Supplementary Information

Synthesis of biphenyl-based chiral amine catalysts from dibromopyrenes and their application in enamine catalysis

Yuki Uwaso, ${ }^{\text {a }}$ Naoki Yokoyama ${ }^{\text {b }}$ and Taichi Kano ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan${ }^{\mathrm{b}}$ Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agricultureand Technology, Tokyo 184-8588, Japan

1. General information S2
2. Synthesis of biphenyl-based chiral secondary amine catalysts S2
3. Procedures for asymmetric reactions catalyzed by biphenyl-based amines S14
4. References S17
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra S18
6. HPLC traces S36

General information

${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL JNM-ECA500 $(500 \mathrm{MHz})$ spectrometer. Chemical shifts were reported in ppm from tetramethylsilane as an internal standard. Data were reported as follow: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, and app = apparent $)$, coupling constants (Hz), and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-FX500 (125 $\mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High performance liquid chromatography (HPLC) was performed on Shimadzu 20A instruments using Daicel CHIRALPAK AD-H, IA-3, and IC-3 $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ column. The high resolution mass spectra (HRMS) were performed on Thermo Scientific EXACTIVE PLUS. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF} 254,0.25 \mathrm{~mm}$) were used. The products were purified by flash column chromatography on silica gel 60N (Kanto Chemical Co. Inc., 40-50 $\mu \mathrm{m}$).

Both 1,6 - and 1,8 -dibromopyrenes are commercially available and their mixture is readily obtained by bromination of pyrene. ${ }^{[1]}$ In experiments requiring dry solvents, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF), and toluene were purchased from Kanto Chemical Co. Inc. as "Dehydrated". A 1.6M hexane solution of butyllithium (BuLi) was purchased from Nacalai Tesque, Inc. The commercially available aldehydes were distilled and stored under a nitrogen atmosphere at $5^{\circ} \mathrm{C}$.

Synthesis of biphenyl-based chiral secondary amine catalysts

 3,3'-Dibromo-[1,1'-biphenyl]-2,2',6,6'-tetracarbaldehyde ${ }^{[2]}$ (5)

A mixture of 1,6-dibromopyrene and 1,8-dibromopyrene ($1.80 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{CI}_{2}$ (300 mL), and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was introduced to the stirred solution at $-78{ }^{\circ} \mathrm{C}$ for 2.5 h , maintaining the temperature at -
$78^{\circ} \mathrm{C}$. The excess of ozone was removed by bubbling O_{2} and N_{2} through the solution at $-78{ }^{\circ} \mathrm{C} . \mathrm{NaI}(3.74 \mathrm{~g}, 25 \mathrm{mmol})$ and acetic acid $(5.7 \mathrm{~mL}, 100 \mathrm{mmol})$ were added to the reaction mixture at $-78^{\circ} \mathrm{C}$, and the stirring was continued at $-78^{\circ} \mathrm{C}$ to room temperature overnight. The reaction mixture was successively washed with an aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, a saturated aqueous NaHCO_{3} solution, and water. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=4 / 1$) to give 5 as a white solid ($1.35 \mathrm{~g}, 3.2 \mathrm{mmol}, 64 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24(\mathrm{~s}, 2 \mathrm{H}), 9.54(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,188.7,140.5,134.9,134.7$ (2 peaks overlapped), 133.8, 132.8.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{NaO}_{4}: 444.8682$, 446.8662 , 448.8641 ([M + $\mathrm{Na}]^{+}$), Found: 444.8685, 446.8663, $448.8643\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$
(R)-3,9-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene $((R, S, S)-8)$,
(S)-3,9-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene ($(S, S, S)-8)$,
(S)-3,7-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene $((S, S, S)-9)$, and (R)-3,7-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene ${ }^{[3]}((R, S, S)-9)$

(R, S, S)-8

$(S, S, S)-9$

(S,S,S)-8

(R, S, S)- 9

To a solution of $5(0.209 \mathrm{~g}, 0.49 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added (S)-1phenylethylamine ($0.19 \mathrm{~mL}, 1.47 \mathrm{mmol}$). After being stirred at room temperature for 15 $\mathrm{min}, \mathrm{NaBH}_{3} \mathrm{CN}(0.154 \mathrm{~g}, 2.45 \mathrm{mmol})$ was added and the reaction was stirred at room temperature for 20 h before the addition of acetic acid ($0.28 \mathrm{~mL}, 4.9 \mathrm{mmol}$). After 1 h , the reaction was quenched with 1 N aqueous NaOH solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=20 / 1$ to $5 / 1$) to give $(R, S, S)-\mathbf{8},(S, S, S)-\mathbf{8},(S, S, S)-\mathbf{9}$, and $(R, S, S)-\mathbf{9}$ (1.6: 1.5: 2.2: 1) as white solid ($0.222 \mathrm{~g}, 0.368 \mathrm{mmol}, 75 \%$ yield). The absolute configurations of the axial chirality of $\mathbf{8}$ and $\mathbf{9}$ were determined by conversion to the
known compounds through removal of the bromine atoms by hydrogenation using Pd on carbon and hydrogen. ${ }^{[3]}$
$(R, S, S)-\mathbf{8}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.74(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ (d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5,141.9,135.1,133.6,132.5,130.1,128.6,127.6$, 127.0, 124.6, 62.2, 52.5, 51.8, 22.6.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2}$: 601.0849, $603.0829,605.0808$ ([M + $\mathrm{H}]^{+}$), Found: 601.0864, 603.0836, $605.0812\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{31}=-61.1\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$
$(S, S, S)-\mathbf{8}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, 2 H), 3.73 (d, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (q, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.99 (d, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84$ (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.64(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.9,141.9,134.8,133.6,132.6,130.0,128.6,127.6$, 127.2, 124.7, 62.1, 52.5, 51.8, 23.0.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2}: 601.0849,603.0829,605.0808$ ([M + $\mathrm{H}]^{+}$), Found: 601.0851, 603.0835, $605.0803\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{31}=-7.3\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$
$(S, S, S)-\mathbf{9}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.96(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.0,146.1,141.8,135.0,133.9,132.5,130.2,128.9$, 128.1, 127.7, 127.6, 127.2, 126.7, 124.8, 62.7, 61.6, 52.6, 51.6, 22.7, 22.7.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2}$: 601.0849, 603.0829, 605.0808 ([M + $\mathrm{H}]^{+}$), Found: 601.0859, 603.0834, $605.0808\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{30}=-20.5\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right)$
(R, S, S)-9
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ 7.29 (m, 6H), 7.27-7.23 (m, 2H), 7.11 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70$ (q, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.94,144.91,141.9,134.7,133.8,132.5,130.0,128.7$, $128.5,127.7,127.5,127.24,127.19,124.8,62.3,61.9,52.3,52.0,23.6,22.6$.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2}$: 601.0849, 603.0829, 605.0808 ([M + $\left.\mathrm{H}]^{+}\right)$, Found: 601.0851, 603.0832, $605.0802\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{30}=-64.0\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right)$
(R)-5,11-Bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene-3,9-diamine ($(R, S, S)-10)$
and $(S)-5,11-\operatorname{Bis}((S)-1-p h e n y l e t h y l)-4,5,6,10,11,12-h e x a h y d r o-5,11-$ diazadibenzo $[e f, k l]$ heptalene-3,9-diamine ${ }^{[4]}((S, S, S)$-10 $)$

(R, S, S)-10

(S,S,S)-10

A mixture of $(R, S, S)-\mathbf{8}(0.304 \mathrm{~g}, 0.51 \mathrm{mmol})$, benzophenone imine $(0.20 \mathrm{~mL}, 1.2$ mmol), rac-BINAP ($62.9 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(546 \mathrm{mg}, 0.051 \mathrm{mmol})$, and NaOt -
$\mathrm{Bu}(136 \mathrm{mg}, 1.41 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was heated at $110{ }^{\circ} \mathrm{C}$ and stirred for 65 h under an nitrogen atmosphere. After cooling to room temperature, the reaction mixture was filtered through a Celite pad, and the filter cake was washed with ethyl acetate. The filtrate was concentrated in vacuo. The residue was dissolved in 1 N aqueous HCl solution $(3.0 \mathrm{~mL})$ and THF $(14 \mathrm{~mL})$. After refluxing for 2 h , the mixture was then quenched with a saturated aqueous NaHCO_{3} solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=3 / 1,1 \%$ $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ to give $(R, S, S)-\mathbf{1 0}$ and $(S, S, S)-\mathbf{1 0}(\mathrm{dr}=1 / 1.3)$ as a diastereomer mixture $(0.184 \mathrm{~g}$, $0.39 \mathrm{mmol}, 77 \%$ yield).

Minor diastereomer (R, S, S)-10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30$ (app t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78 (br s, 4 H), 3.67 (q, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (d, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.02 (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.9,144.4,142.1,129.4,128.7,127.5,127.0,125.1$, 120.5, 115.1, 62.4, 53.1, 47.0, 23.0.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{4}: 475.2856\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 475.2861 ([M $+\mathrm{H}]^{+}$)
$[\alpha]_{\mathrm{D}}^{32}=-36.4\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$

Major diastereomer (S,S,S)-10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.24$ (app t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.65 (br s, 4H), 3.51 (q, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.25 (d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.0,144.0,142.1,129.0,128.7,127.2,127.1,124.0$, 120.9, 115.2, 62.1, 51.1, 48.8, 22.9.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{4}: 475.2856\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 475.2860 ([M
$+\mathrm{H}]^{+}$)
$[\alpha]_{\mathrm{D}}^{29}=-11.2\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$
$N, N^{\prime}-((\boldsymbol{R})-5,11-\operatorname{Bis}((S)$-1-phenylethyl $)-4,5,6,10,11,12-h e x a h y d r o-5,11-$ diazadibenzo[ef,kl]heptalene-3,9-diyl)bis(1,1,1-trifluoromethanesulfonamide) ($(R, S, S)-11)$
and $N, N^{\prime}-((S)-5,11-B i s((S)-1-p h e n y l e t h y l)-4,5,6,10,11,12-h e x a h y d r o-5,11-$
diazadibenzo[ef,kl]heptalene-3,9-diyl)bis(1,1,1-trifluoromethanesulfonamide) ((S,S,S)-11)

$(R, S, S)-11$

$(S, S, S)-11$

To a stirred solution of a mixture of amine $(R, S, S) \mathbf{- 1 0}$ and $(S, S, S)-\mathbf{1 0}(0.027 \mathrm{~g}, 0.057$ mmol , $\mathrm{dr}=1 / 1.3$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.66 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{O}(50 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ by syringe pump for 30 min at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ to room temperature overnight. The mixture was then quenched with a saturated aqueous NaHCO_{3} solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was roughly purified by flash column chromatography on silica gel (hexane/ethyl acetate $=2 / 1$). The product was used for the next reaction without further purification. The roughly purified product was dissolved in 1,2-dichloroethane (1.1 mL), and p-nitrophenol ($0.020 \mathrm{~g}, 0.14 \mathrm{mmol}$) was added to this solution. After being stirred at $80^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature. Solvent was removed in vacuo, and the residue was then purified by flash column chromatography on silica gel (ethyl acetate/ $\mathrm{MeOH}=50 / 1$ to $30 / 1$) to give (R, S, S) 11 and $(S, S, S)-\mathbf{1 1}(\mathrm{dr}=1.6 / 1)$ as yellow solid $(0.031 \mathrm{~g}, 0.042 \mathrm{mmol}, 73 \%$ yield $)$.

Major diastereomer (R, S, S)-11
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}$, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,141.0,136.6,133.3,130.8,130.6,129.0,127.0$, $125.4,121.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=325.4\right), 120.0,64.3,51.4,50.0,19.5$.
${ }^{19}$ F-NMR ($466 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-75.0$.
HRMS (ESI, positive) Calcd. For $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}: 739.1842\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 739.1839 ([M + H $\left.]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{31}=-16.1\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right)$

Minor diastereomer (S,S,S)-11
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.31(\mathrm{~m}, 10 \mathrm{H}), 5.26(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{app} \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49$ (d, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.37 (d, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.99-2.94 (m, 2H), 2.18 (d, $J=6.2 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,140.7,136.1,133.2,129.8$ (2 peaks overlapped), $128.2,123.9,121.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=326.6 \mathrm{~Hz}\right), 120.9,120.4,65.0,54.9,45.7,19.6$. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-76.9$.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}: 739.1842\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 739.1844 ([M + H] ${ }^{+}$)
$[\alpha]_{\mathrm{D}}^{31}=-66.2\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$

(\boldsymbol{R})- $N, N^{\prime}-(4,5,6,10,11,12-H e x a h y d r o-5,11-d i a z a d i b e n z o[e f, k l] h e p t a l e n e-3,9-$

diyl)bis(1,1,1-trifluoromethanesulfonamide) ((R)-6)

To a stirred solution of $(R, S, S)-\mathbf{1 1}(0.022 \mathrm{~g}, 0.03 \mathrm{mmol})$ in $\mathrm{MeOH}(0.98 \mathrm{~mL})$ were
added 2.4 N aqueous HCl solution ($50 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) and 10% palladium on carbon (6.4 mg) at room temperature. The mixture was then hydrogenated under H_{2} (balloon) at room temperature for 17 h . The reaction was quenched with NaHCO_{3}, and filtered through a Celite pad. The filter cake was washed with ethyl acetate. The filtrate was concentrated and dried under vacuum. The crude product was dissolved in a few drops of MeOH , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to this solution. Resulting precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried under vacuum to give $(R)-6$ as a white solid $(0.011 \mathrm{~g}, 0.021 \mathrm{mmol}, 70 \%$ yield $)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.48(\mathrm{~m}, 4 \mathrm{H}), 4.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.57 ($\mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.38 (d, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 148.7,142.0,132.8,126.7,125.7,124.4,123.3$ (q, $J_{\mathrm{C}-\mathrm{F}}$ $=327.9 \mathrm{~Hz}$), 46.7, 42.0.
${ }^{19}$ F-NMR ($466 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.6$.
HRMS (ESI, positive) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}: 531.0590\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $531.0595\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{29}=-17.1(\mathrm{c} 0.40, \mathrm{MeOH})$

Diethyl (S)-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11-

 diazadibenzo[ef,kl]heptalene-3,7-dicarboxylate ((S,S,S)-12)

To a stirred solution of $(S, S, S)-\mathbf{9}(1.20 \mathrm{~g}, 2 \mathrm{mmol})$ in THF (12 mL) was added $n-\mathrm{BuLi}$ ($2.75 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 4.4 mmol) at $-78{ }^{\circ} \mathrm{C}$ dropwise under a nitrogen atmosphere. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . This solution was transferred to a THF (8 mL) solution of ethyl chloroformate ($1.9 \mathrm{~mL}, 20 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ by syringe, and the solution was stirred at $-78^{\circ} \mathrm{C}$ to room temperature overnight. The mixture was then quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The
residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=10 / 1)$ to give $(S, S, S)-\mathbf{1 2}$ as a white solid $(0.776 \mathrm{~g}, 1.32 \mathrm{mmol}, 66 \%$ yield $)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.33-4.24 (m, 2H), 4.19-4.13 (m, 2H), $3.76(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,147.0,146.1,141.3,137.8,134.5,131.6,129.8$, $128.9,128.6,128.4,127.6,127.3,127.2,126.8,62.7,61.6,61.4,52.9,47.9,23.2,22.7$, 14.3 .

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}: 589.3061\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 589.3067 $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{\mathrm{D}}^{29}=-15.3\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$

Di-tert-butyl (S)-3,7-bis(hydroxydiphenylmethyl)-10,12-dihydro-5,11-

 diazadibenzo[ef,kl]heptalene-5,11(4H,6H)-dicarboxylate ((S)-13)

To a stirred solution of $(S, S, S) \mathbf{- 1 2}(0.719 \mathrm{~g}, 1.22 \mathrm{mmol})$ in $\mathrm{MeOH}(38 \mathrm{~mL})$ were added 2.4 N aqueous HCl solution $(2 \mathrm{~mL}, 4.88 \mathrm{mmol})$ and 10% palladium on carbon $(260 \mathrm{mg})$ at room temperature. The mixture was then hydrogenated under H_{2} (balloon) at room temperature for 63 h and filtered through a Celite pad. The filtrate was basified with 1 N aqueous NaOH solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The product (S)-Int-A was used for the next reaction without further purification.

Amine (S)-IntA (ca. 1.2 mmol), $\mathrm{Et}_{3} \mathrm{~N}(0.85 \mathrm{~mL}, 6.1 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(1.4 \mathrm{~mL}, 6.1$ mmol) and DMAP ($0.075 \mathrm{~g}, 0.61 \mathrm{mmol}$) were dissolved in DMF (6.1 mL). After being stirred for 48 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with a mixture of hexane and ethyl acetate (1/1). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was roughly purified by flash column chromatography on silica gel (hexane/ethyl acetate $=5 / 1$). The product (S)-Int-B was used for the next reaction without further purification.

To a stirred solution of (S)-Int-B (ca. 1 mmol) in THF (20 mL) was added PhLi (3.66 $\mathrm{mL}, 2 \mathrm{M}$ in $n-\mathrm{Bu}_{2} \mathrm{O}, 7.32 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ dropwise under a nitrogen atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was then quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=5 / 1$ to $3 / 1$) to give (S) 13 as a white solid $(0.458 \mathrm{~g}, 0.57 \mathrm{mmol}, 47 \%$ yield for three steps $)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.30-7.19(\mathrm{~m}, 20 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 156.0,154.8,150.1,148.7,148.0,147.8,146.8,146.6$, $142.9,141.8,135.2,134.9,134.3,133.3,131.5,131.2,129.2,128.8$ (2 peaks overlapped), 128.7 (2 peaks overlapped), $128.63,128.59,128.55,128.4,128.1,128.0,127.9,127.6$ (2 peaks overlapped), 83.2 (2 peaks overlapped), 81.8 (2 peaks overlapped), 81.3, 80.6, 45.0,
43.4, 28.5, 28.5.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{NaO}_{6}: 823.3718$ ([M + Na] ${ }^{+}$), Found:
823.3714 ([M + Na] ${ }^{+}$)
$[\alpha]_{\mathrm{D}}^{31}=-306.4\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$
(S)-(4,5,6,10,11,12-Hexahydro-5,11-diazadibenzo[ef,kl]heptalene-3,7diyl)bis(diphenylmethanol) ((S)-7)

To a stirred solution of $(S) \mathbf{- 1 3}(0.024 \mathrm{~g}, 0.03 \mathrm{mmol})$ in 1,4-dioxane $(0.44 \mathrm{~mL})$ was added 9 N aqueous HCl solution (0.21 mL). The reaction mixture was stirred at room temperature for 28 h . The reaction was quenched with 1 N aqueous NaOH solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give (S)-7 as a white solid ($0.015 \mathrm{~g}, 0.026 \mathrm{mmol}, 85 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.21(\mathrm{~m}, 20 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82$ (d, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9,147.6,145.9,142.0,134.9,134.5,130.0,128.2$, 128.1, 128.0, 127.7, 127.3, 127.1, 126.9, 83.0, 48.3, 44.8.

HRMS (ESI, positive) Calcd. For $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}: 601.2850\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 601.2857 $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$
$[\alpha]_{D}^{31}=-165.1\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$

Procedures for asymmetric reactions catalyzed by biphenyl-based amines

Procedure for the catalytic asymmetric Mannich reaction of \boldsymbol{N}-PMP-protected α iminoacetate $14^{[5]}$

To a stirred solution of $(R)-6(1.3 \mathrm{mg}, 0.0025 \mathrm{mmol})$ in dioxane $(2.5 \mathrm{~mL})$ were added 3-methylbutanal ($80.7 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) and ethyl (4-methoxyphenylimino)acetate $\mathbf{1 4}$ $(48.9 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ in this order at room temperature. After being stirred at room temperature for 45 min , the reaction mixture was then quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=8 / 1$ to $4 / 1$) to give the corresponding Mannich adduct 15 ($59 \mathrm{mg}, 0.20 \mathrm{mmol}, 80 \%$ yield, $\mathrm{dr}=11 / 1,96 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{app} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (app d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14(\operatorname{app~q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.59$ (m, 1H), 2.09 (m, 1H), $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$; HPLC analysis: Daicel CHIRALPAK IC-3, hexane $/ i-\mathrm{PrOH}=20 / 1$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=240 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=25.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=33.2 \mathrm{~min}$. Spectroscopic data were in agreement with the ones previously reported in literature ${ }^{[5]}$.

Procedure for the direct asymmetric aminoxylation reaction ${ }^{[6]}$

To a stirred solution of $(R)-6(1.6 \mathrm{mg}, 0.003 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(100 \mu \mathrm{~L})$ were added 3phenylpropanal ($39.5 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and nitrosobenzene ($10.7 \mathrm{mg}, 0.10 \mathrm{mmol}$) in this order at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{EtOH}(200 \mu \mathrm{~L})$ and $\mathrm{NaBH}_{4}(20 \mathrm{mg})$ were added at the same temperature. After 30 min , the reaction mixture was quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=4 / 1$ to $2 / 1$) to afford the corresponding aminoxylation product $16(18 \mathrm{mg}, 0.75 \mathrm{mmol}, 75 \%$ yield, $91 \% \mathrm{ee})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.06$ (dd, $J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H})$; HPLC analysis: Daicel CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=10 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=18.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.0 \mathrm{~min}$.

Spectroscopic data were in agreement with the ones previously reported in literature ${ }^{[6]}$.

Procedure for the asymmetric $\boldsymbol{\alpha}$-hydroxyamination reaction ${ }^{[7]}$

A mixture of (S) $\mathbf{- 7}(3.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ and nitrosobenzene $(5.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (0.25 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 minutes. To the mixture was then added 3phenylpropanal ($19.7 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) dropwise at $-40^{\circ} \mathrm{C}$. After being stirred at $-40^{\circ} \mathrm{C}$ for $12 \mathrm{~h}, \mathrm{MeOH}(0.25 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(5.7 \mathrm{mg})$ were added at $0^{\circ} \mathrm{C}$. After 15 minutes, the reaction mixture was treated with a saturated aqueous NaCl solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=10 / 1$ to $3 / 1$) to give the corresponding hydroxyamination product 17 ($9.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 80 \%$ yield, 97% ee).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 7.25-7.20 (m, 4H), 7.14-7.11 (m, 5H), 6.86 (app $\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.7,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.9,7.7 \mathrm{~Hz}, 1 \mathrm{H})$; HPLC analysis: Daicel CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=10 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=$ $10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=14.2 \mathrm{~min}$.
Spectroscopic data were in agreement with the ones previously reported in literature ${ }^{[7]}$.

Procedure for the asymmetric conjugate addition to α, β-unsaturated ketone ${ }^{[8]}$

To a solution of $(S)-7(3.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $\mathrm{MeCN}(0.1 \mathrm{~mL})$ in a small vial were added 3-phenylpropanal ($13.2 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ and enone $\mathbf{1 8}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred to give a clear, homogeneous solution (less than 1 min) before $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added. After capping the vial the reaction was vigorously stirred for 6 h . The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. To the crude mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added benzyl 2-(triphenylphosphoranylidene)acetate 19 ($61.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the olefination reaction was allowed to proceed until complete consumption of the conjugate addition adduct. After solvent removal, the residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate $=10 / 1$ to $5 / 1$) to give the corresponding product 20 as an inseparable diastereomeric mixture ($18 \mathrm{mg}, 0.04 \mathrm{mmol}$, 80% yield, $\mathrm{dr}=1.9 / 1,97 \%$ ee)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.31 (m, 5H), 7.29-7.24 (m, 2H), 7.23-7.18 (m, 1H), 7.16-7.15 (m, 2H), 6.94 (dd, J $=15.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{app} \mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.55(\mathrm{dd}, J=17.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dt}, J=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.88-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.6,8.5 \mathrm{~Hz}, 1 \mathrm{H})$; HPLC analysis: Daicel CHIRALPAK IA3 , hexane $/ i-\operatorname{PrOH}=85 / 15$, flow rate $=0.75 \mathrm{~mL} / \mathrm{min}, \lambda=236 \mathrm{~nm}$, retention time; t_{R} (minor) $=14.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.6 \mathrm{~min}$.

Spectroscopic data were in agreement with the ones previously reported in literature ${ }^{[8]}$.

References

[1] W. Y. Heng, J. Hu and J. H. K. Yip, Organometallics, 2007, 26, 6760.
[2] I. Agranat, M. Rabinovitz and W.-C. Shaw, J. Org. Chem., 1979, 44, 1936.
[3] J. Vachon, S. Rentsch, A. Martinez, C. Marsol and J. Lacour, Org. Biomol. Chem., 2007, 5, 501.
[4] T. Kano, M. Takeda, R. Sakamoto and K. Maruoka, J. Org. Chem., 2014, 79, 4240.
[5] T. Kano, Y. Yamaguchi, O. Tokuda and K. Maruoka, J. Am. Chem. Soc., 2005, 127, 16408.
[6] T. Kano, A. Yamamoto and K. Maruoka, Tetrahedron Lett., 2008, 49, 5369.
[7] T. Kano, M. Ueda, J. Takai and K. Maruoka, J. Am. Chem. Soc., 2006, 128, 6046.
[8] S. B. J. Kan, H. Maruyama, M. Akakura, T. Kano and K. Maruoka, Angew. Chem. Int. Ed. 2017, 56, 9487.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

3,3'-Dibromo-[1,1'-biphenyl]-2,2',6,6'-tetracarbaldehyde (5)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3,9-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11-

 diazadibenzo $[e f, k l]$ heptalene $((R, S, S)-8)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3,9-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11-

 diazadibenzo $[e f, k l]$ heptalene $((S, S, S)-8)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-3,7-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene $((S, S, S)-9)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-3,7-Dibromo-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene $((R, S, S)-9)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-5,11-Bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11-
diazadibenzo[ef,kl]heptalene-3,9-diamine ((R, S, S)-10)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-5,11-Bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11diazadibenzo $[e f, k l]$ heptalene-3,9-diamine ((S, S, S)-10)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$N, N^{\prime}-((R)-5,11-B i s((S)-1-p h e n y l e t h y l)-4,5,6,10,11,12-h e x a h y d r o-5,11-$ diazadibenzo[ef,kl]heptalene-3,9-diyl)bis(1,1,1-trifluoromethanesulfonamide) ($(\boldsymbol{R}, S, S)-11)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$N, N^{\prime}-((S)-5,11-B i s((S)-1-p h e n y l e t h y l)-4,5,6,10,11,12-h e x a h y d r o-5,11-$
diazadibenzo[ef,kl]heptalene-3,9-diyl)bis(1,1,1-trifluoromethanesulfonamide) ((S,S,S)-11)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)- $N, N^{\prime}-(4,5,6,10,11,12-H e x a h y d r o-5,11-d i a z a d i b e n z o[e f, k l] h e p t a l e n e-3,9-$

diyl)bis(1,1,1-trifluoromethanesulfonamide) ((R)-6)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{19}$ F-NMR ($466 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Diethyl (S)-5,11-bis((S)-1-phenylethyl)-4,5,6,10,11,12-hexahydro-5,11-diazadibenzo[ef,kl]heptalene-3,7-dicarboxylate ((S,S,S)-12)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Di-tert-butyl (S)-3,7-bis(hydroxydiphenylmethyl)-10,12-dihydro-5,11-diazadibenzo[ef,kl]heptalene-5,11(4H,6H)-dicarboxylate ((S)-13)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$)

(S)-(4,5,6,10,11,12-Hexahydro-5,11-diazadibenzo $[e f, k l] h e p t a l e n e-3,7-$
diyl)bis(diphenylmethanol) ((S)-7)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HPLC traces

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)-4-methylpentanoate (15)

HPLC analysis: Daicel CHIRALPAK IC-3, hexane $/ i-\operatorname{PrOH}=20 / 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=240 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=25.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=33.2 \mathrm{~min}$.

UV C緒果			
No	RT	Area	Area\%
120.77699246	41.689
\cdots		\cdots	8.388.
	28.52	698190	41.626
	. 34.74	1139188	8.288
(.........................-3ik.			
		1677311	100.0000

(S)-3-Phenyl-2-((phenylamino)oxy)propan-1-ol (16)

Daicel CHIRALPAK AD-H, hexane $/ i-\operatorname{PrOH}=10 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=18.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.0 \mathrm{~min}$.

(S)-2-(Hydroxy(phenyl)amino)-3-phenylpropan-1-ol (17)

HPLC analysis: Daicel CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=10 / 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=14.2 \mathrm{~min}$.

1-Benzyl 6-methyl (4R,5S,E)-4-benzyl-5-(2-oxo-2-phenylethyl)hex-2-enedioate (20)

Daicel CHIRALPAK IA-3, hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $=0.75 \mathrm{~mL} / \mathrm{min}, \lambda=236$ nm , retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=14.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.6 \mathrm{~min}$.

mAU

