Supporting Information

Differential detection of Aspartic acid in MCF-7 breast cancer cells

PriyotoshGhosh, ${ }^{\text {a }}$ TanmoyDas, ${ }^{\text {b }}$ AnsumanChattopadhyay, ${ }^{\text {b }}$ and PrithidipaSahoo*a${ }^{\text {a}}$ Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.${ }^{\text {b }}$ Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India.*Corresponding author. Department of Chemistry, Visva-Bharati University, Santiniketan-731235, IndiaEmail: prithidipa.sahoo@visva-bharati.ac.in
CONTENT
Page no.

1. Performance comparison of existing methods and present method for detection of Aspartic acid. 2
2. NMR and HRMS spectra. 3-5
3. Selectivity.

\qquad

3.Optical	study	and	Competitive	selectivity	in	presence	of	other

4. UV-vis fluorescence titration. 7
5.Evaluation of the association constants for the formation of PCF-Aspartic acid complex 8
5. Job's plot 9
7.Calculation of limit of detection 9-10
8.Time-dependent fluorescence spectra of PCF in the presence of Aspartic
Acid. 10
6. PCF lifetime in presence and absence of aspartic acid 11
7. Reversibility analysis of PCF. 12
8. pH titration 12
9. DFT study 13
10. Cytotoxicity assay 14

1. Table S1. Performance comparison of existing methods and present method for detection of Cysteine

Analytes	Sensor type	Detection limit	Sensitivity and Selectivity	Estimation	Application	References
Aspartic acid	Carbozole	46.1 nM	High	Yes	Yes	Present manuscript
Aspartic acid, Glutaic acid	BODIPY	$1 \mu \mathrm{M}$	Moderate	No	Yes	$\begin{array}{lr} \text { Dyes } & \text { Pigm., } \\ 2019, & 168, \\ 111-122 & \end{array}$
Aspartic acid	Methoxysalicylaldeh ydethiosemicarbazon e	$\begin{gathered} 8.7449 \times 10^{-} \\ { }^{8} \mathrm{M} \end{gathered}$	High	No	Yes	$\begin{gathered} \text { InorganicaChim } \\ \text { icaActa } 530 \\ (2022) 120683 \end{gathered}$
Aspartic acid, Glutaic acid	NIR cyanide fluorescent	$10^{-7} \mathrm{M}$	Moderate	No	Yes	$\begin{aligned} & \text { NewJ.Chem., } \\ & 2014 \text {, } \\ & 38,4791 \end{aligned}$
Aspartic acid	Sliver ion fabricated lanthanide complex	$0.46 \mu \mathrm{M}$	High	No	No	Sensors and Actuators B 253 (2017) 1006- 1011

1.NMR Studies

${ }^{1} \mathrm{H}$ NMR of PCF in $\mathrm{CD}_{3} \mathrm{CN}$:

Figure S1. ${ }^{1} \mathrm{H}$ NMR of PCF in $\mathrm{CD}_{3} \mathrm{CN}(400 \mathrm{MHz})$
${ }^{13} \mathrm{C}$ NMR of PCF in $\mathrm{CD}_{3} \mathrm{CN}$:

Figure S2. ${ }^{13} \mathrm{C}$ NMR of PCF in $\mathrm{CD}_{3} \mathrm{CN}(100 \mathrm{MHz})$.

2.Selectivity

Figure S3. Fluorescence spectra of PCF in presence of different analytesat434 nm ($\lambda_{\text {ex }}=300 \mathrm{~nm}$) in $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}(2: 1, \mathrm{v} / \mathrm{v})$ at neutral pH .1$)$ Blank, 2) Aspartic acid, 3) Serine, 4) Glutamic acid, 5) L-proline, 6) Tyrosine, 7) Methionine, 8) Leucine,9) Lysine, 10) Alanine, 11) Phenyl alanine 12) Histidine13) Threonine, 14)Valine, 15) Zn^{2+}, 16) Cu^{2+}, 17) Pb^{2+}, 18) Mg^{2+}, 19) Ca^{2+}, 21) $\mathrm{H}_{2} \mathrm{O}_{2}$, 22) Fe^{3+}, 23) Sn^{2+}, 24) Al^{3+}, 25) $\left.\mathrm{Na}^{+} 26\right) \mathrm{K}^{+}$, 27)cysteine (Cys), 28) glycine (Gly), 29) glutamine (Gln), 30)valine (Val), 31) threonine (Thr), 32) methionine (Met), 33) arginine (Arg), 34) isoleucine (Iso), 35) asparagine (Asn), 36) ornithine (Orn) 37) citrulline (Cit), 38) sarcosine (Sar).

3. Optical study and Competitive selectivity in presence of other analytes

Figure S4. (a)Optical study of PCF with aspartic acid then different amino acids (Ala, Arg, Asn, Cys, Glu, Gln, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val)(b)Histogram representing competitive fluorescence spectra of PCF + Aspartic acid in presence of different analytes at $434 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$ in $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}(2: 1, \mathrm{v} / \mathrm{v})$ at $\mathrm{pH} 6.5-6.8$. [1) Blank, 2) Aspartic acid, 3) Aspartic acid $+\mathrm{Zn}^{2+}$, 4) Aspartic acid $+\mathrm{Hg}^{2+}$, 5) Aspartic acid $+\mathrm{Pb}^{2+}$, 6) Aspartic acid $+\mathrm{Mg}^{2+}$, 7) Aspartic acid $+\mathrm{Ca}^{2+}$, 8) Aspartic acid $+\mathrm{Na}^{+}$, 9) cysteine $+\mathrm{K}^{+}$, 10) Aspartic acid $+\mathrm{H}_{2} \mathrm{O}_{2}$, 11) Aspartic acid $+\mathrm{H}_{2} \mathrm{~S}$, 12) Aspartic acid $+\mathrm{Cd}^{2+}$, 13) Aspartic acid+ $+\mathrm{CN}^{-}$, 14) Aspartic acid $+\mathrm{NO}_{3}{ }^{-}$]

4. UV-vis and fluorescence titration studies

UV-vis spectral studies:

A stock solution of PCF1 $\times 10^{-5} \mathrm{M}$ was prepared in water-acetonitrile ($2: 1, \mathrm{v} / \mathrm{v}$). Aspartic acid solution of concentration $1 \times 10^{-4} \mathrm{M}$ was prepared in Millipore water. All experiments were carried out in an aqueous medium at $\mathrm{pH} 6.5-6.8$. During the titration, each time a $1 \times 10^{-5} \mathrm{M}$ solution of PCF was filled in a quartz optical cell of 1 cm optical path length and Aspartic acid stock solution was added into the quartz optical cell gradually by using a micropipette.

Fluorescence spectral studies:

A stock solution of PCF $1 \times 10^{-5} \mathrm{M}$ was prepared in water-acetonitrile ($2: 1, \mathrm{v} / \mathrm{v}$). Aspartic acid solution of concentration $1 \times 10^{-4} \mathrm{M}$ was prepared in Millipore water. All experiments were carried out in aqueous medium at pH 6.5-6.8. During titration, each time a $1 \times 10^{-5} \mathrm{M}$ solution of PCF was filled in a quartz optical cell of 1 cm optical path length and Aspartic acid stock solution was added into the quartz optical cell gradually by using a micropipette. For all fluorescence measurements, excitations were provided at 300 nm , and emissions were collected from 390 to 550 nm .

5. Evaluation of the association constants for the formation of PCF-Aspartic acid complex:

By Fluorescence Method:

Binding constant of the chemosensor PCF was calculated through emission method by using the following equation:

$$
\begin{equation*}
1 /\left(\mathrm{I}-\mathrm{I}_{0}\right)=1 / \mathrm{K}\left(\mathrm{I}_{\max }-\mathrm{I}_{0}\right)[\mathrm{G}]+1 /\left(\mathrm{I}_{\max }-\mathrm{I}_{0}\right) \tag{ii}
\end{equation*}
$$

Where $\mathrm{I}_{0}, \mathrm{I}_{\text {max }}$, and I represent the emission intensity of free PCF, the maximum emission intensity observed in the presence of added Aspartic acidat $434 \mathrm{~nm}\left(\lambda_{\text {ex }}=300 \mathrm{~nm}\right.$), [G] is the concentration of the guestAspartic acid and the emission intensity at a certain concentration of the Aspartic acid, respectively. $[\mathrm{H}]$ is the concentration of the host PCF.

Binding constant calculation graph (Fluorescence method):

Fig. S5. Linear regression analysis ($1 /[\mathrm{G}]$ vs $1 / \Delta \mathrm{I}$) for the calculation of association constant value by fluorescence titration method.

The association const. (K_{a}) of PCF for sensing Aspartic acidwas determined from the equation: $\mathrm{K}_{\mathrm{a}}=$ intercept/slope. From the linear fit graph, we get intercept $=0.24652$, slope $=3.20063 \times 10^{-6}$. Thus, we get, $\mathrm{K}_{\mathrm{a}}=0.24652 /\left(3.20063 \times 10^{-6}\right)=7.7 \times 10^{4} \mathrm{M}^{-1}$.

6. Job's plot

Figure S6. Job's plot of $\mathbf{P C F}(10 \mu \mathrm{M})$ with Aspartic acid in acetonitrile-water (1:2, v/v), at neutral pH , by fluorescence method, which indicate 1:1 stoichiometry for PCF with Aspartic acid. Standard deviations are represented by error bar ($\mathrm{n}=3$).

7. Calculation of limit of detection (LOD) of PCF with Aspartic acid:

The detection limit of the chemosensor PCF for Aspartic acid was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without Aspartic acid was measured by 10 times and the standard deviation of blank measurements was calculated.
The limit of detection (LOD) of PCF for sensing Aspartic acid was determined from the following equation ${ }^{2-3}$:

$$
\mathrm{LOD}=\mathrm{K} \times \mathrm{SD} / \mathrm{S}
$$

Where $\mathrm{K}=2$ or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S7. Linear fit curve of PCFat434 nm with respect to Aspartic acid concentration
For PCF with Aspartic acid:
From the linear fit graph, we get slope $=8.56635 \times 10^{7}$, and SD value is 1.3189665 .
Thus, using the above formula, we get the Limit of Detection $=4.61 \times 10^{-8} \mathrm{M}$. Therefore, PCF can detect Aspartic acid up to this very lower concentration by fluorescence technique.

8. Time-dependent fluorescence spectra of PCF in the presence of Aspartic acid

Figure S8. Time-dependent fluorescence spectra of PCF in the presence of Aspartic acid.

9. PCF lifetime in presence and absence of aspartic acid

Figure S9. PCF lifetime in presence and absence of aspartic acid

Table S2. Decay time components of PCF and PCF + Asp

System	\mathbf{b}_{1}	$\boldsymbol{\tau}_{1}$	$\mathbf{b}_{\mathbf{2}}$	$\boldsymbol{\tau}_{\mathbf{2}}$	$\langle\boldsymbol{\tau}\rangle=\mathbf{b}_{1} \tau_{1}+\mathbf{b}_{2} \boldsymbol{\tau}_{2}$
PCF	0.430738	$5.42 \mathrm{E}-01$	0.029351	$1.75 \mathrm{E}+00$	0.28 ns
PCF + Asp	0.280081	$1.45 \mathrm{E}-01$	0.449727	$5.48 \mathrm{E}+00$	2.50 ns

10. Reversibility analysis of PCF

Figure S10. Reversibility analysis of $\operatorname{PCF}\left(10^{-5} \mathrm{M}\right)$ with Aspartic acid $\left(10^{-4} \mathrm{M}\right)$ in presence of $\mathrm{Cu}^{2+}\left(10^{-4} \mathrm{M}\right)$.

11. pH titration study:

Figure S11. Effect of pH on the fluorescence intensity of $\mathbf{P C F}\left(10^{-5} \mathrm{M}\right)$ in the absence of Aspartic acid (red line) and in the presence of Aspartic acid ($10^{-4} \mathrm{M}$, black line).

12. DFT study

Table S3. Details of the geometry optimization in Gaussian 09 program

Details	PCF	Aspartic acid	PCF 1
Calculation method	B3LYP	B3LYP	B3LYP
Basis set	$6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-31 \mathrm{G} \mathrm{(d,p)}$	$6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$
E(CAM-B3LYP) (a.u.)	-936.66	-512.32	-1449.00
Charge, Multiplicity	0,1	0,1	0,1
Solvent (CPCM)	Water	Water	Water

TDDFT- Calculations

Table S4. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of PCF. The data were calculated by TDDFT//B3LYP/6-31G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy $^{\mathrm{a}}$	f^{b}	$\operatorname{Composition}^{\mathrm{c}}(\%)$
PCF	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.2237 eV 384.60 nm	0.5287	$\mathrm{H} \rightarrow \mathrm{L}(69.1 \%)$
PCF 1	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	3.0716 eV 403 nm	0.4055	$\mathrm{H} \rightarrow \mathrm{L}(70 \%)$

${ }^{\text {a }}$ Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ${ }^{\mathrm{b}}$ Oscillator strength. ${ }^{\mathrm{c}} \mathrm{H}$ stands for HOMO and L stands for LUMO.

Table S5. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	Eномо (a.u.)	ELuмо (a.u.)	$\Delta \mathbf{E (a . u .)}$	$\Delta \mathbf{E (e V)}$	$\Delta \mathbf{E}(\mathbf{k c a l} / \mathbf{m o l})$
PCF	-0.19252	-0.05946	0.14459	3.22	74.25
PCF 1	-0.20149	-0.07434	0.14563	3.07	70.80

13. Cytotoxicity assay

Figure S12. MTT assay is to determine the cytotoxic effect of PCF at 500 nM concentration on MCF-7 cells. Untreated control cells and Mitomycin-C treated cells are kept as negative and positive control respectively.

