Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Differential detection of Aspartic acid in MCF-7 breast cancer cells

PriyotoshGhosh,^a TanmoyDas,^b AnsumanChattopadhyay,^b and PrithidipaSahoo*^a

Page no.

^aDepartment of Chemistry, Visva-Bharati University, Santiniketan-731235, India.

^bDepartment of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India.

*Corresponding author. Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India

Email: prithidipa.sahoo@visva-bharati.ac.in

CONTENT

1. Performance comparison of existing methods and presacid	esent method	for detection	of	Aspartic
1. NMR and HRMS spectra				
2. Selectivity	6			
3.Optical study and Competitive selectivity analytes.	in 7	presence	of	other
4. UV-vis fluorescence titration	7			
5. Evaluation of the association constants for the formation of PCF-Aspar	rtic acid			
complex	8			
6. Job' s plot	9			
7.Calculation of limit of detection	9-10			
8. Time-dependent fluorescence spectra of PCF in the presence of Aspartic	ic			
Acid	10			
9. PCF lifetime in presence and absence of aspartic acid	11			
10. Reversibility analysis of PCF	12			
11. pH titration	12			
12. DFT study	13			
13. Cytotoxicity assay	14			

1. Table S1. Performance comparison of existing methods and present method for detection of Cysteine

Analytes	Sensor type	Detection limit	Sensitivity and Selectivity	Estimation	Application	References
Aspartic acid	Carbozole	46.1 nM	High	Yes	Yes	Present manuscript
Aspartic acid, Glutaic acid	BODIPY	1 μΜ	Moderate	No	Yes	Dyes Pigm., 2019, 168, 111-122
Aspartic acid	Methoxysalicylaldeh ydethiosemicarbazon e	8.7449 × 10 ⁻ ⁸ M	High	No	Yes	InorganicaChim icaActa 530 (2022) 120683
Aspartic acid, Glutaic acid	NIR cyanide fluorescent	10 ⁻⁷ M	Moderate	No	Yes	NewJ.Chem., 2014, 38, 4791
Aspartic acid	Sliver ion fabricated lanthanide complex	0.46 µM	High	No	No	Sensors and Actuators B 253 (2017) 1006– 1011

1.NMR Studies

¹H NMR of PCF in CD₃CN:

Figure S1.¹H NMR of PCF in CD₃CN (400 MHz)

¹³C NMR of PCF in CD₃CN:

Figure S2. ¹³C NMR of PCF in CD₃CN (100 MHz).

2.Selectivity

Figure S3. Fluorescence spectra of PCF in presence of different analytesat434 nm (λ_{ex} = 300 nm) in H₂O-CH₃CN (2:1, v/v) at neutral pH.1) Blank, 2) Aspartic acid, 3) Serine, 4) Glutamic acid, 5) L-proline,6) Tyrosine,7) Methionine,8) Leucine,9) Lysine, 10) Alanine, 11) Phenyl alanine 12) Histidine13) Threonine, 14)Valine, 15) Zn²⁺, 16) Cu²⁺, 17) Pb²⁺, 18) Mg²⁺, 19) Ca²⁺, 21) H₂O₂, 22) Fe³⁺, 23) Sn²⁺, 24) Al³⁺,25) Na⁺ 26) K⁺, 27)cysteine (Cys), 28) glycine (Gly), 29) glutamine (Gln), 30)valine (Val), 31) threonine (Thr), 32) methionine (Met), 33) arginine (Arg), 34) isoleucine (Iso), 35) asparagine (Asn), 36) ornithine (Orn) 37) citrulline (Cit), 38) sarcosine (Sar).

3. Optical study and Competitive selectivity in presence of other analytes

Figure S4. (a)Optical study of PCF with aspartic acid then different amino acids (Ala, Arg, Asn, Cys, Glu, Gln, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val)(b)Histogram representing competitive fluorescence spectra of **PCF** + **Aspartic acid** in presence of different analytes at 434 nm ($\lambda_{ex} = 300$ nm) in H₂O-CH₃CN (2:1, v/v) at pH 6.5-6.8. [1) Blank, 2) Aspartic acid, 3) Aspartic acid +Zn²⁺, 4) Aspartic acid +Hg²⁺, 5) Aspartic acid +Pb²⁺, 6) Aspartic acid +Mg²⁺, 7) Aspartic acid +Ca²⁺, 8) Aspartic acid +Na⁺, 9) cysteine +K⁺, 10) Aspartic acid +H₂O₂, 11) Aspartic acid +H₂S,12) Aspartic acid +Cd²⁺, 13) Aspartic acid+CN⁻, 14) Aspartic acid +NO₃⁻]

4. UV-vis and fluorescence titration studies

UV-vis spectral studies:

A stock solution of $PCF1 \times 10^{-5}$ M was prepared in water-acetonitrile (2:1, v/v). Aspartic acid solution of concentration 1×10^{-4} M was prepared in Millipore water. All experiments were carried out in an aqueous medium at pH 6.5-6.8. During the titration, each time a 1×10^{-5} M solution of PCF was filled in a quartz optical cell of 1 cm optical path length and Aspartic acid stock solution was added into the quartz optical cell gradually by using a micropipette.

Fluorescence spectral studies:

A stock solution of $PCF1 \times 10^{-5}$ M was prepared in water-acetonitrile (2:1, v/v). Aspartic acid solution of concentration 1×10^{-4} M was prepared in Millipore water. All experiments were carried out in aqueous medium at pH 6.5-6.8. During titration, each time a 1×10^{-5} M solution of **PCF** was filled in a quartz optical cell of 1 cm optical path length and Aspartic acid stock solution was added into the quartz optical cell gradually by using a micropipette. For all fluorescence measurements, excitations were provided at 300 nm, and emissions were collected from 390 to 550 nm.

5. Evaluation of the association constants for the formation of PCF-Aspartic acid complex:

By Fluorescence Method:

Binding constant of the chemosensor **PCF** was calculated through emission method by using the following equation:

$$1/(I - I_0) = 1/K(I_{max} - I_0) [G] + 1/(I_{max} - I_0)$$
(ii)

Where I₀, I_{max}, and I represent the emission intensity of free **PCF**, the maximum emission intensity observed in the presence of added **Aspartic acid**at 434 nm (λ_{ex} = 300 nm), [G] is the concentration of the guest**Aspartic acid** and the emission intensity at a certain concentration of the **Aspartic acid**, respectively. [H] is the concentration of the host **PCF**.

Binding constant calculation graph (Fluorescence method):

Fig. S5. Linear regression analysis $(1/[G] \text{ vs } 1/\Delta I)$ for the calculation of association constant value by fluorescence titration method.

The association const. (K_a) of **PCF** for sensing **Aspartic acid**was determined from the equation: $K_a = \text{intercept/slope}$. From the linear fit graph, we get intercept =0.24652, slope = 3.20063×10^{-6} . Thus, we get, $K_a = 0.24652/(3.20063 \times 10^{-6}) = 7.7 \times 10^4 \text{M}^{-1}$.

6. Job's plot

Figure S6. Job's plot of PCF(10 μ M) with Aspartic acid in acetonitrile-water (1:2, v/v), at neutral pH, by fluorescence method, which indicate 1:1 stoichiometry for PCF with Aspartic acid. Standard deviations are represented by error bar (n=3).

7. Calculation of limit of detection (LOD) of PCF with Aspartic acid:

The detection limit of the chemosensor **PCF** for **Aspartic acid** was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without **Aspartic acid** was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of **PCF** for sensing **Aspartic acid** was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

For **PCF** with **Aspartic acid**:

From the linear fit graph, we get slope = 8.56635×10^7 , and SD value is 1.3189665. Thus, using the above formula, we get the Limit of Detection = 4.61×10^{-8} M. Therefore,**PCF** can detect **Aspartic acid** up to this very lower concentration by fluorescence technique.

8. Time-dependent fluorescence spectra of PCF in the presence of Aspartic acid

Figure S8. Time-dependent fluorescence spectra of PCF in the presence of Aspartic acid.

9. PCF lifetime in presence and absence of aspartic acid

Figure S9. PCF lifetime in presence and absence of aspartic acid

Table S2. Decay time components	of PCF and	PCF + Asp
---------------------------------	------------	-----------

System	b 1	τ1	b 2	τ2	$<\tau>=b_1\tau_1+b_2\tau_2$
PCF	0.430738	5.42E-01	0.029351	1.75E+00	0.28 ns
PCF + Asp	0.280081	1.45E-01	0.449727	5.48E+00	2.50 ns

10. Reversibility analysis of PCF

Figure S10. Reversibility analysis of PCF (10^{-5} M) with Aspartic acid (10^{-4} M) in presence of Cu²⁺ (10^{-4} M).

11. pH titration study:

Figure S11. Effect of pH on the fluorescence intensity of PCF (10^{-5} M) in the absence of Aspartic acid (red line) and in the presence of Aspartic acid (10^{-4} M, black line).

12. DFT study

Details	PCF	Aspartic acid	PCF 1	
Calculation method	B3LYP	B3LYP	B3LYP	
Basis set	6-31G (d,p)	6-31G (d,p)	6-31G (d,p)	
E(CAM-B3LYP) (a.u.)	-936.66	-512.32	-1449.00	
Charge, Multiplicity	0, 1	0, 1	0, 1	
Solvent (CPCM)	Water	Water	Water	

Table S3. Details of the geometry optimization in Gaussian 09 program

TDDFT- Calculations

Table S4. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of PCF. The data were calculated by TDDFT//B3LYP/6-31G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f^b	Composition ^c (%)
PCF	$S_0 \to S_1$	3.2237 eV 384.60 nm	0.5287	$\mathrm{H} \rightarrow \mathrm{L} \ (69.1\%)$
PCF 1	$S_0 \rightarrow S_1$	3.0716eV 403 nm	0.4055	$\mathrm{H} \rightarrow \mathrm{L} \ (70 \ \%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Table S5. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	Еномо (a.u.)	Е _{LUMO} (a.u.)	∆E(a.u.)	ΔE(eV)	∆E(kcal/mol)
PCF	-0.19252	-0.05946	0.14459	3.22	74.25
PCF 1	-0.20149	-0.07434	0.14563	3.07	70.80

13. Cytotoxicity assay

Figure S12. MTT assay is to determine the cytotoxic effect of PCF at 500 nM concentration on MCF-7 cells. Untreated control cells and Mitomycin-C treated cells are kept as negative and positive control respectively.