Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Base-mediated synthesis of cyclic dithiocarbamates from 1-amino-3chloropropan-2-ol derivatives and carbon disulfide

Yasunori Toda,* Masaya Iwasaki and Hiroyuki Suga

Department of Materials Chemistry, Faculty of Engineering Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

E-mail: ytoda@shinshu-u.ac.jp

General Information	S2
Preparation of Starting Materials	S2
General Procedure for the Reaction of 1 with Carbon Disulfide	S3
Appendix	
DFT Studies	S10
References	S15
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of $1k$	S16
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 11	S17
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of $1m$	S18
¹ H (300 MHz, CD ₃ OD) & ¹³ C{ ¹ H} NMR (300 MHz, CD ₃ OD) Spectra of 2a	S19
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2b	S20
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of $2c$	S21
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2d	S22
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2e	S23
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2f	S24
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2g	S25
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2h	S26
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2i	S27
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2j	S28
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2k	S29
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 21	S30
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2m	S31
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of $2n$	S32
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 20	S33
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2p	S34
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of 2a'	S35
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (300 MHz, CDCl ₃) Spectra of S1	S36
HPLC Trace of 2c	S37

General Information

All reagents and solvents were commercial grade and purified prior to use when necessary. Thin layer chromatography (TLC) was performed using TLC aluminum sheets from Merck (silica gel 60 F₂₅₄, 200 μ m), and flash chromatography utilized silica gel from Fuji Silysia Chemical (PSQ60B, 60 μ m). Products were visualized by ultraviolet (UV) light and/or TLC stains. Melting points were measured on a Yanaco micro melting point apparatus and were not corrected. Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Fourier 300 (300 MHz). Chemical shifts are measured relative to residual solvent peaks as an internal standard set to 0.00 (¹H) for TMS and 77.0 (¹³C{¹H}) for CDCl₃. ¹³C{¹H} NMR peak assignments were confirmed by DEPT135. Data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sep = septet, br = broad, m = multiplet), coupling constants (Hz), and integration. Infrared (IR) spectra were recorded on a Jasco FT/IR-4200 spectrophotometer and are reported in wavenumbers (cm⁻¹). All compounds were analyzed as neat films on a potassium bromide (KBr) plate. Mass spectra were recorded on a Bruker micrOTOF II mass spectrometer by the ionization method noted. A post-acquisition gain correction was applied using sodium formate (HCO₂Na) as the lock mass.

Preparation of Starting Materials

1a-1i and **1n-1p** were prepared according to the literature.¹

1-Chloro-3-[(4-chlorophenyl)amino]propan-2-ol (2k). To a mixture of *p*-chloroaniline (637.9 mg, 5.0 mmol) and epichlorohydrin (395 μL, 5.0 mmol) was added LiBr (22.0 mg, 0.25 mmol) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 25 g, Hexane:EtOAc = 5:1) to give a white solid (596.5 mg, 54%). $R_f = 0.30$ (Hexane:EtOAc = 2:1) visualized with KMnO4; mp 75-76 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.11 (m, 2H), 6.60-6.55 (m, 2H), 4.07 (ddt, *J* = 7.2, 6.0, 4.5 Hz, 1H), 3.69 (dd, *J* = 11.1, 4.5 Hz, 1H), 3.62 (dd, *J* = 11.1, 6.0 Hz, 1H), 3.35 (dd, *J* = 13.2, 4.5 Hz, 1H), 3.20 (dd, *J* = 13.2, 7.2 Hz, 1H), 2.66 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 146.3 (C), 129.2 (CH), 122.8 (C), 114.4 (CH), 69.8 (CH), 47.6 (CH₂), 47.1 (CH₂); IR (KBr) 3337, 3215, 2867, 2831, 1497, 1239, 1086, 820, 745, 666 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₂Cl₂NO 220.0290, found 220.0299.

1-Chloro-3-[(4-fluorophenyl)amino]propan-2-ol (2l). To a mixture of *p*-fluoroaniline (556.0 mg, 5.0 mmol) and epichlorohydrin (395 μL, 5.0 mmol) was added LiBr (22.0 mg, 0.25 mmol) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 25 g, Hexane:CH₂Cl₂ = 2:1–CH₂Cl₂) to give a white solid (563.0 mg, 55%). $R_f = 0.40$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 58-59 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.94-6.86 (m, 2H), 6.63-6.56 (m, 2H), 4.07 (ddt, *J* = 7.2, 6.0, 4.5 Hz, 1H), 3.70 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.64 (dd, *J* = 11.4, 6.0 Hz, 1H), 3.34 (dd, *J* = 12.9, 4.5 Hz, 1H), 3.19 (dd, *J* = 12.9, 7.2 Hz, 1H), 2.51 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.3 (d, *J* = 236.0 Hz, C), 144.1 (d, *J* = 1.8 Hz, C), 115.8 (d, *J* = 22.0 Hz, CH), 114.3 (d, *J* = 7.2 Hz, CH), 69.8 (CH), 47.8 (CH₂), 47.7 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -126.9; IR (KBr) 3282, 3137, 2966, 2929, 2850, 1512, 1430, 1223, 1128, 1103, 1027, 916, 824, 770, 708, 687 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₂CIFNO 204.0586, found 204.0584.

1-Chloro-3-[(4-methylphenyl)amino]propan-2-ol (2m). To a mixture of *p*-toluidine (536.0 mg, 5.0 mmol) and epichlorohydrin (395 μ L, 5.0 mmol) was added LiBr (22.0 mg, 0.25 mmol) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 5:1) to give a white solid (667.9 mg, 67%). R_f = 0.35 (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 76-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.02-6.99 (m, 2H), 6.60-6.56 (m, 2H), 4.05 (ddt, *J* = 7.2, 6.0, 4.5 Hz, 1H), 3.67 (dd, *J* = 11.1, 4.5 Hz, 1H), 3.61 (dd, *J* = 11.1, 6.0 Hz, 1H), 3.34 (dd, *J* = 13.2, 4.5 Hz, 1H), 3.19 (dd, *J* = 13.2, 7.2 Hz, 1H), 2.99 (br s, 2H), 2.24 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 145.4 (C), 129.8 (CH), 127.6 (C), 113.5 (CH), 69.8 (CH), 47.7 (CH₂), 47.5 (CH₂), 20.3 (CH₃); IR (KBr) 3337, 3196, 2923, 2851, 1238, 1088, 1057, 820, 742 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₅CINO 200.0837, found 200.0840.

General Procedure for the Reaction of 1 with Carbon Disulfide

To an oven-dried 10 mL test tube equipped with a stir bar was added **1** (0.3 mmol, 1.0 equiv), MeCN (1.0 mL, 0.3 M), Et₃N (0.21 mL, 1.5 mmol, 5.0 equiv), and CS₂ (22 μ L, 0.36 mmol, 1.2 equiv). After stirring at 35 °C for 24 h, the mixture was directly purified by flash column chromatography (SiO₂) to obtain **2**.

3-Benzyl-5-hydroxy-1,3-thiazinane-2-thione (2a). Prepared according to the general procedure using **1a** (59.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (66.5 mg, 93%). $R_f = 0.25$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 112-113 °C; ¹H NMR (300 MHz, CD₃OD) δ 7.41-7.27 (m, 5H), 5.55 (d, *J* = 14.7 Hz, 1H), 5.15 (d, *J* = 14.7 Hz, 1H), 4.31-4.24 (m, 1H), 3.51 (ddd, *J* = 13.8, 3.3, 1.2 Hz, 1H), 3.41 (ddd, *J* = 13.8, 6.6, 1.2 Hz, 1H), 3.17. (ddd, *J* = 12.0, 3.6, 1.2 Hz, 1H), 2.93 (ddd, *J* = 12.0, 6.9, 1.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CD₃OD) δ 193.9 (C), 136.8 (C), 129.7 (CH), 129.1 (CH), 128.9 (CH), 63.0 (CH), 59.1 (CH₂), 56.0 (CH₂), 39.0 (CH₂); IR (KBr) 3276, 3026, 2882, 1503, 1350, 939, 738, 696 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaOS₂ 262.0331, found 262.0341.

Procedure for gram scale synthesis: To an oven-dried 50 mL round-bottom flask equipped with a stir bar was added **1a** (1198.3 mg, 6.0 mmol), MeCN (20 mL, 0.3 M), Et₃N (4.2 mL, 30 mmol), and CS₂ (0.44 mL, 7.2 mmol). After stirring at 35 °C for 24 h, the mixture was treated with satd NH₄Cl aq (40 mL), and the aqueous layer was extracted with EtOAc (40 mL×3). The organic layers were combined, washed with brine (120 mL), dried over Na₂SO₄ and concentrated. The crude material was triturated with a EtOAc/Hexane (2 mL/8 mL) mixture, and the solid was collected by vacuum filtration and washed with Hexane (20 mL) to obtain **2a** as a white solid (1357.7 mg, 94%).

Procedure for one-pot synthesis: To an oven-dried 20 mL test tube equipped with a stir bar was added epichlorohydrin (138.9 mg, 1.5 mmol), ^{*i*}PrOH (5 mL, 0.3 M), and benzylamine (330 μ L, 3.0 mmol). After stirring at 35 °C for 24 h, CS₂ (110 μ L, 1.8 mmol) was added to the mixture. After stirring at 35 °C for 24 h, the mixture was directly purified by flash column chromatography (SiO₂: 25 g, Hexane:EtOAc = 2:1) to obtain **2a** as a white solid (300.6 mg, 84%).

5-Hydroxy-3-(4-methoxybenzyl)-1,3-thiazinane-2-thione (2b). Prepared according to the general procedure using **1b** (68.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (72.9 mg, 90%). $R_f = 0.20$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 133-134 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 6.91-6.86 (m, 2H), 5.32 (d, *J* = 14.4 Hz, 1H), 5.25

(d, J = 14.4 Hz, 1H), 4.41-4.33 (m, 1H), 3.81 (s, 3H), 3.46 (d, J = 4.2 Hz, 2H), 3.23 (dd, J = 12.3, 3.3 Hz, 1H), 2.95 (dd, J = 12.3, 6.3 Hz, 1H), 2.29 (d, J = 6.6 Hz, 1H); ${}^{13}C{}^{1}H{}$ NMR (75 MHz, CDCl₃) δ 191.5 (C), 159.6 (C), 129.8 (CH), 126.9 (C), 114.3 (CH), 62.2 (CH), 57.6 (CH₂), 55.3 (CH₃), 54.5 (CH₂), 38.5 (CH₂); IR (KBr) 3269, 2925, 2881, 2839, 1513, 1502, 1352, 1232, 1187, 1061, 941, 837, 776 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₂S₂ 292.0436, found 292.0427.

3-(4-Chlorobenzyl)-5-hydroxy-1,3-thiazinane-2-thione (2c). Prepared according to the general procedure using **1c** (70.3 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (77.5 mg, 94%). $R_f = 0.25$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 157-158 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.30 (m, 4H), 5.32 (s, 2H), 4.44-4.36 (m, 1H), 3.47 (d, *J* = 4.2 Hz, 2H), 3.26 (dd, *J* = 12.3, 3.3 Hz, 1H), 2.98 (ddt, *J* = 12.3, 6.3, 0.9 Hz, 1H), 2.25-2.23 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.1 (C), 134.2 (C), 133.4 (C), 129.6 (CH), 129.1 (CH), 62.1 (CH), 57.5 (CH₂), 54.8 (CH₂), 38.5 (CH₂); IR (KBr) 3292, 3083, 2904, 1519, 1489, 1353, 1265, 1169, 1077, 1057, 930, 803 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₂CINNaOS₂ 295.9941, found 295.9937.

(*S*)-**2c**: Prepared according to the general procedure using (*S*)-**1c** (70.2 mg, 0.30 mmol). White solid (75.5 mg, 92%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralpak AD-3, Hexane:EtOH = 85:15, 1.0 mL/min, $t_r(major) = 22.7 \text{ min}$, $t_r(minor) = 24.2 \text{ min}$, 220 nm, 35 °C); $[\alpha]_D^{23}$ -25.7 (*c* 0.1, CHCl₃, 99% ee).

5-Hydroxy-3-(pyridin-2-ylmethyl)-1,3-thiazinane-2-thione (**2d**). Prepared according to the general procedure using **1d** (60.2 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 1:1) to obtain a white solid (64.0 mg, 89%). $R_f = 0.15$ (EtOAc) visualized with KMnO₄; mp 140-141 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (ddd, J = 5.1, 1.5, 0.9 Hz, 1H), 7.74 (td, J = 7.8, 1.8 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.29-7.24 (m, 1H), 6.91 (br s, 1H), 6.45 (d, J = 16.2 Hz, 1H), 4.62-4.58 (m, 1H), 4.44 (d, J = 16.2 Hz, 1H), 3.99 (ddd, J = 13.8, 4.2, 2.4 Hz, 1H), 3.84 (d, J = 13.8 Hz, 1H), 3.31 (dd, J = 12.3, 3.3 Hz, 1H), 3.10 (dddd, J = 12.3, 3.3, 2.4, 0.9 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 194.5 (C), 154.9 (C), 148.6 (CH), 137.6 (CH), 122.98 (CH), 122.95 (CH), 62.3 (CH), 57.7 (CH₂), 56.9 (CH₂), 40.4 (CH₂); IR (KBr) 3086, 2913, 2728, 1599, 1506, 1480, 1351, 1183, 1172, 1082, 1055, 982, 946, 759 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₂N₂NaOS₂ 263.0283, found 263.0301.

5-Hydroxy-3-(2-phenylethyl)-1,3-thiazinane-2-thione (2e). Prepared according to the general procedure using **1e** (64.3 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (67.2 mg, 88%). $R_f = 0.15$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 153-154 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.22 (m, 5H), 4.37-4.28 (m, 1H), 4.26-4.14 (m, 2H), 3.46-3.34 (m, 2H), 3.22-3.00 (m, 3H), 2.94-2.88 (m, 1H), 2.18 (d, *J* = 7.5 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 190.5 (C), 138.0 (C), 128.9 (CH), 128.7 (CH), 126.8 (C), 62.1 (CH), 58.1 (CH₂), 57.0 (CH₂), 38.3 (CH₂), 32.4 (CH₂); IR (KBr) 3341, 2942, 2871, 1518, 1358, 1147, 1071, 951, 754, 704 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaOS₂ 276.0487, found 276.0481.

tert-Butyl [2-(5-hydroxy-2-thioxo-1,3-thiazinan-3-yl)ethyl]carbamate (2f). Prepared according to the general procedure using 1f (75.8 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a colorless oil (59.9 mg, 68%). $R_f = 0.15$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 5.06-5.02 (m, 1H), 4.79-4.71 (m, 1H), 4.53-4.46 (m, 1H), 3.77-3.54 (m, 5H), 3.45-3.35 (m, 1H), 3.27 (dd, J = 12.6, 3.3 Hz, 1H), 2.94 (ddd, J = 12.6, 5.1, 0.9 Hz, 1H), 1.45 (s, 9H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.8 (C), 156.8 (C), 80.1 (C), 61.6 (CH), 56.0 (CH₂), 54.8 (CH₂), 38.4 (CH₂), 37.8 (CH₂), 28.3 (CH₃); IR (KBr) 3354, 2976, 2930, 1687, 1506, 1366, 1252, 1167 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₂₀N₂NaO₃S₂ 315.0808, found 315.0819.

5-Hydroxy-3-(propan-2-yl)-1,3-thiazinane-2-thione (2g). Prepared according to the general procedure using **1g** (45.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (48.7 mg, 85%). $R_f = 0.15$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 115-116 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.99 (sept, J = 6.9 Hz, 1H), 4.48-4.44 (m, 1H), 3.45 (ddd, J = 13.8, 5.7, 1.2 Hz, 1H), 3.41-3.36 (m, 1H), 3.21 (ddd, J = 12.0, 3.9, 0.9 Hz, 1H,), 2.96-2.90 (m, 1H), 2.56 (br s, 1H), 1.23 (d, J = 6.9 Hz, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 190.3 (C), 62.4 (CH), 52.7 (CH), 48.3 (CH₂), 38.1 (CH₂), 18.7 (CH₃), 18.6 (CH₃); IR (KBr) 3325, 2976, 2891, 1488, 1262, 1182, 1071, 933, 900, 818, 646 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₇H₁₃NNaOS₂ 214.0331, found 214.0346.

3-*tert*-**Butyl-5-hydroxy-1,3-thiazinane-2-thione (2h).** Prepared according to the general procedure using **1h** (44.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (50.6 mg, 82%). $R_f = 0.25$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 102-103 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.54-4.45 (m, 1H), 3.69 (dd, *J* = 13.8, 5.4 Hz, 1H), 3.62 (dd, *J* = 13.8, 3.9 Hz 1H), 3.14 (dd, *J* = 12.6, 6.0 Hz, 1H), 2.80 (dd, *J* = 12.6, 5.4 Hz, 1H), 2.39 (d, *J* = 6.3 Hz, 1H), 1.74 (s, 9H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 197.8 (C), 66.4 (CH), 64.8 (C), 54.3 (CH₂), 39.3 (CH₂), 28.8 (CH₃); IR (KBr) 3314, 2987, 2954, 2936, 1324, 1190, 1164, 1112, 1067, 1029, 888, 846, 799 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₈H₁₅NNaOS₂ 228.0487, found 228.0508.

5-Hydroxy-3-phenyl-1,3-thiazinane-2-thione (2i). Prepared according to the general procedure using **1i** (55.9 mg, 0.30 mmol) and CS₂ (181 μ L, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (58.7 mg, 87%). R_f = 0.20 (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 115-116 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.43 (m, 2H), 7.40-7.34 (m, 1H), 7.29-7.25 (m, 2H), 4.64-4.57 (m, 1H), 3.88 (d, *J* = 3.6 Hz, 2H), 3.44 (dd, *J* = 12.6, 3.3 Hz, 1H), 2.95 (ddt, *J* = 12.6, 5.4, 1.2 Hz, 1H), 2.66 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.9 (C), 146.5 (C), 129.8 (CH), 128.4 (CH), 126.7 (CH), 61.8 (CH), 59.8 (CH₂), 38.8 (CH₂); IR (KBr) 3277, 2925, 1479, 1327, 1071, 1035, 949, 741, 694 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁NNaOS₂ 248.0174, found 248.0189.

5-Hydroxy-3-(4-iodophenyl)-1,3-thiazinane-2-thione (2j). Prepared according to the general procedure using **1j** (93.7 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (31.6 mg, 30%). $R_f = 0.20$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 139-140 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.06-7.01 (m, 2H), 4.62-4.58 (m, 1H), 3.88-3.78 (m, 2H), 3.44 (dd, *J* = 12.6, 3.3 Hz, 1H), 3.09 (dddd, *J* = 12.6, 5.4, 1.2, 0.9 Hz, 1H), 2.54 (d, *J* = 6.0 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.2 (C), 146.1 (C), 139.1 (CH), 128.8 (CH), 93.8 (C), 61.8 (CH), 59.6 (CH₂), 38.9 (CH₂); IR (KBr) 3304, 2920, 1480, 1439, 1317, 1225, 1065, 1038, 948, 849, 814, 751 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₀INNaOS₂ 373.9141, found 373.9132.

3-(4-Chlorophenyl)-5-Hydroxy-1,3-thiazinane-2-thione (2k). Prepared according to the general procedure using **1k** (66.1 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (40.1 mg, 51%). $R_f = 0.15$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 157-158 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.41 (m, 2H), 7.25-7.20 (m, 2H), 4.65-4.57 (m, 1H), 3.86-3.84 (m, 2H), 3.45 (dd, J = 12.6, 3.3 Hz, 1H), 3.10 (ddt, J = 12.6, 5.7, 1.2 Hz, 1H), 2.59 (d, J = 6.9 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.3 (C), 144.8 (C), 134.2 (C), 130.1 (CH), 128.3 (CH), 61.8 (CH), 59.7 (CH₂), 38.9 (CH₂); IR (KBr) 3303, 2883, 2807, 1488, 1437, 1316, 1064, 1038, 949, 850, 818, 712 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₀ClNNaOS₂ 281.9785, found 281.9811.

3-(4-Fluorophenyl)-5-Hydroxy-1,3-thiazinane-2-thione (2l). Prepared according to the general procedure using **1l** (61.2 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (69.0 mg, 95%). $R_f = 0.15$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 156-157 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.22 (m, 2H), 7.18-7.10 (m, 2H), 4.64-4.56 (m, 1H), 3.90-3.80 (m, 2H), 3.45 (dd, J = 12.6, 3.3 Hz, 1H), 3.10 (ddt, J = 12.6, 5.4, 1.2 Hz, 1H), 2.56 (d, J = 6.9 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.4 (C), 161.9 (d, J = 248.7 Hz, C), 142.4 (d, J = 3.3 Hz, C), 128.6 (d, J = 8.8 Hz, CH), 116.8 (d, J = 23.1 Hz, CH), 61.8 (CH), 59.9 (CH₂), 39.0 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -112.3; IR (KBr) 3303, 2983, 2914, 1508, 1472, 1321, 1239, 1215, 1066, 1037, 949, 856, 828, 726 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₀FNNaOS₂ 266.0080, found 266.0082.

5-Hydroxy-3-(4-methylphenyl)-1,3-thiazinane-2-thione (2m). Prepared according to the general procedure using **1m** (60.0 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (61.9 mg, 86%). R_f = 0.25 (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 157-158 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.24 (m, 2H), 7.17-7.13 (m, 2H), 4.62-4.55 (m, 1H), 3.89-3.80 (m, 2H), 3.44 (dd, *J* = 12.6, 3.3 Hz, 1H), 3.09 (ddt, *J* = 12.6, 5.7, 1.2 Hz, 1H), 2.78 (d, *J* = 6.3 Hz, 1H), 2.38 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.9 (C), 144.0 (C), 138.3 (C), 130.5 (CH), 126.3 (CH), 61.8 (CH), 59.9 (CH₂), 38.8 (CH₂), 21.2 (CH₃); IR (KBr) 3428, 2923, 2895,

1508, 1476, 1328, 1227, 1166, 1073, 1038, 943, 809 cm⁻¹; HRMS (ESI/TOF) m/z: $[M+Na]^+$ calcd for $C_{11}H_{13}NNaOS_2$ 262.0331, found 262.0333.

5-Hydroxy-3-(4-methoxyphenyl)-1,3-thiazinane-2-thione (**2n**). Prepared according to the general procedure using **1n** (64.9 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv). Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (70.6 mg, 92%). $R_f = 0.10$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 172-173 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.21-7.16 (m, 2H), 6.98-6.93 (m, 2H), 4.62-4.55 (m, 1H), 3.86 (d, *J* = 3.6 Hz, 1H), 3.82. (s, 3H), 3.43 (dd, *J* = 12.6, 3.3 Hz, 1H), 3.08 (ddd, *J* = 12.6, 5.7, 0.9 Hz, 1H), 2.58 (d, *J* = 7.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.1 (C), 159.1 (C), 139.4 (C), 127.7 (CH), 114.9 (CH), 62.0 (CH), 60.1 (CH₂), 55.4 (CH₃), 38.9 (CH₂); IR (KBr) 3350, 2955, 1507, 1476, 1442, 1291, 1243, 1216, 1066, 918, 828, 725, 630 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₂S₂ 278.0280, found 278.0284.

Procedure for one-pot synthesis: To an oven-dried 20 mL test tube equipped with a stir bar was added epichlorohydrin (138.9 mg, 1.5 mmol), *p*-anisidine (369.5 mg, 3.0 mmol), and LiBr (6.5 mg, 75 µmol). After stirring at 35 °C for 24 h, MeCN (5 mL, 0.3 M), Et₃N (1.05 mL, 7.5 mmol), and CS₂ (0.91 mL, 15 mmol) were added to the mixture. After stirring at 35 °C for 24 h, the mixture was directly purified by flash column chromatography (SiO₂: 25 g, Hexane:EtOAc = 2:1) to obtain **2n** as a white solid (352.6 mg, 92%).

5-Hydroxy-3-(3-methoxyphenyl)-1,3-thiazinane-2-thione (**2o**). Prepared according to the general procedure using **1o** (64.9 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (47.6 mg, 62%). R_f = 0.20 (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 165-166 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (t, J = 8.1 Hz, 1H), 6.91 (ddd, J = 8.1, 2.1, 0.9 Hz, 1H), 6.86 (ddd, J = 8.1, 2.1, 0.9 Hz, 1H), 6.81 (t, J = 2.1 Hz, 1H), 4.62-4.56 (m, 1H), 3.87 (d, J = 3.6 Hz, 2H), 3.82 (s, 3H), 3.44 (dd, J = 12.6, 3.3 Hz, 1H), 3.09 (ddt, J = 12.6, 5.7, 1.2 Hz, 1H), 2.55-2.53 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.7 (C), 160.6 (C), 147.5 (C), 130.5 (CH), 118.7 (CH), 112.5 (CH), 61.9 (CH), 59.8 (CH₂), 55.5 (CH₃), 38.8 (CH₂); IR (KBr) 3303, 2980, 1600, 1483, 1440, 1329, 1289, 1212, 1187, 1071, 1031, 953, 802, 790, 692 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₂S₂ 278.0280, found 278.0290.

5-Hydroxy-3-(2-methoxyphenyl)-1,3-thiazinane-2-thione (**2p**). Prepared according to the general procedure using **1p** (64.9 mg, 0.30 mmol) and CS₂ (181 µL, 3.0 mmol, 10 equiv) at 60 °C for 24 h. Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 5:1–2:1) to obtain a white solid (17.6 mg, 23%). R_f = 0.25 (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 132-133 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.32 (m, 1H), 7.26-7.21 (m, 1H), 7.08-6.99 (m, 2H), 4.59-4.52 (m, 1H), 3.93-3.65 (m, 2H+1H×77/100), 3.91 (s, 3H×77/100), 3.86 (s, 3H×23/100), 3.41-3.35 (m, 1H), 3.16-3.05 (m, 1H), 2.80 (br s, 1H×23/100); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 194.7 (C, *major*), 193.0 (C, *minor*), 154.0 (C, *minor*), 152.7 (C, *major*), 134.6 (C, *minor*), 134.5 (C, *major*), 130.0 (CH, *major*), 129.8 (CH, *minor*), 128.7 (CH, *major*), 128.5 (CH, *minor*), 121.7 (CH, *major*), 121.3 (CH, *minor*), 56.3 (CH₃, *major*), 55.9 (CH₃, *minor*), 39.6 (CH₂, *major*), 38.7 (CH₂, *minor*); IR (KBr) 3332, 2988, 2834, 1500, 1472, 1298, 1272, 1227, 1063, 917, 763, 739, 637 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₂S₂ 278.0280, found 278.0286.

Appendix

We performed the reaction of an epoxy amine with CS₂. The epoxy amine was freshly prepared by treatment of **1a** with aqueous NaOH in CH₂Cl₂ followed by extraction, and used directly for the reaction without further purification due to its instability. As a result, five-membered cyclic carbamate **2a**' was obtained in high yield with high selectivity (88% combined yield, **2a**':**2a** = >20:1).

3-Benzyl-5-(hydroxymethyl)-1,3-thiazolidine-2-thione (2a'). To an oven-dried test tube equipped with a stir bar was added **1a** (59.9 mg, 0.30 mmol), CH₂Cl₂ (1.5 mL, 0.2 M), and 0.3 M NaOH aq (1.5 mL, 1.5 equiv). After stirring at rt for 18 h, the organic layer was separated, washed with H₂O (×2), dried over Na₂SO₄, and concentrated. The unpurified material was diluted with MeOH (1.0 mL, 0.3 M) and then CS₂ (22 μ L, 0.36 mmol, 1.2 equiv) was added to the solution. After stirring at 35 °C for 24 h, the mixture was concentrated and purified by flash column chromatography (SiO₂: 8 g, Hexane:EtOAc = 3:1) to obtain a colorless oil (63.5 mg, 88% combined yield, 98:2 mixture of **2a'** and **2a**). R_f = 0.25 (Hexane:EtOAc = 1:1) visualized with KMnO4; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.24 (m, 5H), 4.96 (s, 2H), 4.00 (dd, *J* = 12.0, 7.5 Hz, 1H), 3.87 (dd, *J* = 12.0, 3.0 Hz, 1H), 3.73-3.58 (m, 3H), 2.72 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 195.6 (C), 134.8 (C), 129.0 (CH), 128.3 (CH), 128.2 (CH), 63.9 (CH₂), 57.7 (CH₂), 52.7 (CH₂), 44.0 (CH); HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaOS₂ 262.0331, found 262.0333.

We monitored the reaction of **1** (0.3 mmol) with CS_2 (10 equiv) using Et₃N (5.0 equiv) in MeCN (0.3 M) at 35 °C by ¹H NMR. Samplings from the reaction were taken to perform ¹H NMR experiments.

Table S1. Monitoring Reaction Progress^a

	MeO	Me	Н	F	Cl	Ι
1	9.3 (2.5)	11.4 (15)	10.6 (60)	11.5 (60)	10.6 (480)	8.9 (720)
2	14.9 (5.0)	19.5 (30)	12.8 (90)	19.4 (105)	17.8 (1080)	10.7 (1080)
3	25.5 (10)	25.7 (45)	19.1 (150)	24.4 (150)	20.9 (1440)	13.2 (1440)

^aNMR yield of **2** is shown. Reaction time is shown in parentheses.

In the case of **1i** bearing a phenyl group, a decreased yield was obtained under the optimal conditions for *N*-alkyl groups. After several trials, we found that the reaction using 10 equiv of CS_2 at 60 °C for 24 h furnished product **2i** in high yield. These conditions were used for subsequent reactions.

CI		^s ∕s∕
м н он	CS ₂ , Et ₃ N (5.0 equiv)	
	MeCN (0.3 M), 24 h	
1i		2i

Entry	CS ₂ (equiv)	Temp. (°C)	Yield $(\%)^b$
1	1.2	35	17
2	5.0	35	51
3	10	35	63
4	1.2	60	53
5	5.0	60	85
6	10	60	87

^{*a*}All reactions were carried out with **1a** (0.30 mmol) ^{*b*}Isolated yield of **2i** is shown.

The reaction of the substrate without a hydroxy group, namely *N*-benzyl-3-chloropropan-1-amine, was performed for comparison. The corresponding cyclic dithiocarbamate was obtained in 97% yield under the same conditions, suggesting that the hydroxy group is not required for the reaction.

3-Benzyl-1,3-thiazinane-2-thione (S1). Prepared according to the general procedure using *N*-benzyl-3-chloropropan-1-amine (55.3 mg, 0.30 mmol).² Flash column chromatography (SiO₂: 10 g, Hexane:EtOAc = 2:1) to obtain a white solid (65.0 mg, 97%). $R_f = 0.30$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 123-124 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.28 (m, 5H), 5.38 (s, 2H), 3.47-3.43 (m, 2H), 3.01-2.97 (m, 2H), 2.24-2.16 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.6 (C), 135.2 (C), 128.8 (CH), 127.97 (CH), 127.95 (CH), 57.8 (CH₂), 49.4 (CH₂), 32.2 (CH₂), 23.2 (CH₂); IR (KBr) 1500, 1448, 1427, 1345, 1225, 1187, 1145, 941, 703 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaS₂ 246.0382, found 246.0394.

Table S2. Optimization of Reaction Conditions^a

DFT Studies

Quantum mechanical calculations were performed using Gaussian 16 (Revision C.01).³

The p K_a values of a Brønsted acid (HA) in DMSO were predicted according to the reported method.⁴ The free energy of acid dissociation in DMSO (ΔG^*_{soln}) can be obtained through eq 1. The solvation free energy of a proton ($\Delta G^*_{solv}(H^+)$) was set to -1126.572121 kJ mol⁻¹ (ca. -269 kcal mol⁻¹), where the p K_a value of phenol in DMSO can be adjusted to 18.0 (cf. Bordwell p K_a Table). The geometries were optimized at the B3LYP/6-31+G(d) level of theory in gas-phase. The thermal corrections to Gibbs free energy (G_{gas} _correct) were obtained by frequency calculations at the same level of theory. The energies in solution phase were obtained by SMD calculation (M06-2X/6-311++G(2df,2p)) with the gas-phase geometries.

$$\Delta G^*_{\text{soln}} = \Delta G^*_{\text{gas}} + \Delta G^*_{\text{solv}}(A^-) + \Delta G^*_{\text{solv}}(H^+) - \Delta G^*_{\text{solv}}(HA)$$
(1)

Table S3. pKa Calculation for a Dithiocarbamic Acid^a

S SH CI Me OH

 $\Delta G^*_{\text{soln}} = 28.0 \text{ kJ/mol, } pKa 4.9 \text{ (DMSO)}$

	АН	A^{-}	H^+	$\Delta G_{\rm gas}({\rm au})$	$\Delta G^*_{\rm gas}$ (kJ/mol)
$E_{\rm gas}({\rm au})$	-1583.105934	-1582.585535	0		
$G_{\rm gas}$ (au)	-1582.992782	-1582.482360	-0.01	0.500422	1321.784552
$G_{\text{gas}_\text{correct}}(\text{au})$	0.113152	0.103175	-0.01		
$E_{\rm SMD}$ (au)	-1583.095016	-1582.638288			
$G_{\rm SMD}$ (au)	-1582.981864	-1582.535113			
$\Delta G^*_{\rm solv}$ (au)	0.010918	-0.052753			
ΔG^*_{solv} (kJ/mol)	28.666283	-138.502621	-1126.572121		

 $\overline{^{a}\text{At the M06-2}X/6-311++G(2df,2p)-SMD(DMSO)//B3LYP/6-31+G(d)}$ level of theory.

Table S4. pKa Calculation for a Carbamic Acid^a

 $\Delta G^*_{\text{soln}} = 84.7 \text{ kJ/mol, } pKa 14.8 \text{ (DMSO)}$

	АН	A	H^{+}	$\Delta G_{\rm gas}$ (au)	ΔG^*_{gas} (kJ/mol)
$E_{\rm gas}({\rm au})$	-937.210843	-936.669005	0		
$G_{\rm gas}$ (au)	-937.088843	-936.560875	-0.01	0.517968	1367.85157
$G_{\text{gas}_\text{correct}}(\text{au})$	0.122000	0.108130	-0.01		
$E_{\rm SMD}({\rm au})$	-937.200276	-936.718093			
$G_{\rm SMD}$ (au)	-937.078276	-936.609963			
$\Delta G^*_{\rm solv}$ (au)	0.010567	-0.049088			
$\Delta G^*_{ m solv} ({ m kJ/mol})$	27.743370	-128.881317	-1126.572121		

^{*a*}At the M06-2X/6-311++G(2df,2p)-SMD(DMSO)//B3LYP/6-31+G(d) level of theory.

All geometries were optimized using the ω B97X-D density functional,⁵ the 6-31+G(d) basis set, and an ultrafine integration grid within the IEFPCM model in acetonitrile.⁶ Single-point energies were calculated using ω B97X-D, the polarized, triple- ζ valence quality def2-TZVPP basis set of Weigend and Ahlrichs⁷ and an ultrafine integration grid within the IEFPCM model in acetonitrile. The resulting energies were used to correct the energies obtained from the ω B97X-D optimizations. The free energy corrections were calculated at 1 atm and 298.15 K. All depicted 3D structures were generated using the CYLview program.⁸

		<i>E</i> (a.u.)	G_corr (a.u.)	<i>G</i> (a.u.)
R ₁	optimization		0.109890	-1582.838250
	single-point	-1583.16360313	N/A	-1583.053713
TS	optimization		0.114040	-1582.821210
151-1	single-point	-1583.14703918	N/A	-1583.032999
INT ₁	optimization		0.234535	-1757.194636
	single-point	-1757.69945262	N/A	-1757.464918
TS ₁₋₂	optimization		0.235829	-1757.161543
	single-point	-1757.66613376	N/A	-1757.430305
P ₁	optimization		0.233249	-1757.224858
	single-point	-1757.72633531	N/A	-1757.493086

 aAt the $\omega B97X\text{-}D/def2\text{-}TZVPP\text{-}IEFPCM(MeCN)// <math display="inline">\omega B97X\text{-}D/6\text{-}31\text{+}G(d)\text{-}IEFPCM(MeCN)$ level of theory.

R1

The lowest frequency = 16.1167 cm^{-1} Number of imaginary frequencies = 0

INUIIIC	ber of imaginary fre	quencies $= 0$	
С	1.4521294883	0.1084095121	1.0286690125
Η	1.4263753289	-0.3900225323	2.0089341559
С	1.7743712866	1.5845489863	1.2313653985
Η	1.0523064819	2.0582182639	1.8972718259
С	0.0721455922	-0.0208043214	0.3605100315
Н	0.207526667	0.1482853466	-0.7157925012
Н	-0.5762896553	0.7796073718	0.7343558243
0	2.4090662718	-0.5202361526	0.1898786719
Ν	-0.6425390769	-1.2721363948	0.5489985929
С	0.0305921928	-2.4694308165	0.0571615915
Η	-0.6442180377	-3.3242039652	0.1661958628
Η	0.9760880647	-2.6990723697	0.5693288271
Η	0.2497029275	-2.3422280573	-1.0084746619
С	-2.4177770787	0.1800792357	-2.2810671584
Η	3.2583565624	-0.5468022877	0.652122312
Н	1.8091266618	2.1151275939	0.2780157121
Cl	3.3990638468	1.8068817174	2.0015897527
Η	-0.8740038439	-1.3870267853	1.5316483117
S	-3.0523505321	1.3148630249	-1.4261848607
S	-1.7846360578	-0.9498532499	-3.1427153613

TS₁₋₁

101-1						
The lo	The lowest frequency = $-288.8037 \text{ cm}^{-1}$					
Numb	Number of imaginary frequencies = 1					
С	-3.0155034051	-1.0751815919	-0.0733427672			
Н	-3.4268584064	-1.4066238683	0.8908416745			
С	-2.45977081	0.3371655655	0.0857245416			
Н	-3.2262462993	1.024133272	0.4457172126			
С	-4.1342871472	-1.0517444709	-1.1214581661			
Н	-3.6805512369	-1.0356567066	-2.1192927429			
Н	-4.7200628738	-0.133798235	-1.0023414676			
0	-2.0211808591	-1.9813309349	-0.517606197			
Ν	-5.0789557559	-2.1618284462	-1.0734108581			
С	-4.5452988496	-3.4921445202	-1.3338418151			
Н	-5.3701884783	-4.2088394501	-1.3125902081			
Н	-3.780668788	-3.787756786	-0.6091570498			
Н	-4.0979940439	-3.4979632271	-2.3329554246			
С	-6.654795221	-1.6655726206	-2.4845151085			
Н	-1.3726647005	-2.1057331064	0.1892099431			
Н	-2.0388071987	0.7025363192	-0.8525383465			
Cl	-1.1233852957	0.3765632106	1.3026669014			
Η	-5.6146864498	-2.1428326669	-0.2088811804			
S	-7.7706289998	-1.0107639958	-1.5462564386			
S	-6.094628631	-2.1206554505	-3.9038867427			

INT₁

The l	The lowest frequency = 13.1290 cm^{-1}				
Number of imaginary frequencies $= 0$					
С	-2.5971399433	-0.5410004087	-1.0384126399		
Η	-2.8573049064	0.148107191	-1.8540863089		

Η	-1.3820023079	0.9117871841	0.0281631213
С	-1.4180081483	-1.4235399218	-1.4702732695
Η	-1.7432241943	-2.0262692762	-2.323639261
Η	-1.1465081047	-2.0974923905	-0.6591019177
0	-3.6680544727	-1.4368369417	-0.8017128355
Ν	-0.2516709126	-0.6431693539	-1.8677484306
С	-0.3739169129	0.0471123301	-3.1512733816
Η	-0.4412752783	1.1303599026	-3.0111515478
Η	-1.2777563332	-0.3060884909	-3.6499889252
Η	0.4905211516	-0.1662533293	-3.7833724783
С	0.8483742008	-0.4920014278	-1.0946558571
Ν	2.6455395049	0.8811130118	1.9377108505
С	4.0797559362	0.9899829547	1.5696758083
Η	4.1430011851	1.3265185641	0.535243273
Η	4.5404056926	0.0063734369	1.6666747208
Η	4.566064038	1.7015023255	2.2393822694
С	1.9227643192	2.1636408634	1.7400291972
Η	2.0482941352	2.4710287134	0.7019663167
Η	2.334619576	2.9130385226	2.4184261336
Η	0.8649250452	2.0034824635	1.9522017438
С	2.4649736438	0.3544297173	3.3148127726
Η	2.8959219793	1.0592084356	4.0278402062
Η	2.9662743967	-0.611039946	3.3891864699
Η	1.398167876	0.2309215725	3.5043394154
Η	2.1983075931	0.1712394825	1.2986184556
Η	-4.4744125644	-0.9263555599	-0.6455486102
Η	-2.0748842848	-0.3700431198	1.0612078262
Cl	-3.6192453247	1.3776243429	0.63984639
S	2.1152791392	0.5404179709	-1.6251081094
S	0.9642485946	-1.336834136	0.4224160362
С	-2.2498555393	0.2742100271	0.1996637957

TS₁₋₂

The lowest frequency = -508.8298 cm ⁻¹						
Number of imaginary frequencies $= 1$						
С	-4.1892635411	0.4591065078	-0.0244467415			
Η	-4.4991043589	1.4213686222	-0.4521380251			
Η	-2.9922941975	1.6509980792	1.4802347131			
С	-3.2687486375	-0.2331032387	-1.0427611048			
Η	-3.8550385017	-0.3923014521	-1.9489088943			
Η	-2.9691837777	-1.2078052916	-0.6524854419			
0	-5.2948315292	-0.4084168993	0.1072871032			
Ν	-2.0939789809	0.5501076601	-1.3943185169			
С	-2.1065948931	1.2557018468	-2.6739391517			
Η	-1.6952688196	2.2588172315	-2.5519019006			
Η	-3.1370658643	1.3297881347	-3.0221224613			
Η	-1.5086115265	0.7201538807	-3.4186252488			
С	-1.0212721635	0.5822520336	-0.5834513804			
Ν	0.6019029126	2.0469462551	2.4998322874			
С	2.0632715113	1.7930623311	2.3973464554			
Η	2.3685928234	1.9629545005	1.3650804435			
Η	2.2584370883	0.7571773653	2.6757733839			
Η	2.5873035852	2.4721535186	3.071864239			

С	0.2502340559	3.4224683269	2.0579562371
Η	0.6082562263	3.5586269862	1.0379511483
Н	0.7222154357	4.1383029729	2.7328439659
Η	-0.8335849602	3.5353354101	2.0889372913
С	0.0802776651	1.7577323572	3.8620336993
Η	0.5461336655	2.4418517226	4.5725778251
Η	0.3202881346	0.7256310557	4.1180367661
Н	-1.0011995157	1.8965044388	3.8581628067
Н	0.1231507098	1.3746410845	1.8601654636
Н	-5.9087983899	0.0162755898	0.7292484381
Н	-3.6049346646	0.0114023265	2.1092638065
Cl	-5.4054929027	1.7970722585	2.2506236592
S	0.4346425694	1.3421793789	-1.0417175357
S	-1.2080455895	-0.173807321	0.9753350474
С	-3.5582439988	0.747997257	1.3223915531

P1

The l	owest frequency = 1	17.7865 cm ⁻¹				
Number of imaginary frequencies $= 0$						
С	-2.5180973551	-0.4331302249	-0.7722259771			
Η	-2.9492116314	0.4424940285	-1.2750506697			
Η	-1.3782503406	1.1166182572	0.2529892817			
С	-1.6499926808	-1.223002644	-1.7553929332			
Η	-2.1260778439	-1.2680277055	-2.7337452085			
Η	-1.5628240504	-2.2455906452	-1.3705022114			
0	-3.5388854135	-1.3190725051	-0.3795398492			
Ν	-0.2986177778	-0.6759559144	-1.9295154946			
С	0.1460076035	-0.3846078604	-3.2907799069			
Η	0.903831001	0.3987207367	-3.269125311			
Η	-0.7134871169	-0.0459341104	-3.8694454807			
Η	0.5713690043	-1.2806551554	-3.754564222			
С	0.5566100073	-0.6755010546	-0.9091504399			
Ν	2.8548868271	1.0368127302	1.7349178117			
С	4.1898716476	1.6150936788	1.4215654867			
Η	4.0971478422	2.2549066423	0.5439201262			
Η	4.8845125324	0.8004791712	1.2165209395			
Η	4.5322620639	2.1963884163	2.2789437407			
С	1.831502227	2.0967851682	1.9417687361			
Η	1.7649991034	2.6995869651	1.0358356066			
Н	2.1323049192	2.7169011229	2.7873364806			
Η	0.8721961749	1.6209541704	2.1440449055			
С	2.9198701548	0.0940494628	2.883584382			
Η	3.2499051724	0.6398719024	3.7686280514			
Η	3.6271175351	-0.7002341072	2.6441897923			
Η	1.9281698677	-0.3274461311	3.0465193827			
Η	2.5721013464	0.4853416602	0.893138408			
Η	-4.2507522003	-0.7829270213	0.0386137236			
Η	-2.2613086582	0.0260648613	1.3348022446			
Cl	-5.6125514621	0.6274855	0.8948631243			
S	2.231877168	-0.5070707454	-1.0583965583			
S	-0.1541433047	-0.8857339267	0.6950693576			
С	-1.6822878826	0.0787199967	0.410330541			

References

- (1) Toda, Y.; Shishido, M.; Aoki, T.; Sukegawa, K.; Suga, H. Switchable synthesis of cyclic carbamates by carbon dioxide fixation at atmospheric pressure. *Chem. Commun.* **2021**, *57*, 6672–6675.
- (2) Zhang, Y.; Duan, D.; Zhong, Y.; Guo, X.-A.; Guo, J.; Gou, J.; Gao, Z.; Yu, B. Fe(III)-Catalyzed Aerobic Intramolecular N–N Coupling of Aliphatic Azides with Amines. *Org. Lett.* **2019**, *21*, 4960–4965.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2019.
- (4) (a) Yang, C.; Xue, X.-S.; Jin, J.-L.; Li, X.; Cheng, J.-P. Theoretical Study on the Acidities of Chiral Phosphoric Acids in Dimethyl Sulfoxide: Hints for Organocatalysis. *J. Org. Chem.* 2013, 78, 7076–7085. (b) Vipperla, B.; Griffiths, T. M.; Wang, X.; Yu, H. Theoretical pK_a prediction of the α-phosphate moiety of uridine 5'-diphosphate-GlcNAc. *Chem. Phys. Lett.* 2017, 667, 220–225.
- (5) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atomatom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620.
- (6) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999–3094.
- (7) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- (8) Legault, C. Y. *CYLView*, version 1.0.561 beta, Université de Sherbrooke, 2009. http://www.cylview.org.

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 1k

18MI-103 cc f16-32.010.001.1r.esp 12 -6.59 35 6.56 -3.65 3.67 7.26 3.33 3.23 3.23 21 23 4.09-4.07 4.04 8 1.97 6.5 1.93 9.5 9.0 8.5 8.0 7.5 7.0 1.00 1.63 2.15 5.5 5.0 4.5 4.0 3.5 3.0 Chemical Shift (ppm) 1.5 1.0 0.5 2.5 6.0 2.0 18MI-106 DEPT135.010.001.1r.esp 104 96 Chemical Shift (ppm) 176 168 160 152 144 136 128 80 72 64 40 32 24 16 0 192 184 120 112 88 56 48 8 77.42 77.00 76.58 18MI-106 13C.010.001.1r.esp 14.22 -47.80 144.07 157.82 154.69 All Manual Acceleration and a start of the second combined of the second se аруун талан та аруу талан тала 192 184 176 168 160 152 144 8 40 128 120 1 an a sharin in a shike a sa an 136 24 16 112 104 96 Chemical Shift (ppm) 56 48

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 11

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 1m

¹H (300 MHz, CD₃OD) & ¹³C{¹H} NMR (300 MHz, CD₃OD) Spectra of 2a

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2b

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2c

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2d

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (300 MHz, CDCl₃) Spectra of 2f

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2g

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2h

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2i

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2j

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2k

18MI-108 cc f12-22.010.001.1r.esp .26 Ωн 3.85 2.55 3.32 2.06 1.00 2.05 1.01 0.88 1.03 2.5 5.5 5.0 4.5 Chemical Shift (ppm) 6.5 1.5 9.5 8.5 8.0 7.0 6.0 3.5 3.0 1.0 9.0 7.5 4.0 2.0 0.5 18MI-108 DEPT135.010.001.1r.esp 112 104 96 Chemical Shift (ppm) 192 184 176 168 160 152 144 136 128 120 80 72 64 56 48 40 32 24 16 8 0 88 <u>77.43</u> 77.00 76.57 18MI-108 13C.010.001.1r.esp 116.95 116.64 -128.69 -128.57 <u>م</u> 38.95 86 193.43 142.38 163.51 160.22 128 120 112 72 64 56 192 184 144 144 136 48 40 32 717 24 16 176 160 152 112 104 96 Chemical Shift (ppm) 168 80 88

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2l

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2m

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2n

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (300 MHz, CDCl₃) Spectra of 20

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of 2p

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (300 MHz, CDCl₃) Spectra of 2a'

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (300 MHz, CDCl₃) Spectra of S1

HPLC Trace of 2c

