112.3, 111.9, 108.3, 84.9, 61.3, 55.7, 52.3, 28.2, 27.4, 14.5. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₄ [M+H]⁺: 406.1761; found: 406.1757.

(9) Ethyl-6-benzyl-10-methoxy-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo
[4,3-g][1,3]oxazocine-1-carboxylate (C₉)

Red solid; M.p. 140-142 °C, (25.5 mg, 37% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.22 (s, 1H), 7.30 (t, J = 7.2 Hz, 2H), 7.26 – 7.17 (m, 3H), 6.93 (t, J = 8.3 Hz, 1H), 6.35 (d, J = 8.2 Hz, 1H), 6.24 (d, J = 8.3 Hz, 1H), 5.61 (q, J = 2.1 Hz, 1H), 5.01 (d, J = 3.2 Hz, 1H), 4.94 (d, J = 17.6 Hz, 1H), 4.69 (d, J = 17.6 Hz, 1H), 4.53 – 4.47 (m, 1H), 4.34 – 4.27 (m, 1H), 3.86 (s, 3H), 2.34 (dt, J = 13.1, 3.0 Hz, 1H), 2.04 (dt, J = 13.2, 2.7 Hz, 1H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 159.35, 155.6, 142.8, 138.0, 129.2, 128.7, 127.5, 126.9, 126.2, 114.3, 107.6, 104.9, 101.1, 83.7, 60.9, 55.5, 52.2, 27.5, 20.3, 14.4. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₄ [M+H]⁺: 406.1761; found: 406.1760.

 $(10) \ Ethyl-6-benzyl-8-methyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d] pyrazolo$

[4,3-g][1,3]oxazocine-1-carboxylate (C₁₀)

Red solid; M.p. 117-119 °C, (58.2 mg, 88% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.11 (s, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.28 – 7.19 (m, 4H), 6.54 (d, *J* = 7.5 Hz, 1H), 6.41 (s, 1H), 5.64 (q, *J* = 2.1 Hz, 1H), 4.91 (d, *J* = 17.6 Hz, 1H), 4.68 (d, *J* = 17.6 Hz, 1H), 4.48 – 4.36 (m, 3H), 2.35 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.20 – 2.08 (m, 4H), 1.46 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 159.0, 141.5, 137.9, 137.7, 128.8, 128.6, 127.0, 126.9, 126.3, 123.9, 118.7, 112.0, 108.8,

84.2, 61.2, 51.7, 27.6, 27.5, 21.6, 14.5. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₃ [M+H]⁺: 390.1812; found: 390.1809.

(11) 1-ethyl 9-methyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo
[4,3-g][1,3]oxazocine-1,9-dicarboxylate (C₁₁)

White solid; M.p. 157-159 °C, (65.5 mg, 89% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 11.05 (s, 1H), 8.04 (d, J = 2.2 Hz, 1H), 7.69 (dd, J = 8.6, 2.2 Hz, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.22 (d, J = 7.4 Hz, 1H), 7.16 (d, J = 7.5 Hz, 2H), 6.55 (d, J = 8.7 Hz, 1H), 5.65 (q, J = 2.4 Hz, 1H), 4.93 (d, J = 17.5 Hz, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.59 – 4.39 (m, 3H), 3.83 (s, 3H), 2.39 (dt, J = 13.2, 3.0 Hz, 1H), 2.11 (dt, J = 13.3, 2.7 Hz, 1H), 1.57 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 159.6, 158.3, 145.5, 136.7, 129.9, 129.0, 128.8, 128.5, 127.2, 126.1, 126.1, 119.2, 110.7, 107.2, 83.7, 61.6, 52.0, 51.5, 27.8, 26.9, 14.1. HRMS (ESI): Calcd. for C₂₄H₂₄N₃O₅ [M+H]⁺: 434.1710; found: 434.1710.

(12) Ethyl-6-benzyl-9-methyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-*g*][1,3]oxazocine-1-carboxylate (C₁₂)

Red solid; M.p. 132-134 °C, (54.9 mg, 83% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.35 (s, 1H), 7.30 (dd, J = 7.9, 6.5 Hz, 2H), 7.20 (dd, J = 7.4, 1.9 Hz, 4H), 6.80 (dd, J = 8.2, 2.2 Hz, 1H), 6.45 (d, J = 8.2 Hz, 1H), 5.66 (q, J = 2.1 Hz, 1H), 4.91 (d, J = 17.6 Hz, 1H), 4.64 (d, J = 17.6 Hz, 1H), 4.54 – 4.38 (m, 3H), 2.35 (dt, J = 13.1, 3.0 Hz, 1H), 2.22 (s, 3H), 2.13 (dt, J = 13.1, 2.6 Hz, 1H), 1.48 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 159.0, 139.1, 138.0, 128.9, 128.7, 128.1, 127.7, 127.0, 126.9, 126.5, 126.2, 111.2, 108.3, 84.6, 61.2, 52.0, 27.9, 27.4, 20.2, 14.5. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₃ [M+H]⁺: 390.1812; found: 390.1808.

(13) Ethyl-6-benzyl-9-(4-(methylthio)phenyl)-2,5,6,11-tetrahydro-5,11-methanobenzo
[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₁₃)

Red solid; M.p. 149-151 °C, (53.3 mg, 63% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 7.64 – 7.58 (m, 1H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.19 (m, 8H), 6.59 (d, *J* = 8.5 Hz, 1H), 5.68 (s, 1H), 4.93 (d, *J* = 17.6 Hz, 1H), 4.68 (d, *J* = 17.6 Hz, 1H), 4.50 (s, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.42 – 2.32 (m, 1H), 2.17 (d, *J* = 13.2 Hz, 1H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 158.8, 140.9, 137.8, 137.6, 136.1, 130.2, 128.9, 128.8, 128.4, 127.1, 127.0, 126.6, 126.2, 126.0, 125.4, 111.7, 108.2, 84.4, 61.3, 52.1, 28.0, 27.3, 16.0, 14.4. HRMS (ESI): Calcd. for C₂₉H₂₈N₃O₃S [M+H]⁺: 498.1846; found: 498.1840.

(14) Ethyl-6-benzyl-9-(4-(tert-butyl)phenyl)-2,5,6,11-tetrahydro-5,11-methanobenzo
[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₁₄)

Red solid; M.p. 138-140 °C, (70.7 mg, 82% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.73 (s, 1H), 7.63 (s, 1H), 7.49 – 7.22 (m, 10H), 6.59 (d, J = 8.4 Hz, 1H), 5.67 (s, 1H), 4.93 (d, J = 17.6 Hz, 1H), 4.67 (d, J = 17.5 Hz, 1H), 4.53 – 4.33 (m, 3H), 2.36 (d, J = 13.2 Hz, 1H), 2.17 (d, J = 13.1 Hz, 1H), 1.41 (s, 3H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.7, 149.0, 140.7, 137.9, 137.7, 130.8, 128.9, 128.7, 127.0, 127.0, 126.2, 126.1, 125.9, 125.6, 125.5, 111.6, 108.2, 84.4, 61.3, 52.0, 34.3, 31.3, 28.1, 27.3, 14.3. HRMS (ESI): Calcd. for C₃₂H₃₄N₃O₃ [M+H]⁺: 508.2595; found: 508.2592.

(15) Ethyl-6-benzyl-9-bromo-8-fluoro-2,5,6,11-tetrahydro-5,11-methanobenzo[d]
pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₁₅)

Red solid; M.p. 139-141 °C, (42.4 mg, 53% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.58 (s, 1H), 7.47 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.3 Hz, 2H), 7.25 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 7.5 Hz, 2H), 6.32 (d, J = 11.2 Hz, 1H), 5.67 – 5.61 (m, 1H), 4.90 (d, J = 17.6 Hz, 1H), 4.66 – 4.49 (m, 2H), 4.45 – 4.37 (m, 2H), 2.37 (dt, J = 13.4, 3.0 Hz, 1H), 2.10 (dt, J = 13.2, 2.8 Hz, 1H), 1.51 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 159.3, 158.0 (d, J = 131.0 Hz), 142.2 (d, J = 9.7 Hz), 136.5, 130.6 (d, J = 1.6 Hz), 128.9, 128.9 (d, J = 14.6 Hz), 127.4, 126.1, 123.9 (d, J = 2.9 Hz), 107.4, 100.1(d, J = 27.6 Hz), 95.3 (d, J = 21.5 Hz), 83.7, 61.6, 52.4, 27.1, 27.1, 14.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -108.78. HRMS (ESI): Calcd. for C₂₂H₂₀N₃O₃BrF [M+H]⁺:472.0667; found: 472.0663.

(16) Ethyl-6-benzyl-9-(thiophen-2-yl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₁₆)

Red solid; M.p. 115-117 °C, (26.4 mg, 34% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.42 (s, 1H), 7.60 (d, J = 2.3 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.28 – 7.22 (m, 2H), 7.21 (d, J = 7.5 Hz, 2H), 7.16 (d, J = 5.1 Hz, 1H), 7.12 (d, J = 3.6 Hz, 1H), 7.01 (t, J = 4.3 Hz, 1H), 6.56 (d, J = 8.5 Hz, 1H), 5.70 (s, 1H), 4.95 (d, J = 17.6 Hz, 1H), 4.70 (d, J = 17.6 Hz, 1H), 4.47 (dq, J = 14.9, 7.4 Hz, 3H), 2.41 (dt, J = 13.1, 3.0 Hz, 1H), 2.18 (dt, J = 13.1, 2.6 Hz, 1H), 1.50 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 158.8, 144.6, 141.0, 137.5, 129.0, 128.8, 127.8, 127.1, 127.0, 126.2, 125.5, 124.9, 124.6, 123.2, 121.3, 111.7, 107.9, 84.4, 61.5, 52.1, 28.0, 27.3, 14.5. HRMS (ESI): Calcd. for C₂₆H₂₄N₃O₃S [M+H]⁺: 458.1533; found: 458.1527.

(17) Ethyl-6-benzyl-9-(4-(diphenylamino)phenyl)-2,5,6,11-tetrahydro-5,11methanobenzo[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (**C**₁₇)

Red solid; M.p. 156-158 °C, (55.7 mg, 53% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.46 (s, 1H), 7.61 (s, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.33 – 7.16 (m, 10H), 7.09 (t, J = 7.5 Hz, 6H), 6.99 (t, J = 7.5 Hz, 2H), 6.59 (d, J = 8.5 Hz, 1H), 5.68 (s, 1H), 4.94 (d, J = 17.6 Hz, 1H), 4.69 (d, J = 17.5 Hz, 1H), 4.50 (s, 1H), 4.46 – 4.28 (m, 2H), 2.38 (d, J = 13.1 Hz, 1H), 2.18 (d, J = 13.1 Hz, 1H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 158.8, 147.7, 146.1, 140.5, 137.7, 135.1, 130.4, 129.1, 128.9, 128.7, 127.0, 127.0, 126.9, 126.2, 125.8, 125.4, 124.2, 124.1, 122.6, 111.7, 108.3, 84.4, 61.3, 52.0, 28.0, 27.3, 14.4. HRMS (ESI): Calcd. for C₄₀H₃₅N₄O₃ [M+H]⁺:619.2704; found: 619.2696.

(18) Ethyl-6-benzyl-8-phenyl-2,5,6,11-tetrahydro-5,11-methanopyrazolo[4,3-g] pyrido[2,3-d][1,3]oxazocine-1-carboxylate (C₁₈)

Red solid; M.p. 117-119 °C, (39.2 mg, 51% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.34 (s, 1H), 7.97 – 7.83 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.38 – 7.21 (m, 6H), 7.11

(d, J = 7.5 Hz, 1H), 5.79 (d, J = 15.4 Hz, 1H), 5.70 (q, J = 2.3 Hz, 1H), 4.62 (d, J = 15.4 Hz, 1H), 4.56 – 4.32 (m, 3H), 2.33 (dt, J = 13.2, 3.0 Hz, 1H), 2.03 (dt, J = 13.2, 2.6 Hz, 1H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 158.7, 153.4, 152.5, 139.4, 139.0, 134.5, 128.9, 128.4, 128.3, 128.3, 128.0, 127.0, 126.5, 119.6, 110.3, 108.1, 82.8, 61.3, 48.7, 27.6, 26.8, 14.4. HRMS (ESI): Calcd. for C₂₇H₂₅N₄O₃ [M+H]⁺: 453.1921; found: 453.1917.

(19) Ethyl-6-benzyl-8-(1-methyl-1H-pyrrol-3-yl)-2,5,6,11-tetrahydro-5,11-methano pyrazolo[4,3-g]pyrido[2,3-d][1,3]oxazocine-1-carboxylate (C₁₉)

Red solid; M.p. 162-164 °C, (34.0 mg, 44% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.07 (s, 1H), 7.75 – 7.44 (m, 1H), 7.37 – 7.17 (m, 5H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.51 (d, *J* = 35.2 Hz, 2H), 6.07 (s, 1H), 5.80 – 5.43 (m, 2H), 4.66 (d, *J* = 16.1 Hz, 1H), 4.52 – 4.32 (m, 3H), 3.59 (s, 3H), 2.35 (d, *J* = 12.9 Hz, 1H), 2.10 (d, *J* = 13.2 Hz, 1H), 1.60 – 1.37 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 158.9, 151.9, 149.3, 145.5, 138.7, 134.5, 132.4, 128.9, 128.5, 127.1, 126.9, 125.7, 117.3, 111.6, 110.0, 108.4, 107.2, 83.2, 61.3, 48.9, 36.9, 27.6, 26.9, 14.5. HRMS (ESI): Calcd. for C₂₆H₂₆N₅O₃ [M+H]⁺: 456.2030; found: 456.2018.

(20) Ethyl-11-benzyl-2,4,11,12-tetrahydro-4,12-methanopyrazolo[4',3':7,8][1,3] oxazocino[5,4-h]quinoline-3-carboxylate (C₂₀)

Yellowish brown solid; M.p. 114-116 °C, (26.8 mg, 37% yield); ¹H NMR (500 MHz, Chloroform*d*) δ 10.24 (s, 1H), 8.64 (dd, J = 4.1, 1.9 Hz, 1H), 8.00 (dd, J = 8.3, 1.8 Hz, 1H), 7.69 (d, J = 7.5 Hz, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.28 – 7.19 (m, 3H), 6.21 (d, J = 14.7 Hz, 1H), 5.62 (d, J = 2.6 Hz, 1H), 4.88 (d, J = 14.8 Hz, 1H), 4.53 – 4.41 (m, 3H), 2.35 (dt, J = 13.2, 2.8 Hz, 1H), 2.02 (dt, J = 13.2, 2.6 Hz, 1H), 1.49 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.6, 146.4, 139.9, 139.8, 138.8, 136.1, 129.1, 128.9, 128.9, 128.0, 127.8, 126.7, 126.7, 120.1, 118.2, 108.1, 82.8, 61.3, 53.1, 28.7, 27.4, 14.5. HRMS (ESI): Calcd. for C₂₅H₂₃N₄O₃ [M+H]⁺: 427.1765; found: 427.1764.

(21) Ethyl-6-benzyl-8-methyl-2,5,6,11-tetrahydro-5,11-methanopyrazolo[4,3-g]pyrido [2,3-d][1,3]oxazocine-1-carboxylate (C₂₁)

Red solid; M.p. 113-115 °C, (26.5 mg, 40% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.00 (s, 1H), 7.39 (dd, J = 7.5, 4.9 Hz, 3H), 7.30 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 7.3 Hz, 1H), 6.48 (d, J = 7.3 Hz, 1H), 5.67 (d, J = 15.4 Hz, 2H), 4.53 (d, J = 15.3 Hz, 1H), 4.42 (p, J = 7.1 Hz, 2H), 4.34 (s, 1H), 2.33 (s, 3H), 2.29 (dt, J = 13.1, 3.0 Hz, 1H), 1.97 (dd, J = 13.3, 2.6 Hz, 1H), 1.44 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 158.7, 155.0, 152.3, 139.0, 134.1, 128.8, 128.3, 128.2, 126.9, 117.6, 112.9, 108.4, 82.7, 61.2, 48.3, 27.5, 26.8, 24.2, 14.4. HRMS (ESI): Calcd. for C₂₂H₂₃N₄O₃ [M+H]⁺: 391.1765; found: 391.1757.

(22) Ethyl-11-benzyl-9-chloro-2,4,11,12-tetrahydro-4,12-methanopyrazolo[4',3':7,8] [1,3]oxazocino[5,4-*h*]quinoline-3-carboxylate (C₂₂)

Red solid; M.p. 101-103 °C, (21.1 mg, 27% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.29 (s, 1H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.64 (dd, *J* = 15.5, 7.8 Hz, 3H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.28 – 7.16 (m, 3H), 5.89 (d, *J* = 14.8 Hz, 1H), 5.73 – 5.55 (m, 1H), 4.94 (d, *J* = 14.8 Hz, 1H), 4.61 – 4.36 (m, 3H), 2.36 (dt, *J* = 13.6, 2.9 Hz, 1H), 2.00 (dt, *J* = 13.4, 2.7 Hz, 1H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 158.5, 146.3, 139.1, 139.1, 138.6, 138.0, 129.2, 129.1, 128.8, 128.0, 127.7, 127.0, 126.7, 121.3, 117.8, 107.6, 82.9, 61.4, 53.2, 28.6, 27.4, 14.5. HRMS (ESI): Calcd. for C₂₅H₂₂N₄O₃Cl [M+H]⁺: 461.1375; found: 461.1369.

(23) Ethyl-6-phenethyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-*g*]

[1,3]oxazocine-1-carboxylate (C₂₃)

Red solid; M.p. 121-123 °C, (56.9 mg, 86% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.86 (s, 1H), 7.39 – 7.27 (m, 3H), 7.28 – 7.19 (m, 3H), 7.19 – 7.11 (m, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.73 (td, *J* = 7.4, 1.1 Hz, 1H), 5.43 (dt, *J* = 3.6, 1.7 Hz, 1H), 4.56 – 4.29 (m, 3H), 3.96 – 3.83 (m, 1H), 3.71 – 3.61 (m, 1H), 3.04 – 2.87 (m, 2H), 2.21 (dt, *J* = 13.1, 3.0 Hz, 1H), 1.96 (dt, *J* = 13.1, 2.6 Hz, 1H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 159.1, 140.7, 139.2, 129.4,

128.8, 128.6, 127.8, 127.4, 126.8, 126.4, 117.7, 110.5, 108.8, 85.1, 61.2, 50.8, 33.9, 27.8, 26.8, 14.5. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₃ [M+H]⁺: 390.1812; found: 390.1802.

(24) Ethyl-6-ethyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-*g*]

[1,3]oxazocine-1-carboxylate (C₂₄)

Red solid; M.p. 132-134 °C, (38.3 mg, 72% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.12 (s, 1H), 7.33 (dd, J = 7.6, 1.7 Hz, 1H), 7.14 – 7.06 (m, 1H), 7.14 – 7.06 (m, 2H), 5.64 (q, J = 2.2 Hz, 1H), 4.52 – 4.31 (m, 3H), 3.84 – 3.71 (m, 1H), 3.52 – 3.41 (m, 1H), 2.29 (dt, J = 13.1, 3.0 Hz, 1H), 1.99 (dt, J = 13.0, 2.6 Hz, 1H), 1.45 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 159.1, 140.6, 128.8, 127.7, 127.2, 126.7, 117.3, 110.5, 108.6, 84.7, 61.2, 43.4, 28.0, 27.1, 14.4, 12.7. HRMS (ESI): Calcd. for C₁₇H₂₀N₃O₃ [M+H]⁺: 314.1499; found: 314.1491.

(25) Ethyl-6-(4-(trifluoromethyl)benzyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*] pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₂₅)

Red solid; M.p. 103-105 °C, (48.2 mg, 64% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.38 (dd, J = 7.5, 1.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 6.99 (td, J = 7.7, 1.7 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H), 5.66 (q, J = 2.2 Hz, 1H), 4.99 (d, J = 17.8 Hz, 1H), 4.71 (d, J = 17.8 Hz, 1H), 4.55 – 4.34 (m, 3H), 2.39 (dt, J = 13.1, 3.0 Hz, 1H), 2.16 (dt, J = 13.2, 2.6 Hz, 1H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.7, 142.1, 141.0, 129.4 (d, J = 32.3 Hz), 129.0, 127.8, 127.2, 126.8, 126.6, 125.7 (d, J = 4.0 Hz), 124.1 (d, J = 272.0 Hz), 118.3, 111.2, 108.3, 84.6, 61.3, 52.1, 27.9, 27.3, 14.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.40. HRMS (ESI): Calcd. for C₂₃H₂₁N₃O₃F₃ [M+H]⁺: 444.1530; found: 444.1528.

(26) Ethyl-6-(4-methylbenzyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₂₆)

Red solid; M.p. 102-104 °C, (36.4 mg, 55% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.85 (s, 1H), 7.36 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.10 (s, 4H), 6.98 (td, *J* = 7.8, 1.7 Hz, 1H), 6.69 (t, *J* = 7.4 Hz, 1H), 6.56 (d, *J* = 8.2 Hz, 1H), 5.65 (q, *J* = 2.1 Hz, 1H), 4.87 (d, *J* = 17.5 Hz, 1H), 4.62 (d, *J* = 17.5 Hz, 1H), 4.48 – 4.36 (m, 3H), 2.40 – 2.27 (m, 4H), 2.11 (dt, *J* = 13.1, 2.6 Hz, 1H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 158.8, 141.5, 136.5, 134.6, 129.4, 128.9, 127.7, 127.0, 126.6, 126.2, 117.7, 111.3, 108.3, 84.3, 61.2, 51.6, 27.9, 27.2, 20.9, 14.4. HRMS (ESI): Calcd. for C₂₃H₂₄N₃O₃ [M+H]⁺: 390.1812; found: 390.1803.

(27) Ethyl-6-(naphthalen-2-ylmethyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*] pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₂₇)

White solid; M.p. 139-141 °C, (53.5 mg, 74% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.57 (s, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.74 – 7.67 (m, 1H), 7.60 (s, 1H), 7.46 – 7.30 (m, 4H), 7.02 – 6.92 (m, 1H), 6.71 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.72 (s, 1H), 5.07 (d, J = 17.5 Hz, 1H), 4.80 (d, J = 17.6 Hz, 1H), 4.51 – 4.35 (m, 3H), 2.38 (dt, J = 13.2, 2.9 Hz, 1H), 2.20 (dt, J = 13.2, 2.7 Hz, 1H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 158.8, 141.5, 135.3, 133.4, 132.6, 128.5, 127.8, 127.6, 127.6, 127.1, 126.7, 126.1, 125.6, 124.7, 124.6, 117.9, 111.4, 108.4, 84.4, 61.2, 52.2, 27.9, 27.3, 14.4. HRMS (ESI): Calcd. for C₂₆H₂₄N₃O₃ [M+H]⁺: 426.1812; found: 426.1809.

(28) Ethyl-6-(4-cyanobenzyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo
[4,3-g][1,3]oxazocine-1-carboxylate (C₂₈)

Red solid; M.p. 151-153 °C, (28.6 mg, 42% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.18 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.39 (dd, J = 7.4, 1.6 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.02 – 6.96 (m, 1H), 6.74 (t, J = 7.4 Hz, 1H), 6.41 (d, J = 8.2 Hz, 1H), 5.66 (d, J = 2.9 Hz, 1H), 5.01 (d, J = 18.1 Hz, 1H), 4.71 (d, J = 18.1 Hz, 1H), 4.60 – 4.31 (m, 3H), 2.41 (dt, J = 13.1, 3.0 Hz, 1H), 2.17

(dt, J = 13.2, 2.7 Hz, 1H), 1.48 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 158.8, 143.7, 140.8, 132.6, 129.0, 127.8, 127.3, 127.1, 126.9, 118.7, 118.5, 111.1, 111.0, 108.3, 84.8, 61.4, 52.4, 27.8, 27.3, 14.5. HRMS (ESI): Calcd. for C₂₃H₂₁N₄O₃ [M+H]⁺: 401.1608; found: 401.1608.

(29) Ethyl-6-(4-bromobenzyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo
[4,3-g][1,3]oxazocine-1-carboxylate (C₂₉)

Red solid; M.p. 111-113 °C, (39.3 mg, 51% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.39 (s, 1H), 7.49 – 7.36 (m, 3H), 7.11 (d, *J* = 8.3 Hz, 2H), 7.06 – 7.01 (m, 1H), 6.75 (td, *J* = 7.4, 1.1 Hz, 1H), 6.53 (d, *J* = 8.2 Hz, 1H), 5.68 (q, *J* = 2.6 Hz, 1H), 4.91 (d, *J* = 17.6 Hz, 1H), 4.65 (d, *J* = 17.6 Hz, 1H), 4.54 – 4.40 (m, 3H), 2.41 (dt, *J* = 13.1, 3.0 Hz, 1H), 2.17 (dt, *J* = 13.1, 2.6 Hz, 1H), 1.50 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 158.8, 141.1, 136.9, 131.8, 128.9, 128.1, 127.7, 127.2, 126.7, 120.8, 118.2, 111.2, 108.3, 84.5, 61.3, 51.7, 27.9, 27.3, 14.4. HRMS (ESI): Calcd. for C₂₂H₂₁N₃O₃Br [M+H]⁺: 454.0760; found: 454.0748.

(30) Ethyl-6-(4-nitrobenzyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-g][1,3]oxazocine-1-carboxylate (C₃₀)

Yellow solid; M.p. 165-167 °C, (22.1 mg, 31% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.15 (s, 1H), 8.17 (d, *J* = 8.3 Hz, 2H), 7.40 (dd, *J* = 20.3, 7.9 Hz, 3H), 7.01 (t, *J* = 7.8 Hz, 1H), 6.77 (t, *J* = 7.4 Hz, 1H), 6.44 (d, *J* = 8.2 Hz, 1H), 5.70 (s, 1H), 5.08 (d, *J* = 18.1 Hz, 1H), 4.79 (s, 1H), 4.53 – 4.44 (m, 3H), 2.45 (dt, *J* = 13.2, 3.1 Hz, 1H), 2.28 – 2.11 (m, 1H), 1.50 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 158.8, 147.2, 145.9, 140.7, 129.0, 127.9, 127.4, 127.2, 127.0, 124.1, 118.7, 111.2, 108.4, 85.0, 61.4, 52.4, 27.9, 27.4, 14.5. HRMS (ESI): Calcd. for C₂₂H₂₁N₄O₅ [M+H]⁺: 421.1506; found: 421.1501.

(31) Ethyl-6-(4-phenylbutyl)-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo [4,3-*g*][1,3]oxazocine-1-carboxylate (C₃₁)

Red solid; M.p. 113-115 °C, (45.9 mg, 67% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.22 (s, 1H), 7.37 (dd, J = 7.4, 1.7 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.26 – 7.18 (m, 3H), 7.12 (td, J = 7.8, 1.7 Hz, 1H), 6.73 (td, J = 7.3, 1.0 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 5.66 (q, J = 2.2 Hz, 1H), 4.56 – 4.33 (m, 3H), 3.82 – 3.68 (m, 1H), 3.46 – 3.37 (m, 1H), 2.69 (td, J = 7.3, 2.8 Hz, 2H), 2.31 (dt, J = 13.0, 3.0 Hz, 1H), 2.03 (dt, J = 13.1, 2.6 Hz, 1H), 1.74 (dq, J = 8.7, 5.7, 4.5 Hz, 4H), 1.49 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 159.0, 142.2, 140.9, 128.8, 128.3, 128.3, 127.6, 127.2, 126.6, 125.8, 117.4, 110.6, 108.6, 84.9, 61.2, 49.0, 35.6, 28.8, 27.9, 27.0, 26.9, 14.4. HRMS (ESI): Calcd. for C₂₅H₂₈N₃O₃ [M+H]⁺: 418.2125; found: 418.2120.

(32) 9-(adamantan-1-yl) 1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*] pyrazolo[4,3-g][1,3]oxazocine-1,9-dicarboxylate (**C**₃₂)

Red solid; M.p. 125-127 °C, (61.1 mg, 65% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.88 (s, 1H), 7.96 (s, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 6.53 (d, J = 8.7 Hz, 1H), 5.65 (s, 1H), 4.94 (d, J = 17.5 Hz, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.59 – 4.39 (m, 3H), 2.39 (d, J = 13.1 Hz, 1H), 2.19 (d, J = 14.9 Hz, 8H), 2.10 (d, J = 13.2 Hz, 1H), 1.73 – 1.63 (m, 7H), 1.55 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 159.6, 158.4, 145.0, 136.9, 129.8, 129.1, 128.8, 128.2, 127.1, 126.1, 125.9, 121.4, 110.6, 107.3, 83.9, 80.0, 61.5, 52.1, 41.4, 36.2, 31.5, 30.8, 27.9, 27.1, 22.5, 14.6, 14.0. HRMS (ESI): Calcd. for C₃₃H₃₆N₃O₅ [M+H]⁺: 554.2649; found: 554.2643.

(33) 9-(adamantan-1-ylmethyl) 1-ethyl-6-benzyl-3,5,6,11-tetrahydro-5,11-methanobenzo[d] pyrazolo[4,3-g][1,3]oxazocine-1,9-dicarboxylate (C_{33})

Red solid; M.p. 118-120 °C, (39.5 mg, 41% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.74 (s, 1H), 8.08 (d, *J* = 2.1 Hz, 1H), 7.71 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.56 (d, *J* = 8.6 Hz, 1H), 5.67 (s, 1H), 4.96 (d, *J* = 17.5 Hz, 1H), 4.73 (d, *J* = 17.5 Hz, 1H), 4.56 – 4.39 (m, 3H), 3.86 (q, *J* = 10.7 Hz, 2H), 2.41 (dt, *J* = 13.2, 2.9 Hz, 1H), 2.14 (dt, *J* = 13.2, 2.7 Hz, 1H), 2.00 – 1.87 (m, 3H), 1.76 – 1.63 (m, 7H), 1.60 (s, 5H), 1.54 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 159.4, 158.4, 145.4, 136.8, 129.8,

129.1, 128.8, 128.6, 127.2, 126.2, 126.1, 119.8, 110.7, 107.4, 83.9, 73.8, 61.6, 52.2, 39.3, 36.9, 33.5, 31.5, 28.0, 27.9, 27.0, 22.6, 14.4, 14.1. HRMS (ESI): Calcd. for $C_{34}H_{38}N_3O_5$ [M+H]⁺: 568.2806; found: 568.2801.

(34) 1-ethyl 9-(furan-2-ylmethyl)-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo [4,3-g][1,3]oxazocine-1,9-dicarboxylate (C_{34})

Light yellow solid; M.p. 143-145 °C, (39.0 mg, 46% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.90 (s, 1H), 8.01 (s, 1H), 7.71 (dd, J = 8.6, 2.2 Hz, 1H), 7.40 (s, 1H), 7.29 (t, J = 7.4 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 6.54 (d, J = 8.6 Hz, 1H), 6.43 (d, J = 3.3 Hz, 1H), 6.35 (t, J = 2.5 Hz, 1H), 5.64 (s, 1H), 5.27 (d, J = 13.1 Hz, 1H), 5.19 (d, J = 13.1 Hz, 1H), 4.93 (d, J = 17.5 Hz, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.51 – 4.38 (m, 3H), 2.38 (dt, J = 13.2, 2.9 Hz, 1H), 2.09 (dt, J = 13.1, 2.7 Hz, 1H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 159.6, 158.4, 149.8, 145.6, 143.0, 136.7, 130.2, 129.1, 128.8, 128.5, 127.2, 126.1, 118.9, 110.8, 110.5, 110.4, 107.1, 83.8, 61.6, 57.9, 52.1, 27.9, 26.9, 14.1. HRMS (ESI): Calcd. for C₂₈H₂₆N₃O₆ [M+H]⁺: 500.1816; found: 500.1810.

(35) 9-cinnamyl 1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo [4,3-g][1,3]oxazocine-1,9-dicarboxylate (C_{35})

Red solid; M.p. 122-124 °C, (47.3 mg, 52% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.92 (s, 1H), 8.07 (d, J = 2.3 Hz, 1H), 7.74 (dd, J = 8.7, 2.2 Hz, 1H), 7.38 (d, J = 7.5 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.24 (q, J = 7.6, 6.7 Hz, 2H), 7.16 (d, J = 7.5 Hz, 2H), 6.69 (d, J = 15.9 Hz, 1H), 6.56 (d, J = 8.7 Hz, 1H), 6.42 – 6.26 (m, 1H), 5.65 (d, J = 3.4 Hz, 1H), 5.00 – 4.88 (m, 3H), 4.73 (d, J = 17.5 Hz, 1H), 4.51 – 4.35 (m, 3H), 2.39 (dt, J = 13.2, 2.9 Hz, 1H), 2.20 – 2.08 (m, 1H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 159.6, 158.4, 145.6, 136.7, 136.2, 133.8, 130.1, 128.8, 128.6, 128.5, 128.3, 127.9, 127.2, 126.5, 126.1, 126.1, 123.6, 119.2, 110.8, 107.2, 83.8, 64.9, 61.7, 52.1, 27.9, 27.0, 14.3. HRMS (ESI): Calcd. for C₃₂H₃₀N₃O₅ [M+H]⁺: 536.2180; found: 536.2175.

(36) 9-(benzo[d][1,3]dioxol-5-ylmethyl) 1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo [*d*]pyrazolo[4,3-*g*][1,3]oxazocine-1,9-dicarboxylate (C₃₆)

Red solid; M.p. 121-123 °C, (63.9 mg, 68% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.98 (s, 1H), 8.02 (s, 1H), 7.71 (d, J = 8.6 Hz, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 7.6 Hz, 2H), 6.93 – 6.83 (m, 2H), 6.76 (d, J = 7.9 Hz, 1H), 6.54 (d, J = 8.7 Hz, 1H), 5.92 (s, 2H), 5.64 (s, 1H), 5.30 – 5.10 (m, 2H), 4.92 (d, J = 17.5 Hz, 1H), 4.71 (d, J = 17.5 Hz, 1H), 4.50 – 4.32 (m, 3H), 2.38 (d, J = 13.2 Hz, 1H), 2.09 (d, J = 13.2 Hz, 1H), 1.44 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 159.6, 158.3, 147.6, 147.4, 145.5, 136.7, 130.1, 130.1, 129.1, 128.8, 128.5, 127.2, 126.1, 126.1, 122.0, 119.1, 110.8, 108.9, 108.1, 107.2, 101.0, 83.8, 66.0, 61.6, 52.1, 27.8, 26.9, 14.2. HRMS (ESI): Calcd. for C₃₁H₂₆N₃O₇[M-H]⁻: 552.1776; found: 552.1773.

(37) 9-(2-(1-(sec-butoxycarbonyl)piperidin-2-yl)ethyl) 1-ethyl -6-benzyl-2,5,6,11-tetrahydro-5,11 -methanobenzo[*d*]pyrazolo[4,3-g][1,3]oxazocine-1,9-dicarboxylate (C₃₇)

Red solid; M.p. 98 -100 °C, (66.4 mg, 62% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.90 (s, 1H), 8.04 (s, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.25 (q, J = 7.4, 6.6 Hz, 1H), 7.17 (d, J = 7.5 Hz, 2H), 6.55 (d, J = 8.7 Hz, 1H), 5.67 (s, 1H), 4.95 (d, J = 17.5 Hz, 1H), 4.80 – 4.66 (m, 2H), 4.56 – 4.40 (m, 4H), 4.31 – 4.21 (m, 2H), 4.06 (s, 1H), 2.85 (t, J = 13.4 Hz, 1H), 2.51 – 2.32 (m, 1H), 2.17 – 2.01 (m, 3H), 1.92 – 1.79 (m, 1H),1.65 – 1.39 (m, 7H), 1.42 (dt, J = 13.5, 6.6 Hz, 2H), 1.14 (t, J = 5.5 Hz, 3H), 0.90 – 0.77 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 159.5, 158.3, 155.4, 145.4, 136.8, 129.8, 129.1, 128.8, 128.6, 127.2, 126.1, 126.1, 119.4, 110.7, 107.2, 83.8, 72.9, 62.0, 61.6, 52.1, 47.9, 47.9, 28.9, 27.9, 27.0, 25.4, 19.6, 19.6, 18.9, 14.3, 9.6, 9.6. HRMS (ESI): Calcd. for C₃₅H₄₁N₄O₇ [M-H]⁻: 629.2981; found:629.2979.

(38) 1-ethyl 9-heptyl -6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g] [1,3]oxazocine-1,9-dicarboxylate (C_{38})

Red solid; M.p. 107 -109 °C, (47.5 mg, 54% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.89 (s, 1H), 8.04 (d, J = 2.1 Hz, 1H), 7.70 (dd, J = 8.6, 2.1 Hz, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 7.0 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 6.56 (d, J = 8.6 Hz, 1H), 5.67 (s, 1H), 4.95 (d, J = 17.5 Hz, 1H), 4.74 (d, J = 17.5 Hz, 1H), 4.59 – 4.42 (m, 3H), 4.25 (t, J = 6.7 Hz, 2H), 2.41 (dt, J = 13.2, 2.9 Hz, 1H), 2.12 (dt, J = 13.1, 2.6 Hz, 1H), 1.75 – 1.67 (m, 2H), 1.57 (t, J = 7.1 Hz, 3H), 1.45 – 1.23 (m, 8H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 159.6, 158.4, 145.4, 136.8, 129.9, 128.8, 128.5, 127.2, 126.1, 119.7, 110.8, 107.3, 83.9, 64.5, 61.7, 52.1, 31.7, 28.9, 28.8, 27.9, 27.0, 25.9, 22.5, 14.3, 14.0. HRMS (ESI): Calcd. for C₃₀H₃₆N₃O₅ [M+H]⁺: 518.2649; found: 518.2647.

(39) 1-ethyl 9-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)-6-benzyl-2,5,6,11-tetrahydro-5,11methanobenzo[*d*]pyrazolo[4,3-*g*][1,3]oxazocine-1,9-dicarboxylate (**C**₃₉)

Red solid; M.p. 117 - 119 °C, (52.9 mg, 56% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.58 (s, 1H), 8.06 (s, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 6.8 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 6.57 (d, J = 8.6 Hz, 1H), 5.68 (s, 1H), 5.06 (td, J = 9.5, 4.8 Hz, 1H), 4.96 (d, J = 17.5 Hz, 1H), 4.74 (d, J = 17.5 Hz, 1H), 4.59 – 4.42 (m, 3H), 2.57 – 2.33 (m, 2H), 2.25 – 1.98 (m, 2H), 1.89 – 1.64 (m, 2H), 1.57 – 1.51 (m, 3H), 1.41 – 1.20 (m, 2H), 1.06 (dt, J = 13.7, 3.4 Hz, 1H), 0.94 (s, 3H), 0.90 – 0.84 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 166.7, 159.4, 159.4, 158.5, 145.3, 145.3, 136.8, 129.8, 129.2, 128.9, 128.5, 127.3, 126.2, 126.1, 120.2, 120.2, 110.7, 107.6, 107.5, 84.0, 83.9, 79.7, 79.6, 61.6, 61.6, 52.2, 52.2, 49.0, 49.0, 47.8, 47.7, 44.9, 44.9, 36.9, 36.9, 28.0, 27.9, 27.4, 27.3, 27.1, 27.1, 19.7, 18.9, 14.5, 14.5, 13.5, 13.5. HRMS (ESI): Calcd. for C₃₃H₃₈N₃O₅[M+H]⁺: 556.2806; found: 556.2801.

(40) 1-ethyl 9-(heptan-2-yl)-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo [4,3-g][1,3]oxazocine-1,9-dicarboxylate (C₄₀)

Red solid; M.p. 95 - 97 °C, (44.8 mg, 51% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 11.27 (s, 1H), 8.04 (d, J = 6.4 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.23 (q, J = 7.4, 6.1 Hz, 1H), 7.16 (d, J = 7.6 Hz, 2H), 6.56 (d, J = 8.7 Hz, 1H), 5.66 (s, 1H), 5.12 (p, J = 6.3 Hz, 1H), 4.94 (d, J = 17.5 Hz, 1H), 4.72 (d, J = 17.5 Hz, 1H), 4.61 – 4.35 (m, 3H), 2.40 (d, J = 13.1 Hz, 1H), 2.11 (d, J = 13.2 Hz, 1H), 1.80 – 1.48 (m, 5H), 1.44 – 1.17 (m, 9H), 0.87 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 166.0, 159.7, 159.6, 158.3, 145.3, 145.2, 136.8, 136.8, 129.8, 129.8, 129.1, 128.7, 128.4, 128.3, 127.1, 126.1, 126.0, 120.0, 120.0, 110.7, 110.7, 107.2, 107.1, 83.8, 83.8, 70.8, 70.7, 61.6, 61.5, 52.1, 52.1, 36.0, 36.0, 31.6, 31.5, 27.9, 27.9, 27.0, 25.0, 22.4, 20.1, 20.1, 14.4, 14.4, 13.9, 13.9 HRMS (ESI): Calcd. for C₃₀H₃₆N₃O₅ [M+H]⁺: 518.2649; found: 518.2644.

(41) 9-(3,7-dimethyloct-6-en-1-yl) 1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo [d]pyrazolo[4,3-g][1,3]oxazocine-1,9-dicarboxylate (C_{41})

Red solid; M.p. 97 - 99 °C, (64.4 mg, 68% yield); ¹H NMR (500 MHz, Chloroform-d) δ 10.78 (s,

1H), 8.04 (s, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 6.8 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 6.56 (d, J = 8.6 Hz, 1H), 5.67 (s, 1H), 5.08 (t, J = 7.3 Hz, 1H), 4.95 (d, J = 17.5 Hz, 1H), 4.74 (d, J = 17.5 Hz, 1H), 4.56 – 4.40 (m, 3H), 4.77 – 4.43 (m, 2H), 2.41 (dt, J = 13.5, 3.1 Hz, 1H), 2.13 (d, J = 13.2 Hz, 1H), 2.05 – 1.92 (m, 3H), 1.84 – 1.72 (m, 2H), 1.67 – 1.47 (m, 9H), 1.42 – 1.31 (m, 1H), 1.21 (dt, J = 14.3, 7.4 Hz, 1H), 0.94 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 159.6, 158.5, 145.4, 136.8, 131.2, 129.9, 129.1, 128.8, 128.5, 127.2, 126.1, 124.5, 119.7, 110.8, 109.7, 107.3, 83.8, 62.9, 61.7, 52.1, 37.0, 35.6, 29.5, 27.9, 27.1, 25.6, 25.3, 19.4, 17.6, 14.4. HRMS (ESI): Calcd. for C₃₃H₄₀N₃O₅ [M+H]⁺: 558.2962; found: 558.2959.

(42) 1-ethyl 9-3-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a] phenanthren-17-yl) -6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-*g*][1,3] oxazocine-1,9-dicarboxylate (C_{42})

Light yellow solid; M.p. 128 - 130 °C, (73.3 mg, 64% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.64 (s, 1H), 8.06 (dd, J = 11.3, 2.0 Hz, 1H), 7.84 – 7.60 (m, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.27 – 7.21 (m, 1H), 7.15 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 8.5 Hz, 1H), 6.73 – 6.62 (m, 1H), 6.59 (d, J = 2.6 Hz, 1H), 6.55 (dd, J = 8.9, 2.1 Hz, 1H), 5.66 (s, 1H), 5.06 – 4.83 (m, 2H), 4.71 (d, J = 17.6 Hz, 1H), 4.60 – 4.36 (m, 3H), 2.87 – 2.63 (m, 2H), 2.48 – 2.37 (m, 1H), 2.33 – 2.19 (m, 2H), 2.20 – 2.09 (m, 2H), 1.93 – 1.81 (m, 2H), 1.75 (dd, J = 13.5, 5.9 Hz, 1H), 1.68 – 1.61 (m, 1H), 1.52 (dt, J = 9.2, 7.2 Hz, 3H), 1.48 – 1.37 (m, 4H), 1.33 – 1.22 (m, 3H), 0.92 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 159.5, 159.4, 158.4, 153.8, 145.4, 145.4, 137.9, 137.9, 136.8, 136.8, 131.9, 129.9, 129.9, 129.3, 129.2, 128.8, 128.6, 128.5, 127.3, 126.3, 126.2, 126.2, 126.1, 119.9, 119.9, 115.3, 112.8, 110.8, 107.6, 107.4, 84.0, 84.0, 82.6, 82.6, 61.7, 61.7, 52.2, 52.2, 49.7, 49.7, 43.7, 43.3, 43.2, 38.5, 36.9, 36.8, 29.5, 27.9, 27.8, 27.7, 27.6, 27.1, 27.0, 27.0, 26.2, 23.3, 23.3, 14.5, 14.4, 12.2, 12.2. HRMS (ESI): Calcd. for C₄₁H₄₂N₃O₆ [M-H]⁻: 672.3079; found: 672.3078.

(43) 9-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[a] phenanthrene-3-yl)1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[*d*]pyrazolo[4,3-*g*][1,3]Oxazocine-1,9-dicarboxylate (C_{43})

Red solid; M.p. 141 - 143 °C, (33.6 mg, 25% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.50 (s, 1H), 8.01 (d, J = 2.2 Hz, 1H), 7.70 (dd, J = 8.7, 2.2 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.28 – 7.23 (m, 1H), 7.16 (d, J = 7.5 Hz, 2H), 6.55 (d, J = 8.6 Hz, 1H), 5.66 (s, 1H), 5.12 – 4.85 (m, 2H), 4.74 (d, J = 17.5 Hz, 1H), 4.58 – 4.33 (m, 3H), 2.41 (dt, J = 13.2, 3.0 Hz, 1H), 2.12 (dt, J = 13.2,

2.8 Hz, 1H), 1.97 (dt, J = 12.6, 3.5 Hz, 1H), 1.89 (dt, J = 13.3, 4.3 Hz, 1H), 1.87 – 1.77 (m, 1H), 1.75 (dt, J = 13.6, 4.0 Hz, 1H), 1.66 (dt, J = 11.9, 5.1 Hz, 2H), 1.63 – 1.47 (m, 7H), 1.40 – 1.19 (m, 10H), 1.17 – 0.96 (m, 10H), 0.92 – 0.82 (m, 13H), 0.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 159.6, 158.6, 145.3, 136.9, 130.0, 129.1, 128.9, 128.4, 127.3, 126.2, 126.0, 120.2, 110.8, 107.3, 83.9, 73.6, 61.7, 56.4, 56.2, 54.2, 52.2, 44.7, 44.6, 42.6, 40.0, 39.5, 36.8, 36.1, 35.8, 35.5, 34.2, 34.2, 32.0, 28.6, 28.2, 28.0, 27.7, 27.6, 27.1, 24.2, 23.8, 22.8, 22.5, 21.2, 18.6, 14.6, 12.2, 12.0. HRMS (ESI): Calcd. for C₅₀H₆₆N₃O₅ [M-H]⁻: 788.5008; found: 788.5005.

 $(44) 9-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)1-ethyl-6-benzyl-2,5,6,11-tetrahydro-5,11-methanobenzo[d]pyrazolo[4,3-g][1,3]oxazocine-1,9-dicarboxylate (C_{44})$

Red solid; M.p. 137 - 139 °C, (41.4 mg, 31% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.17 (s, 1H), 8.02 (s, 1H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.26 (d, *J* = 5.3 Hz, 1H), 7.17 (d, *J* = 7.4 Hz, 2H), 6.57 (d, *J* = 8.7 Hz, 1H), 5.67 (s, 1H), 5.40 (s, 1H), 4.96 (d, *J* = 17.6 Hz, 1H), 4.86 – 4.69 (m, 2H), 4.59 – 4.39 (m, 3H), 2.42 (d, *J* = 10.5 Hz, 3H), 2.13 (d, *J* = 13.2 Hz, 1H), 2.06 – 1.92 (m, 4H), 1.91 – 1.79 (m, 3H), 1.74 – 1.65 (m, 3H), 1.60 (t, *J* = 7.1 Hz, 3H), 1.56 – 1.43 (m, 6H), 1.37 – 1.31 (m, 4H), 1.29 – 1.24 (m, 1H), 1.22 – 1.07 (m, 5H), 1.04 (s, 3H), 0.92 (d, *J* = 6.4 Hz, 3H), 0.88 – 0.87 (m, 3H), 0.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 159.529, 158.7, 145.4, 139.7, 136.9, 130.0, 129.1, 128.9, 128.5, 127.3, 126.2, 126.0, 122.7, 120.1, 110.8, 107.4, 83.9, 73.8, 61.7, 56.7, 56.1, 52.2, 50.0, 42.3, 39.7, 39.5, 38.3, 37.0, 36.6, 36.2, 35.8, 31.9, 31.9, 28.2, 28.0, 28.0, 27.1, 24.3, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 14.6, 11.8. HRMS (ESI): Calcd. for C₅₀H₆₄N₃O₅ [M-H]⁻: 786.4851; found: 786.4847.

Crystallographic data of compound C₁₁

Crystal data and structure refinement for C_{11} (CCDC 2099592).

Identification code	WRJ-210125WYM
Empirical formula	$C_{24}H_{23}N_3O_5$
Formula weight	433.45
Temperature/K	299(1)
Crystal system	monoclinic
Space group	C2/c
a/Å	19.1728(5)
b/Å	12.7276(3)
c/Å	19.2357(6)
α/°	90.00
β/°	117.121(4)
$\gamma/^{o}$	90.00
Volume/Å ³	4177.8(2)
Ζ	8
$\rho_{calc}g/cm^3$	1.378
µ/mm ⁻¹	0.806
F(000)	1824.0
Crystal size/mm ³	$0.25 \times 0.15 \times 0.13$
Radiation	CuKa ($\lambda = 1.54184$)

 2Θ range for data collection/° 8.66 to 155.56

Index ranges	$-23 \le h \le 23, -15 \le k \le 15, -23 \le l \le 18$
Reflections collected	13079
Independent reflections	4302 [$R_{int} = 0.0156, R_{sigma} = 0.0179$]
Data/restraints/parameters	4302/0/295
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0447, wR_2 = 0.1203$
Final R indexes [all data]	$R_1 = 0.0521, wR_2 = 0.1249$
Largest diff. peak/hole / e Å-	³ 0.37/-0.25

Crystal structure determination of [WRJ-210125WYM] (C₁₁)

Crystal Data for C₂₄H₂₃N₃O₅ (*M* =433.45 g/mol): monoclinic, space group C2/c (no. 15), *a* = 19.1728(5) Å, *b* = 12.7276(3) Å, *c* = 19.2357(6) Å, β = 117.121(4)°, *V* = 4177.8(2) Å³, *Z* = 8, *T* = 299(1) K, μ (CuK α) = 0.806 mm⁻¹, *Dcalc* = 1.378 g/cm³, 13079 reflections measured (8.66° $\leq 2\Theta \leq 155.56^{\circ}$), 4302 unique ($R_{int} = 0.0156$, $R_{sigma} = 0.0179$) which were used in all calculations. The final R_1 was 0.0447 (>2sigma(I)) and wR_2 was 0.1249 (all data).

Refinement model description

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for WRJ-210125WYM. U _{eq} is defined as 1/3 of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	У	z	U(eq)
01	5456.4(8)	6261.6(9)	338.1(7)	53.7(3)
O2	6316.4(9)	10680.7(11)	434.4(9)	72.2(4)
O3	5788.6(8)	10304.3(9)	1230.5(8)	59.1(3)
O4	6535.6(8)	10119.2(10)	3907.5(7)	63.2(4)
05	7620.4(8)	9171.2(11)	4579.3(8)	66.7(4)
N1	6019.0(8)	6072.5(10)	1719.9(8)	47.8(3)
N2	5994.1(9)	7527.7(11)	-149.3(8)	52.6(3)
N3	6119.3(9)	8571.9(12)	-29.3(8)	50.6(3)
C1	7198.1(10)	3680.6(13)	2736.7(11)	51.2(4)
C2	7266.8(11)	2957.5(14)	3301.4(11)	56.1(4)
C3	6723.0(11)	2941.2(14)	3581.9(11)	55.0(4)
C4	6106.6(10)	3636.7(14)	3292.7(10)	51.7(4)
C5	6033.5(10)	4354.5(13)	2721.1(10)	47.1(4)
C6	6581.4(9)	4384.6(11)	2439.4(9)	42.7(3)
C7	6531.3(11)	5172.9(13)	1827.0(10)	51.0(4)
C8	6246.0(9)	6862.5(11)	2281.4(9)	41.5(3)
С9	6874.3(9)	6724.4(12)	3026.0(10)	45.7(4)
C10	7092.7(10)	7515.5(13)	3576.3(10)	46.5(4)

Atom	x	У	Z	U(eq)
C11	6679.2(9)	8460.3(12)	3409.2(9)	42.8(3)
C12	6052.7(9)	8601.3(12)	2668.6(9)	41.8(3)
C13	5844.6(9)	7835.4(12)	2099.1(9)	40.0(3)
C14	5217.8(9)	7987.2(12)	1268.8(9)	42.8(3)
C15	4751.3(10)	6955.9(14)	1025.5(11)	52.6(4)
C16	5296.8(10)	6107.8(13)	1004.6(10)	50.2(4)
C17	5671.5(10)	7273.5(12)	308.2(9)	45.2(3)
C18	5580.1(9)	8121.9(12)	723.6(9)	41.6(3)
C19	5888.0(9)	8955.4(13)	488.9(9)	43.8(3)
C20	6025.8(10)	10069.8(13)	704.8(10)	48.1(4)
C21	5865.1(14)	11406.8(15)	1465.6(14)	69.4(5)
C22	5460.3(15)	11526.8(19)	1948.2(14)	81.7(7)
C23	6916.3(10)	9333.6(13)	3978.1(9)	46.9(4)
C24	7925.1(13)	9985.3(18)	5161.2(13)	74.3(6)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for WRJ-210125WYM. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters (Å2×103) for WRJ-210125WYM. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	76.8(8)	42.1(6)	46.6(6)	-6.3(5)	31.9(6)	-6.4(5)
02	88.4(10)	52.6(8)	91.6(11)	-0.9(7)	55.0(9)	-12.7(7)
O3	74.7(8)	43.2(6)	66.3(8)	-9.0(6)	38.2(7)	-2.4(6)
O4	79.1(9)	56.0(7)	50.3(7)	-6.9(6)	25.9(6)	15.3(6)
05	59.3(7)	64.2(8)	60.2(8)	-19.1(6)	13.0(6)	4.9(6)
N1	61.2(8)	38.3(7)	47.3(7)	-1.4(6)	27.7(6)	1.2(6)
N2	70.1(9)	48.9(8)	46.0(7)	-2.3(6)	32.7(7)	0.9(7)
N3	64.3(9)	48.9(8)	46.8(8)	1.1(6)	32.4(7)	-1.7(6)
C1	52.2(9)	49.5(9)	61.5(10)	-1.5(8)	34.2(8)	3.0(7)
C2	55.3(10)	50.6(9)	59.9(10)	3.8(8)	24.1(8)	6.5(8)
C3	67.0(11)	48.0(9)	51.2(9)	3.3(7)	27.9(9)	-7.7(8)
C4	56.8(9)	51.5(9)	56.7(10)	-4.3(8)	34.5(8)	-10.2(7)
C5	47.4(8)	42.6(8)	58.0(9)	-1.9(7)	29.9(8)	-1.0(6)
C6	50.7(8)	36.2(7)	47.7(8)	-6.0(6)	28.1(7)	-3.9(6)
C7	69.3(10)	41.7(8)	55.2(10)	-1.3(7)	39.9(9)	2.2(7)
C8	48.1(8)	38.3(7)	45.9(8)	1.4(6)	28.2(7)	-1.0(6)
С9	50.4(8)	38.9(8)	49.0(9)	3.8(6)	23.7(7)	3.1(6)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C10	49.1(8)	46.3(8)	43.7(8)	2.7(7)	20.7(7)	0.6(7)
C11	47.6(8)	44.4(8)	42.8(8)	-2.1(6)	26.1(7)	-1.6(6)
C12	46.3(8)	42.3(8)	44.7(8)	1.5(6)	27.7(7)	4.3(6)
C13	42.9(7)	41.1(8)	42.2(8)	0.3(6)	24.9(7)	-0.6(6)
C14	42.5(8)	44.5(8)	43.0(8)	-1.3(6)	21.0(7)	1.8(6)
C15	47.2(9)	58.2(10)	52.4(9)	-4.1(8)	22.8(8)	-8.5(7)
C16	60.7(10)	43.8(8)	49.0(9)	-5.1(7)	27.5(8)	-11.9(7)
C17	55.3(9)	42.1(8)	39.1(8)	-1.5(6)	22.3(7)	0.0(7)
C18	44.8(8)	42.2(8)	37.0(7)	-0.6(6)	17.8(6)	1.2(6)
C19	47.4(8)	44.3(8)	39.1(8)	1.3(6)	19.2(7)	2.0(6)
C20	48.4(8)	45.6(8)	48.8(9)	1.5(7)	20.7(7)	2.1(7)
C21	77.5(13)	48.6(10)	78.1(14)	-16.3(9)	32.2(11)	-2.7(9)
C22	89.7(16)	70.4(14)	72.9(14)	-20.6(11)	26.4(12)	13.1(12)
C23	55.0(9)	48.1(9)	42.6(8)	-1.6(7)	26.5(7)	1.4(7)
C24	66.6(12)	74.5(14)	66.7(13)	-25.3(11)	17.3(10)	-3.2(10)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for WRJ-210125WYM. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table 4 Bond Lengths for WRJ-210125WYM.

Atom	n Atom	Length/Å	Atom	n Atom	Length/Å
01	C16	1.4606(19)	C4	C5	1.386(2)
01	C17	1.3615(19)	C5	C6	1.385(2)
02	C20	1.204(2)	C6	C7	1.517(2)
O3	C20	1.318(2)	C8	C9	1.400(2)
O3	C21	1.461(2)	C8	C13	1.415(2)
O4	C23	1.209(2)	C9	C10	1.380(2)
05	C23	1.334(2)	C10	C11	1.395(2)
05	C24	1.439(2)	C11	C12	1.394(2)
N1	C7	1.461(2)	C11	C23	1.479(2)
N1	C8	1.392(2)	C12	C13	1.382(2)
N1	C16	1.441(2)	C13	C14	1.511(2)
N2	N3	1.352(2)	C14	C15	1.536(2)
N2	C17	1.326(2)	C14	C18	1.509(2)
N3	C19	1.353(2)	C15	C16	1.516(2)
C1	C2	1.383(2)	C17	C18	1.401(2)
C1	C6	1.383(2)	C18	C19	1.386(2)
C2	C3	1.375(3)	C19	C20	1.468(2)
C3	C4	1.375(3)	C21	C22	1.464(3)

Atom	1 Aton	n Atom	Angle/°	Atom	n Aton	n Atom	Angle/°
C17	01	C16	110.65(12)	C8	C13	C14	117.03(13)
C20	03	C21	115.71(15)	C12	C13	C8	119.53(14)
C23	05	C24	117.02(15)	C12	C13	C14	123.41(14)
C8	N1	C7	120.29(14)	C13	C14	C15	106.55(13)
C8	N1	C16	122.88(13)	C18	C14	C13	110.67(12)
C16	N1	C7	116.80(14)	C18	C14	C15	105.89(13)
C17	N2	N3	103.11(13)	C16	C15	C14	107.67(13)
N2	N3	C19	112.84(14)	01	C16	C15	110.54(14)
C6	C1	C2	120.88(15)	N1	C16	01	110.35(13)
C3	C2	C1	120.02(17)	N1	C16	C15	111.79(14)
C4	C3	C2	119.80(16)	01	C17	C18	125.87(14)
C3	C4	C5	120.17(15)	N2	C17	01	120.05(14)
C6	C5	C4	120.53(16)	N2	C17	C18	114.08(14)
C1	C6	C5	118.59(15)	C17	C18	C14	121.73(14)
C1	C6	C7	119.30(14)	C19	C18	C14	135.47(14)
C5	C6	C7	122.10(15)	C19	C18	C17	102.81(13)
N1	C7	C6	115.38(13)	N3	C19	C18	107.16(14)
N1	C8	С9	121.46(14)	N3	C19	C20	118.68(14)
N1	C8	C13	119.82(14)	C18	C19	C20	134.11(15)
C9	C8	C13	118.71(14)	02	C20	03	125.07(16)
C10	C9	C8	120.77(15)	02	C20	C19	124.11(16)
C9	C10	C11	120.68(15)	O3	C20	C19	110.82(14)
C10	C11	C23	121.79(15)	O3	C21	C22	106.79(18)
C12	C11	C10	118.74(14)	O4	C23	05	123.12(15)
C12	C11	C23	119.37(14)	O4	C23	C11	124.93(15)
C13	C12	C11	121.45(14)	05	C23	C11	111.93(14)

Table 5 Bond Angles for WRJ-210125WYM.

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for WRJ-210125WYM.

Atom	x	У	z	U(eq)
H1	7572	3693	2555	61
H2	7681	2482	3491	67
H3A	6772	2461	3966	66
H4	5738	3626	3481	62
Н5	5613	4819	2525	57

31

Atom	x	У	Ζ	U(eq)
H7A	7055	5432	1968	61
H7B	6349	4811	1331	61
Н9	7148	6092	3151	55
H10	7520	7418	4063	56
H12	5768	9224	2555	50
H14	4877	8582	1230	51
H15A	4560	6772	1398	63
H15B	4305	7032	514	63
H16	5033	5429	940	60
H21A	5629	11857	1010	83
H21B	6413	11595	1761	83
H22A	4944	11232	1680	123
H22B	5422	12259	2045	123
H22C	5749	11168	2436	123
H24A	7953	10633	4919	111
H24B	8440	9793	5552	111
H24C	7586	10073	5401	111
H3	6336(12)	8959(17)	-281(12)	67(6)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for WRJ-210125WYM.

NMR spectra of the obtained compounds ¹H-NMR spectrum of C₁

¹H-NMR spectrum of C₂

34

¹H-NMR spectrum of C₃

¹H-NMR spectrum of C₅

¹H-NMR spectrum of C₆

¹³C-NMR spectrum of C₆

¹H-NMR spectrum of C₇

¹³C-NMR spectrum of C₈

¹H-NMR spectrum of C₉

¹H-NMR spectrum of C₁₀

¹³C-NMR spectrum of C₁₀

¹³C-NMR spectrum of C₁₁

¹³C-NMR spectrum of C₁₂

¹³C-NMR spectrum of C₁₃

46

¹³C-NMR spectrum of C₁₄

¹H-NMR spectrum of C₁₅

¹³C-NMR spectrum of C₁₅

 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -180
 -190
 -220
 -221
 -22

¹H-NMR spectrum of C₁₆

¹³C-NMR spectrum of C₁₆

¹H-NMR spectrum of C₁₇

¹³C-NMR spectrum of C₁₇

¹H-NMR spectrum of C₁₈

¹³C-NMR spectrum of C₁₈

¹H-NMR spectrum of C₂₁

¹H-NMR spectrum of C₂₂

¹³C-NMR spectrum of C₂₂

¹H-NMR spectrum of C₂₃

¹H-NMR spectrum of C₂₄

¹H-NMR spectrum of C₂₅

¹³C-NMR spectrum of C₂₅

¹⁹F-NMR spectrum of C₂₅

¹H-NMR spectrum of C₂₆

¹³C-NMR spectrum of C₂₆

¹H-NMR spectrum of C₂₇

¹³C-NMR spectrum of C₂₇

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.

¹³C-NMR spectrum of C₂₈

¹H-NMR spectrum of C₂₉

¹³C-NMR spectrum of C₂₉

¹H-NMR spectrum of C₃₀

¹³C-NMR spectrum of C₃₀

¹H-NMR spectrum of C₃₁

¹³C-NMR spectrum of C₃₁

0=

-NH

¹³C-NMR spectrum of C₃₂

¹H-NMR spectrum of C₃₃

¹³C-NMR spectrum of C₃₃

¹H-NMR spectrum of C₃₄

¹³C-NMR spectrum of C₃₄

¹³C-NMR spectrum of C₃₅

¹H-NMR spectrum of C₃₆

¹³C-NMR spectrum of C₃₆

¹H-NMR spectrum of C₃₇

¹³C-NMR spectrum of C₃₇

¹³C-NMR spectrum of C₃₈

(
¹³C-NMR spectrum of C₃₉

¹³C-NMR spectrum of C₄₀

¹³C-NMR spectrum of C₄₁

¹³C-NMR spectrum of C₄₂

¹H-NMR spectrum of C₄₃

¹³C-NMR spectrum of C₄₃

¹H-NMR spectrum of C₄₄

¹³C-NMR spectrum of C₄₄

7.26

6.68 4.27 4.25 4.25 4.25 4.25 4.25 4.22 4.22 4.12 4.10 4.408 4.408 4.408 4.408 4.408 4.408 4.408 4.408 4.408 4.408 4.129 4.129 1.122 4.119

¹³C-NMR spectrum of int-2

)0 190 180 170 160 150 140 130 (

¹H-NMR spectrum of int-3

¹³C-NMR spectrum of int-3

