Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Electrochemical Direct C-H Mono and Bis-Chalcogenation of Indolizine Frameworks Under Oxidant-Free Conditions

Amreen Chouhan,[‡] Kusum Ucheniya,[‡] Lalit Yadav,[‡] Pooja Kumari Jat, Asha Gurjar, Satpal Singh Badsara*

MFOS Laboratory, Department of Chemistry, Centre of Advanced Study, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India. E-mail: <u>badsarass4@uniraj.ac.in; badsarass4@gmail.com</u>

[‡]*These authors contributed equally.*

	Contents	Page No.
<i>(i)</i>	General Procedure for Cyclic Voltametry (CV) and CV graphs	S2-S5
(ii)	¹ H NMR, ¹³ C NMR and ¹⁹ F-NMR Spectra of compound 3aa-3bh, 5aa-5ae, 7aa'-7ia and 8aa-8ha	S6- S80

General Procedure for Cyclic Voltammetry (CV):

Cyclic voltammetry was performed in a three electrode cell at room temperature. The working electrode was a glassy electrode and the counter electrode was a platinum electrode. The reference was an Ag/AgCl electrode submerged in 3M KCl solution, and separated from the reaction by a salt bridge.

Cyclic Voltammograms graph for KI

Figure S1. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹. Cyclic voltammograms of salt and salt with KI at a 200 mVS⁻¹ (graph A): *n*-Bu₄NPF₆ (0.1 M); (curve salt+KI): *n*-Bu₄NPF₆ (0.1 M), KI (10 mM).

Cyclic Voltammograms graph of 2a

Figure S2. Cyclic voltammograms of **2a** in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (graph B and graph C): **2a** (5 mM), *n*-Bu₄NPF₆ (0.1 M) and KI (10 mM) in acetonitrile solvent.

Cyclic Voltammograms graph for 1a

Figure S3. Cyclic voltammograms of **1a** in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (graph D): **1a** (5 mM), *n*-Bu₄NPF₆ (0.1 M) in acetonitrile solvent.

Cyclic Voltammograms graph for 6a

Figure S4. Cyclic voltammograms of **6a** in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (graph E): **6a** (5 mM), *n*-Bu₄NPF₆ (0.1 M) in acetonitrile solvent.

Cyclic Voltammograms graph for 1a+2a

Figure S5. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (graph F): **1a** (5 mM) + **2a** (5 mM)+ *n*-Bu₄NPF₆ (0.1 M), KI (10 mM) in acetonitrile solvent.

Cyclic Voltammograms graph for 6a+2a

Figure S6. Cyclic voltammograms of reactants and mixture in 0.1 M *n*-Bu₄NPF₆ in CH₃CN using a glassy carbon disk electrode, Pt electrode as counter electrode and Ag/AgCl as reference electrode, at a 200 mVS⁻¹; (graph F): **6a** (5 mM) + **2a** (5 mM)+ *n*-Bu₄NPF₆ (0.1 M), KI (10 mM) in acetonitrile solvent.

¹H NMR spectrum of 3aa (400 MHz, CDCl₃)

¹³C{H} NMR spectrum of 3aa (100 MHz, CDCl₃)

¹H NMR spectrum of 3ab (400 MHz, CDCl₃)

¹H NMR spectrum of 3ad (400 MHz, CDCl₃)

S14

¹³C{H} NMR spectrum of 3ae (100 MHz, CDCl₃)

¹H NMR spectrum of 3ag (400 MHz, CDCl₃)

¹³C{H} NMR spectrum of 3ba (100 MHz, CDCl₃)

RU-Kth 101 single pulse decoupled gated NOE	 -97.27	77.42 77.10 76.78	-44.37	<pre>25.37 25.11 22.55</pre>

¹³C{H} NMR spectrum of 3bc (100 MHz, CDCl₃)

¹H NMR spectrum of 3bd (400 MHz, CDCl₃)

RU-KU-122
single_pulse

10.0

¹³C{H} NMR spectrum of 3bd (100 MHz, CDCl₃)

200

¹H NMR spectrum of 3be (400 MHz, CDCl₃)

3be

¹³C{H} NMR spectrum of 3be (100 MHz, CDCl₃)

¹H NMR spectrum of 3bf (400 MHz, CDCl₃)

RU-RU-124 single pulse decoupled gated NOE	$\begin{array}{c} 141.45\\ 136.27\\ 132.26\\ 122.23\\ 125.32\\$		77,42 77,10 76,78	
---	---	--	-------------------------	--

25.60 25.21 22.59

f1 (ppm)

¹³C{H} NMR spectrum of 3bh (100 MHz, CDCl₃)

RU-Ktb 121 single pulse decoupled gated NOE 의	139.70 136.05 136.05 131.37 123.16 123.16 122.54 113.32 113.32	96.65	77.42 77.10 76.78	-44.43	25.51 25.17 22.57
	י און ארר ר ר				Y

¹H NMR spectrum of 5ab (400 MHz, CDCl₃)

¹H NMR spectrum of 5ac (400 MHz, CDCl₃)

S40

¹³C{H} NMR spectrum of 5ad (100 MHz, CDCl₃)

RU-AC-0800	50548044554				
	N L U 00 U 00 4 U L M	~	000		5 1
single pulse decoupled gated NOE		9	4 1 1	m	44
	000011100000	100		1971 - A	
0		0	0 1 1	6	ω μ
-		6	フフフ	ŝ	20
			512		
) (

¹H NMR spectrum of 5ae (400 MHz, CDCl₃)

¹H NMR spectrum of 7aa' (400 MHz, CDCl₃)

¹³ C{H} NMR spectrum of 7a	a' (100 MHz, CDCl3)		
RU-SSB-AC-083 single pulse decoupled gated NOE	137.28 137.05 137.05 135.24 125.24 125.41 125.41 125.15 125.41 125.15 125.15 111.35	-104.61	111111

¹³C{H} NMR spectrum of 7aa (100 MHz, CDCl₃)

RU-KU-171 single pulse decoupled gated NOE

Contract and the second distance	The second se	the state of the s	
73 27 38	87 87 87 87 87 87 87 87 87 87 87 87 87 8	72 337 337 337 337 337 337 337 337 337 3	63 31 28 88 88 88 77 27
41. 39. 36.	23.29.23	25.25.25.25.25.25.25.25.25.25.25.25.25.2	22.22.22.17.

77.42 77.10 76.78

¹H NMR spectrum of 7ab (400 MHz, CDCl₃)

RU-AC-073

¹H NMR spectrum of 7ba (400 MHz, CDCl₃)

¹³C{H} NMR spectrum of 7ba (100 MHz, CDCl₃)

RU-AC-075		4	6 0	D O	9	0	3	-	2	2	-	-	00	4	8	3	3	00	-	4	2	σ	S		
cinale pulse c	tocoupled ast	no.	R	o n	S	3	9	9	4	9	σ	8	4	3	8	5	4	8	4	9	2	8	00	8	
single pulse c	lecoupleu gau	- FL	RL-C	ה ת	۰Ö	LO.	÷.	o	5	co.	ó	LO.	LO.	5	4	4	N	2	m.	N	-i	o	N	Ľ.	
		5	3	n m	3	3	3	3	2	2	2	N	N	2	N	N	N	-	-	-	-	-	0	7	
		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	
		-	-	_			-	100	-	-						1	1	1		1	2	2	-		

77.42 77.10 76.78

¹³C{H} NMR spectrum of 7bg (100 MHz, CDCl₃)

RU-AC-077	
dada pulsa dacamlad 0 to 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n
single pulse decoupled gabe dot r in m rio cor o o o in in 4 m o o r m i i r r	2
044 M M M M M M M M M M M M M M M M M M	-
	n
	1

77.42 77.10 76.78

> MeO S Br 7bg

¹H NMR spectrum of 7dd (400 MHz, CDCl₃)

RU-AC-87 single_pulse

¹³C{H} NMR spectrum of 7dd (100 MHz, CDCl₃)

¹H NMR spectrum of 7ea (400 MHz, CDCl₃)

¹³C{H} NMR spectrum of 7ea (100 MHz, CDCl₃)

¹⁹F NMR spectrum of 7ea (376 MHz, CDCl₃) RU-AC-097 single_pulse

																		San 10. 67. 73
			10 10 10 10			10 10 10 10						A 12 12 12 13			1 10 10 10	1		
180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180
									f1 (ppm	1)								

¹H NMR spectrum of 7fa (400 MHz, CDCl₃)

RU-1KU-17810NOOL	らっこらる よるようらっか	0400-040004	110400000000004100000404000
. 00000V1	100000004400	44-000440000-000	001100000000000000000000000000000000000
single purse m m co co c	8877777788	00000044444444	777999990000000000000000000000000000000
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			000000000000000000000000000000000000000
		فليرتضم فليرتبض وتصريفهم فسريف وتصريف ومتدارك والتراز فليرتف والبريان	

¹³C{H} NMR spectrum of 7fa (100 MHz, CDCl₃)

f1 (ppm) ò

¹H NMR spectrum of 7gb (400 MHz, CDCl₃)

¹H NMR spectrum of 7ia (400 MHz, CDCl₃)

¹³C{H} NMR spectrum of 7ia (100 MHz, CDCl₃)

¹H NMR spectrum of 8aa (400 MHz, CDCl₃)

f1 (ppm)

¹³C{H} NMR spectrum of 8ae (100 MHz, CDCl₃)

¹H NMR spectrum of 8cd (400 MHz, CDCl₃)

¹H NMR spectrum of 8fa (400 MHz, CDCl₃)

