Supporting Information

High Diastereo- and Enantioselective Michael Addition of 3-Acetoxy-

2-oxindoles with Nitroalkenes Catalyzed by Nickel/PyBisulidine

Ruoran Wu, Peng Chen, Yu Chai, Junyu Zhou, Jianhua Ou, Yan Min, Haoting Wang, Guojuan Liang, Dong Zhang, Jing Zhou, Hui Zhou.

Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of pharmacy, Chongqing Medical University, Chongqing 400016, China

Table of Contents

1.	General information	2
2.	Other optimizations of the Michael addition reaction	2
3.	Crystal structure data of compound 3ae (CCDC 2219965)	4
4.	General procedure for the asymmetric synthesis 3aa	5
5.	General procedure for the asymmetric synthesis 3aq/3ar	5
6.	General procedure for the asymmetric synthesis 4aa	6
7.	General procedure for the Large-Scale reaction	6
8.	Transformation of 3aa to 3-substituted-3-hydroxy-2-oxindoles	7
9.	Nitro group is reduced to amino group in product 3aa	7
10.	Characterization of products	7
11.	Copies of HPLC	20
12.	Copies of NMR Spectra	48

1. General information

Various 3-acetoxy-2-oxindoles 1 were prepared according to literature method¹. Nitroalkenes 2 were prepared according to literature method². Other reagents were obtained from Adamas, Aladin, or Acros etc. without further purification unless otherwise noted. High resolution mass spectra were measured on commercial instruments. NMR spectra were recorded on commercial instruments and operating at 600 MHz for ¹H NMR and 151 MHz for ¹³C NMR. Chemical shifts were reported in ppm from tetramethyl silane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$) in ¹H NMR spectra and Chemical shifts were reported in ppm from the tetramethyl silane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$) in ¹³C NMR spectra. Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. The enantiomeric excess (ee) was determined by HPLC analysis. Analytical HPLC was performed on a Shimadzu liquid chromatography equipped, using a chiral DAICEL CHIRALCEL IC-H or DAICEL CHIRALCEL IB-H or DAICEL CHIRALCEL ID-H column at 254 nm. Optical rotations were measured on a commercial polarimeter and are reported as follows: $[\alpha]_D^T(c = g/100 \text{ mL}, \text{ solvent}).$ References

1. Y. Yang, C. Tang, G. Liang, P. Deng, J. Zhou, Z. Yang, P. Chen, H. Zhou, *J. Org. Chem.* **2021**, *86*, 7119-7130.

2. G. Chen, G. Liang, Y. Wang, P. Deng, H. Zhou, Org. Biomol. Chem. 2018, 16, 3841.

2. Other optimizations of the Michael addition reaction

Table S1: The effect of the molar ratio of 1a/2a.^a

2	0.10	0.15	62	55:1	99
3	0.10	0.20	58	50:1	99
4	0.12	0.10	50	52:1	99
5	0.15	0.10	53	53:1	99
6	0.20	0.10	42	55:1	99

^{*a*} Unless otherwise noted, the reactions were performed with Ni(acac)₂/L4 (1:1, 1 mol%), 1a, 2a, EtOAc (0.10 mL), at rt for 24 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC. ^{*d*} Enantiomeric excess values of major diastereomers; Determined by chiral HPLC.

 Table S2:
 The effects of additives.

					O₂N _
OAc		NO ₂ (1	i(acac) ₂ / L4 :1, 1 mol%)	Ac	O, Ph
	`N H	EtOAc	, additive, rt, 24 h	N H	
1	la	2a			3aa
Entry	Additive	Amount of	Vield(%) ^b	dr ^c	$ee(\%)^d$
Linuy	7 Idulti ve	Additive(mol%)	11010(70)	ui	22(70)
1	none		62	55:1	99
2	3Å MS	16.1 mg	51	55:1	99
3	4Å MS	16.1 mg	63	54:1	99
4	5Å MS	16.1 mg	36	51:1	99
5	Et ₃ N	20 mol%	85	58:1	99
6	DIPEA	20 mol%	71	40:1	99
7	NMM	20 mol%	51	53:1	99
8	<i>n</i> -Bu ₂ NH	20 mol%	99	65:1	99
9	<i>i</i> -Bu ₂ NH	20 mol%	92	60:1	99
10	Cy ₂ NH	20 mol%	95	10:1	87
11	Pyr	20 mol%	65	40:1	99
12	PIP	20 mol%	61	11:1	92
13	TMP	20 mol%	97	23:1	96
14	<i>n</i> -Bu ₂ NH	10 mol%	86	68:1	99
15	<i>n</i> -Bu ₂ NH	5 mol%	72	73:1	99
16	<i>n</i> -Bu ₂ NH	30 mol%	99	41:1	99
17	<i>n</i> -Bu ₂ NH	40 mol%	99	23:1	99
a T T 1 1	• • • • •		1	4 /1 1 1	10/) 1 (0.1

^{*a*} Unless otherwise noted, the reactions were performed with Ni(acac)₂/L4 (1:1, 1 mol%), 1a (0.1 mmol), 2a (0.15 mmol), EtOAc (0.10 mL), at rt for 24 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC.

3. Crystal structure data of compound 3ae (CCDC 2219965)

Preparation of the single crystals of enantiopure 3ae: Compound **3ae** (15.0 mg, 70:1 dr, 99% *ee*) was dissolved in ethyl acetate (0.5 mL), then followed by the slowly addition of petroleum ether until a solid just appeared. Shaked the tube to make the solution clear. The tube was sealed, thus allowing slow evaporation of the solvents at room temperature. After a week, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **3ae**. The data were collected by a Rigaku Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 293(2) K. CCDC 2219965 (**3ae**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk /data request/cif.

 Table S3. Crystal data and structure refinement for 3ae

Bond pre	cision: C	C-C = 0.0063 A	Wavelength=1.54184				
Cell:	a=8.98207(19	b=13.3543(3)	c=29.0314(5)				
	alpha=90	beta=90	gamma=90				
Temperature: 293 K							
		Calculated	Reported				
Volume		3482.30(12)	3482.30(13)				
Space gro	oup	P 21 21 21	P 21 21 21				
Hall grou	ıp	P 2ac 2ab	P 2ac 2ab				
Moiety fo	ormula	C18 H15 F N2 O5	C18 H15 F N2 O5				
Sum forn	nula	C18 H15 F N2 O5	C18 H15 F N2 O5				

Mr	358.32	358.32
Dx,g cm-3	1.367	1.367
Ζ	8	8
Mu (mm-1)	0.917	0.917
F000	1488.0	1488.0
F000'	1493.42	
h,k,lmax	11,16,35	10,16,35
Nref	6707[3790]	6579
Tmin,Tmax	0.886,0.912	0.899,1.000
Tmin'	0.577	

Correction method= # Reported T Limits: Tmin=0.899 Tmax=1.000

 AbsCorr = MULTI-SCAN

 Data completeness= 1.74/0.98
 Theta(max)= 70.862

 R(reflections)= 0.0473(5430)
 wR2(reflections)=0.1287(6579)

 S = 1.042
 Npar= 479

4. General procedure for the asymmetric synthesis 3aa

A mixture of Ni(acac)₂ (0.001 mmol) and PyBisulidine (0.001 mmol) was stirred in EtOAc (0.5 mL) at 35°C for 0.5 h. The mixture was cooled to rt, and then nitroalkene (0.15 mmol), 3-acyloxy-2-oxindole (0.1 mmol), *n*-Bu₂NH (0.02 mmol) and EtOAc (0.5 mL) were added to the mixture. The stirring was continued for 24 h at rt. The residue was purified by column chromatography (petroleum ether/EtOAc = 5:1-4:1, v/v) on silica gel.

5. General procedure for the asymmetric synthesis 3aq/3ar

A mixture of Ni(acac)₂ (0.01 mmol) and PyBisulidine (0.01 mmol) was stirred in THF (0.5 mL) at 35°C for 0.5 h. The mixture was cooled to rt, and then nitroalkene (0.15 mmol), 3-acyloxy-2-oxindole (0.1 mmol), Et₃N (0.04 mmol) and THF (0.5 mL) were added to the mixture. The stirring was continued for 72 h at 40°C. The residue was purified by column chromatography (petroleum ether/EtOAc = 6:1, v/v) on silica gel.

6. General procedure for the asymmetric synthesis 4aa

Under nitrogen, a mixture of Ni(acac)₂ (0.01 mmol) and PyBisulidine (0.01 mmol) was stirred in 1,4-dioxane (0.5 mL) at 35°C for 0.5 h. The mixture was cooled to rt, and then nitroalkene (0.15 mmol), 3-hydroxyindolin-2-one (0.1 mmol) and THF (0.5 mL) were added to the mixture. The stirring was continued for 24 h at rt. The residue was purified by column chromatography (petroleum ether/EtOAc = 3:1, v/v) on silica gel.

7. General procedure for the Large-Scale reaction

A mixture of Ni(acac)₂ (0.001 mmol) and PyBisulidine (0.001 mmol) was stirred in EtOAc (20 mL) at 35°C for 0.5 h. The mixture was cooled to rt, and then nitroalkene (6.0 mmol), 3-acyloxy-2-oxindole (4.0 mmol), n-Bu₂NH (1.6 mmol) and EtOAc (20 mL) were added to the mixture. The stirring was continued for 72 h at rt. The residue was purified by column chromatography (petroleum ether/EtOAc = 5:1-4:1, v/v) on silica gel.

8. Transformation of 3aa to 3-substituted-3-hydroxy-2-oxindoles

To the solution of **3aa** (0.3 mmol) in THF (5 mL) were added satd NaHCO₃ (5 mL) and H_2O_2 (0.3 mmol). The mixture was stirred at 25 °C for 2 h. It was poured over 10 mL of water and extracted with CH₂Cl₂. The combined organic extracts were washed with satd NaCl and dried with Na₂SO₄. The solvents were removed in vacuo and purified through column chromatography (petroleum ether/EtOAc = 3:1) on silica gel.

9. Nitro group is reduced to amino group in product 3aa

To a solution of the compound **3aa** (0.2 mmol, 86.1mg) in methanol (2.0 mL) at 0 °C was added NiCl₂ (0.2 mmol, 25.8 mg) followed by NaBH₄ (2.4 mmol, 90.7 mg) under nitrogen. The mixture was stirred for 2 h. Then saturated aqueous NH₄Cl (8 mL) was added, and the mixture was extracted with CH_2Cl_2 , washed with brine, dried over Na₂SO₄, and concentrated under reduced press. The solvents were removed in vacuo and purified through column chromatography (petroleum ether/EtOAc = 2:1) on silica gel.

10.Characterization of products

(S)-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3aa).

White solid; 33.5 mg, 99% yield, 65:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = +5.1$ (*c* 6.81, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.68 (s, 1H),

7.31 (d, J = 7.2 Hz, 1H), 7.15-7.07 (m, 4H), 7.03 (td, J = 8.4, 7.8, 1.2 Hz, 1H), 6.95 (d, J = 7.2 Hz, 2H), 6.45 (d, J = 7.8 Hz, 1H), 5.51 (dd, J = 13.8, 6.0 Hz, 1H), 5.08 (dd, J = 13.8, 8.4 Hz, 1H), 4.37 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 168.4, 140.6, 131.4, 130.3, 129.0, 128.3, 128.1, 126.0, 123.0, 122.8, 110.1, 80.4, 73.8, 49.6, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₆N₂NaO₅ 363.0957, found: 363.0957. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 25.9 min, 14.1 min; t_r (major diastereomer) = 23.5 min

3-hydroxy-3-(2-nitro-1-phenylethyl)indolin-2-one (4aa)

White solid; 29.5mg, 99% yield, 2:1 dr, 88% *ee*; $[\alpha]^{20}_{D}$ = +6.3 (*c* 5.56, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.45-7.36 (m, 1H), 7.15-7.04 (m, 5H), 6.98-6.90 (m, 2H), 6.57 (d, *J*

= 7.8 Hz, 1H), 5.32 (dd, J = 13.8, 4.8 Hz, 1H), 5.11 (dd, J = 13.8, 12.0 Hz, 1H), 4.27-4.14 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 178.4, 139.8, 132.9, 130.3, 129.3, 128.6, 128.2, 128.0, 124.2, 123.3, 110.4, 77.8, 74.2, 51.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄N₂NaO₄ 321.0851, found: 321.0853. HPLC: Chiralpak ID-H column, hexane/ethanol = 90/10, flow rate = 0.8 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 13.8 min, 15.8 min; t_r (major diastereomer) = 17.1 min (major enantiomer), 25.1 min (minor enantiomer).

(S)-3-((S)-2-nitro-1-(o-tolyl) ethyl)-2-oxoindolin-3-yl acetate (3ab).

White solid; 33.6mg, 95% yield, 7.7:1 dr, 93% *ee*; $[\alpha]^{20}_{D} = +0.8$ (*c* 4.26, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (s, 1H), 7.31 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.27 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.12-7.02 (m, 3H), 6.98-6.94 (m, 1H), 6.93-6.89 (m, 1H), 6.52 (d, *J* = 7.8 Hz, 1H), 5.41 (dd, *J* = 13.8, 4.8 Hz, 1H), 4.98 (dd, *J* = 13.8, 9.0 Hz, 1H), 4.81 (dd, *J* = 9.0, 5.4 Hz, 1H), 2.22 (s, 3H), 2.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 168.3, 140.7, 137.6, 130.8, 130.7, 130.5, 128.2, 126.8, 126.0, 125.8, 123.1, 122.3, 110.0, 80.8, 75.1, 43.9, 20.5, 19.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₅⁺ 377.1113, found: 377.1110. HPLC: Chiralpak IB-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, *t_r* (minor diastereomer) = 14.1 min, 18.6 min; *t_r* (major diastereomer) = 21.2 min (major enantiomer), 3.1 min (minor enantiomer).

(S)-3-((S)-2-nitro-1-(m-tolyl) ethyl)-2-oxoindolin-3-yl acetate (3ac).

White solid; 35.1mg, 99% yield, 46:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = +4.2$ (*c* 5.55, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.41 (s, 1H), 7.31 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.11 (td, *J* = 7.8, 1.2 Hz, 1H), 7.05-7.00 (m, 1H), 6.97 (t, *J* = 7.8 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.71 (d, *J* = 1.8 Hz, 1H), 6.47 (d, *J* = 7.8 Hz, 1H), 5.50 (dd, *J* = 13.8, 6.0 Hz, 1H), 5.06 (dd, *J* = 13.8, 8.4 Hz, 1H), 4.33 (dd, *J* = 8.4, 5.4 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 168.4, 140.7, 137.8, 131.4, 130.2, 129.9, 129.0, 128.0, 126.2, 126.0, 123.1, 122.7, 110.0, 80.5, 73.9, 49.6, 21.1, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₅ 377.1113, found: 377.1112. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL min⁻¹, 254 nm, *t*_r (minor diastereomer) = 28.9 min, 32.1 min; *t*_r (major diastereomer) = 23.7 min (major enantiomer), 26.3 min (minor enantiomer).

(S)-3-((S)-2-nitro-1-(p-tolyl) ethyl)-2-oxoindolin-3-yl acetate (3ad).

White solid; 35.0mg, 99% yield, 46:1 dr, 99% *ee*; $[\alpha]^{20}_{D}$ = +10.4 (*c* 1.34, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.35 (s, 1H), 7.31 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.13 (td, *J* = 7.8, 1.2

Hz, 1H), 7.03 (td, J = 7.8, 1.2 Hz, 1H), 6.88 (d, J = 7.8 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 6.49 (d, J = 7.8 Hz, 1H), 5.48 (dd, J = 13.8, 5.8 Hz, 1H), 5.05 (dd, J = 13.8, 8.4 Hz, 1H), 4.33 (dd, J = 8.4, 5.4 Hz, 1H), 2.19 (s, 3H), 2.08 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 168.3, 140.7, 138.0, 130.3, 128.9, 128.9, 128.4, 126.3, 123.0, 122.8, 110.0, 80.4, 74.0, 49.3, 21.0, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₅ 377.1113, found: 377.1114. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 34.3 min, 37.1 min; t_r (major diastereomer) = 27.5 min (major enantiomer), 26.7 min (minor enantiomer).

(S)-3-((S)-1-(4-fluorophenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3ae).

White solid; 35.4mg, 99% yield, 70:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = +4.2$ (*c* 8.01, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.80 (s, 1H), 7.29 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.10 (td, *J* = 7.8, 1.2 Hz, 1H), 7.05 -7.00 (m, 1H), 6.95-6.90 (m, 2H), 6.78 (t, J = 8.4 Hz, 2H), 6.46 (d, J = 7.7 Hz, 1H), 5.47 (dd, J = 13.8, 5.4 Hz, 1H), 5.08 (dd, J = 13.8, 8.4 Hz, 1H), 4.34 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 168.5, 163.2, 161.5, 140.6, 130.8, 130.7, 130.4, 127.2, 127.2, 125.8, 122.9, 122.8, 115.3, 115.1, 110.2, 80.3, 73.7, 48.9, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₅FN₂NaO₅ 381.0863, found: 381.0862. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/ min, 254 nm, t_r (minor diastereomer) = 12.1 min, 14.1 min; t_r (major diastereomer) = 18.7 min (major enantiomer), 20.5 min (minor enantiomer).

(S)-3-((S)-1-(4-chlorophenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3af).

White solid; 34.4mg, 92% yield, 60:1 dr, 86% *ee*; $[\alpha]^{20}_{D} = +5.7$ (*c* 10.02, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.73 (s, 1H), 7.30 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.12 (td, *J* = 7.8, 1.2 Hz, 1H),

7.09-6.96 (m, 3H), 6.92-6.84 (m, 2H), 6.48 (d, J = 7.8 Hz, 1H), 5.46 (dd, J = 13.8, 5.6 Hz, 1H), 5.07 (dd, J = 13.8, 8.4 Hz, 1H), 4.33 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 168.4, 140.6, 134.3, 130.5, 130.3, 130.0, 128.4, 125.7, 122.9, 122.8, 110.3, 80.1, 73.5, 49.0, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₅ClN₂NaO₅ 397.0567, found: 397.0569. HPLC: Chiralpak IB-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 21.6 min, 30.5 min; t_r (major diastereomer) = 16.7 min (major enantiomer), 15.8 min (minor enantiomer).

(S)-3-((S)-1-(4-bromophenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3ag).

White solid; 36.8mg, 88% yield, 5:1 dr, 75% *ee*; $[\alpha]^{20}_{D} = +4.4$ (*c* 10.31, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 8.30 (s, 0.2H), 7.99 (s, 1H), 7.35 – 7.31 (m, 0.3H), 7.31 – 7.27 (m, 1H),

7.21 (t, J = 7.8 Hz, 2H), 7.16 – 7.07 (m, 1H), 7.02 (t, J = 7.8 Hz, 1H), 6.93 (dt, J = 14.6, 7.8 Hz, 0.2H), 6.82 (d, J = 8.4 Hz, 2H), 6.80 – 6.73 (m, 0.4H), 6.69 (dd, J = 14.8, 7.8 Hz, 0.2H), 6.53 (dd, J = 40.1, 7.8 Hz, 1H), 5.52 – 5.48 (m, 0.2H), 5.48 – 5.39 (m, 1H), 5.06 (dd, J = 13.8, 8.4 Hz, 1H), 4.93 (ddd, J = 13.2, 10.1, 2.8 Hz, 0.2H), 4.31 (dd, J = 8.7, 5.6 Hz, 1H), 3.99 (dt, J = 10.0, 4.9 Hz, 0.2H), 2.11 (d, J = 1.7 Hz, 0.7H), 2.09 (d, J = 3.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 174.1, 168.5, 168.4, 140.7, 140.7,

131.4, 131.4, 130.7, 130.7, 130.6, 130.6, 130.6, 130.5, 125.7, 125.7, 123.1, 123.0, 123.0, 122.9, 122.7, 122.6, 110.6, 110.5, 80.3, 80.2, 74.5, 73.5, 49.1, 48.3, 20.6, 20.5. HRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₈H₁₆BrN₂O₅ 419.0243, found: 419.0243. HPLC: Chiralpak IB-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 23.3 min, 36.3 min; t_r (major diastereomer) = 19.2 min (major enantiomer), 17.7 min (minor enantiomer).

(S)-3-((S)-1-(2-bromophenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3ah).

AcQ H H White solid; 41.4mg, 99% yield, 47:1 dr, 98% *ee*; $[\alpha]^{20}_{D} = -6.5$ (*c* 5.64, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.82 (s, 1H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.37 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.33 (dd, *J*

= 8.4, 1.2 Hz, 1H), 7.22-7.16 (m, 1H), 7.09 (td, J = 7.8, 1.2 Hz, 1H), 7.02-6.94 (m, 2H), 6.48 (d, J = 7.8 Hz, 1H), 5.45 (dd, J = 13.8, 4.8 Hz, 1H), 5.24 (dd, J = 9.0, 4.8 Hz, 1H), 5.02 (dd, J = 13.8, 9.0 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 168.4, 140.4, 133.4, 132.0, 130.5, 129.8, 128.2, 127.5, 126.6, 124.7, 124.5, 122.4, 109.7, 80.5, 74.6, 46.6, 20.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₆BrN₂O₅ 419.0243, found: 419.0242. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 19.4 min, 28.7 min; t_r (major diastereomer) = 22.8 min (major enantiomer), 24.7 min (minor enantiomer).

(S)-3-((S)-1-(3-chlorophenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3ai).

White solid; 34.4 mg, 92% yield, 29:1 dr, 97% *ee*; $[\alpha]^{20}_{D} = +4.6$ (*c* 5.35, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.73 (s, 1H), 7.29 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.18-7.09 (m, 2H), 7.07-6.99

(m, 2H), 6.93 (t, J = 2.4 Hz, 1H), 6.87 (dt, J = 7.8, 1.2 Hz, 1H), 6.50 (d, J = 7.8 Hz, 1H), 5.47 (dd, J = 13.8, 5.4 Hz, 1H), 5.06 (dd, J = 13.8, 8.4 Hz, 1H), 4.33 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 168.3, 140.6, 134.0, 133.7, 130.6, 129.4, 129.3, 128.6, 127.1, 125.7, 123.0, 110.3, 80.2, 73.5, 49.3, 20.4. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₅ClN₂NaO₅ 397.0567, found: 397.0566. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 19.3 min, 23.5 min; t_r (major diastereomer) = 20.5 min (major enantiomer), 12.0 min (minor enantiomer).

(S)-3-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3aj).

1H), 7.01 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 7.8 Hz, 1H), 5.46 (dd, J = 13.8, 5.4 Hz, 1H), 5.05 (dd, J = 13.8, 8.4 Hz, 1H), 4.31 (dd, J = 8.4, 5.4 Hz, 1H), 3.67 (s, 3H), 2.07 (s, 3H). ¹³C NMR (151 MHz, CDC13) δ 174.2, 168.4, 159.3, 140.8, 130.2, 130.1, 126.2, 123.3, 122.9, 122.7, 113.6, 110.2, 80.5, 74.0, 55.0, 48.9, 20.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₆ 393.1063 found: 393.1056. HPLC: Chiralpak IB-H column, hexane/ ethanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 17.2 min,; t_r (major diastereomer) = 15.5 min (major enantiomer), 16.6 min (minor enantiomer).

(S)-3-((S)-1-(naphthalen-2-yl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3al).

Yellow solid; 38.6mg, 99% yield, 32:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = +7.8$ (*c* 15.62, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.72-7.65 (m, 2H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* =

1.8 Hz, 1H), 7.41 (dd, J = 6.6, 3.6 Hz, 2H), 7.36 (dd, J = 5.4, 2.4 Hz, 1H), 7.05-7.00 (m, 3H), 6.30 (dd, J = 5.4, 2.4 Hz, 1H), 5.60 (dd, J = 13.8, 5.4 Hz, 1H), 5.20 (dd, J = 13.8, 8.4 Hz, 1H), 4.55 (dd, J = 8.4, 5.4 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.1, 168.4, 140.7, 132.7, 132.7, 130.3, 129.1, 128.3, 127.9, 127.7, 127.4, 126.6, 126.4, 126.2, 125.9, 122.9, 122.7, 110.2, 80.5, 73.9, 49.6, 20.4. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₁₈N₂NaO₅⁺ 413.1113 found: 413.1115. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 43.6 min, 53.0 min; t_r (major diastereomer) = 32.1 min (major enantiomer), 39.5 min (minor enantiomer).

(S)-3-((S)-1-(naphthalen-1-yl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3am).

Yellow solid; 38.7 mg, 99% yield, >99:1 dr, 94% *ee*; $[\alpha]^{20}_{D}$ = -16.0 (*c* 8.14, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.90 (s, 1H), 7.67 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.51-7.45 (m, 2H), 7.39-7.33 (m, 2H), 7.24 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.84 (dd, J = 7.8, 1.2 Hz, 1H), 6.70 (td, J = 7.8, 1.2 Hz, 1H), 6.34 (d, J = 7.8 Hz, 1H), 5.60 (dd, J = 13.8, 5.4 Hz, 1H), 5.52 (dd, J = 8.4, 5.4 Hz, 1H), 5.08 (dd, J = 13.8, 8.4 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 168.4, 140.5, 133.5, 132.0, 130.2, 129.2, 128.6, 128.6, 126.0, 125.6, 125.1, 125.1, 124.6, 123.6, 123.1, 122.3, 109.9, 80.9, 75.0, 42.2, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₈N₂NaO₅ 413.1113 found: 413.1113. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, *t_r* (minor diastereomer) = 15.6 min, 17.3 min; *t_r* (major diastereomer) = 36.1 min (major enantiomer), 41.4 min (minor enantiomer).

(S)-3-((S)-1-(furan-2-yl)-2-nitroethyl)-2-oxoindolin-3-yl acetate (3an).

Yellow solid; 32.8 mg, 99% yield, 61:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = +0.3$ (*c* 8.03, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.23 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.21-7.10 (m, 2H), 7.04 (td, *J* = 7.8, 1.2 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 6.11 (dd, *J* = 3.6, 1.8 Hz, 1H), 5.91 (d, *J* = 3.6 Hz, 1H), 5.31 (dd, *J* = 13.8, 4.8 Hz, 1H), 5.05 (dd, *J* = 13.8, 9.0 Hz, 1H), 4.51 (dd, *J* = 9.0, 4.8 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 168.3, 146.1, 142.9, 141.1, 130.5, 125.8, 123.1, 122.9, 110.4, 110.2, 109.9, 79.2, 72.4, 43.9, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄N₂NaO₆ 353.0750 found: 353.0751. HPLC: Chiralpak IB-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, *t_r* (minor diastereomer) = 14.8 min, 19.7 min; *t_r* (major diastereomer) = 33.7 min (major enantiomer), 24.4 min (minor enantiomer).

(S)-3-((S)-2-nitro-1-(thiophen-2-yl)ethyl)-2-oxoindolin-3-yl acetate (3ao).

Yellow solid; 34.2 mg, 99% yield, 34:1 dr, 99% *ee*; $[\alpha]^{20}_{D}$ = +2.7 (*c* 10.21, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.28 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.18 (td, *J* = 7.8, 1.2 Hz, 1H), 7.09-

7.01 (m, 2H), 6.81-6.73 (m, 2H), 6.58 (d, J = 7.8 Hz, 1H), 5.46 (dd, J = 13.8, 5.4 Hz, 1H), 5.03 (dd, J = 13.8, 8.4 Hz, 1H), 4.64 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.9, 168.2, 141.2, 133.4, 130.6, 127.2, 126.6, 126.0, 126.0, 123.1, 123.0, 110.3, 80.0, 74.5, 44.9, 20.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₄N₂NaO₅S 369.0521 found: 369.0520. HPLC: Chiralpak IC-H column, hexane/

ethanol = 93/7, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 24.1 min, 28.4min; t_r (major diastereomer) = 30.1 min (major enantiomer), 16.6 min (minor enantiomer).

(S)-3-((S, E)-4-nitro-1-phenylbut-3-en-1-yl)-2-oxoindolin-3-yl acetate (3ap).

White solid; 35.1 mg, 96% yield, >99:1 dr, 78% ee; $[\alpha]^{20}_{D} =$ +4.6 (c 3.61, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.91 (s, 1H), 7.30 (dd, J = 7.8, 1.2 Hz, 1H), 7.25-7.15 (m, 4H), 7.11 -7.04 (m, 3H), 6.73 (d, J = 7.8 Hz, 1H), 6.25 (d, J = 15.6 Hz, 1H), 5.71 (dd, J = 15.6, 9.0 Hz, 1H), 5.19 (dd, J = 13.2, 4.8 Hz, 1H), 4.78 (dd, J = 13.2, 9.0 Hz, 1H), 3.90 (tdd,

J = 9.0, 4.8, 0.6 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 168.5, 141.0, 137.4, 135.8, 130.5, 128.5, 128.2, 126.5, 126.3, 123.2, 122.8, 119.2, 110.4, 79.7, 74.1, 47.5, 20.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₁₈N₂NaO₅ 389.1113 found: 389.1119. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 38.4 min, 42.1 min; t_r (major diastereomer) = 26.6 min (major enantiomer), 23.4 min (minor enantiomer).

(S)-1-methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ba).

White solid; 35.0 mg, 99% yield, 1.3:1 dr, 39% ee; $[\alpha]^{20}_{D} = +0.6$ (c 15.74, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.37 – 7.28 (m, 2H), 7.25 – 7.12 (m, 3H), 7.10 – 7.01 (m, 4H), 6.95 – 6.88 (m, 2H), 6.84 (d, J = 7.2 Hz, 2H), 6.66 (dd, J = 13.2, 7.8 Hz, 1H), 6.43 (d, J

= 7.8 Hz, 1H), 5.55 (d, J = 5.4 Hz, 0.6H), 5.53 - 5.49 (m, 1H), 5.12 (dd, J = 13.8, 8.4Hz, 0.6H), 4.98 (dd, J = 13.2, 9.6 Hz, 1H), 4.33 (dd, J = 8.4, 5.4 Hz, 1H), 4.04 – 3.95 (m, 0.6H), 2.94 (s, 2H), 2.91 (s, 3H), 2.11 (s, 2H), 2.08 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) § 172.9, 172.4, 168.2, 168.1, 143.8, 143.3, 132.6, 131.5, 130.4, 130.2, 129.2, 128.8, 128.6, 128.2, 128.1, 127.8, 125.7, 125.6, 124.5, 124.4, 123.6, 122.8, 122.4, 122.3, 108.5, 108.1, 80.6, 80.4, 74.6, 73.8, 49.7, 48.9, 26.1, 25.9, 20.5, 20.5. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{19}H_{18}N_2NaO_5$ 377.1113 found: 377.1114. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 14.9 min, 30.6 min; t_r (major diastereomer) = 21.1 min (major enantiomer), 12.6 min (minor enantiomer).

(S)-1-acetyl-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ca).

White solid; 39.4 mg, 99% yield, 1.2:1 dr, 9% ee; $[\alpha]^{20}_{D} = -0.3$ (c

6.96, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.2Hz, 1H), 7.88-7.82 (m, 0.6H), 7.43 (dd, *J* = 7.2, 1.8 Hz, 0.7H), 7.40 Àc (td, J = 8.4, 1.8 Hz, 1H), 7.28 (dd, J = 8.4, 6.6 Hz, 0.6H), 7.25-7.19 (m, 2H), 7.14 (ddd, *J* = 12.0, 7.2, 3.0 Hz, 2H), 7.08-7.01 (m, 2H), 6.81-6.69 (m, 3H), 5.54 (dd, *J* = 13.8, 6.6 Hz, 0.6H), 5.39 (dd, J = 13.2, 5.4 Hz, 1H), 5.06 (dd, J = 13.8, 7.8 Hz, 0.6H), 4.90 (dd, J = 13.2, 9.0 Hz, 1H), 4.40 (dd, J = 7.8, 6.6 Hz, 0.6H), 4.20 (dd, J = 9.0, 5.4 Hz, 1H), 2.54 (s, 1.8H), 2.40 (s, 3H), 2.13 (s, 3H), 2.10 (s, 1.8H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 173.5, 169.7, 169.5, 168.5, 168.3, 140.6, 140.1, 131.2, 131.0, 130.8, 130.7, 129.3, 129.0, 128.9, 128.5, 128.5, 128.4, 125.5, 125.1, 125.1, 123.5, 122.9, 122.1, 116.9, 116.5, 80.5, 80.2, 74.6, 73.5, 50.0, 49.5, 26.3, 26.0, 20.3, 20.2. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{20}H_{18}N_2NaO_6$ 405.1063 found: 405.1061. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 19.5 min, 29.0 min; t_r (major diastereomer) = 17.3 min (major enantiomer), 15.9 min (minor enantiomer).

(S)-7-methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3da).

White solid;35.1mg, 99% yield, 35:1 dr, 99% ee; $[\alpha]^{20}_{D} = +0.4$ (c 4.98, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 8.22 (s, 1H), 7.16-7.10 (m, 2H), 7.08 (t, *J* = 7.2 Hz, 2H), 6.98-6.90 (m, 4H), 5.48 (dd, J = 13.8, 5.4 Hz, 1H), 5.08 (dd, J = 13.8, 8.4 Hz, 1H), 4.34 (dd, J = 13.8, 8.4 Hz, 1H), 4.4 Hz

J = 8.4, 5.4 Hz, 1H), 2.07 (s, 3H), 1.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.6, 168.3, 139.5, 131.6, 131.5, 128.9, 128.2, 128.0, 125.6, 122.6, 120.4, 119.4, 80.9, 73.9, 49.7, 20.4, 15.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₅ 377.1113 found: 377.1117. HPLC: Chiralpak IB-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 13.3 min, 15.5 min; t_r (major diastereomer) = 17.2 min (major enantiomer), 11.0 min (minor enantiomer).

(S)-5-chloro-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ea).

White solid; 37.0mg, 99% yield, 14:1 dr, 96% ee; $[\alpha]^{20}$ = +21.6 (c 1.50 , CHCl_3); ¹H NMR (600 MHz, Chloroform-d) δ 7.98 (s,

1H), 7.32-7.28 (m, 1H), 7.13 (dt, J = 14.4, 7.2 Hz, 3H), 7.05 (dd, J = 8.4, 2.4 Hz, 1H), 6.96 (d, J = 7.8 Hz, 2H), 6.36 (d, J = 8.4 Hz, 1H), 5.49 (dd, J = 13.8, 5.4 Hz, 1H), 5.04 (dd, J = 13.8, 8.4 Hz, 1H), 4.33 (dd, J = 8.4, 5.4 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.8, 168.5, 139.2, 131.1, 130.3, 129.0, 128.5, 128.4, 128.2, 127.8, 123.4, 111.2, 80.2, 73.7, 49.6, 20.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₅ClN₂NaO₅ 397.0567 found: 397.0564. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 14.7 min, 20.7 min; t_r (major diastereomer) = 16.7 min (major enantiomer), 9.3 min (minor enantiomer).

(S)-7-chloro-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3fa).

White solid; 35.5 mg, 95% yield, 32:1 dr, 99% *ee*; $[\alpha]^{20}_{D}$ = +2.6 (*c* 6.68, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.18-7.13 (m, 1H), 7.13-7.06 (m, 3H), 7.01-6.97 (m, 1H), 6.95-6.90 (m, 2H), 5.50 (dd, *J* = 13.8, 5.4 Hz, 1H),

5.06 (dd, J = 13.8, 8.4 Hz, 1H), 4.35 (dd, J = 8.4, 5.4 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.1, 168.3, 138.4, 131.1, 130.2, 128.9, 128.6, 128.3, 127.6, 123.6, 121.2, 115.3, 80.9, 73.7, 49.6, 20.3. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₅ClN₂NaO₅ 397.0567 found: 397.0577. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 23.7 min, 24.8 min; t_r (major diastereomer) = 20.8 min (major enantiomer), 12.8 min (minor enantiomer).

(S)-5-nitro-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ga).

White solid; 37.7mg, 98% yield, 7:1 dr, 97% *ee*; $[\alpha]^{20}_{D} = +6.74$ (*c* 1.7, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.45 (s, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.18-7.14 (m, 1H), 7.13-7.07 (m,

3H), 6.99 (t, J = 7.8 Hz, 1H), 6.92 (dd, J = 8.4, 1.2 Hz, 2H), 5.50 (dd, J = 13.8, 5.4 Hz, 1H), 5.06 (dd, J = 13.8, 8.4 Hz, 1H), 4.34 (dd, J = 8.4, 5.4 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 168.3, 138.4, 131.1, 130.2, 128.9, 128.6, 128.3, 127.6, 123.7, 121.3, 115.3, 80.9, 73.7, 49.7, 20.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₆N₃O₇ 386.0988 found: 386.0971. HPLC: Chiralpak IC-H column,

hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 23.1 min, 24.2 min; t_r (major diastereomer) = 20.3 min (major enantiomer), 12.6 min (minor enantiomer).

White solid; 35.1 mg, 99% yield, 4:1 dr, 99% ee; $[\alpha]^{20}_{D} = +7.7$

(S)-5-methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ha).

 O_2N AcO H₃C

(c 21.4, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 8.07 (s, 0.2H), 7.91 (s, 1H), 7.14-7.03 (m, 4H), 7.01-6.92 (m, 2H), 6.92-6.83 (m, 1H), 6.82-6.75 (m, 0.3H), 6.46 (d, J = 7.9 Hz, 0.2H), 6.34 (d, J = 7.9 Hz, 1H),5.50 (dd, J = 13.7, 5.8 Hz, 1H), 5.47 – 5.41 (m, 0.2H), 5.06 (dd, J = 13.7, 8.3 Hz, 1H), 5.03 - 4.98 (m, 0.2H), 4.62 (dd, J = 8.6, 5.4 Hz, 0.2H), 4.34 (dd, J = 8.3, 5.7 Hz, 1H), 2.32 (s, 0.6H), 2.31 (s, 3H), 2.07 (s, 3H), 1.95 (s, 0.6H). ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 174.0, 168.3, 168.2, 138.8, 138.3, 132.5, 132.2, 131.6, 130.9, 130.6, 130.6, 129.0, 128.1, 128.0, 127.0, 126.5, 125.9, 125.9, 123.6, 123.5, 110.0, 109.9, 80.6, 80.2, 74.5, 73.9, 49.6, 44.9, 21.0, 20.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈N₂NaO₅ 377.1113, found: 377.1114. HPLC: Chiralpak IB-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 27.0 min; t_r (major diastereomer) = 21.0 min.

(S)-5-bromo-3-((S)-2-nitro-1-phenylethyl)-2-oxoindolin-3-yl acetate (3ia).

White solid; 41.4 mg, 99% yield, 49:1 dr, 99% ee; $[\alpha]^{20}_{D} = +14.0$ (*c* 10.1, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.77 (s, 1H), 7.44 (s, 1H), 7.22 (dd, J = 8.3, 2.0 Hz, 1H), 7.14 (dt, J =

14.4, 7.2 Hz, 3H), 6.95 (d, J = 7.2 Hz, 2H), 6.34 (d, J = 8.4 Hz, 1H), 5.49 (dd, J = 13.8, 5.4 Hz, 1H), 5.04 (dd, J = 13.8, 8.4 Hz, 1H), 4.33 (dd, J = 8.4, 6.0 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 168.5, 139.7, 133.1, 131.0, 129.0, 128.5, 128.4, 128.1, 126.1, 115.3, 111.6, 80.1, 73.6, 49.5, 20.4. HRMS (ESI) m/z: [M +H]+ calcd for C₁₈H₁₆BrN₂O₅ 419.0243, found: 419.0248. HPLC: Chiralpak IC-H column, hexane/ethanol = 93/7, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 9.8 min, 15.3min; t_r (major diastereomer) = 17.6 min (major enantiomer), 22.0min (minor enantiomer).

3-(2-nitro-1-phenylpropyl)-2-oxoindolin-3-yl acetate (3aq).

Purple solid; 33.6 mg, 93% yield, 3.6:1 dr, 99% *ee*; $[\alpha]^{20}_{D}$ = +1.2 (*c* 15.74 , CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.92 (s, 0.3H), 7.32 – 7.29 (m, 0.3H), 7.24 – 7.17 (m, 1H), 7.17 –

7.04 (m, 2H), 6.99 (tdd, J = 9.2, 7.2, 2.4 Hz, 6H), 6.94 (s, 0.3H), 6.92 (t, J = 7.2 Hz, 1H), 6.39 (d, J = 7.8 Hz, 1H), 6.37 (s, 0.2H), 6.09 (s, 0.2H), 5.87 – 5.73 (m, 1H), 4.23 (d, J = 10.2 Hz, 0.3 H), 4.04 (d, J = 10.8 Hz, 1H), 2.11 (s, 3H), 2.07 (d, J = 6.6 Hz, 3H), 1.99 (s, 1H), 1.29 (d, J = 6.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 174.3, 168.4, 168.1, 140.5, 140.4, 132.3, 131.0, 130.0, 130.0, 128.0, 128.0, 128.0, 127.7, 126.8, 126.7, 122.8, 122.7, 122.6, 122.5, 110.0, 109.9, 85.2, 81.1, 80.2, 55.3, 54.6, 21.3, 20.9, 20.5, 20.2. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₈N₂NaO₅⁺ 377.1113, found: 377.1111. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254 nm, t_r (minor diastereomer) = 38.2 min; t_r (major diastereomer) = 31.7 min.

3-(2-nitro-1-phenylbutyl)-2-oxoindolin-3-yl acetate (3ar).

0₂N . Purple solid; 29.4mg, 90% yield, 4:1 dr, 99% ee; $[\alpha]^{20}$ = +0.9 (c CH₃ AcO 5.66, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) δ 7.72 (s, 1H), 7.58 (s, 0.2H), 7.30 (d, *J* = 7.2 Hz, 0.3H), 7.21 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.11-6.96 (m, 7H), 6.92 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.91 (d, *J* = 1.2 Hz, 0.2H), 6.39 (d, J = 7.8 Hz, 1H), 5.93-5.83 (m, 0.3H), 5.62 (td, J = 10.8, 3.6 Hz, 1H), 4.21 (d, J = 10.8 Hz, 1H)10.2 Hz, 0.3H), 4.03 (d, J = 10.8 Hz, 1H), 2.74 (ddd, J = 14.4, 7.2, 3.6 Hz, 1H), 2.32-2.23 (m, 1H), 2.12 (s, 3H), 2.01 (s, 0.7H), 1.07 (t, J = 7.2 Hz, 3H), 0.84 (t, J = 7.2 Hz, 0.8H). ¹³C NMR (151 MHz, CDCl₃) δ 174.3, 174.1, 168.4, 168.0, 140.4, 140.2, 132.4, 131.3, 130.0, 130.0, 128.0, 128.0, 127.7, 127.0, 122.9, 122.8, 122.7, 122.6, 109.8, 109.8, 91.4, 86.3, 81.1, 80.6, 55.0, 53.9, 31.2, 29.7, 27.3, 26.9, 20.9, 20.2, 10.8, 9.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₀N₂NaO₅ 391.1270, found: 391.1274. HPLC: Chiralpak ID-H column, hexane/2-propanol = 90/10, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (minor diastereomer) = 34.9 min; t_r (major diastereomer) = 25.8 min.

(S)-3-((S)-2-amino-1-phenylethyl)-2-oxoindolin-3-yl acetate (5aa).

 H_2N

:0

AcO,

Yellow solid; 33.6 mg, 95% yield, 85:1 dr, 99% *ee*; $[\alpha]^{20}_{D} = -6.7$ (*c* 11.26, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 9.09 (s, 1H),

7.13-7.04 (m, 4H), 7.00-6.98 (m, 2H), 6.86 (t, J = 7.8 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 6.36 (t, J = 5.4 Hz, 1H), 5.58 (s, 1H), 4.10-4.00 (m, 1H), 3.69-3.61 (m, 1H), 3.50-3.44 (m, 1H), 2.85 (s, 2H), 1.69 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 179.7, 170.8, 140.5, 135.9, 130.2, 129.4, 129.3, 127.9, 127.2, 124.5, 122.4, 110.3, 78.5, 52.1, 38.5, 23.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₈N₂NaO₃ 333.1215, found: 333.1216. HPLC: Chiralpak ID-H column, hexane/2-propanol = 85/15, flow rate = 1.0 mL min⁻¹, 254 nm, t_r (major diastereomer) = 29.5 min.

11.Copies of HPLC

检测器A Ch1 254nm

23.623

25.881

21.364

mV

Peak#	Retention Time	Area	Area%
1	12.734	190334	3.029
2	14.151	2936640	46.740
3	18.405	2971784	47.300
4	22.818	184149	2.931

Peak#	Retention Time	Area	Area%
1	12.578	344538	3.135
2	14.118	730013	6.643
3	18.562	519939	4.731
4	21.163	9395240	85.491

4

32.148

109089

0.749

Peak#	Retention Time	Area	Area%
1	12.064	11925087	46.985
2	14.082	365562	1.440
3	18.665	12585122	49.586
4	20.493	504834	1.989

Peak#	Retention Time	Area	Area%
1	12.127	103656	0.667
2	14.144	35151	0.226
3	18.742	15207237	97.928
4	20.504	182978	1.178

Peak#	Retention Time	Area	Area%
1	17.664	27723	47.655
2	19.180	27723	50.837
3	23.271	288	0.757
4	36.432	143	0.751

mV

Peak#	Retention Time	Area	Area%
1	12.030	122780	13.526
2	19.248	258250	35.867
3	20.504	92347	14.619
4	23.383	217678	35.987

1.845

23.473

Peak#	Retention Time	Area	Area%
1	33.584	5310223	42.913
2	38.200	4998420	40.393
3	42.939	1188785	9.607
4	51.941	877071	7.088

926720

575078

1.726

1.071

43.635

53.005

3

4

Peak#	Retention Time	Area	Area%
1	14.772	45642	0.462
2	21.414	45616	0.462
3	24.371	122151	1.236
4	33.705	9667330	97.840

Peak#	Retention Time	Area	Area%
1	23.194	33449107	29.213
2	26.467	33548438	29.300
3	37.936	23232176	20.290
4	41 391	24270092	21 197

mV

1 outin		11100	11104/0
1	10.949	422466	0.647
2	13.268	401365	0.615
3	15.498	1417558	2.172
4	17.189	63018181	96.565

mV

mV

91.493

3.859

mV

3

4

16.698

20.729

58009773

2447039

mV

mV

29.502

12374432

100.000

1

12.Copies of NMR Spectra

The ¹H-NMR of 3aa

The ¹³C-NMR of 3ab

The ¹³C-NMR of 3ac

The ¹³C-NMR of 3ad

The ¹³C-NMR of 3af

The ¹³C-NMR of 3ah

The ¹³C-NMR of product 3an

The ¹³C-NMR of product 3ao

The ¹³C-NMR of product 3ap

The ¹³C-NMR of product 3ba

The ¹³C-NMR of product 3ca

The ¹³C-NMR of product 3ea

The ¹³C -NMR of product 3ia

The ¹³C-NMR of product 3aq

The ¹³C-NMR of product 3ar

The ¹³C-NMR of product 4aa

The ¹³C-NMR of product 5aa