Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electrochemical NaI-mediated one-pot synthesis of guanidines from isothiocyanates *via* tandem addition-guanylation

Thao Nguyen Thanh Huynh^a, Khuyen Thu Nguyen^a, Mongkol Sukwattanasinitt^a, and Sumrit Wacharasindhu*^{a,b}

^a Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330

^b Green Chemistry for Fine Chemical Productions and Environmental Remediation Research Unit, Department

of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330

sumrit.w@chula.ac.th

Electronic Supplementary Information

Table of Contents

Title page	S 1
Table S1 and Faradaic calculation	S2
General procedure	S3 - S22
Picture of experiment set up: Figure S1-S3	S23
Copy of ¹ H/ ¹³ C NMR spectrum: Figure S4-S72	S24 - S58
Copy of mass spectrum: Figure S70-S84	S59 - S70
GC-MS result of compound 5ab : Figure S85	S71
Cyclic voltammogram	S71
References	S71

Table S1. Additive screening

H S 1aa	+	+ Nal + Additive -	C(+)/C(-) Const. current 15 mA EtOH:H ₂ O 1:1, rt., 4h	
E	Entry	Additive	Yi	eld(%)b
	1	NaCl		40
	2	LiClO ₄		58
	3	TBABF ₄		29
	4	NaOH		63
	5	K ₂ CO ₃		62
	6	Cs_2CO_3		42
	7	Et ₃ N		50
	8	DBU		61
	9	DIPEA		69

Reaction conditions: **1aa** (0.5 mmol, 1.0 eq.), **2b** (0.75 mmol, 1.5 eq.), NaI (0.5 mmol, 1.0 eq.), additive (0.5 mmol, 1.0 eq.), graphite rod (ϕ 5 mm, 20 mm immersion depth) as both cathode and anode, constant current 15 mA (4.5 F/mol), EtOH 2.5 mL, water 2.5 mL, room temperature, 4 hrs., undivided cell.

Faradaic efficiency calculation for the model substrate 4aab:

$$Faradaic \ efficiency = \frac{Q_{experimental}}{Q_{theoretical}} \times 100$$

Faradaic efficiency =
$$\frac{z \times n \times F}{Q_{theoretical}} \times 100$$

With z = number of electron that the reaction used = 2

n = mol of product that obtained = $0.5 \times 80\% = 0.4$ mmol

F = Faradaic constant (96485 C/mol)

Q_{theoretical} can be calculated from I (current, Ampere) x t (reaction time, second)

Faradaic efficiency =
$$\frac{2 \times 0.4 \times 10^{-3} \times 96485}{0.015 \times 7200} \times 100$$

Faradaic efficiency = 72%

Experimental Section

Materials and methods

All chemicals and solvents were obtained from commercially available suppliers such as Sigma-Aldrich and TCI (Japan) and were used without further purification, unless otherwise stated. Pyrex reactor ($\phi = 2.0$ cm, Height = 6.2 cm) was used for electrochemical reaction. Power supply (KORAD, KA3005D) was purchased from Shenzhen Korad Technology CO., LTD. All electrodes such as graphite rod ($\phi = 5$ mm) and platinum plate (5x5x0.1 mm) were purchased from Minihua Store, China. Electrochemical reaction setup was depicted in Figures S1-S3. Analytical thin layer chromatography (TLC) was performed with precoated Merck silica gel 60 F254 plates (0.25 mm for thick layer) and visualized at 254 nm using an ultraviolet lamp. Column chromatography was performed with Silicycle silica gel 60-200 µm (70-230 mesh). ¹H-NMR, ¹³C-NMR spectra were obtained with JEOL JNM-ECZ500R/S1 NMR spectrometers operating at 500 MHz for ¹H or 125 MHz for ¹³C nuclei or 470 MHZ for ¹⁹F nuclei. Melting points are measured with Barnstead international mel-temp meliting point apparatus model 1201D. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) with a MicroTOF Bruker mass spectrometer.

General procedure for synthesis of guanidine from thiourea (General Procedure A)

A mixture of thiourea 1 (1.0 eq., 0.5 mmol), amines 2 (3.0 eq., 1.5 mmol), sodium iodide (1.0 eq., 0.5 mmol), and DIPEA (1.0 eq., 0.5 mmol) were dissolved in mixed 2.5 mL of water with 2.5 mL of ethanol in a Pyrex reactor ($\phi = 2.0$ cm, height = 6.2 cm). The reaction mixture was electrolysed at a constant current of 15 mA (4.5 F/mol), graphite rods as both cathode and anode ($\phi = 20$ mm, about 20 mm immersion depth in solution) at room temperature for 4 hours. After the reaction, the crude mixture was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further

purified by column chromatography (eluted with ethyl acetate/hexane) to afford the desired compound.

General procedure for synthesis of guanidine from amines and isothiocyanate (General Procedure B)

A mixture of amines 2 (1.0 eq., 0.5 mmol), isothiocyanates 3 (1.0 eq., 0.5 mmol), were dissolved in 2.5 mL of ethanol in a Pyrex reactor ($\phi = 2.0$ cm, height = 6.2 cm) and was allowed to stir without electricity for 1 hours at room temperature. After that, sodium iodide (1.0 eq., 0.5 mmol) in 2.5 mL of water, DIPEA (1.0 eq., 0.5 mmol), and amines 2 (3.0 eq., 1.5 mmol) were added to the solution. The reaction mixture was electrolysed at a constant current of 15 mA (4.5 F/mol), graphite rods as both cathode and anode ($\phi = 20$ mm, about 20 mm immersion depth in solution) at room temperature for 4 hours. After the reaction, the crude mixture was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography (eluted with ethyl acetate/hexane) to afford the desired compound.

N,*N*'-diphenylmorpholine-4-carboximidamide (**4aab**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aab** (108.1 mg, 0.385 mmol, 77%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aab** (112.2 mg, 0.4 mmol, 80%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃)

δ ppm 7.25 (t, *J* = 7.8 Hz, 4H), 7.0-6.94 (m, 6H), 3.68 (t, *J* = 4.8 Hz, 4H), 3.34 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.0, 129.5, 122.7, 66.5, 47.1. Melting point: 133-134°C. Data is consistent with reported literatures.¹⁻³

For gram-scale synthesis: A mixture of aniline 2a (1.0 eq., 466.0 mg, 5.0 mmol), phenyl isothiocyanate 3a (1.0 eq., 675 mg, 5.0 mmol), was dissolved in 25 mL of ethanol and stir at room temperature for 2 hours in a 100 mL three-necked round bottom flask. After that, sodium iodide (1.0 eq., 749.5 mg, 5.0 mmol) in 25 mL of water, DIPEA (1.0 eq., 646.0 mg, 5.0 mmol), and morpholine 2b (3.0 eq., 1.307 g, 15 mmol) were added in the flask. The reaction mixture was then electrolysed at a constant current of 30 mA (4.5 F/mol), graphite rods as both cathode and anode at room temperature for 20 hours. The reaction was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography in ethyl acetate/hexane to afford the desired compound (1.0011 g, 3.55 mmol, 71%).

1-butyl-2,3-diphenylguanidine (**4aac**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), *n*-butylamine **2c** (109.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aac** (65.2 mg, 0.245 mmol, 49%) as a brown solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), *n*-butylamine **2c** (109.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), *DIPEA* (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) to afford **4aac** (71.9 mg, 0.5 mmol), *n*-butylamine **2c** (109.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aac** (71.9 mg, 0.27 mmol, 54%) as a light brown solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.31-7.28 (m, 4H), 7.05-7.02 (m, 6H), 3.31 (t, *J* = 7.3 Hz, 2H), 1.57-1.51 (m, 2H), 1.4-1.32 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 148.6, 138.3, 129.5,

123.2, 123.1, 41.7, 31.8, 20.3, 14.0. Melting point: 68-69°C. Data is consistent with reported literatures.¹⁻³

1-cyclohexyl-2,3-diphenylguanidine (4aad) Synthesized according to the General procedure A using 1,3-diphenylthioureas 1aa (114.0 mg, 0.5 mmol), cyclohexylamine 2d (144.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford 4aad (92.1 mg, 0.315 mmol, 63%) as a yellow solid; Synthesized according to the General procedure B using aniline 2a (46.6 mg, 0.5 mmol), phenyl isothiocyanate 3a (67.5 mg, 0.5 mmol), cyclohexylamine 2d (144.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford 4aad (127.5 mg, 0.435 mmol, 87%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.29 (t, *J* = 7.9 Hz, 4H), 7.03 (d, *J* = 7.9 Hz, 2H), 3.76 (b, 1H), 2.09 (d, *J* = 9.5 Hz, 2H), 1.71-1.67 (m, 2H), 1.62-1.58 (m, 1H), 1.43-1.34 (m, 2H), 1.2-1.09 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 147.5, 129.5, 129.2, 123.0, 49.9, 33.5, 25.8, 25.0. Melting point: 141-142°C. Data is consistent with reported literatures.¹⁻³

1-benzyl-2,3-diphenylguanidine (**4aae**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), benzylamine **2e** (160.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aae** (90.1 mg, 0.3 mmol, 60%) as a yellow solid;

Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), benzylamine **2e** (160.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aae** (132.5 mg, 0.44 mmol, 88%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.39-7.36 (m, 4H), 7.33-7.3 (m, 5H), 7.09-7.04 (m, 6H), 4.56 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 148.3, 139.1 129.6, 128.7, 127.8, 127.4, 123.2, 45.9. Melting point: 98-99°C. Data is consistent with reported literatures.^{1,2}

1-(4-methoxybenzyl)-2,3-diphenylguanidine (**4aaf**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), 4methoxybenzylamine **2f** (205.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aaf** (88.4 mg, 0.265 mmol, 53%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aaf** (160.3 mg, 0.485 mmol, 9.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aaf** (160.3 mg, 0.485 mmol, 97%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.31-7.28 (m, 6H), 7.06-7.02 (m, 6H), 6.89-6.87 (m, 2H), 4.47 (s, 2H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 159.0, 148.3, 131.2, 129.6, 129.2, 123.2, 114.1, 55.4, 45.5. Melting point: 115-116°C. Data is consistent with reported literatures.²

1-(4-fluorobenzyl)-2,3-diphenylguanidine (**4aag**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), 4-fluorobenzylamine **2g** (188.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aag** (110.9 mg, 0.35 mmol, 70%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), 4-fluorobenzylamine **2g** (188.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aag** (132.8 mg, 0.415 mmol, 83%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.37-7.31 (m, 6H), 7.09-7.03 (m, 8H), 4.53 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 163.2, 161.2, 154.0, 148.2, 135.1, 129.7, 129.5 (d, *J* = 7.5 Hz), 116.3, 115.5, 45.2. ESI-MS: m/z: 320.15706 [M+H]⁺ (calcd for [C₂₀H₁₉FN₃]⁺ 320.15630).

1-(4-chlorobenzyl)-2,3-diphenylguanidine (**4aah**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), 4-chlorobenzylamine **2h** (212.4 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aah** (107.1 mg, 0.32 mmol, 64%) as a white solid; Synthesized according to the General procedure B using aniline

2a (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), 4-chlorobenzylamine **2h** (212.4 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aah** (154.2 mg, 0.46 mmol, 92%) as a white solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.31 (t, *J* = 7.8 Hz, 8H), 7.08-7.04 (m, 6H), 4.51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 148.1, 137.9, 133.0, 129.6, 129.1, 128.8, 123.3, 45.1. Melting point: 117-118°C. Data is consistent with reported literatures.²

1,2,3-triphenylguanidine (**4aaa**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), aniline **2a** (139.8 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aaa** (88.5 mg, 0.31 mmol, 62%) as a white solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.33 (t, J = 7.9 Hz, 6H), 7.23 (b, 6H), 7.07 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 145.0, 129.5, 123.3, 121.7; ¹³C NMR (125 MHz, CDCl₃): δ ppm 145.0, 129.5, 123.3, 121.7; ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.0, 142.6, 130.1, 124.5, 122.5. Melting point: 145-146°C. ESI-MS: m/z: 288.15092 [M+H]⁺ (calcd for [C₁₉H₁₈N₃]⁺ 288.15007). Data is consistent with reported literatures.³

1-(4-methoxyphenyl)-2,3-diphenylguanidine (4aai) Synthesized according to the General procedure B using aniline 2a (46.6 mg, 0.5 mmol), phenyl isothiocyanate 3a (67.5 mg,

0.5 mmol), *p*-anisidine **2i** (184.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aai** (90.1 mg, 0.285 mmol, 57%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.32-7.28 (m, 4H), 7.22 (b, 4H), 7.14 (d, *J* = 8.7 Hz, 2H), 7.04 (t, *J* = 7.3 Hz, 2H), 6.88-6.86 (m, 2H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 145.8, 129.4, 123.1, 121.6, 114.8, 55.6. Data is consistent with reported literatures.^{2,3}

1,1-diethyl-2,3-diphenylguanidine (**4aal**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), diethylamine **2l** (109.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aal** (83.6 mg, 0.315 mmol, 63%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), diethylamine **2l** (109.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aal** (136.4 mg, 0.44 mmol, 88%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.22 (t, *J* = 7.7 Hz, 4H), 6.95 (t, *J* = 7.3 Hz, 2H), 6.88 (d, *J* = 7.5 Hz, 4H), 3.34 (q, *J* = 7.1 Hz, 4H), 1.17 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.3, 129.3, 122.0, 42.1, 13.0. Melting point: 94-95°C. Data is consistent with reported literatures.^{1,2}

N,N^{*}-diphenylpyrrolidine-1-carboximidamide (**4aam**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), pyrrolidine **2m** (106.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aam** (74.1 mg, 0.28 mmol, 56%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), pyrrolidine **2m** (106.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aam** (88.2 mg, 0.335 mmol, 67%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.22-7.18 (m, 4H), 7.0-6.96 (m, 6H), 3.30 (t, *J* = 6.4 Hz, 4H), 1.82-1.80 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.7, 141.3, 129.4, 123.9, 121.5, 48.7, 25.2. Data is consistent with reported literatures.¹⁻³

N,N'-diphenylazepane-1-carboximidamide (**4aan**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), azepane **2n** (148.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aan** (111.6 mg, 0.38 mmol, 76%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), azepane **2n** (148.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol), in ethanol (2.5 mL) and water (2.5 mL), to afford **4aan** (127.2 mg, 0.435 mmol, 87%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.23 (t, *J* = 7.8 Hz, 4H), 6.97 (t, *J* = 7.4 Hz, 2H), 6.96-6.86 (m, 4H), 3.48 (t, *J* =

5.8 Hz, 4H), 1.78-1.77 (m, 4H), 1.65-1.63 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.9, 129.3, 121.9, 48.8, 28.3, 27.9. Data is consistent with reported literatures.^{1,2}

2-Methyl-*N*,*N*'-diphenylpiperidine-1-carboximidamide (**4aao**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), 2-methylpiperidine **2o** (148.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aao** (102.3 mg, 0.35 mmol, 70%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), 2-methylpiperidine **2o** (148.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), 2-methylpiperidine **2o** (148.8 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aao** (122.6 mg, 0.42 mmol, 84%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.23 (t, *J* = 7.8 Hz, 4H), 6.95-6.91 (m, 6H), 4.14-4.12 (m, 1H), 3.71-3.68 (m, 1H), 3.05-2.99 (m, 1H), 1.75-1.69 (m, 1H), 1.66-1.60 (m, 3H), 1.56-1.50 (m, 1H), 1.45-1.42 (m, 1H), 1.21 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.8, 129.3, 122.0, 48.8, 41.4, 29.9, 25.6, 19.1, 14.6. Data is consistent with reported literatures.^{1,2}

tert-Butyl-4-(N,*N*'-diphenylcarbamimidoyl)piperazine-1-carboxylate (4aap)

Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), *tert*-butyl piperazine-1-carboxylate **2p** (279.4 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4aap** (74.2 mg, 0.195 mmol, 39%) as a yellow solid; Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), *tert*-butyl piperazine-1-carboxylate **2p** (279.4 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), *tert*-butyl piperazine-1-carboxylate **2p** (279.4 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aap** (139.4 mg, 0.365 mmol, 73%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.25 (t, *J* = 7.6 Hz, 4H), 6.99-6.92 (m, 6H), 3.42-3.40 (m, 4H), 3.32-3.30 (m, 4H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 154.9, 151.0, 129.5, 122.7, 121.6, 80.1, 46.5, 28.5. Melting point: 125-126°C. Data is consistent with reported literatures.^{1,2}

N-phenyl-*N*'-(*o*-tolyl)morpholine-4-carboximidamide (**4qab**) Synthesized according to the General procedure B using *o*-toluidine **2q** (53.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4qab** (127.8 mg, 0.435 mmol, 87%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.28-7.24 (m, 2H), 7.16 (d, *J* = 7.1 Hz, 2H), 7.0-6.95 (m, 4H), 3.70 (b, 4H), 3.35 (t, *J* = 4.3 Hz, 4H), 2.14 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 130.8, 129.4, 126.9, 122.9, 122.5, 121.0, 118.8, 66.5, 47.2, 18.0. Data is consistent with reported literatures.¹⁻³

N-phenyl-*N*'-(*p*-tolyl)morpholine-4-carboximidamide (**4rab**) Synthesized according to the General procedure B using *p*-toluidine **2r** (53.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4rab** (125.0 mg, 0.425 mmol, 85%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.25 (t, *J* = 7.7 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.99-6.96 (m, 5H), 3.67 (t, *J* = 4.8 Hz, 4H), 3.32 (t, *J* = 4.8 Hz, 4H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.2, 132.1, 130.0, 129.4, 122.5, 118.7, 66.5, 47.0, 20.8. Data is consistent with reported literatures.¹⁻³

N'-(4-methoxyphenyl)-*N*-phenylmorpholine-4-carboximidamide (**4iab**) Synthesized according to the General procedure B using *p*-anisidine **2i** (61.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4iab** (143.3 mg, 0.46 mmol, 92%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.26 (t, *J* = 7.9 Hz, 2H), 6.99-6.85 (m, 5H), 6.8 (d, *J* = 8.7 Hz, 2H), 3.76 (s, 3H), 3.65 (t, *J* = 4.4 Hz, 4H), 3.31 (t, *J* = 4.7 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 155.6, 129.5, 122.5, 114.7, 66.5, 55.6, 47.1. Data is consistent with reported literatures.¹⁻³

N'-(4-hydroxyphenyl)-*N*-diphenylmorpholine-4-carboximidamide (**4sab**) Synthesized according to the General procedure B using 4-aminophenol **2s** (54.6 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4sab** (80.1 mg, 0.27 mmol, 54%) as a brown powder: ¹H NMR (500 MHz, (CD₃)₂SO) δ ppm 7.11 (t, *J* = 7.8 Hz, 2H), 6.82-6.74 (m, 5H), 6.54 (d, J = 8.3 Hz, 2H), 3.56 (t, *J* = 4.3 Hz, 4H), 3.20 (t, *J* = 4.2 Hz, 4H). ¹³C NMR (125 MHz, (CD₃)₂SO): δ ppm 151.8, 128.7, 120.2, 115.3, 65.8, 46.8; ¹³C NMR (125 MHz, (CD₃)₂SO + 0.1% TFA): δ ppm 152.8, 151.2, 128.9, 122.0, 121.6, 119.9, 115.5 65.7, 47.2. Melting point: 192-194°C. ESI-MS: m/z: 298.15555 [M+H]⁺ (calcd for [C₁₇H₂₀N₃O₂]⁺ 298.15620).

N'-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-N-phenylmorpholine-4-carboximidamide Synthesized (4tab) according to the General procedure В using 4-((tertbutyldimethylsillyl)oxy)aniline 2t (111.7 mg, 0.5 mmol), phenyl isothiocyanate 3a (67.5 mg, 0.5 mmol), morpholine 2b (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford 4tab (123.9 mg, 0.3 mmol, 60%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.25 (t, J = 7.9 Hz, 2H), 6.99-6.82 (m, 5H), 6.74 (d, J = 8.6 Hz, 2H), 3.64 (b, 4H), 3.30 (t, J = 4.5 Hz, 4H), 0.96 (s, 9H),

0.16 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.5, 129.5, 122.6, 120.9, 66.5, 47.2, 25.8, 18.3, -4.3. ESI-MS: m/z: 412.24336 [M+H]⁺ (calcd for [C₂₃H₃₄N₃O₂Si]⁺ 412.24203).

N-phenyl-*N*'-(pyridin-2-yl)morpholine-4-carboximidamide (**4uab**) Synthesized according to the General procedure A using 1-phenyl-3-(pyridin-2-yl)thioureas **1ua** (114.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4uab** (71.0 mg, 0.25 mmol, 50%) as a white solid; Synthesized according to the General procedure B using 2-aminopyridine **2u** (47.0 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **4uab** (11.4 mg, 0.04 mmol, 8%) as a white solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.22-8.21 (m, 1H), 7.56-7.53 (m, 1H), 7.28 (t, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 6.6 Hz, 2H), 7.01-6.98 (m, 2H), 6.82-6.80 (m, 1H), 3.68 (t, *J* = 4.6 Hz, 4H), 3.44 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 161.7, 154.0, 146.1, 141.1, 137.7, 129.4, 122.9, 121.0, 120.2, 116.8, 66.6, 47.4. Melting point: 86-88°C. Data is consistent with reported literatures.^{1,2}

N'-benzhydryl-*N*-phenylmorpholine-4-carboximidamide (4vab) Synthesized according to the General procedure B using benzhydrylamine 2v (91.6 mg, 0.5 mmol), phenyl isothiocyanate 3a (67.5 mg, 0.5 mmol), morpholine 2b (130.7 mg, 1.5 mmol), sodium iodide

(149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4vab** (88.9 mg, 0.24 mmol, 48%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.32-7.27 (m, 8H), 7.16 (b, 4H), 7.07-7.04 (m, 2H), 6.89-6.86 (m, 1H), 5.63 (s, 1H), 3.74 (t, *J* = 4.6 Hz, 4H), 3.24 (t, *J* = 4.7 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 129.2, 128.8, 127.5, 127.3, 122.3, 66.9, 62.8, 48.5. Melting point: 142-143°C. ESI-MS: m/z: 372.20858 [M+H]⁺ (calcd for [C₂₄H₂₆N₃O]⁺ 372.20759).

Ethyl-3-(((benzhydrylamino))((4-cyanophenyl)amino)methylene)amino)propanoate (**4whv**) Synthesized according to the General procedure B using β -alanine ethyl ester hydrochloride **2a** (76.8 mg, 0.5 mmol), phenyl isothiocyanate **3a** (67.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (added twice into the reaction: 1st step: 193.8 mg, 1.5 mmol; 2nd step: 64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4whv** (144.2 mg, 0.34 mmol, 68%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.48-7.46 (m, 2H), 7.35-7.32 (m, 4H), 7.30-7.26 (m, 2H), 7.24-7.23 (m, 4H), 6.92-6.89 (m, 2H), 5.70 (s, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.49 (t, *J* = 5.6 Hz, 2H), 2.50 (t, *J* = 5.9 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 172.7, 150.4, 141.4, 133.7, 129.1, 128.1, 127.2, 123.9, 120.1, 103.9, 69.1, 60.8, 60.5, 37.3, 34.3, 14.3. ESI-MS: m/z: 427.21480 [M+H]⁺ (calcd for [C₂₀H₂₇N₄O₂]⁺ 427.21340).

N-(2-fluorophenyl)-*N'*-phenylmorpholine-4-carboximidamide (**4abb**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 2-fluorophenyl isothiocyanate **3b** (76.6 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4abb** (116.2 mg, 0.39 mmol, 78%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.26 (m, 2H), 7.01-6.84 (m, 7H), 3.67 (t, *J* = 4.8 Hz, 4H), 3.36 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 129.4, 124.7 (d, *J* = 3.8 Hz), 123.2, 122.8, 119.2, 118.9, 116.2 (d, *J* = 21.3 Hz), 66.5, 47.2; ¹³C NMR (125 MHz, CD₃OD + 0.1% TFA): δ ppm 155.8, 141.5, 130.1, 126.5, 125.7, 124.6, 121.8, 116.9 (d, *J* = 20.0 Hz), 67.3, 48.9. ESI-MS: m/z: 300.15160 [M+H]⁺ (calcd for [C₁₇H₁₉FN₃O]⁺ 300.15122).

N-(4-fluorophenyl)-*N'*-phenylmorpholine-4-carboximidamide (**4acb**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 4-fluorophenyl isothiocyanate **3c** (76.6 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4acb** (70.2 mg, 0.235 mmol, 47%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.28 (m, 2H), 7.01-6.84 (m, 7H), 3.67 (t, *J* = 4.7 Hz, 4H), 3.32 (t, *J* = 4.7 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.3, 129.6, 122.7, 116.2 (d, *J* = 22.5 Hz), 66.5, 47.1; ¹³C NMR (125 MHz, CDCl₃): δ ppm 155.5, 144.2, 138.3, 130.7, 127.2, 125.6, 125.5, 123.4, 117.3 (d, *J* = 23.8 Hz), 66.9, 49.7. ESI-MS: m/z: 300.15216 [M+H]⁺ (calcd for [C₁₇H₁₉FN₃O]⁺ 300.15122).

N-(4-chlorophenyl)-*N*'-phenylmorpholine-4-carboximidamide (**4adb**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 4-chlorophenyl isothiocyanate **3d** (84.8 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4adb** (97.8 mg, 0.31 mmol, 62%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.27 (t, *J* = 7.9 Hz, 2H), 7.19 (d, *J* = 8.6 Hz, 2H), 7.01-6.84 (m, 5H), 3.67 (t, *J* = 4.8 Hz, 4H), 3.32 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.1, 129.6, 129.5, 127.7, 122.8, 66.4, 47.1; ¹³C NMR (125 MHz, CD₃OD + 0.1% TFA): δ ppm 154.5, 146.5, 145.2, 130.1, 129.8, 128.0, 123.5, 123.3, 121.2, 67.4, 48.4. ESI-MS: m/z: 316.12268 [M+H]⁺ (calcd for [C₁₇H₁₉ClN₃O]⁺ 316.12166). Data is consistent with reported literatures³.

N-(4-bromophenyl)-*N*'-phenylmorpholine-4-carboximidamide (**4aeb**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 4-bromophenyl isothiocyanate **3e** (107.0 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aeb** (116.8 mg, 0.325 mmol, 65%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.32 (d, *J* = 8.7 Hz, 2H), 7.26 (t, *J* = 7.9 Hz, 2H), 7.0-6.77 (m, 5H), 3.65 (t, *J* = 4.8 Hz, 4H), 3.31 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.9, 137.9, 132.3, 129.5,

122.7, 115.1, 66.3, 47.0. Melting point: 129-130°C. Data is consistent with reported literatures.¹⁻³

N-(4-iodophenyl)-*N'*-phenylmorpholine-4-carboximidamide (4afb) Synthesized according to the General procedure B using aniline 2a (46.6 mg, 0.5 mmol), 4-iodophenyl isothiocyanate 3f (130.5 mg, 0.5 mmol), morpholine 2b (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford 4afb (118.2 mg, 0.29 mmol, 58%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.51 (d, *J* = 8.4 Hz, 2H), 7.27-7.24 (m, 2H), 7.0-6.94 (m, 3H), 6.66 (b, 2H), 3.66 (t, *J* = 4.7 Hz, 4H), 3.31 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.0, 138.3, 129.4, 124.9, 122.7, 118.4, 85.5, 66.4, 47.0. Melting point: 148-150°C. Data is consistent with reported literatures.^{1,2}

N'-phenyl-*N*-(4-(trifluoromethyl)phenyl)morpholine-4-carboximidamide (4agb) Synthesized according to the General procedure B using aniline 2a (46.6 mg, 0.5 mmol), 4-(trifluoromethyl)phenyl isothiocyanate 3g (101.6 mg, 0.5 mmol), morpholine 2b (130.7 mg, 1.5 mmol), sodium iodide (149.9 mg, 1.0 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford 4agb (125.6 mg, 0.36 mmol, 72%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.48 (d, *J* = 8.2 Hz, 2H), 7.29-7.26 (overlap with solvent, 2H), 7.02- 6.96 (m, 5H), 3.70 (b, 4H), 3.36 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 151.2, 143.0, 129.6, 127.8, 126.7 (d, J = 3.4 Hz), 125.6, 124.4 (q, J = 32.2 Hz, C-F coupling), 123.5, 123.3, 120.0, 66.2, 47.2. ¹⁹F NMR (470 MHz, CDCl₃): δ ppm -61.6 (-CF₃). Melting point: 108-109°C. Data is consistent with reported literatures.^{1,2}

N-(4-cyanophenyl)-*N*'-phenylmorpholine-4-carboximidamide (**4ahb**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 4-cyanophenyl isothiocyanate **3h** (80.1 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4ahb** (125.1 mg, 0.41 mmol, 82%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.47 (d, *J* = 8.5 Hz, 2H), 7.27 (t, *J* = 7.9 Hz, 2H), 7.01 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 4H), 3.69 (t, *J* = 4.7 Hz, 4H), 3.36 (t, *J* = 4.8 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 133.6, 129.7, 123.2, 104.8, 66.4, 47.1; ¹³C NMR (125 MHz, CD₃OD + 0.1% TFA): δ ppm 154.4, 142.0, 134.3, 130.3, 124.9, 122.6, 122.0, 120.1, 106.1, 67.2, 48.9. ESI-MS: m/z: 307.15531 [M+H]⁺ (calcd for [C₁₈H₁₉N₄O]⁺ 307.15589).

Ethyl-4-(*N*'-phenylmorpholine-4-carboximidamido)benzoate (**4aib**) Synthesized according to the General procedure B using aniline **2a** (46.6 mg, 0.5 mmol), 4-ethylbenzoate isothiocyanate **3i** (103.5 mg, 0.5 mmol), morpholine **2b** (130.7 mg, 1.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL), to afford **4aib** (134.1 mg, 0.38 mmol, 76%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm

7.92 (d, J = 8.5 Hz, 2H), 7.26 (t, J = 7.8 Hz, 2H), 7.01-6.92 (m, 5H), 4.32 (q, J = 7.2 Hz, 2H), 3.69 (t, J = 4.7 Hz, 4H), 3.35 (t, J = 4.8 Hz, 4H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 166.6, 131.3, 129.6, 124.2, 123.0, 113.9, 66.4, 60.8, 47.1, 14.5. Melting point: 89-90°C. ESI-MS: m/z: 354.18279 [M+H]⁺ (calcd for [C₂₀H₂₄N₃O₃]⁺ 354.18177). Data is consistent with reported literatures.³

Ethyl-*N*,*N*'-diphenylcarbamimidate (**5ab**) Synthesized according to the General procedure A using 1,3-diphenylthioureas **1aa** (114.0 mg, 0.5 mmol), sodium iodide (74.9 mg, 0.5 mmol), DIPEA (64.6 mg, 0.5 mmol) in ethanol (2.5 mL) and water (2.5 mL) to afford **5ab** (10.4 mg, 0.04 mmol, 8%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.35-7.31 (m, 2H), 7.26 (m, overlap with solvent, 2H), 7.06-6.98 (m, 5H), 4.42 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 150.2, 129.8, 129.2, 129.0, 123.1, 122.9, 120.4, 62.9, 14.4, 14.5. ESI-MS: m/z: 241.13421 [M+H]⁺ (calcd for [C₁₅H₁₇N₂O]⁺ 241.13409).

Figure S1. Reactors set up.

Figure S2. Electrodes a) Carbon and b) Platinum.

Figure S3. Gram scale set up.

Figure S5 ¹³C NMR spectra of 4aab (CDCl₃).

Figure S7 ¹³C NMR spectra of 4aac (CDCl₃).

Figure S9 ¹³C NMR spectra of 4aad (CDCl₃).

Figure S13 13 C NMR spectra of 4aaf (CDCl₃).

Figure S25 ¹H NMR spectra of 4aam (CDCl₃).

Figure S33 ¹H NMR spectra of 4qab (CDCl₃).

Figure S35 ¹H NMR spectra of 4rab (CDCl₃).

Figure S43 ¹³C NMR spectra of 4tab (CDCl₃).

Figure S47 ¹³C NMR spectra of 4vab (CDCl₃).

Figure S55 13 C NMR spectra of 4acb (CD₃OD + 0.1% TFA).

S51

Figure S63 ¹H NMR spectra of 4agb (CDCl₃).

S56

S59

Figure S85 Mass spectrum of compound 5ab from GC-MS.

Scheme S2. Cyclic voltammogram of 1aa, 2b and NaI in 0.1 M TBABF₄/EtOH:H₂O (1:1) using glassy carbon electrode (A = 0.71 cm^2) as working electrode, Pt wire and Ag/AgCl (3M KCl) as counter and reference electrodes at scan rate 0.1 V/s. In case of 1aa, 2b, NaI, 1aa/2b, and 1aa/2b/NaI experiments, 10 mM solution of compounds were prepared.

References

1. Saetan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., A mild photocatalytic synthesis of guanidine from thiourea under visible light. *Org. Lett.* **2020**, *22*, 7864-7869.

2. Annuur, R. M.; Saetan, T.; Sukwattanasinitt, M.; Wacharasindhu, S., Metal-free synthesis of guanidines from thioureas in water reactions mediated by visible light. *Synthesis* **2023**.

3. Wan, Y.; Wu, H.; Ma, N.; Zhao, J.; Zhang, Z.; Gao, W.; Zhang, G., *De novo* design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. *Chem. Sci.* **2021**, *12*, 15988-15997.