Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A reaction-based scenario for fluorescent probing of Au(III) ions in human cells and plants

Table of Contents

1. Experimental	2
2. Analytical Studies	3
3. Photostability Studies	6
4. Electrochemical Studies	8
5. References	8
6. Proposed Mechanism	9
7. NMR Spectra of Compounds	
8. HRMS of Compounds	14

1. EXPERIMENTAL

All chemicals were purchased from commercial suppliers. NMR spectra were measured on Varian VNMRJ 400 Nuclear Magnetic Resonance Spectrometer. All spectroscopic were collected on a Horiba-Duetta, the two-in-one

fluorescence and absorbance spectrometer. The samples were measured in a quartz cuvette with a path length of 10.0 mm and a volume of 2.0 mL. Fluorescence imaging was performed with Zeiss Axio Observer inverted fluorescence microscope. pH was recorded by HI-8014 instrument (HANNA). Mass spectra were recorded on Agilent 6530 Accurate-Mass QTOF LC/MS. All measurements were conducted at least in triplicate. All experiments were performed under argon atmosphere.

Synthesis of KEREM-1

To a mixture of BOD-AC (140 mg, 0.4 mmol) and 2-iodoprop-2-en-1-ol (147 mg, 0.8 mmol) in THF (20 mL) were added PdCl₂(PPh₃)₂ (29 mg, 0.1 equiv.), Cul (15 mg, 0.2 equiv.) and diisopropylamine (11.6 mL). The reaction mixture was stirred overnight at 50 °C. After completion of the reaction as monitored by TLC, the solvent was evaporated and the resulting residue was extracted with water and CH₂Cl₂ (3 x 30 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The resultant residue was purified by column chromatography with hexane: ethyl acetate (2:1) to afford **KEREM-1** as red solid (98 mg, 70 % yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.51 – 7.48 (m, 3H), 7.28 – 7.25 (m, 2H), 6.03 (s, 1H), 5.52 (dd, J=2.7, 1.3 Hz, 1H), 5.48 (dd, J = 2.7, 1.3 Hz, 1H), 4.19 (s, 2H), 2.63 (s, 3H), 2.57 (s, 3H), 1.43 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.1, 156.39, 145.07, 142.87, 142.3, 134.74, 132.70, 131.51, 130.28, 129.4, 129.35, 127.97, 122.36, 119.45, 114.70, 93.51, 83.83, 65.64, 32.08, 29.85, 14.70, 13.27. HRMS: m/z: Calcd. for (C₂₄H₂₃BF₂N₂O) [M+H]⁺: 405.1950; found 405.1951.

Synthesis of BOD-FUR

AuCl₃ (30 mg, 0.1 mmol) was added to **KEREM-1** (40 mg, 0.1 mmol) in PBS/EtOH (10 mL, (7/3 (v/v)). The reaction mixture was stirred for 2 hours at room temperature. The resulting solution was extracted with CH₂Cl₂ (3x10mL) and dried over MgSO₄. After evaporation of solvent, the resultant residue was purified by column chromatography. (20 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.50 – 7.48 (m, 3H), 7.31 – 7.29 (m, 2H), 7.21 – 7.19 (m, 1H), 6.09 (s, 1H), 6.01 (s, 1H), 2.68 (s, 3H), 2.57 (s, 3H), 2.05 (d, J = 1.1 Hz, 3H), 1.43 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 156.50, 154.36, 148.25, 143.92, 142.19, 139.02, 138.58, 135.17, 132.08, 130.95, 129.33, 129.19, 128.16, 123.4, 121.85, 121.22, 111.60, 29.85, 14.65, 14.03, 13,02, 9.95. HRMS: m/z: Calcd. for (C₂₄H₂₃BF₂N₂O) [M+H]⁺: 405.1950; found 405.1962.

2. ANALYTICAL STUDIES

Fluorescence quantum yield was calculated with the following equation;

 $\Phi_{F(X)} = \Phi_{F(S)} (A_S F_X / A_X F_S) (n_X / n_S)^2$

Rhodamine 6G, Φ_F =0.95 in ethanol, was used as the standard.¹

A: absorbance at the excitation wavelength,

 Φ_F : fluorescence quantum yield,

F: area under the corrected emission curve

n: refractive index of the solvents.

S and X refer to the standard and the unknown, respectively. ($\Phi_{F(KEREM-1)} = 0.122, \Phi_{F(BOD-FUR)} = 0.703$)

Fig. S1 Quantum yield plot, Relative fluorescence intensities using Rhodamine 6G as the standard.

Detection limit was calculated from the following formula;

Detection limit = 3obi/m,

σbi: standard deviation of blank measurements,

m: slope between intensity versus sample concentration.

The fluorescence changes of 10 examples of **KEREM-1** (10.0 μ M) were measured to determine the standart deviation of the blanks.² A good linear relationship between the fluorescence intensity and Au³⁺ concentration was obtained over the range of 0.1 – 0.9 μ M (R²= 0.9964). The detection limit was calculated as 358 nM. All measurements were performed in triplicates.

Fig. S2 Fluorescence titration of KEREM-1 (10.0 μ M) with Au³⁺ (0.1- 0.9 μ M,) in PBS (0.01 M) /EtOH (pH 7.0, v/v,7:3). (λ_{ex} :460 nm, emission wavelengths: F₅₁₈/ F₅₆₇ at 25 °C).

Fig. S3 The effect of water content on the response of KEREM-1 (10 μ M) toward Au³⁺ (100 μ M, 10 Equiv.) in PBS (0.01 M) /EtOH (pH 7.0, v/v,7:3). (λ_{ex} : 460 nm, emission: F₅₁₈/ F₅₆₇ at 25 °C).

Fig. S4 pH effect on the response of KEREM-1 (10 μ M) toward Au³⁺ (100 μ M, 10 Equiv.) in PBS (0.01 M) /EtOH) (pH 7.0, v/v,7:3). (λ_{ex} : 460 nm, emission: F₅₁₈/ F₅₆₇ at 25 °C).

Fig. S5 Bar graph notation of fluorescence intensities of KEREM-1 (10 μ M) with Au³⁺ (100 μ M, 10 Equiv.) and 20 equiv. of other metal ions in PBS (0.01 M) /EtOH) (pH 7.0, v/v, 7:3) (λ_{ex} : 460 nm, emission: F₅₁₈/ F₅₆₇ at 25 °C).

Fig. S6 Reaction time profiles of KEREM-1 (10 μM) in the absence (■) and presence of Au³⁺ [10 (●), 30(▲) μM.]. The fluorescence intensities at 518 nm and 567 nm were continuously monitored at time intervals in 0.01 M PBS buffer/ EtOH (pH 7.0, v/v, 7:3) (λ_{ex}: 460 nm, emission wavelengths: F₅₁₈/ F₅₆₇ at 25 °C).

3. PHOTOSTABILITY STUDIES

The photostability of the **KEREM-1** was investigated in 0.01 M PBS buffer-ethanol (7:3) system. Sample was placed in 10x10 mm quartz cuvette and it was positioned 15 cm away from the light source (green led, 500-570 nm). Incident radiation intensity was calculated as 3.3 mV/cm². Absorbance measurements were performed for a period of 9 hours at 1 hour time intervals and degradation rate was calculated from the equation below:

 $ln(A_t/A_0)=k_{deg} \times t$

where; A_t is absorbance at the irradiation time, A_0 is absorbance at t=0, t is time.

Fig. S7 Absorbance changes of KEREM-1 by irradiation with green led.

Fig. S8 In (A_t/A_0) /time graphic of KEREM-1.

4. ELECTROCHEMICAL STUDIES

Electrochemical studies of **KEREM-1** and **BOD-FUR** were carried out by using a CH Potentiostat and glassy carbon as working electrode, platinum wire as counter electrode, Ag wire as reference electrode and ferrocene as internal standard in 0.1 M acetonitrile solution of tetrabutylammoniumhexafluorophosphate (TBAPF₆) electrolyte system. Scan rate of 200 mV/s was applied, and all the solutions were deoxygenated with nitrogen gas bubbling. Highest occupied molecular orbital (HOMO) energy level and lowest unoccupied molecular orbital (LUMO) energy level of **KEREM-1** and **BOD-FUR** were calculated by using the following equations:^{3,4}

 $E_{LUMO} = -e(E_{1/2(red., dye)} - E_{1/2(Fc/Fc+)} + 4.8)$

 $E_{HOMO} = -e(E_{1/2(ox., dye)} - E_{1/2(Fc/Fc+)} + 4.8)$

where, $E_{1/2(Fc/Fc+)}$ is 0.41V.

Fig. S9 Cyclic Voltammograms for **KEREM-1** and **BOD-FUR**. (Reported redox potentials of the compounds were the arithmetic mean of the forward and reverse redox onset potentials.)

5. REFERENCES

(1) A. M. Brouwer, Pure Appl. Chem., 2011, 83, 2213-2228.

(2) M. Üçüncü, E. Karakuş, M. Emrullahoğlu, Chem. Commun., 2016, 52, 8247-8250.

(3) D. O. Cowan, R. L. E. Drisko, J. Am. Chem. Soc. 1970, 92, 21, 6281–6285.

(4) M. Kus, Ö. Hakli, C. Zafer, C. Varlikli, S. Demic, S. Özçelik, S. Icli, Organic Electronics, 2008, 9, 757-766.

6. PROPOSED MECHANISM

Fig. S7 Mechanism for gold ion catalyzed intramolecular cyclisation.

7. NMR SPECTRA OF COMPOUNDS

8. HRMS of COMPOUNDS

Fig. S12 HRMS of KEREM-1

Fig. S13 HRMS of BOD-FUR