Electronic Supplementary Information

Identification of new bisabosqual-type meroterpenoids reveals

non-enzymatic conversion of bisabosquals to seco-bisabosquals

Meng-Xi Tong, ^a Yong-Xia Duan, ^a Ying-Dong Zhang, ^a Wan-Yi Ye, ^a Sheng-Ying Qin, ^b Xing-Zhong Liu, ^c Guo-Dong Chen, ^a Jian-Ming Lv, ^{*a} Dan Hu ^{*a,d} and Hao Gao ^a

^a Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. E-mail: thudan@jnu.edu.cn; ljm21@jnu.edu.cn

^bClinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
 ^c State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

^d Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Table of Contents

Supplementary Tables	1
Table S1 NMR data of 1 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	1
Table S2 NMR data of 2 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	2
Table S3 NMR data of 3 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	3
Table S4 NMR data of 4 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	4
Table S5 NMR data of 5 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	5
Table S6 NMR data of 6 (¹ H for 400 MHz and ¹³ C for 100 MHz in DMSO- <i>d</i> ₆)	6
Table S7 NMR data of 7 (¹ H for 400 MHz and ¹³ C for 100 MHz in DMSO-d ₆)	7
Table S8 Comparison of experimental and calculated ¹³ C NMR data of 6	8
Table S9 NMR data of 8 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	9
Table S10 Primers used in the study	10
Table S11 Plasmids used in the study	11
Supplementary Figures	12
Fig. S1 Structures of known bisabosqual-type meroterpenoids	12
Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B	13
Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the <i>S. bisbyi</i> PYH05-7 extract treated with methanol or ac	13 cetonitrile
Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the <i>S. bisbyi</i> PYH05-7 extract treated with methanol or ac	13 cetonitrile 14
Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the <i>S. bisbyi</i> PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1' <i>R</i> *,2' <i>R</i> *,3' <i>R</i> *,6' <i>R</i> *,7' <i>S</i> *)-6a	13 cetonitrile 14 15
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b 	13 cetonitrile 14 15 16
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 	13 cetonitrile 14 15 16 20
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 Fig. S9 NMR spectra of 4 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 Fig. S9 NMR spectra of 4 Fig. S10 NMR spectra of 5 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 Fig. S9 NMR spectra of 4 Fig. S10 NMR spectra of 5 Fig. S11 NMR spectra of 6 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ac Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 Fig. S9 NMR spectra of 4 Fig. S10 NMR spectra of 5 Fig. S11 NMR spectra of 6 Fig. S12 NMR spectra of 7 	
 Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or ad Fig. S4 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'S*)-6a Fig. S5 Most stable conformers of (1'R*,2'R*,3'R*,6'R*,7'R*)-6b Fig. S6 NMR spectra of 1 Fig. S7 NMR spectra of 2 Fig. S8 NMR spectra of 3 Fig. S9 NMR spectra of 4 Fig. S10 NMR spectra of 5 Fig. S11 NMR spectra of 6 Fig. S12 NMR spectra of 8 	

Supplementary Tables

Table S1 NMR data of 1 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)

No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	148.9, C				
2	117.8, C				
3	155.7, C				
4	101.2, CH	6.63, br s	8	2, 3, 5, 6, 8	8
5	149.0, C				
6	103.9, C				
7	168.3, C				
8	70.3, CH ₂	5.35, br s	4	4, 5, 6, 7	4
1′	116.0, C				
2'	139.2, CH	7.44, br s	6'	1, 1', 2, 6'	4′a, 4′b
3'	207.7, C				
4′	41.0, CH ₂	a: 2.59, ddd (18.0, 8.4, 5.4)	4'b, 5'a, 5'b	3', 5', 6'	2'
		b: 2.44, dt (18.0, 7.8)	4'a, 5'a, 5'b	3', 5', 6'	2', 6'
5'	23.3, CH ₂	a: 2.19	4'a, 4'b, 5'b, 6'	1', 3', 4', 6', 7'	14'
		b: 1.54	4'a, 4'b, 5'a, 6'	1', 3', 4', 6', 7'	
6'	39.4, CH	3.03, br dd (11.4, 3.6)	2', 5'a, 5'b	1', 2, 2', 4', 5', 7', 8', 14'	4'b, 8'a, 9'a, 9'b, 14' ^b
7′	86.4, C				
8'	38.6, CH ₂	a: 1.67, ddd (14.4, 11.4, 4.8)	8'b, 9'a, 9'b	6', 7', 9', 10', 14'	6'
		b: 1.54	8'a, 9'a, 9'b	6', 7', 9', 10', 14'	
9′	22.2, CH ₂	a: 2.10	8'a, 8'b, 9'b, 10'	7', 8', 10', 11'	6', 13'
		b: 2.03	8'a, 8'b, 9'a, 10'	7', 8', 10', 11'	6', 13'
10'	123.2, CH	4.94, br t (7.2)	9'a, 9'b ,12', 13'	8', 9', 12', 13'	12'
11′	132.3, C				
12′	25.6, CH ₃	1.60, br s	10'	10', 11', 13'	10'
13'	17.5, CH ₃	1.50, br s	10'	10', 11', 12'	9'a, 9'b
14′	21.8, CH ₃	1.49, s		6', 7', 8'	5'a, 6' ^b
15'	30.2, CH ₃	2.15, s		3', 4'	

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^b The NOE correlation was observed through the 1D-selective NOE experiment.

Table S2 NMR data of 2 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃)

No.	$\delta_{\rm C}$, type	$\delta_{ m H}(J ext{ in Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	147.7, C				
2	120.4, C				
3	149.7, C				
4	102.8, CH	7.12, s		2, 3, 6, 8	
5	131.7, C				
6	119.8, C				
7	42.8, CH ₂	4.59, br s	N <u>H</u>	1, 5, 6, 8	
8	172.2, C				
1′	117.0, C				
2'	139.7, CH	7.42, s		1, 1′, 2	4'a, 4'b, 6'
3'	208.0, C				
4′	41.0, CH ₂	a: 2.58, ddd (17.2, 8.4, 5.2)	4'b, 5'a, 5'b	3', 5'	2'
		b: 2.40, dt (17.6, 7.6)	4'a, 5'a, 5'b	3', 5', 6'	2'
5'	23.6, CH ₂	a: 2.19	4'a, 4'b, 5'b, 6'	1', 4'	
		b: 1.62	4'a, 4'b, 5'a, 6'		
6'	39.6, CH	2.97, dd (10.4, 3.6)	5'a, 5'b	1', 2, 2', 4', 5'	2', 9'
7'	84.2, C				
8'	38.4, CH ₂	a: 1.62	8'b, 9'		
		b: 1.46	8'a, 9'		
9′	22.2, CH ₂	2.05	8'a, 8'b, 10'	8', 10', 11'	6'
10′	123.5, CH	4.90, br t (7.2)	9', 12', 13'	9', 12', 13'	12'
11'	132.0, C				
12′	25.5, CH ₃	1.58, br s	10'	10', 11', 13'	10'
13'	17.5, CH ₃	1.48, br s	10'	10', 11', 12'	
14'	21.9, CH ₃	1.48, s		6', 7', 8'	
15′	30.1, CH ₃	2.12, s		3', 4'	
NH		7.41, br s	7	5, 6, 7, 8	

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

Table S3 NMR data of 3 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)

No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	147.4, C				
2	120.2, C				
3	149.7, C				
4	102.9, CH	7.10, s		2, 3, 6, 8	
5	132.1, C				
6	117.6, C				
7	48.8, CH ₂	4.64, s		1, 5, 6, 8, 9	
8	170.2, C				
9	$46.6, CH_2$	3.79, t (4.8)	10	7, 8	
10	$62.0, CH_2$	3.92, t (4.8)	9		
1′	116.9, C				
2'	139.7, CH	7.41, d (0.6)	6'	1, 1', 2	4′a, 4′b
3'	208.0, C				
4′	41.0, CH ₂	a: 2.57, ddd (18.0, 7.8, 4.8)	4'b, 5'a, 5'b	3', 5', 6'	2'
		b: 2.39, dt (18.0, 7.8)	4'a, 5'a, 5'b	3', 5', 6'	2'
5'	23.6, CH ₂	a: 2.18	4'a, 4'b, 5'b, 6'	1', 3', 4', 6', 7'	
		b: 1.61	4'a, 4'b, 5'a, 6'	1', 3', 4', 6', 7'	
6'	39.6, CH	2.97, br dd (10.8, 4.2)	2', 5'a, 5'b	1', 2, 2', 4', 5', 7'	
7′	84.2, C				
8'	$38.4, CH_2$	a: 1.61	8'b, 9'a, 9'b	6', 7', 9'	
		b: 1.46	8'a, 9'a, 9'b	9'	
9′	22.2, CH ₂	a: 2.08	8'a, 8'b, 9'b, 10'	10', 11'	
		b: 2.01	8'a, 8'b, 9'a, 10'	10', 11'	
10'	123.5, CH	4.90, br t (6.6)	9'a, 9'b ,12', 13'	12', 13'	12'
11′	132.1, C				
12′	25.6, CH ₃	1.58, br s	10'	10', 11', 13'	10'
13′	17.5, CH ₃	1.49, br s	10'	10', 11', 12'	
14′	21.8, CH ₃	1.47, s		6', 7', 8'	
15'	30.1, CH ₃	2.12, s		3', 4', 5'	

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

Table S4 NMR data of 4 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	147.5, C				
2	120.1, C				
3	149.6, C				
4	103.1 CH	7.12, s		2, 3, 6, 8	
5	132.3, C				
6	117.7, C				
7	48.9, CH ₂	4.64, s		1, 5, 6, 8, 9	9, 10
8	170.2, C				
9	46.6, CH ₂	3.80, t (4.8)	10	7, 8, 10	7
10	62.0, CH ₂	3.93, t (4.8)	9		7
1′	116.6, C				
2'	139.8, CH	7.42, s		1, 1', 2, 6'	4′a, 4′b
3'	208.9, C				
4′	35.7, CH ₂	a: 2.54, ddd (18.0, 9.0, 4.8)	4'b, 5'a, 5'b	3', 5', 6'	2', 15'a, 15'b
		b: 2.36, dt (17.4, 8.4)	4'a, 5'a, 5'b	3', 5', 6'	2', 15'a, 15'b
5'	23.6, CH ₂	a: 2.24	4'a, 4'b, 5'b, 6'	1', 6', 7'	14'
		b: 1.71	4'a, 4'b, 5'a, 6'	1', 3', 4', 6', 7'	
6'	39.6, CH	2.99, dd (10.2, 3.6)	5'a, 5'b	1', 2, 2', 4', 5', 7', 8'	8'a, 8'b, 9'a, 9'b, 14'
7′	84.0, C				
8'	38.4, CH ₂	a: 1.61	8'b, 9'a, 9'b	6', 7', 9', 14'	6'
		b: 1.44	8'a, 9'a, 9'b	6', 7', 9', 14'	6'
9′	$22.2, CH_2$	a: 2.07	8'a, 8'b, 9'b, 10'	8', 10', 11'	6', 14'
		b: 2.00	8'a, 8'b, 9'a, 10'	8', 10', 11'	6', 14'
10'	123.4, CH	4.89, br t (7.2)	9'a, 9'b ,12', 13'	9', 12', 13'	12'
11′	132.2, C				
12′	25.6, CH ₃	1.58, br s	10′	10', 11', 13'	10'
13'	17.6, CH ₃	1.48, br s	10′	10', 11', 12'	
14′	22.0, CH ₃	1.50, s		6', 7', 8'	5'a, 6', 9'a, 9'b
15′	68.2, CH ₂	a: 4.23, d (18.6)	15′b	3'	4′a, 4′b
		b: 4.16, d (18.6)	15'a	3'	4′a, 4′b

^{*a*} The indiscernible signals due to overlap or the complex multiplicity are reported without designating multiplicity.

Table S5 NMR data of 5 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)

No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	146.4, C				
2	122.3, C				
3	150.4, C				
4	104.1, CH	7.13, s		2, 3, 6, 8	
5	125.0, C				
6	123.1, C				
7	66.9, CH ₂	5.44, s		1, 5, 6, 8	
8	171.3, C				
1′	117.2, C				
2'	141.0, CH	7.50, d (0.6)	6'	1, 1', 2	4′a, 4′b
3'	207.8, C				
4′	40.9, CH ₂	a: 2.58, ddd (18.0, 7.8, 5.4)	4'b, 5'a, 5'b	3', 5', 6'	2', 6'
		b: 2.40, dt (18.0, 7.8)	4'a, 5'a, 5'b	3', 5', 6'	2', 6'
5'	$23.5, CH_2$	a: 2.18	4'a, 4'b, 5'b, 6'	1', 6', 7'	
		b: 1.57	4'a, 4'b, 5'a, 6'	1', 3', 4', 6', 7'	
6'	39.5, CH	3.00, br dd (10.8, 3.6)	2', 5'a, 5'b	1', 2, 2', 4', 5'	4'a, 4'b, 9'a, 9'b
7′	84.7, C				
8'	38.4, CH ₂	a: 1.61	8'b, 9'a, 9'b	6', 7', 14'	
		b: 1.48	8'a, 9'a, 9'b	9′, 14′	
9′	22.2, CH ₂	a: 2.08	8'a, 8'b, 9'b, 10'	8', 10', 11'	6'
		b: 2.02	8'a, 8'b, 9'a, 10'	8', 10', 11'	6'
10′	123.3, CH	4.91, br t (7.2)	9'a, 9'b ,12', 13'	9', 12', 13'	12'
11′	132.2, C				
12′	25.6, CH ₃	1.59, br s	10'	10', 11', 13'	10'
13′	17.5, CH ₃	1.48, br s	10'	10', 11', 12'	
14′	21.8, CH ₃	1.48, s		6', 7', 8'	
15'	30.1, CH ₃	2.14, s		3', 4'	

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

Table S6 NMR data of 6 (¹H for 400 MHz and ¹³C for 100 MHz in DMSO-d₆)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	167.7, C				
2	118.9, C				
3	155.6, C				
4	108.8, CH	6.67, s		2, 3, 6, 8	8
5	140.4, C				
6	112.1, C				
7	187.2, CH	10.16, s		1, 5, 6	
8	192.8, CH	10.40, s		4, 5	4
1′	71.8, C				
2'	96.8, CH	4.99, s		1, 1', 2, 15'	6', 15'a, 15'b, 1'-OH
3'	71.8, C				
4′	29.9, CH ₂	a: 1.48	4'b, 5'a, 5'b	5', 6'	
		b: 1.35	4'a, 5'a, 5'b	2', 3', 5', 6'	
5'	17.1 CH ₂	a: 1.50	4'a, 4'b, 5'b, 6'	4'	
		b: 1.04	4'a, 4'b, 5'a, 6'	3', 6'	
6'	41.7, CH	2.22	5'a, 5'b	1', 5'	2', 1'-OH
7'	84.9, C				
8′	39.9, CH ₂	a: 2.17	8'b, 9'a, 9'b	7', 9', 14'	
		b: 1.77	8'a, 9'a, 9'b	6', 7'	
9′	23.3, CH ₂	a: 2.19	8'a, 8'b, 9'b, 10'	8', 10'	
		b: 1.89	8'a, 8'b, 9'a, 10'	8', 10', 11'	
10'	124.3, CH	5.03	9'a, 9'b, 12', 13'	9', 12', 13'	12'
11′	130.7, C				
12′	25.4, CH ₃	1.61, br s	10'	10', 11', 13'	10'
13′	17.5, CH ₃	1.56, br s	10′	10', 11', 12'	
14′	23.6, CH ₃	1.41, s		6', 7', 8'	
15'	66.1, CH ₂	a: 3.43, d (10.9)	15′b	2', 3', 4'	2'
		b: 3.04, d (10.9)	15′a	2', 3', 4'	2'
1'-OH		5.92, s		2	2', 6'

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

Table S7 NMR data of 7 (¹H for 400 MHz and ¹³C for 100 MHz in DMSO-d₆)

No.	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}}(J \mathrm{in}\mathrm{Hz})^{a,b}$	$\delta_{ m C}$, type	$\delta_{\mathrm{H}}(J \text{ in Hz})^b$	¹ H- ¹ H COSY	HMBC	ROESY
1	166.3, C		167.7, C				
2	118.0, C		118.8, C				
3	156.7, C		155.6, C				
4	113.2, CH	6.90, s	108.7, CH	6.66, s		2, 3, 6, 8	8
5	141.2, C		140.4, C				
6	112.5, C		112.1, C				
7	187.7, CH	10.38, s	187.2, CH	10.18, s		5,6	
8	192.3, CH	10.37, s	192.8, CH	10.41, s		4, 5	4
1′	70.9, C		69.3, C				
2'	101.6, CH	4.76, s	101.8, CH	4.66, s		1, 1', 2, 15'	4'b, 6', 15', 1'-OH
3'	70.1, C		68.6, C				
4′	34.2, CH ₂	a: 1.75	34.4, CH ₂	a: 1.47	4'b, 5'a, 5'b	2', 3', 6'	
		b: 1.35		b: 1.31	4'a, 5'a, 5'b		2', 6'
5'	18.0, CH ₂	a: 1.59	17.6 CH ₂	a: 1.46	4'a, 4'b, 5'b, 6'	3', 6'	
		b: 1.18		b: 1.05	4'a, 4'b, 5'a, 6'	4', 6', 7'	3'-ОН
6'	41.2, CH	2.29, dd (12.9, 6.0)	41.5, CH	2.23, dd (13.2, 5.2)	5'a, 5'b	1', 5', 8'	2', 4'b, 1'-OH
7′	85.3, C		84.9, C				
8'	40.5, CH ₂	a: 2.14	39.9, CH ₂	a: 2.15	8'b, 9'a, 9'b	7', 9', 10', 14'	1'-OH
		b: 1.86		b: 1.78	8'a, 9'a, 9'b	6', 7', 9', 14'	
9′	23.8, CH ₂	a: 2.22	23.3, CH ₂	a: 2.17	8'a, 8'b, 9'b, 10'	7', 10'	
		b: 1.97		b: 1.91	8'a, 8'b, 9'a, 10'	8'	
10′	123.6, CH	5.06, br t (6.0)	124.2, CH	5.03, br t (6.4)	9'a, 9'b, 12', 13'	9', 12', 13'	12'
11'	132.0, C		130.7, C				
12'	25.6, CH ₃	1.64, br s	25.4, CH ₃	1.61, br s	10'	10', 11', 13'	10'
13'	17.7, CH ₃	1.59, br s	17.5, CH ₃	1.56, br s	10'	10', 11', 12'	
14′	23.8, CH ₃	1.47, s	23.4, CH ₃	1.40, s		6', 7', 8'	
15'	29.3, CH ₃	1.35, s	28.6, CH ₃	1.22, s		2', 3', 4'	2'
1'-OH				5.85, s		1', 2, 6'	2', 6', 8'a
3′-OH				4.15, s		2', 3', 4'	5′b

^a The data were recorded at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) in CDCl₃.

^b The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

No.	6	6a	AE	6b	AE
C-1	167.7	165.8	1.9	166.8	0.9
C-2	118.9	118.0	0.9	119.5	0.6
C-3	155.6	154.1	1.5	154.3	1.3
C-4	108.8	109.3	0.5	109.1	0.3
C-5	140.4	137.8	2.6	137.8	2.6
C-6	112.1	110.5	1.6	110.7	1.4
C-7	187.2	184.8	2.4	184.8	2.4
C-8	192.8	191.7	1.1	191.7	1.1
C-1′	71.8	74.2	2.4	74.1	2.3
C-2'	96.8	100.6	3.8	102.0	5.2
C-3'	71.8	74.8	3.0	74.0	2.2
C-4′	29.9	32.6	2.7	32.6	2.7
C-5'	17.1	23.5	6.4	23.5	6.4
C-6′	41.7	43.0	1.3	44.1	2.4
C-7′	84.9	87.2	2.3	86.9	2.0
C-8′	39.9	42.5	2.6	41.6	1.7
C-9′	23.3	28.9	5.6	28.3	5.0
C-14′	23.6	29.1	5.5	30.7	7.1
C-15′	66.1	71.9	5.8	73.7	7.6
MAE		2.8	33	2.9	2
R ²		0.99	991	0.99	86
DP4+		98.3	0%	1.70%	

Table S8 Comparison of experimental and calculated ¹³C NMR data of 6

Table S9 NMR data of 8 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃)

		13" 1	`12'		
No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}}(J \operatorname{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	153.8, C				
2	121.8, C				
3	154.1, C				
4	110.7, CH	7.23, s		2, 3, 6, 8	8
5	137.2, C				
6	115.7 ^{<i>b</i>} , C				
7	187.7, CH	10.77, s		1, 5, 6	
8	192.1, CH	10.58, s		4, 5, 6	4
1′	115.8 ^{<i>b</i>} , C				
2'	142.2, CH	7.58, br s	6'	1, 1′, 2	4′a, 4′b
3'	207.5, C				
4′	40.9, CH ₂	a: 2.56	4'b, 5'a, 5'b	3', 5'	2'
		b: 2.43	4'a, 5'a, 5'b	3', 5', 6'	2'
5'	23.4, CH ₂	a: 2.20	4'a, 4'b, 5'b, 6'	4'	
		b: 1.54	4'a, 4'b, 5'a, 6'		
6′	39.5, CH	3.06, br dd (10.9, 3.4)	2', 5'a, 5'b	1', 2, 2', 4', 5'	9'
7'	86.7, C				
8'	38.5, CH ₂	a: 1.65	8'b, 9'		
		b: 1.55	8'a, 9'		
9'	22.2, CH ₂	2.06	8'a, 8'b, 10'	8', 10', 11'	6'
10'	123.0, CH	4.92, br t (7.0)	9', 12', 13'	9', 12', 13'	12'
11'	132.4, C				
12'	25.5, CH ₃	1.59, br s	10'	10', 11', 13'	10'
13'	17.5, CH ₃	1.49, br s	10'	10', 11', 12'	
14′	21.7, CH ₃	1.49, s		6', 7', 8'	
15'	30.1, CH ₃	2.14, s		3', 4'	

^{*a*} The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^b The data are interchangeable.

Table S10 Primers used in the study

Primer	Sequence (5' to 3')	Usage	
Inf-Bar-F-EcoRV	CCAAGCATCGAAGATATGAGCCCAGAACGACGCC	Claning the has some from aDTDI	
Inf-Bar-R-EcoRV	TCGGCATCTACTGATTCAGATCTCGGTGACGGGCAG	Cloning the <i>bar</i> gene from pr i Ki	
TtrPC-Bar-ANN1-F	TATTCTTTTGATTTAGCAATTAACCCTCACTAAAG	Cloning the <i>bar</i> gene expression cassette from pBSKII-	
TtrPC-Bar-ANN1-R	CGGCAAAATCCCTTATATCGATAAGCTTCAGGGCT	PtrPC-BAR-TtrPC	
gRNA-gstbA-F	TAATACGACTCACTATA <u>GGAGTCGCAGAACTCGCGGC</u> GTTTTAGAGCTAGAAATAGC	Cloning gRNA scaffold from pUCm-gRNAscaffold-	
eGFP-R	TTACACCTTCCTCTTCTTC	eGFP	
PtrpC-XbaI-F	GCTCTAGAGCGCAATTAACCCTCACTAA	Cloning the neo marker gene cassette from pBSKII-	
TtrpC-HindIII-R	CCCAAGCTTCAGGGCTGGTGACGGAATTTTCATAG	PtrPC-neo-TtrPC	
pUCm-F	TCGCGCGTTTCGGTGATGAC		
gRNA-R	AAAAGCACCGACTCGGTGCC	Cioning the gRINA casselle from pUCm-gRINA- <i>stbA</i>	

Table S11 Pl	lasmids used	in the study
--------------	--------------	--------------

Plasmid	Characteristic	Source
pUCm-T	A commercial vector for cloning and <i>in vitro</i> transcription	Sangon Biotech Co., Ltd. (China)
pBARI	Plasmid containing <i>bar</i> marker gene cassette (Amp ^R)	Matsuda, Y. et al. ^[1]
pBSKII-PtrPC-EcoRV-TtrPC	Plasmid containing the $trpC$ promoter and terminator (Amp ^R)	Zheng, YM. et al. ^[2]
pBSKII-PtrPC-Flag-toCas9-TtrPC	Plasmid containing <i>Cas9</i> whose expression is regulated by the <i>trpC</i> promoter (Amp ^R)	Zheng, YM. et al. ^[2]
pUCm-gRNAscaffold-eGFP	Plasmid containing gRNA scaffold	Zheng, YM. et al. ^[2]
pBSKII-PtrPC-neo-TtrPC	Plasmid containing <i>neo</i> whose expression is regulated by the $trpC$ promoter (Amp ^R)	Zheng, YM. et al. ^[2]
pBSKII-PtrPC-BAR-TtrPC	Plasmid containing <i>bar</i> whose expression is regulated by the $trpC$ promoter (Amp ^R)	This work
pBSKII-toCas9-bar	Plasmid containing Cas9 and bar whose expressions are independently regulated by the $trpC$ promoter (Amp ^R)	This work
pUCm-gRNA-stbA	Recombinant pUCm used for <i>in vitro</i> transcription to generate gRNA targeting <i>stbA</i> (Amp ^R)	This work

Supplementary Figures

Fig. S1 Structures of known bisabosqual-type meroterpenoids

Fig. S2 Comparison of ECD spectra of 1-5 with those of stachybisbins A and B

Fig. S3 HPLC analysis of the S. bisbyi PYH05-7 extract treated with methanol or acetonitrile

The culture broth of *S. bisbyi* PYH05-7 grown in liquid maltose medium was extracted with ethyl acetate. Subsequently, the resulted crude extract was stored in methanol or acetonitrile for one day, and then used for HPLC analysis.

(1'R*,2'R*,3'R*,6'R*,7'S*)-**6a**

Fig. S4 Most stable conformers of (1'*R**,2'*R**,3'*R**,6'*R**,7'*S**)-6a

(1'R*,2'R*,3'R*,6'R*,7'R*)-**6b**

Fig. S5 Most stable conformers of (1'*R**,2'*R**,3'*R**,6'*R**,7'*R**)-6b

Fig. S6 NMR spectra of 1

(a) ¹H NMR spectrum in CDCl₃ at 600 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 600 MHz; (d) HSQC spectrum in CDCl₃ at 600 MHz; (e) HMBC spectrum in CDCl₃ at 600 MHz; (f) ROESY spectrum in CDCl₃ at 600 MHz; (g) 1D-selective NOE experiment in CDCl₃ at 400 MHz.

(d)

(c)

Fig. S7 NMR spectra of 2

(a) ¹H NMR spectrum in CDCl₃ at 400 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 400 MHz; (d) HSQC spectrum in CDCl₃ at 400 MHz; (e) HMBC spectrum in CDCl₃ at 400 MHz; (f) ROESY spectrum in CDCl₃ at 400 MHz.

(c)

(d)

Fig. S8 NMR spectra of 3

(a) ¹H NMR spectrum in CDCl₃ at 600 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 600 MHz; (d) HSQC spectrum in CDCl₃ at 600 MHz; (e) HMBC spectrum in CDCl₃ at 600 MHz; (f) ROESY spectrum in CDCl₃ at 600 MHz.

Fig. S9 NMR spectra of 4

(a) ¹H NMR spectrum in CDCl₃ at 600 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 600 MHz; (d) HSQC spectrum in CDCl₃ at 600 MHz; (e) HMBC spectrum in CDCl₃ at 600 MHz; (f) ROESY spectrum in CDCl₃ at 600 MHz.

Fig. S10 NMR spectra of 5

(a) ¹H NMR spectrum in CDCl₃ at 600 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 600 MHz; (d) HSQC spectrum in CDCl₃ at 600 MHz; (e) HMBC spectrum in CDCl₃ at 600 MHz; (f) ROESY spectrum in CDCl₃ at 600 MHz.

(d)

(c)

Fig. S11 NMR spectra of 6

(a) ¹H NMR spectrum in DMSO-*d*₆ at 400 MHz;
(b) ¹³C NMR spectrum in DMSO-*d*₆ at 100 MHz;
(c) ¹H-¹H COSY spectrum in DMSO-*d*₆ at 400 MHz;
(d) HSQC spectrum in DMSO-*d*₆ at 400 MHz;
(e) HMBC spectrum in DMSO-*d*₆ at 400 MHz;
(f) ROESY spectrum in DMSO-*d*₆ at 400 MHz.

(f)

(e)

(a) ¹H NMR spectrum in CDCl₃ at 400 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (c) ¹H NMR spectrum in DMSO- d_6 at 400 MHz; (d) ¹³C NMR spectrum in DMSO- d_6 at 100 MHz; (e) ¹H-¹H COSY spectrum in DMSO- d_6 at 400 MHz; (f) HSQC spectrum in DMSO- d_6 at 400 MHz; (g) HMBC spectrum in DMSO- d_6 at 400 MHz; (h) ROESY spectrum in DMSO- d_6 at 400 MHz.

(d)

(a) ¹H NMR spectrum in CDCl₃ at 400 MHz; (b) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (c) ¹H-¹H COSY spectrum in CDCl₃ at 400 MHz; (d) HSQC spectrum in CDCl₃ at 400 MHz; (e) HMBC spectrum in CDCl₃ at 400 MHz; (f) ROESY spectrum in CDCl₃ at 400 MHz.

Supplementary References

- Y. Matsuda, T. Wakimoto, T. Mori, T. Awakawa, I. Abe, J Am Chem Soc 2014, 136, 15326-15336.
- Y. M. Zheng, F. L. Lin, H. Gao, G. Zou, J. W. Zhang, G. Q. Wang, G. D. Chen, Z. H. Zhou, X.
 S. Yao, D. Hu, *Sci Rep* 2017, 7, 9250.