Double asymmetric synthesis: faster reactions are more selective and a model to estimate relative rate

Christopher J. Richards* and O. Stephen Ojo
School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K.

Supporting Information

Table of Contents.

1. Equations used in this study. Page S3
2. Examples used in Scheme 3, Table 1, and additional examples, including the determination of $y_{\text {pred }}$.

Page S7
3. Examples used in Table 2,
and additional examples, including the determination of $\mathrm{Y}_{\text {pred }}$.
Page S26
4. Graphical representation of the predicted reaction progress of the example given in Scheme 3.

Page S30
5. Examples of the determination of $s_{\text {est }}$ from dr values
in a matched/mismatched double asymmetric synthesis.
Page S33
6. Additional experimental details, NMR spectra and HPLC chromatographs.

Page S35

1. Equations used in this study.

1a. Calculation of the selectivity factor sas a function of C and ee e_{1} (equation 1).
V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237-6240.
H. B. Kagan and J.-C. Fiaud, Kinetic Resolution. Top. Stereochem., 1988, 18, 249-330.
$k_{\text {fast }} / k_{\text {slow }}=s=\frac{\ln \left[(1-C)\left(1-\mathrm{ee}_{1}\right)\right]}{\ln \left[(1-C)\left(1+\mathrm{ee}_{1}\right)\right]}$

1b. Calculation of the diastereofacial selectivities (equations 2 and 3).
S. El-Baba, J.-C. Poulin and H. B. Kagan, Tetrahedron, 1984, 40, 4275-4284.
H. B. Kagan, Tetrahedron, 2001, 57, 2449-2468. [Note - eq. 3 is given incorrectly in the second of these references].
$\left[R, R^{\prime}\right] /\left[R, S^{\prime}\right]=\operatorname{dr}\left[\left(1+e e_{2}\right) /\left(1+e e_{3}\right)\right] \quad$ (eq. 2)
$\left[S, S^{\prime}\right] /\left[S, R^{\prime}\right]=\operatorname{dr}\left[\left(1-\mathrm{ee}_{2}\right) /\left(1-\mathrm{ee}_{3}\right)\right] \quad$ (eq. 3)

1c. Mass balance check (equation 4).

S. El-Baba, J.-C. Poulin and H. B. Kagan, Tetrahedron, 1984, 40, 4275-4284.
$Y=x_{1} \mathrm{ee}_{1}+x_{2} \mathrm{ee}_{2}+x_{3} \mathrm{ee}_{3}$

1d. Horeau equation (equation 5).

J. P. Guetté and A. Horeau, Bull. Soc. Chim. Fr., 1967, 1747.
$x_{2} \mathrm{ee}_{2}+x_{3} \mathrm{ee}_{3}=0$ when $C=1$

1e. Basis of double asymmetric synthesis (equations 6 and 7).
S. Masamune, W. Choy, J. S. Petersen and L. R. Sita, Angew. Chem. Int. Ed. Engl., 1985, 24, 1-30.

$$
\begin{align*}
\Delta \Delta G^{\ddagger}(\text { matched }) & =\Delta \Delta G_{1}^{\ddagger}+\Delta \Delta G_{2}^{\neq}+\Delta G_{12}^{\neq} \tag{eq.6}\\
\Delta \Delta G^{\ddagger}(\text { mismatched }) & =\Delta \Delta G_{1}^{\ddagger}-\Delta \Delta G_{2}^{\ddagger}+\Delta G^{\prime}{ }_{12}^{\prime} \tag{eq.7}
\end{align*}
$$

1f. Calculation of $s_{\text {est }}$ and $s_{\text {pred }}$ (equation 8).

This work.

From the following model for the addition of YH:

$$
\begin{gathered}
s=\frac{k_{R, R^{\prime}}+k_{R, S^{\prime}}}{k_{S, S^{\prime}}+k_{S, R^{\prime}}}=\frac{k_{\text {matched }}}{k_{\text {mismatched }}} \simeq \frac{\mathrm{xy}+1}{\mathrm{x}+\mathrm{y}} \text { (eq. 8) } \\
\mathrm{x}=\text { substrate } \operatorname{dr}(\mathrm{x}: 1) \mathrm{y}=\text { catalyst er }(\mathrm{y}: 1) \\
\text { Use of } \mathrm{x}=\mathrm{x}_{\text {est }} \text { and } \mathrm{y}=\mathrm{y}_{\text {est }} \text { give } s_{\text {est }} \\
\text { Use of } \mathrm{x}=\mathrm{x}_{\text {pred }} \text { and } \mathrm{y}=\mathrm{y}_{\text {pred }}=s_{\text {pred }}
\end{gathered}
$$

1g. Derivation of equations 9 and 10.

This work. From the model in section 1 f (above):
$x=$ substrate selectivity
$y=$ catalyst selectivity
$x y=$ ratio of matched/matched vs. mismatched/mismatched $=\left(R, R^{\prime}\right) /\left(R, S^{\prime}\right)=\mathrm{a}$
$x / y=\left(S, S^{\prime}\right) /\left(S, R^{\prime}\right)=\mathrm{b}$
Therefore:
$y=a / x=a / b y(a s x=b y)$, so $y^{2}=a / b$, and $y=$ squareroot of $a / b=y_{\text {est }}$ (yest being the value of y derived in this way).

Similarly:
$x=a / y=x_{\text {est }}=a / y_{\text {est }}$ ($x_{\text {est }}$ being the value of x derived in this way).

1h. Determination of the ratio $d r_{\text {matched }} / d r_{\text {mismatched }}($ equation 11).

Ratio of selectivities $=y^{2}($ where $y<x)$
Ratio of selectivities $=x^{2}($ where $y>x)$
Proof as:
Two ratios: $\mathrm{x}: 1$ (substrate selectivity) and $\mathrm{y}: 1$ (catalyst selectivity)
As before (see 1f) relative rates as: $R, R^{\prime}=\mathrm{xy}, R, S^{\prime}=1, S, R^{\prime}=\mathrm{y}, S, S^{\prime}=\mathrm{x}$.
$d r^{\prime}=x y$ and $d r^{\prime \prime}=x / y$ where $y<x$ Therefore $d r^{\prime} / d r^{\prime \prime}=x y$ divided $b y / y=x y^{2} / x=y^{2}$.
Or
$d r^{\prime}=x y$ and $d r^{\prime \prime}=y / x$ where $y>x$ Therefore $d r^{\prime} / d r^{\prime \prime}=x y$ divided by $y / x=y x^{2} / y=x^{2}$.

1i. Calculation $x_{\text {pred }}($ equation 12).

This work.
$x_{\text {pred }}=\frac{k_{R, R^{\prime}}+k_{S, S^{\prime}}}{k_{R, S^{\prime}}+k_{S, R^{\prime}}} \quad$ eq. 12
where $k_{R, R^{\prime}}, k_{S, R^{\prime}}$ and $k_{S, s^{\prime}}$ are the relative rate values with $k_{R, s^{\prime}}=1$

1j. Calculation of conversion as a function of dr, $e e_{1}, e_{2}$ and $e e_{3}$.
H. B. Kagan, Tetrahedron, 2001, 57, 2449-2468.
$C=\left[(1+d r) e e_{1}\right] /\left[d r\left(e e_{1}-e e_{2}\right)+e e_{1}-e e_{3}\right] \quad(e q .13)$
1 k . Determination of C as a function of s and e_{1}.
G. Balavoine, A. Moradpour and H. B. Kagan, J. Am. Chem. Soc., 1974, 96, 5152-5158.

As decribed in this paper C may be determined as a function of e_{1} and s as:
$C=1-\frac{1}{2}\left[\left(\frac{1+\mathrm{ee}_{1}}{1-\mathrm{ee}_{1}}\right)^{\frac{1}{2}-\frac{1}{\mathrm{~g}}}+\left(\frac{1+\mathrm{ee}_{1}}{1-\mathrm{ee}_{1}}\right)^{-\frac{1}{2}-\frac{1}{\mathrm{~g}}}\right] \quad$ where $\mathrm{g}=2 \frac{s-1}{s+1}$

Alternatively, as derived from eq. 1:

$$
C=1-\frac{\left(1-\mathrm{ee}_{1}\right)^{1 /(s-1)}}{\left(1+\mathrm{ee}_{1}\right)^{s /(s-1)}}
$$

11. Calculation of the reaction mixture composition.

Knowing C for a given value of s and ee_{1} can then calculate (where R is the fast reacting enantiomer)
\% major enantiomer (S) of recovered starting material $=\%_{\text {sm }}^{\text {major }}$ $=$ $(1-C) \times\left(\left(e e_{1} \times 100\right)+100\right) / 2$
\% minor enantiomer (R) of recovered starting material $=\%_{\text {sm }}^{\text {minor }}$ $=$ $((1-C) \times 100)-\% s m_{\text {major }}$
$\%$ of the major reacted (R) enantiomer $=\% \operatorname{prod}_{\text {major }}=$ $50-\% \mathrm{sm}_{\text {minor }}$
\% of the minor reacted (S) enantiomer $=\%$ prod $_{\text {minor }}=$ $50-\% \mathrm{sm}_{\text {major }}$

And then knowing the $\left[R, R^{\prime}\right] /\left[R, S^{\prime}\right]$ and $\left[S, S^{\prime}\right] /\left[S, R^{\prime}\right]$ ratios:

Therefore

$$
\mathrm{ee}_{2}=\frac{\%\left[R, R^{\prime}\right]-\%\left[S, S^{\prime}\right]}{\%\left[R, R^{\prime}\right]+\%\left[S, S^{\prime}\right]} \quad \text { ee } e_{3}=\frac{\%\left[S, R^{\prime}\right]-\%\left[R, S^{\prime}\right]}{\%\left[S, R^{\prime}\right]+\%\left[R, S^{\prime}\right]} \quad \mathrm{dr}=\frac{\%\left[R, R^{\prime}\right]+\%\left[S, S^{\prime}\right]}{\%\left[S, R^{\prime}\right]+\%\left[R, S^{\prime}\right]}
$$

2. Examples used in Scheme 3, Table 1, and additional examples, including the determination of $\mathrm{Y}_{\text {pred }}$ -

Each example is of a different substrate/catalyst combination. Where a paper reports two of more examples of the same substrate/catalyst combination, just one example is listed. Examples with Y (equation 4) outside of the range -0.05 to 0.05 are not included unless the percentage conversion was recalculated using equation 13 with reported values of $d r, e_{1}, e_{2}$ and $e e_{3}$, as determined by HPLC (and for which as a consequence $Y=0$). The stereochemical descriptor (R / S) of the product is that of the enantiomer of the starting material from which it it derived. In most cases this is the correct stereochemical descriptor for the product, but if not this is noted. By extension, the sign of the ee of the product is positive if derived from the R enantiomer of the starting material, and -ve if derived from the S enantiomer of the starting material. For the determination of $s_{\text {pred }}$ the value of $y_{\text {pred }} u s e d$ was determined from the ee value resulting from application of the same or similar catalyst/reaction conditions on a closely related prochiral substrate. This example is given after each reaction/set of reactions.
P. C. B. Page, L. F. Appleby, Y. Chan, D. P. Day, B. R. Buckley, A. M. Z. Slawin, S. M. Allin and M. J. McKenzie, J. Org. Chem., 2013, 78, 8074-8082.

Scheme S1. Example 1. From Table 3, entry 1.

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Y est	$\mathrm{x}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {pred }}$	S $k_{\text {matched }} /$ $k_{\text {mismatched }}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.52	0.343	0.137	0.03	156	0.17	5.1	30.7	2.7	4.4	2.4	2.3	26
(-0.26)	(0.87)	(-0.97)										

Relative rate: $\left[R, R^{\prime}\right]=156,\left[S, R^{\prime}\right]=60,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=9.9$. Value of $y_{\text {pred }}=16$.

Scheme S2. Example 2. From Table 3, entry 2 (example used in manuscript - Scheme 3).

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Y est	$\mathrm{X}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {pred }}$	S $k_{\text {matched }} /$ $k_{\text {mismatched }}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.48	0.39	0.13	0.03	186	0.21	6.3	29.5	3.7	5.2	3.5	2.9	40
(-0.37)	(0.86)	(-0.97)										

Relative rate: $\left[R, R^{\prime}\right]=186,\left[S, R^{\prime}\right]=53,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=11$. Value of $y_{\text {pred }}=66$.

Scheme S3. Example 3. From Table 3, entry 3.

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	Xest	Yest	$\mathrm{X}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {spred }}$	S $k_{\text {matched }} /$ $k_{\text {mismatched }}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.50	0.40	0.10	0.05	374	0.26	9.9	37.7	4.5	7.9	3.5	3.4	98
(-0.40)	(0.87)	(-0.98)										

Relative rate: $\left[R, R^{\prime}\right]=374,\left[S, R^{\prime}\right]=88,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=23$. Value of $y_{\text {pred }}=16$.

Scheme S4. Example 4. From Table 3, entry 4.

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Yest	$\mathrm{X}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {pred }}$	S $k_{\text {matched }} /$ $k_{\text {mismatched }}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.44	0.436	0.124	0.02	76	0.49	6.1	12.4	4.4	4.2	4.2	2.8	38
(-0.41)	(0.73)	(-0.92)										

Relative rate: $\left[R, R^{\prime}\right]=76,\left[S, R^{\prime}\right]=18,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=9$. Value of $y_{\text {pred }}=66$.

Scheme S5. Example 5. From Table 3, entry 7.

x_{1} $\left(\mathrm{ee}_{1}\right)$	X_{2} $\left(\mathrm{ee}_{2}\right)$	X_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Yest	$\mathrm{X}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {spred }}$	S $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.62	0.345 (0.76)	0.035 (-0.82)	-0.03	96	1.3	11.2	8.6	16.5	4.9	8.1	8.0	74

Relative rate: $\left[R, R^{\prime}\right]=96,\left[S, R^{\prime}\right]=5.3,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=6.9$. Value of $y_{\text {pred }}=16$.

Scheme S6. Example 6. From Table 3, entry 8.

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ $d r_{\text {mis- }}$ matched
$\begin{aligned} & \hline 0.64 \\ & (-0.50) \end{aligned}$	$\begin{aligned} & 0.339 \\ & (0.88) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (-0.99) \end{aligned}$	-0.04	3035	0.97	54	56	55	28	30	28	2954

Relative rate: $\left[R, R^{\prime}\right]=3035,\left[S, R^{\prime}\right]=55,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=54$. Value of $\mathrm{y}_{\text {pred }}=66$.

Scheme S7. Estimation of ypred. P. C. B. Page, B. R. Buckley, H. Heaney and A. J. Blacker, Org. Lett., 2005, 7, 375-377.

No examples available of epoxidation of the corresponding benzopyran without the two methyl substituents.
\qquad
W. Adam, H.-U. Humpf, K. J. Roschmann and C. R. Saha-Möller, J. Org. Chem., 2001, 66, 5796-5800. From Table 1, entry 3. Example not used as $\mathrm{Y}=0.09$.

Scheme S8. Example 7. From Table 1, entry 4.

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	Xestr	Yest	Xpred	Sest	$S_{\text {Spred }}$	s $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.52	0.466	0.014	0.03	0.0035 (288)	0.12 (8.1)	48.2	6.0	39.9	5.3	10	4.1	36
(-0.43)	(0.56)	(-0.82)										

Relative rate: $\left[R, R^{\prime}\right]=1,\left[S, R^{\prime}\right]=63,\left[R, S^{\prime}\right]=288,\left[S, S^{\prime}\right]=7.8$. Value of $y_{\text {predc }}=13$.
The R and S configurations of the product refer to that of the starting material and not the correct R and S configurations of the product. The reaction displayed a chemoselectivity of $86: 14$, the minor alternative reaction being -OH to $\mathrm{C}=\mathrm{O}$ oxidation.

From Table 1, entry 5. Example not used as poor chemoselectivity (55% oxidation).
From Table 1, entry 5. Example not used as poor chemoselectivity (57% oxidation).
From Table 1, entry 9. Example not used as $Y=0.07$.
Scheme S9. Example 8. From Table 1, entry 10 (example used in manuscript - Table 1, entry 1).

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Yest	$\mathrm{x}_{\text {pred }}$	$S_{\text {est }}$	$S_{\text {Sred }}$	S $k_{\text {mathed }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.62 (-0.21)	0.35 (0.51)	0.03 (-0.56)	0.03	0.025 (40)	0.27 (3.5)	12.1	3.3	11.7	2.7	8.3	2.5	11

Relative rate: $\left[R, R^{\prime}\right]=1,\left[S, R^{\prime}\right]=13,\left[R, S^{\prime}\right]=40,\left[S, S^{\prime}\right]=3.5$. Value of $\mathrm{y}_{\text {pred }}=28$.

Scheme S10. Estimation of ypred. P. J. Pospisil, D. H. Carsten and E. N. Jacobsen, Chem. Eur., J. 1996, 2, 974-980

Scheme S11. Estimation of ypred. B. D. Brandes and E. N. Jacobsen, J. Org. Chem. 1994, 59, 43784380.

M. A. Brimble and A. D. Johnston, Tetrahedron: Asymmetry, 1997, 8, 1661-1676.

Scheme S12. Example 9. Table 1, entries 1-4 (entry 4, example used in manuscript - Table 1, entry 2).

Entry	$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$k_{\text {matched }}$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & 1 \\ & (18 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & \hline 0.892 \\ & (-0.046) \end{aligned}$	$\begin{aligned} & \hline 0.102 \\ & (0.663) \end{aligned}$	$\begin{aligned} & \hline 0.006 \\ & (-0.598) \end{aligned}$	0.02	70	3.6	15.9	4.4	12.3	3.5	1.8	2.3	20
$\begin{aligned} & 2 \\ & (42 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.881 \\ & (-0.068) \end{aligned}$	$\begin{aligned} & 0.113 \\ & (0.657) \end{aligned}$	$\begin{aligned} & \hline 0.006 \\ & (-0.637) \end{aligned}$	0.01	86	4.0	18.4	4.7	16.7	3.8	1.8	3.2	22
$\begin{aligned} & 3 \\ & (113 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & \hline 0.772 \\ & (-0.187) \end{aligned}$	$\begin{aligned} & 0.273 \\ & (0.623) \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & (-0.706) \end{aligned}$	0.02	100	4.0	20.1	5.0	17.4	4.0	1.8	3.2	25
$\begin{aligned} & 4 \\ & (257 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.523 \\ & (-0.404) \end{aligned}$	$\begin{aligned} & 0.449 \\ & (0.519) \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & (-0.820) \end{aligned}$	0.00	135	4.2	23.9	5.7	20.8	4.6	1.9	3.8	32

Relative rate (entry 4$):\left[R, R^{\prime}\right]=135,\left[S, R^{\prime}\right]=6.9,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=29$. Value of $\mathrm{y}_{\text {pred }}=2$.

Scheme S13. Example 10. Table 1, entry 5.

| Entry | x_{1}
 $\left(\mathrm{ee}_{1}\right)$ | x_{2}
 $\left(\mathrm{ee}_{2}\right)$ | x_{3}
 $\left(\mathrm{ee}_{3}\right)$ | Y | $\left[R, R^{\prime}\right] /$
 $\left[R, S^{\prime}\right]$ | $\left[S, S^{\prime}\right] /$
 $\left[S, R^{\prime}\right]$ | $\mathrm{X}_{\text {est }}$ | yest | $\mathrm{X}_{\text {pred }}$ | $S_{\text {est }}$ | $S_{\text {pred }}$ | s
 $k_{\text {matched }} /$
 $k_{\text {mis- }}$
 matched | $\mathrm{dr}_{\text {matched }} /$
 $\mathrm{dr}_{\text {mis- }}$
 matched |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5(18 \mathrm{~h})$ | 0.249
 (0.673) | 0.656
 (-0.461) | 0.095
 (0.857) | -0.05 | 2.0 | 71 | 11.9 | 5.9 | 9.4 | 4.0 | 1.7 | 2.9 | 35 |

Relative rate: $\left[R, R^{\prime}\right]=17,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=8.3,\left[S, S^{\prime}\right]=71$. Value of $y_{\text {pred }}=2$.
Other entries not used as a) entry 2 has $Y=0.06$, and for entries $2-4$ the ee of the starting material decreases with conversion.

Scheme S14. Example 11. Table 2, entries 1-4

Entry	$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & 1 \\ & (18 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & \hline 0.944 \\ & (-0.023) \end{aligned}$	$\begin{aligned} & \hline 0.052 \\ & (0.747) \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (-0.552) \end{aligned}$	0.01	51	2,1	10.4	4.9	8.1	3.4	1.7	2.3	24
$\begin{aligned} & 4 \\ & (257 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & \hline 0.615 \\ & (-0.356) \end{aligned}$	$\begin{aligned} & \hline 0.361 \\ & (0.638) \end{aligned}$	$\begin{aligned} & \hline 0.024 \\ & (-0.802) \end{aligned}$	-0.01	124	3.0	19.4	6.4	20.1	4.9	1.9	5.1	41

Relative rate (entry 4): $\left[R, R^{\prime}\right]=124,\left[S, R^{\prime}\right]=6.1,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=18$. Value of $\mathrm{y}_{\text {pred }}=2$.

Entry 2 not used ($Y=0.09$), entry 3 not used $(Y=0.11)$.

Scheme S15. Example 12. Table 2, entries 5-8

Entry	$\begin{aligned} & \hline \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	x_{3} (еез)	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	$\mathrm{X}_{\text {pred }}$	Sest	$S_{\text {pred }}$	$S \quad=$ $k_{\text {matched }}$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & 5 \\ & (18 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.939 \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.054 \\ & (-0.709) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.645) \end{aligned}$	0.01	1.4	37	7.1	5.2	6.0	3.1	1.6	2.4	27
$\begin{aligned} & 8 \\ & (257 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.537 \\ & (0.369) \end{aligned}$	$\begin{aligned} & 0.417 \\ & (-0.558) \end{aligned}$	$\begin{aligned} & 0.046 \\ & (0.823) \end{aligned}$	0.00	2.2	80	13.2	6.0	11.7	4.2	1.8	3.5	36

Relative rate (entry 8): $\left[R, R^{\prime}\right]=16,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=7.2,\left[S, S^{\prime}\right]=80$. Value of $y_{\text {pred }}=2$.
Entry 6 not used ($Y=0.12$), entry 7 not used ($Y=0.07$).

Scheme S16. Example 13. Table 3, entries 1-4

Entry	$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$s$$k_{\text {matched }} /$$k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & 1 \\ & (18 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.904 \\ & (-0.016) \end{aligned}$	$\begin{aligned} & 0.089 \\ & (0.619) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (-0.481) \end{aligned}$	0.04	40	3.3	11.4	3.5	7.9	2.7	1.7	1.4	24
$\begin{aligned} & 3 \\ & (113 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.708 \\ & (-0.101) \end{aligned}$	$\begin{aligned} & 0.274 \\ & (0.427) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (-0.501) \end{aligned}$	0.04	44	5.8	15.9	2.7	14.0	2.4	1.8	1.8	8

Relative rate (entry 3): $\left[R, R^{\prime}\right]=44,\left[S, R^{\prime}\right]=3.6,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=21$. Value of $y_{\text {pred }}=2$.
Entry 2 not used $(Y=0.07)$, entry 4 not used $(Y=0.09)$.

Scheme S17. Example 14. Table 3, entries 5-8.

Entry	$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{array}{\|l\|l} S \\ k_{\text {matched }} / \\ k_{\text {mis- }} \\ \text { matched } \end{array}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & 5 \\ & (18 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 0.937 \\ & (0.006) \end{aligned}$	$\begin{aligned} & \hline 0.061 \\ & (-0.348) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.519) \end{aligned}$	-0.01	13	85	33.5	2.6	25.0	2.4	1.9	1.2	7

Relative rate: $\left[R, R^{\prime}\right]=67,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=5.1,\left[S, S^{\prime}\right]=86$. Value of $\mathrm{y}_{\text {pred }}=2$.
Entry 6 not used as $s<1.1$ (1.03). Entry 7 not used ($Y=0.06$), entry 8 not used ($Y=0.07$).

Scheme S18. Example 15. Table 4, entry 1.

$\begin{aligned} & \hline \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$S \quad=$ $k_{\text {matched/ }}$ $k_{\text {mis }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & \hline 0.561 \\ & (-0.18) \end{aligned}$	$\begin{aligned} & 0.407 \\ & (0.37) \end{aligned}$	$\begin{aligned} & \hline 0.032 \\ & (-0.56) \end{aligned}$	0.03	40	5.1	14.3	2.8	12.8	2.4	3.1	1.9	8

Relative rate: $\left[R, R^{\prime}\right]=40,\left[S, R^{\prime}\right]=3.5,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=18$. Value of $y_{\text {pred }}=4$.

Scheme S19. Example 16. Table 4, entry 2.

$\begin{aligned} & \mathrm{X}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x} 2 \\ & (\mathrm{ee} 2) \end{aligned}$	$\begin{aligned} & \text { x }_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{aligned} & s \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ drmis- matched
$\begin{aligned} & 0.15 \\ & (0.67) \end{aligned}$	$\begin{aligned} & 0.753 \\ & (-0.25) \end{aligned}$	$\begin{aligned} & 0.097 \\ & (0.78) \end{aligned}$	0.01	3.3	44	12.0	3.7	10.2	2.9	3.8	2.2	14

Relative rate: $\left[R, R^{\prime}\right]=16,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=4.9,\left[S, S^{\prime}\right]=44$. Value of $y_{\text {pred }}=6$.

Scheme S20. Example 17. Table 4, entry 3.

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{aligned} & s= \\ & k_{\text {matched }} \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\begin{aligned} & \mathrm{dr}_{\text {matched }} / \\ & \mathrm{dr}_{\text {mis- }} \\ & \text { matched } \end{aligned}$
$\begin{aligned} & \hline 0.271 \\ & (-0.51) \end{aligned}$	$\begin{aligned} & 0.662 \\ & (0.34) \end{aligned}$	$\begin{aligned} & \hline 0.067 \\ & (-0.71) \end{aligned}$	0.04	46	3.8	13.2	3.5	11.7	2.8	3	2.3	12

Relative rate: $\left[R, R^{\prime}\right]=46,\left[S, R^{\prime}\right]=4.3,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=16$. Value of $\mathrm{y}_{\text {pred }}=4$.

Table 4, entry 4 not used ($\mathrm{Y}=0.12$).
Table 4, entry 5 not used ($\mathrm{Y}=0.17$).
Table 4, entry 6 not used ($Y=0.06$).

Scheme S21. Estimation of Ypred. L. Wang and K. B. Sharpless, J. Am. Chem. Soc., 1992, 114, 75687570.

ee $=35 \%\left(y_{\text {pred }}\right)=2$
*Exact conditions not stated.

ee $=72 \%\left(y_{\text {pred }}\right)=6$

$$
\mathrm{ee}=59 \%\left(\mathrm{y}_{\text {pred }}\right)=4
$$

${ }^{\ddagger} 2 \mathrm{~mol} \%$ ligand, $0.2 \mathrm{~mol} \% \mathrm{OsO}_{4}, 1$ eq. $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$, 3 eq. $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 3$ eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ $0^{\circ} \mathrm{C}, 1: 1 \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$.
P. Dorizon, C. Martin, J.-C. Daran, J.-C. Fiaud and H. B. Kagan, Tetrahedron: Asymmetry, 2001, 12, 26252630.

Scheme S22. Example 18. Table 2, entry 2 (example used in manuscript - Table 1, entry 3).

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Yest	$\mathrm{X}_{\text {pred }}$	$S_{\text {Sest }}$	$S_{\text {pred }}$	s $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.37	0.57	0.06	0.00	1653	1.2	45.3	36.5	42.1	20	24	19	1332
(-0.991)	(0.74)	(-0.99)										

Relative rate: $\left[R, R^{\prime}\right]=1653,\left[S, R^{\prime}\right]=39,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=49$. Value of $\mathrm{y}_{\text {pred }}=56$.
A conversion of 63% was calculated using eq. 13. With the literature conversion of $59 \% Y=-0.07$. Such is the sensitivity of the value of s to conversion that this resulted in the literature value of 27 changing to a value of 19. This is one of nine examples of this reaction in this manuscript for which the ee values of all three components of the kinetic resolution are reported.

Scheme S23. Estimation of ypred. E. J. Corey, R. K. Bakshi, S. Shibata, C.-P. Chen and V. K. Singh, J. Am. Chem. Soc., 1987, 109, 7925-7926.

H.-G. Schmalz and H. Jope, Tetrahedron, 1998, 54, 3457-3464.

Scheme S24. Example 19. Table 1, entry 1 (example used in manuscript - Table 1, entry 4).

| x_{1}
 $\left(\mathrm{ee}_{1}\right)$ | x_{2}
 $\left(\mathrm{ee}_{2}\right)$ | x_{3}
 $\left(\mathrm{ee}_{3}\right)$ | Y | $\left[R, R^{\prime}\right] /$
 $\left[R, S^{\prime}\right]$ | $\left[S, S^{\prime}\right] /$
 $\left[S, R^{\prime}\right]$ | $\mathrm{X}_{\text {est }}$ | Yest | $\mathrm{x}_{\text {pred }}$ | $S_{\text {est }}$ | $S_{\text {Sred }}$ | S
 $k_{\text {matched }} /$
 $k_{\text {mis- }}$
 matched | $\mathrm{dr}_{\text {matched }} /$
 $\mathrm{dr}_{\text {mis- }}$
 matched |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.54
 (-0.33) | 0.36
 (0.91) | 0.10
 (-0.98) | 0.05 | 344 | 0.16 | 7.5 | 45.8 | 3.7 | 6.5 | 3.5 | 3.1 | 56 |

Relative rate: $\left[R, R^{\prime}\right]=344,\left[S, R^{\prime}\right]=96,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=16$. Value of $y_{\text {pred }}=56$.
This is one of four examples of this reaction in this manuscript for which the ee values of all three components of the kinetic resolution are reported.

Scheme S25. Estimation of ypred. E. J. Corey, R. K. Bakshi, S. Shibata, C.-P. Chen and V. K. Singh, J. Am. Chem. Soc., 1987, 109, 7925-7926

J. Yun and S. L. Buchwald, J. Org. Chem., 2000, 65, 767-774.

Scheme S26. Example 20. Table 1, entry 3.

(*As corresponding ketone)

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{aligned} & s \\ & k_{\text {matched }} /= \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ dr mis- matched
$\begin{aligned} & \hline 0.40 \\ & (-0.90) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (0.74) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (-0.74) \end{aligned}$	-0.05	38	0.85	5.7	6.7	14.1	3.1	11	11.7	32

Relative rate: $\left[R, R^{\prime}\right]=38,\left[S, R^{\prime}\right]=1.8,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=1.52$. Value of $\mathrm{y}_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(-0.05)$, as $Y=0.08$ for the alternative (R, S^{\prime}) outcome.

One other example with this substrate catalyst combination.

Scheme S27. Example 21. Table 1, entry 5.

$\begin{aligned} & \mathrm{X} 1 \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X} 2 \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	X3 (ee3)	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	S pred	$\begin{aligned} & s \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ drmis- matched
$\begin{aligned} & \hline 0.46 \\ & (0.74) \end{aligned}$	$\begin{aligned} & \hline 0.473 \\ & (-0.75) \end{aligned}$	$\begin{aligned} & 0.068 \\ & (0.53) \end{aligned}$	0.02	$\begin{aligned} & \hline 0.85 \\ & (1.14) \end{aligned}$	$\begin{gathered} \hline 0.038 \\ (26) \end{gathered}$	5.5	4.8	11.9	2.6	9.6	9.5	23

Relative rate: $\left[R, R^{\prime}\right]=1.3,\left[S, R^{\prime}\right]=26,\left[R, S^{\prime}\right]=1.5,\left[S, S^{\prime}\right]=1$. Value of $\mathrm{y}_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(0.02)$, as $Y=-0.05$ for the alternative (S, S^{\prime}) outcome.

One other example with this substrate catalyst combination.

Scheme S28. Example 22. Table 2, entry 3.

(*As corresponding ketone)

x_{1} $\left(\mathrm{ee}_{1}\right)$	x_{2} $\left(\mathrm{ee}_{2}\right)$	x_{3} $\left(\mathrm{ee}_{3}\right)$	Y	$\left[R, R^{\prime}\right] /$ $\left[R, S^{\prime}\right]$	$\left[S, S^{\prime}\right] /$ $\left[S, R^{\prime}\right]$	$\mathrm{X}_{\text {est }}$	Yest	X pred	$S_{\text {Sest }}$	$S_{\text {pred }}$ S	S $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
0.49	0.495	0.015	-0.01	0.34 (3.0)	0.012 (87)	16.1	5.4	51	4.1	25	29	29
(-0.86)	(0.30)											

Relative rate: $\left[R, R^{\prime}\right]=0.76,\left[S, R^{\prime}\right]=87,\left[R, S^{\prime}\right]=2.28,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(-0.01)$, as $Y=-0.02$ for the alternative $\left(S, S^{\prime}\right)$ outcome.

Three other examples with this substrate catalyst combination run at $15^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ and $-30^{\circ} \mathrm{C}$. Two of these below.

At $15{ }^{\circ} \mathrm{C}$ (Table 2, entry 1)

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & (\mathrm{ee} 2) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{aligned} & s \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & \hline 0.43 \\ & (0.92) \end{aligned}$	$\begin{aligned} & 0.533 \\ & (-0.77) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (0.42) \end{aligned}$	0.00	$\begin{aligned} & \hline 0.43 \\ & (2.33) \end{aligned}$	$\begin{gathered} \hline 0.023 \\ (44) \end{gathered}$	10.1	4.3	25.9	3.1	17	17.6	19

Relative rate: $\left[R, R^{\prime}\right]=0.77,\left[S, R^{\prime}\right]=44,\left[R, S^{\prime}\right]=1.79,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(0.00)$, as $Y=-0.03$ for the alternative (S, S^{\prime}) outcome.

At $0^{\circ} \mathrm{C}$ (Table 2, entry 2)

$\begin{aligned} & \hline \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X} 2 \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{array}{\|l} S \\ k_{\text {matched }} / \\ k_{\text {mis- }} \\ \text { matched } \end{array}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & \hline 0.45 \\ & (0.93) \end{aligned}$	$\begin{aligned} & \hline 0.523 \\ & (-0.83) \end{aligned}$	$\begin{aligned} & \hline 0.027 \\ & (0.41) \end{aligned}$	0.00	$\begin{aligned} & \hline 0.43 \\ & (2.34) \end{aligned}$	$\begin{gathered} \hline 0.017 \\ (60) \end{gathered}$	11.8	5.1	35.4	3.6	21	24.5	26

Relative rate: $\left[R, R^{\prime}\right]=0.75,\left[S, R^{\prime}\right]=60,\left[R, S^{\prime}\right]=1.74,\left[S, S^{\prime}\right]=1$. Value of $\mathrm{y}_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(0.00)$, as $Y=-0.03$ for the alternative $\left(S, S^{\prime}\right)$ outcome.

Scheme S29. Example 23. Table 2, entry 5.

(*As corresponding ketone)

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { x3 } \\ & \left(\mathrm{eef}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$s=$ $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	dr matched/ dr mismatched
$\begin{aligned} & \hline 0.49 \\ & (-0.83) \end{aligned}$	$\begin{aligned} & 0.482 \\ & (0.89) \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & (-0.64) \end{aligned}$	0.00	90	1.15	10.2	8.8	32.3	4.8	20	22.8	78

Relative rate: $\left[R, R^{\prime}\right]=90,\left[S, R^{\prime}\right]=1.86,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=2.15$. Value of $\mathrm{y}_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(0.00)$, as $Y=0.04$ for the alternative (R, S^{\prime}) outcome.

One other example with this substrate catalyst combination.

Scheme S30. Example 24. Table 3, entry 1 (example used in manuscript - Table 1, entry 5).

(*As corresponding ketone)

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	X2 (ee_{2})	X3 (ee3)	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	$S_{\text {est }}$	$S_{\text {pred }}$	$\begin{aligned} & s \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ dr mis- matched
$\begin{aligned} & 0.46 \\ & (0.96) \end{aligned}$	$\begin{aligned} & 0.513 \\ & (-0.90) \end{aligned}$	$\begin{aligned} & 0.027 \\ & (0.99) \end{aligned}$	0.01	1.05	$\begin{aligned} & 0.00028 \\ & (3610) \end{aligned}$	58.7	61.5	74.8	30	30	38.6	3447

Relative rate: $\left[R, R^{\prime}\right]=48,\left[S, R^{\prime}\right]=3610,\left[R, S^{\prime}\right]=46,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using Y (0.01), as $Y=-0.05$ for the alternative $\left(S, S^{\prime}\right)$ outcome.

Scheme S31. Example 25. Table 3, entry 5.

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	$S_{\text {est }}$	$S_{\text {pred }}$	$\begin{aligned} & s \quad= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr ${ }_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & 0.51 \\ & (-0.89) \end{aligned}$	$\begin{aligned} & 0.4802 \\ & (0.97) \end{aligned}$	$\begin{aligned} & 0.0098 \\ & (-0.99) \end{aligned}$	0.00	9653	$\begin{aligned} & 0.74 \\ & (1.35) \end{aligned}$	84.4	114	135	49	36	78	7131

Relative rate: $\left[R, R^{\prime}\right]=9653,\left[S, R^{\prime}\right]=71,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=52$. Value of $y_{\text {pred }}=49$.
The configuration of the minor product diastereisomer assigned using $Y(0.00)$, as $Y=0.02$ for the alternative (R, S^{\prime}) outcome.

One other example with this substrate catalyst combination.
 Chem. Soc. 1996, 118, 6784-6785.

H. Mihara, Y. Sohtome, S. Matsunaga and M. Shibasaki, Chem. Asian J., 2008, 3, 359-366.

Scheme S33. Example 26. Table 3, entry 1, and Scheme 3 (example used in manuscript - Table 1, entry 6).

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	$S_{\text {est }}$	$S_{\text {pred }}$	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & \hline 0.48 \\ & (0.80) \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & (-0.96) \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & (0.99) \end{aligned}$	-0.04	4.1	$\begin{aligned} & \hline 0.0004 \\ & (2352) \end{aligned}$	23.8	98.7	20.0	19	10	16	567

Relative rate: $\left[R, R^{\prime}\right]=118,\left[S, R^{\prime}\right]=2352,\left[R, S^{\prime}\right]=29,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=21$.
Five further examples with this substrate catalyst combination.
Scheme S34. Estimation of $\mathrm{y}_{\text {pred. T. Arai, H. Sasai, K. Aoe, K. Okamura, T. Date and M. Shibasaki, Angew. }}$ Chem., Int. Ed. Engl., 1996, 35, 104-106.

M. Takagi and K. Yamamoto, Tetrahedron, 1991, 47, 8869-8882.

Scheme S35. Example 27. Table 4, entry 2 (example used in manuscript - Table 1, entry 7).

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \text { x }_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & \hline 0.37 \\ & (-0.90) \end{aligned}$	$\begin{aligned} & 0.485 \\ & (0.74) \end{aligned}$	$\begin{aligned} & \hline 0.145 \\ & (-0.18) \end{aligned}$	0.00	7.1	$\begin{aligned} & \hline 0.74 \\ & (1.36) \end{aligned}$	2.3	3.1	5.0	1.5	2.5	9.4	5.2

Relative rate: $\left[R, R^{\prime}\right]=19.3,\left[S, R^{\prime}\right]=1.4,\left[R, S^{\prime}\right]=2.7,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=4.7$.
Conversion used $=63 \%$ (from eq. 11) rather than value of 68% (for which $Y=0.07$).

Scheme S36. Estimation of $y_{\text {pred }}$. Same publication.

C. Fehr, J. Galindo and O. Etter, Eur. J. Org. Chem., 2004, 1953-1957.

Scheme S37. Example 28. Scheme 2 (example used in manuscript - Table 1, entry 8)

| x_{1}
 $\left(\mathrm{ee}_{1}\right)$ | x_{2}
 $\left(\mathrm{ee}_{2}\right)$ | x_{3}
 $\left(\mathrm{ee}_{3}\right)$ | Y | $\left[R, R^{\prime}\right] /$
 $\left[R, S^{\prime}\right]$ | $\left[S, S^{\prime}\right] /$
 $\left[S, R^{\prime}\right]$ | $\mathrm{X}_{\text {est }}$ | Yest | $\mathrm{x}_{\text {pred }}$ | $S_{\text {est }}$ | $S_{\text {Sred }}$ | s
 $k_{\text {mathed }} /$ | $\mathrm{dr}_{\text {matched }} /$
 $\mathrm{dr}_{\text {mis- }}$
 $k_{\text {matched }}$
 mats-
 matched |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.368
 (-0.97) | 0.579
 (0.70) | 0.053
 (-0.80) | 0.01 | 93 | 1.82 | 13.0 | 7.1 | 28.8 | 4.7 | 14 | 14 | 51 |

Relative rate: $\left[R, R^{\prime}\right]=93,\left[S, R^{\prime}\right]=2.4,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=4.3$. Value of $y_{\text {pred }}=28$.
The values of x_{1}, x_{2} and x_{3} determined from the percentage yield values of $35 \%, 55 \%$ and 5% given for (S)-13, (R, R)-product and $\left(S, R^{\prime}\right)$-product respectively, corrected to 100%. The configuration of the minor product diastereisomer confirmed using $Y(0.01)$, as $Y=0.09$ for the alternative (R, S^{\prime}) outcome.

Scheme S38. Estimation of Ypred. E. J. Corey and R. K. Bakshi, Tetrahedron Lett., 1990, 31, 611-614.

T. Soeta, K. Selim, M. Kuriyama and K. Tomioka, Tetrahedron, 2007, 63, 6573-6576.

Scheme S39. Example 29. Table 1, entry 5 (example used in manuscript - Table 1, entry 9).

$\begin{aligned} & \hline \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	dr matched/ dr mis- matched
$\begin{aligned} & 0.400 \\ & (0.95) \end{aligned}$	$\begin{aligned} & \hline 0.522 \\ & (-0.87) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.90) \end{aligned}$	0.00	$\begin{aligned} & \hline 0.46 \\ & (2.2) \end{aligned}$	125	7.6	16.5	19.7	5.2	16	16	57

Relative rate: $\left[R, R^{\prime}\right]=2.5,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=5.5,\left[S, S^{\prime}\right]=125$. Value of $y_{\text {pred }}=99$.
Conversion used $=60 \%$ (from eq. 11). Using the yield values quoted (33% for (R)-13 and 64% for the two product diastereoisomers), adjusted to 100%, gave $\mathrm{Y}=-0.25$.

Scheme S40. Estimation of Ypred. T. Soeta, K. Selim, M. Kuriyama and K. Tomioka, Adv. Synth. Catal., 2007, 349, 629-635.

Scheme S41. Example 30. Table 1, entry 12 (example used in manuscript - Table 1, entry 10).

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{X}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	S est	$S_{\text {pred }}$	S \square $k_{\text {matched }}$ $k_{\text {mis }}$ - matched	dr matched/ drmis- matched
$\begin{aligned} & 0.480 \\ & (-0.91) \end{aligned}$	$\begin{aligned} & 0.489 \\ & (0.93) \end{aligned}$	$\begin{aligned} & 0.031 \\ & (-0.48) \end{aligned}$	0.00	$\begin{aligned} & 0.017 \\ & (58.5) \end{aligned}$	1.34	6.6	8.9	30.5	3.8	26	36	44

Relative rate: $\left[R, R^{\prime}\right]=1.4,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=83,\left[S, S^{\prime}\right]=1.34$. Value of $\mathrm{y}_{\text {pred }}=199$.

Conversion used $=52 \%$ (from eq. 13). Using the quoted conversion value of $48 \%(Y=-0.07)$.
This is one of several examples with this catalyst/substrate/reagent combination with differing catalyst loading ($3 \mathrm{~mol} \%$ to $0.01 \mathrm{~mol} \%$), and in two cases with an alternative Cl^{+}source (NCS and DCDMH). Other catalysts employed gave much reduced level of selectivity.
\qquad

Scheme S42. Example 31. Table 2, entry 14.

$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{x}_{3} \\ & \left(\mathrm{ee}_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	$\mathrm{X}_{\text {pred }}$	Sest	$S_{\text {pred }}$	$\begin{aligned} & s \quad= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$
$\begin{aligned} & 0.45 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (-0.68) \end{aligned}$	$\begin{aligned} & \hline 0.22 \\ & (0.38) \end{aligned}$	-0.05	$\begin{aligned} & \hline 0.35 \\ & (2.9) \end{aligned}$	4.1	1.2	3.4	1.5	1.1	1.5	1.7	1.4

Relative rate: $\left[R, R^{\prime}\right]=1,\left[S, R^{\prime}\right]=1.3,\left[R, S^{\prime}\right]=2.9,\left[S, S^{\prime}\right]=5.2$. Value of $y_{\text {pred }}=199$.
The S and R configurations of the product refer to that of the starting enantiomers from which they are derived, and not the correct R and S configurations of the product.

Scheme S43. Example 32. Table 2, entry 15.

			$0.5 \mathrm{~mol} \%$ (DHQD) ${ }_{2}$ PHAL 0.55 eq. N -chlorophthalimide $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, 24^{\circ} \mathrm{C}$ 50\% conversion			(R)-sm + $40 \% \text { ee }$						
$\begin{aligned} & \mathrm{x}_{1} \\ & \left(\mathrm{ee}_{1}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{x}_{2} \\ & \left(\mathrm{ee}_{2}\right) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \left(e_{3}\right) \end{aligned}$	Y	$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	$S_{\text {est }}$	$S_{\text {pred }}$	$S \quad=$ $k_{\text {matched }}$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & 0.400 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 0.400 \\ & (-0.44) \end{aligned}$	$\begin{aligned} & 0.100 \\ & (0.20) \end{aligned}$	0.04	1.9	7.2	3.7	2.0	4.8	1.5	4.6	3.4	4

Relative rate: $\left[R, R^{\prime}\right]=1.9,\left[S, R^{\prime}\right]=1.2,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=8.5$. Value of $y_{\text {pred }}=199$.
The S and R configurations of the product refer to that of the starting enantiomers from which they are derived, and not the correct R and S configurations of the product.

Scheme S44. Estimation of $\mathrm{y}_{\text {pred. }}$ A. Jaganathan, A. Garzan, D. C. Whitehead, R. J. Staples and B. Borhan, Angew. Chem. Int. Ed., 2011, 50, 2593-2596.

2 mol\% (DHQD) ${ }_{2}$ PHAL

$e e=99 \%\left(y_{\text {pred }}\right)=199$
$\mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH},-30^{\circ} \mathrm{C}$

3. Examples used in Table 2, and additional examples, including the determination of $y_{\text {pred }}$.

V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237-6240.

Scheme S45. Example 33. Table 1, entry 2 (example used in manuscript - Table 2, entry 1).

$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]^{*}} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred^{*}	$S_{\text {est }}$	$S_{\text {pred }}$	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
1.63	$\begin{gathered} 0.02 \\ (50) \end{gathered}$	5.5	8.9	38	4	13	105	30

Relative rate: $\left[R, R^{\prime}\right]=1.6,\left[S, R^{\prime}\right]=271,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=5.5$. Value of $\mathrm{y}_{\text {pred }}=19$.
*Diastereoselectivity measured in the early stages of the reaction $=32: 1$
Scheme S46. Estimation of ypred. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 59765978.

E. J. Corey, M. C. Noe and A. Guzman-Perez, J. Am. Chem. Soc., 1995, 117, 10817-10824.

Scheme S47. Example 34. Table 3, entries 1 and 2.

(*100 : 1 used for >100:1).

Scheme S48. Example 35. Table 3, entries 3 and 4 (example used in manuscript - Table 2, entry 2).

$$
\text { Relative rate: }\left[R, R^{\prime}\right]=1.9,\left[S, R^{\prime}\right]=2.3,\left[R, S^{\prime}\right]=1,\left[S, S^{\prime}\right]=226 . \text { Value of } y_{\text {pred }}=19 .
$$

The S and R configurations of the product refer to that of the starting enantiomers from which they are derived, and not the correct R and S configurations of the product.

Scheme S49. Estimation of $y_{\text {pred }}$. Same publication.

T. Yokomatsu, T. Yamagishi, T. Sada, K. Suemune and S. Shibuya, Tetrahedron, 1998, 54, 781-790.

Scheme S50. Example 36. Table 1, entries 2 and 3 (example used in manuscript - Table 2, entry 3).

Using s from AD-mix- β.

$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	$S_{\text {est }}$	$S_{\text {pred }}$	$k_{\text {matched }}$ $k_{\text {mis }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
99*	$\begin{aligned} & 0.124^{\#} \\ & (8.1) \end{aligned}$	3.5	28.3	61	3	24	16	12

*Value from AD-mix- β. "Value from AD-mix- α.
Relative rate: $\left[R, R^{\prime}\right]=140,\left[S, R^{\prime}\right]=8.1,\left[R, S^{\prime}\right]=1.4,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=39$.
Using s from AD-mix- α.

$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{aligned} & s= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis }}$ matched
$\begin{aligned} & \hline 0.124^{\#} \\ & (8.1) \end{aligned}$	99*	3.5	28.3	36	3	26	5	12

*Value from AD-mix- β. "Value from AD-mix- α.
Relative rate: $\left[R, R^{\prime}\right]=2.3,\left[S, R^{\prime}\right]=1,\left[R, S^{\prime}\right]=18.2,\left[S, S^{\prime}\right]=99$. Value of $y_{\text {pred }}=99$.

Scheme S51. Estimation of $\mathrm{y}_{\text {pred }}$. Same publication.

M. S. VanNieuwenhze and K. B. Sharpless, J. Am. Chem. Soc., 1993, 115, 7864-7865.

Scheme S52. Example 37.

(example used in manuscript - Table 2, entry 4).

$\left(R_{\mathrm{a}}\right)-23$
AD-mix

AD-mix- $\alpha\left(R, R^{\prime}\right):\left(R, S^{\prime}\right)=1: 29$ (slow)
AD-mix- $\beta\left(R, R^{\prime}\right):\left(R, S^{\prime}\right)=31: 1$ (fast)

(Sa)-23
AD-mix

AD-mix- $\alpha(S, R):\left(S, S^{\prime}\right)=1: 35$ (fast) AD-mix- $\beta\left(S, R^{\prime}\right):\left(S, S^{\prime}\right)=36: 1$ (slow)
Kinetic resolution with rac-23 AD-mix- $\alpha \quad s=5.0$ (S_{a} fast) AD-mix- $\beta s=9.7$ (R_{a} fast)

For AD-mix- β.

$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	$S_{\text {pred }}$	$\begin{aligned} & s \quad= \\ & k_{\text {matched }} / \\ & k_{\text {mis- }} \\ & \text { matched } \end{aligned}$	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$
31	$\begin{aligned} & 0.028 \\ & (36) \end{aligned}$	0.93	33	7.4	0.96	6	9.7	0.9

Relative rate: $\left[R, R^{\prime}\right]=348,\left[S, R^{\prime}\right]=36,\left[R, S^{\prime}\right]=11,\left[S, S^{\prime}\right]=1$. Value of $y_{\text {pred }}=24$.
For AD-mix- α.

$\begin{aligned} & {\left[R, R^{\prime}\right] /} \\ & {\left[R, S^{\prime}\right]} \end{aligned}$	$\begin{aligned} & {\left[S, S^{\prime}\right] /} \\ & {\left[S, R^{\prime}\right]} \end{aligned}$	Xest	Yest	Xpred	Sest	Spred	$S=$ $k_{\text {matched }} /$ $k_{\text {mis- }}$ matched	$\mathrm{dr}_{\text {matched }} /$ $\mathrm{dr}_{\text {mis- }}$ matched
$\begin{aligned} & 0.034 \\ & (29) \end{aligned}$	35	1.1	32	4.4	1.1	4	5.0	1.2

Relative rate: $\left[R, R^{\prime}\right]=1,\left[S, R^{\prime}\right]=4.1,\left[R, S^{\prime}\right]=29,\left[S, S^{\prime}\right]=146$. Value of $y_{\text {pred }}=24$.

Scheme S53. Estimation of Y pred. B. M. Choudary, N. S. Chowdari, K. Jyothi and M. L. Kantam, J. Am. Chem. Soc., 2002, 124, 5341-5349.

4. Graphical representation of the predicted reaction progress of the example given in Scheme 3.

Scheme S54.

Prediction of the progress of the reaction described in Table 1, example 1 based on $s=2.9,\left[R, R^{\prime}\right] /\left[R, S^{\prime}\right]$ $=186$ and $\left[S, S^{\prime}\right] /\left[S, R^{\prime}\right]=0.21$.

Figure S1. (a) Change in ee with conversion.

Figure S2. (b) Change in $\mathrm{dr}\left(\left[R, R^{\prime}\right]+\left[S, S^{\prime}\right]\right) /\left(\left[R, S^{\prime}\right]+\left[S, R^{\prime}\right]\right)$ with conversion (Starting $\mathrm{dr}=3.7$. Final $\mathrm{dr}=$ 1.4).

Figure S3. Prediction of the progress of the reaction with $s=2.9$ and $\left[R, R^{\prime}\right] /\left[R, S^{\prime}\right]=1 /\left[S, S^{\prime}\right] /\left[S, R^{\prime}\right]=4.76$ and $\left[S, S^{\prime}\right] /\left[S, R^{\prime}\right]=1 /\left[R, R^{\prime}\right] /\left[R, S^{\prime}\right]=0.0054$ (i.e. the alternative scenario where the more selective reaction is slower).

Figure S4. (b) Corresponding change in $\mathrm{dr}\left(\left[R, R^{\prime}\right]+\left[S, S^{\prime}\right]\right) /\left(\left[R, S^{\prime}\right]+\left[S, R^{\prime}\right]\right)$ with conversion (Starting dr $=1.61$. Final dr $=0.71$).

5. Examples of the determination of $s_{\text {est }}$ from $d r$ values in a matched/mismatched double asymmetric synthesis.

Example 1. Data from: W. R. Roush, L. K. Hoong, M. A. J. Palmer, J. A. Straub and A. D. Palkowitz, J. Org. Chem., 1990, 55, 4117-4126.

Scheme S55.

Matched

$300: 1$

Mismatched

$a=300 / 1=300 . b=27 / 73=0.37$
$y_{\text {est }}=\sqrt{(a / b)}=28.5 \quad x_{\text {est }}=a / y_{\text {est }}=10.5$
$s_{\mathrm{est}}=\frac{\mathrm{x}_{\mathrm{est}} \mathrm{Y}_{\mathrm{est}}+1}{\mathrm{x}_{\mathrm{est}}+\mathrm{y}_{\mathrm{est}}}=7.7 \quad \begin{aligned} & \text { i.e. an estimate of the rate difference of the fast (matched) } \\ & \text { reaction relative to the slow (mismatched) reaction. }\end{aligned}$
The catalyst selectivity term $y_{\text {est }}$ is the same as the average diasterefacial selectivity of a chiral reagent proposed by Roush in the paper from which this example is taken.* For this reaction this was expressed as 93% de [i.e. the same as (28.5-1)/(28.5+1) x 100].
*Calculated from the average of the two $\Delta \Delta G^{\ddagger}$ values for the matched and mismatched reactions.

Example 2. Data from: D. A. Evans, S. J. Miller and T. Lectka, J. Am. Chem. Soc., 1993, 115, 6460-6461.

Scheme S56.

Mismatched

This 5 fold estimated difference in rate is in approxiamate agreement with the conversion values of 100% and 20% noted for the matched and mismatched reactions, respectively. In this paper it is noted that in the mismatched example the cycloadduct is derived from a catalyst-dominated rather than a substrate-dominated process. This is now captured in the catalyst selectivity term yest $=14.5$ vs. the substrate selectivity term $\mathrm{Xest}=6.8$.

6. Additional experimental details, NMR spectra and HPLC chromatographs

Method for the synthesis of rac-23.

Scheme S57.

A solution of n-BuLi ($8.55 \mathrm{~mL}, 21.4 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes, 2.2 eq.) was added slowly to a cooled vigorously stirred white suspension of benzyltriphenylphosphonium bromide ($8.43 \mathrm{~g}, 19.45 \mathrm{mmol}, 2.0$ eq.) in THF (80 mL) at $-78^{\circ} \mathrm{C}$. The resulting deep red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 mins , the cooling bath removed, and then stirred at RT for 1 h . Afterwards, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ for 10 mins followed by the addition of a solution of 4-tert-butylcyclohexanone ($1.50 \mathrm{~g}, 9.72$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (20 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to RT and stirred for 12 h at RT. Upon completion (TLC), the mixture was quenched with saturated aqueous solution of ammonium chloride $(60 \mathrm{~mL})$ and extracted with ethyl acetate $(80 \mathrm{~mL})$. The organic layer was washed with water (50 mL), brine $(50 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated in vacuo. The crude mixture was purified by silica gel chromatography using 1% ethyl acetate in hexanes to give rac-23 ($1.71 \mathrm{~g}, 7.49 \mathrm{mmol}, 77 \%$) as a colourless oil.

Figure S5. $23{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$)
 C-Bu

Figure S6. $23{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure S7. $24{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S8. $24{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

Figure S9. $\mathbf{2 5}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S10. $\mathbf{2 5}{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

Figure S11. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the dihydroxylation products using quinuclidine as ligand.

Figure S12. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the dihydroxylation products from $\left(R_{\mathrm{a}}\right)-23$ and AD-mix- α.

Figure S13. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the dihydroxylation products from $\left(R_{\mathrm{a}}\right)-\mathbf{2 3}$ and AD-mix- β.

Figure S14. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the dihydroxylation products from $\left(S_{\mathrm{a}}\right)-\mathbf{2 3}$ and AD-mix- α.

Figure S15. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the dihydroxylation products from $\left(\mathrm{S}_{\mathrm{a}}\right)-\mathbf{2 1}$ and AD-mix- β.

HPLC condition for rac-23: OJ-3 chiral column (i-PrOH:hexanes = 0.8:99.2, $0.2 \mathrm{~mL} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, 22^{\circ} \mathrm{C}$); $S_{\mathrm{a}}-\mathbf{2 3}=21.003 \mathrm{~min}$ and $R_{\mathrm{a}}-23=23.471 \mathrm{~min}$.

Figure S16.

HPLC conditions for the kinetic resolution of the product obtained using AD-mix- β : OJ- 3 chiral column ($i-$ PrOH:hexanes $=0.8: 99.2,0.2 \mathrm{~mL} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, 22^{\circ} \mathrm{C}$); $\mathrm{S}_{\mathrm{a}}-21=19.016 \mathrm{~min}$ (major) and $R_{\mathrm{a}}-23=20.330$ \min (minor). 98\% ee.

Figure S17.
<Chromatogram>

